-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathget_X_data.py
323 lines (306 loc) · 13.8 KB
/
get_X_data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
#June 20, 2015
#RG
#Updated June 28, 2015
#RG
#Now updated, this file has functions that can pull the vital information from
# IDBfiles, whether get_X_data(data) is given the filenames or the timerange.
# There is now only one plotting function. It has the capability of plotting
# angle or abs for all 12 baselines on 12 subplots, or plotting u vs v
# for all 12 baselines(+ and -) on one figure.
#
# 2015-07-03 DG
# Added check for source name, and stop reading when source name changes.
# Also now returns times as Time() object array.
# 2015-07-04 DG
# Throws out any "short" files that have too few frequencies in get_X_data().
# Also fixed bug where out was not truncated in readXdata() to actual number of times.
# 2015-07-26 DG
# Fixed an off-by-one error in times returned by readXdata().
# 2016-04-26 Shaheda
# Added the path for the 2015 data in /data1/eovsa/fits/IDB/directory on tawa# machine.
# 2016-05-11 DG
# Fixed the data path now that both /dppdata1 and the new /data1/eovsa
# path for older data are available.
# 2018-08-20 Shaheda
# For 2015 data which is moved to /common/archive, an extra path is added.
#
import aipy
import os
from util import Time,get_idbdir
import glob
import numpy as np
import matplotlib.pyplot as plt
import spectrogram_fit as sp
import copy
def readXdata(filename):
#This routine reads the vital information from a single IDBfile.
# It is used in get_X_data(data).
ibl = np.array(
[[0,0,1,2,0,0,0,0],
[0,0,3,4,0,0,0,0],
[0,0,0,5,0,0,0,0],
[0,0,0,0,0,0,0,0],
[0,0,0,0,0,6,7,8],
[0,0,0,0,0,0,9,10],
[0,0,3,4,0,0,0,11]])
# Open uv file for reading
uv = aipy.miriad.UV(filename)
# Read one record to get number of good frequencies
preamble, data = uv.read()
if 'source' in uv.vartable:
src = uv['source']
uv.rewind()
nf = len(data.nonzero()[0])
freq = uv['sfreq'][data.nonzero()[0]]
out = np.zeros((12,nf,600,2),dtype=np.complex64)
uvwfile = []
timearray = []
l = -1
tprev = 0
for preamble, data in uv.all():
uvw, t, (i,j) = preamble
if j == 13:
j = 3 # Ant 14 in Ant 4 slot for now
if j == 8:
j = 1 # Ant 9 in Ant 2 slot for now
if i == 8:
i = 1 # Again with Ant 9
if uv['pol'] == -2:
k = 1
uvwfile.append(uvw)
else:
k = 0
if len(data.nonzero()[0]) == nf:
if t != tprev:
# New time
l += 1
if l == 600:
break
tprev = t
timearray.append(t)
out[ibl[i,j],:,l,k] = data[data.nonzero()]
return out[:,:,:l+1,:], np.array(uvwfile), freq, np.array(timearray), src
def show_IDBdatainfo(IDBdata, datatype=None, minchannel=0, maxchannel=None, polarization=0):
#This function will show 12 subplot. It can show either phase or absolute power,
# depending on the inputs.
#
#To make a uvw plot, put uvw in for IDBdata, and None for datatype.
# The minchannel and maxchannel do not matter for a UVW plot.
p = polarization
if maxchannel == None:
m =(minchannel +1)
else:
m =maxchannel
if datatype == np.angle:
type = 'Phases'
else:
if datatype == abs:
type = 'Abs'
baselines = [' 1 and 2 ', ' 1 and 3 ', ' 1 and 4 ', ' 2 and 3 ', ' 2 and 4 ', ' 3 and 4 ', ' 5 and 6 ', ' 5 and 7 ', ' 5 and 8 ', ' 6 and 7 ', ' 6 and 8 ', ' 7 and 8 ']
polarizations = [' x', ' y']
if datatype == None:
uvw = IDBdata
for i in range(uvw.shape[0]):
plt.plot(-uvw[i][:, 0], -uvw[i][:, 1], '.')
plt.suptitle('uv plot', fontsize=18, fontweight='bold', color='green')
else:
f, ax = plt.subplots(2, 6, figsize=(21,10))
for i in range(12):
ax[i/6, i % 6].plot(np.transpose(datatype(IDBdata[i, p, minchannel:m, :])), '.')
ax[i/6, i % 6].set_title('Antennas ' + baselines[i] + polarizations[p], color='blue')
if datatype == np.angle:
ax[i/6, i % 6].set_ylim([-np.pi, np.pi])
else: pass
plt.subplots_adjust(left=0.03, bottom=0.05, right=0.97)
plt.suptitle(type + ' for the 12 Baselines', fontsize=18, fontweight='bold', color='red')
def get_IDBfiles(showthelast=10):
#This will return the most recent IDB files saved to the
# directory /data1/IDB/. They will be returned in a list
# with the format '/data1/IDB/IDByyyymmddhhmmss'
# We can adjust the number of files shown with 'showthelast' optional variable.
# It will not show the file being written currently
s = showthelast
IDBfiles = os.listdir('/data1/IDB/')
IDBfiles.sort()
IDBfiles = IDBfiles[-(s+2):-2]
for i in range(len(IDBfiles)):
IDBfiles[i] = '/data1/IDB/'+IDBfiles[i]
return IDBfiles
def get_X_data(data):
#This takes a list of IDB files (as given by get_IDBfiles() or get_trange_files(trange) ) and concatenates
# the abs and angle data they contain into a single IDBdata variable. It also returns the uvw coordinates, the
# frequencies, and the time array for the files.
if type(data) == Time:
data = get_trange_files(data)
else:
pass
IDBdatalist = []
uvw = []
times = []
src = ''
for files in data:
#This will skip any files which give us errors.
# The names of the bad or unreadable files will
# be printed.
try:
IDBdata, uvwdata, freq, timearray, src0 = readXdata(files)
if src == '':
# This is the first file so set source name and frequency list
src = copy.copy(src0)
fghz = freq
if src != src0:
print 'Source name:',src0,'is different from initial source name:',src
print 'Will stop reading files.'
break
IDBdatalist.append(IDBdata)
uvw.append(uvwdata)
times.append(timearray)
except:
print 'The problematic file is: ' + files
# Sometimes an IDB file will be truncated early and have a number of frequencies
# that is incompatible with the others, so make a list of the number of frequencies
# in each IDBdata and keep only those with the most common number.
nfs = []
# Find the maximum number of frequencies
for i in range(len(IDBdatalist)):
nbl,nf,nt,npol = IDBdatalist[i].shape
nfs.append(nf)
nfs = np.array(nfs)
nfgood = np.median(nfs)
badidx, = np.where(nfs != nfgood)
if len(badidx) != 0 and len(nfs) < 3:
print 'Files have different numbers of frequencies, and result is ambiguous.'
print 'Will take the file with the higher number of frequencies'
nfgood = nfs.max()
# Make a list, nfbad, of entries with fewer than the max number of frequencies
nfbad = []
for i in range(len(nfs)):
if nfs[i] != nfgood: nfbad.append(i)
# This loop will run only if length of nfbad > 0
for i in range(len(nfbad)):
# Eliminate some entries in the list with too few frequencies
IDBdatalist.pop(nfbad[i])
times.pop(nfbad[i])
uvw.pop(nfbad[i])
print 'File',data[nfbad[i]],'eliminated due to too few frequencies.'
IDBdata = np.concatenate(IDBdatalist,2)
times = Time(np.array(np.concatenate(times)).astype('float'),format='jd')
uvw = np.concatenate(uvw,0)
IDBdata = np.swapaxes(np.swapaxes(IDBdata, 3, 1), 2, 3)
#IDBdata is (baselines, polarizations, frequency, time)
return IDBdata, uvw, fghz, times
def get_trange_files(trange):
#Given a timerange, this routine will take all relevant IDBfiles from
# that time range, put them in a list, and return that list.
# This function is used in get_X_data(data).
fstr = trange[0].iso
folder = '/data1/IDB'
if glob.glob(folder) == []:
folder = '/dppdata1/IDB'
files = glob.glob(folder+'/IDB'+fstr.replace('-','').split()[0]+'*')
files.sort()
if files == [] or glob.glob(folder) == []:
datdir = trange[0].iso[:10].replace('-','')
# folder = '/data1/eovsa/fits/IDB/'+datdir
folder = get_idbdir(trange[0])+datdir
files = glob.glob(folder+'/IDB'+fstr.replace('-','').split()[0]+'*')
files.sort()
if files == [] or glob.glob(folder) == []:
datdir = trange[0].iso[:10].replace('-','')
folder = '/common/archive/data1/eovsa/fits/IDB/'+datdir #for 2015 data
files = glob.glob(folder+'/IDB'+fstr.replace('-','').split()[0]+'*')
files.sort()
mjd1, mjd2 = trange.mjd.astype('int')
if mjd2 != mjd1:
if (mjd2 - 1) != mjd1:
usage('Second date must differ from first by at most 1 day')
else:
fstr2 = trange[1].iso
files2 = glob.glob(folder+'/IDB'+fstr2.replace('-','').split()[0]+'*')
files2.sort()
files += files2
def fname2mjd(filename):
fstem = filename.split('/')[-1]
fstr = fstem[3:7]+'-'+fstem[7:9]+'-'+fstem[9:11]+' '+fstem[11:13]+':'+fstem[13:15]+':'+fstem[15:17]
t = Time(fstr)
return t.mjd
filelist = []
for filename in files:
mjd = fname2mjd(filename)
if mjd >= trange[0].mjd and mjd < trange[1].mjd:
filelist.append(filename)
return filelist
def show_selfcalibrated(index, trange, plot='multipanel', antennas=0):
#for index, choose a time when the flare starting, with a large slope.
#the options for plot are 'multipanel' , 'saturation' , and 'uncalibrated'
#antennas controls which pair the saturation plot shows.
data = get_trange_files(trange)
IDBdata, uvw, freq, times = get_X_data(data)
s = sp.Spectrogram(trange)
s.fidx = [0,IDBdata.shape[2]]
tsys, std = s.get_median_data()
pcal = np.angle(IDBdata[:,:, :, index])
acal = abs(IDBdata[:,:, :, index])
calout = copy.copy(IDBdata)
# Calibrate for time 'index', just before the initial peak of the flare.
for i in range(IDBdata.shape[3]):
calout[:,:,:,i] = calout[:,:,:,i]*(np.cos(pcal)-1j*np.sin(pcal))/acal
# Normalize to the total power spectrum at the same time, with reference
# to the shortest baseline (preserves the relative amplitudes on various
# baselines and polarizations.
norm = abs(calout[:,:, :, index])
for i in range(12):
for j in range(2):
norm[i,j,:] = tsys[:,index]*abs(calout[i,j,:,index]) / abs(calout[0,0,:,index])
for i in range(IDBdata.shape[3]):
calout[:,:,:,i] = calout[:,:,:,i]*norm
if plot == 'multipanel':
# Multi-panel Plot
f, ax = plt.subplots(4,5)
sbl = ['1-2','1-3','1-4','2-3','2-4','3-4','5-7','5-8','7-8']
for i,ibl in enumerate([0,1,2,3,4,5,7,8,11]):
if (i > 4):
ax[2,i % 5].imshow(abs(calout[ibl,0,50:,:]))
ax[2,i % 5].text(100,10,sbl[i]+' Amp',color='white')
ax[3,i % 5].imshow(np.angle(calout[ibl,0,50:,:]))
ax[3,i % 5].text(100,10,sbl[i]+' Phase')
else:
ax[0,i % 5].imshow(abs(calout[ibl,0,50:,:]))
ax[0,i % 5].text(100,10,sbl[i]+' Amp',color='white')
ax[1,i % 5].imshow(np.angle(calout[ibl,0,50:,:]))
ax[1,i % 5].text(100,10,sbl[i]+' Phase')
ax[2,4].imshow(tsys[50:,:])
ax[2,4].text(100,10,'Total Power',color='white')
plt.subplots_adjust(left=0.02, bottom=0.03, right=0.99, top=0.97, wspace=0.20, hspace=0.20)
else:
if plot == 'saturation':
# Saturation Plot
ants_ = 'Ants ' + str(antennas+1) + '-' + str(antennas+2)
plt.figure()
plt.plot(tsys[IDBdata.shape[2]-110,:],abs(calout[antennas, 0, IDBdata.shape[2]-110,:]),'.',label=str(freq[IDBdata.shape[2]-110])[:5]+' GHz')
plt.plot(tsys[IDBdata.shape[2]-60,:],abs(calout[antennas, 0, IDBdata.shape[2]-60,:]),'.',label=str(freq[IDBdata.shape[2]-60])[:5]+' GHz')
plt.plot(tsys[IDBdata.shape[2]-10,:],abs(calout[antennas, 0, IDBdata.shape[2]-10,:]),'.',label=str(freq[IDBdata.shape[2]-10])[:5]+' GHz')
plt.xlabel('Total Power [sfu]')
plt.ylabel('Correlated Power (' + ants_ + ') [sfu]')
plt.legend(loc='lower right')
else:
if plot == 'uncalibrated':
#"uncalibrated"
f, ax = plt.subplots(4,5)
sbl = ['1-2','1-3','1-4','2-3','2-4','3-4','5-7','5-8','7-8']
for i,ibl in enumerate([0,1,2,3,4,5,7,8,11]):
if (i > 4):
ax[2,i % 5].imshow(abs(IDBdata[ibl,0,50:,:]))
ax[2,i % 5].text(100,10,sbl[i]+' Amp',color='white')
ax[3,i % 5].imshow(np.angle(IDBdata[ibl,0,50:,:]))
ax[3,i % 5].text(100,10,sbl[i]+' Phase')
else:
ax[0,i % 5].imshow(abs(IDBdata[ibl,0,50:,:]))
ax[0,i % 5].text(100,10,sbl[i]+' Amp',color='white')
ax[1,i % 5].imshow(np.angle(IDBdata[ibl,0,50:,:]))
ax[1,i % 5].text(100,10,sbl[i]+' Phase')
ax[2,4].imshow(tsys[50:,:])
ax[2,4].text(100,10,'Total Power',color='white')
plt.subplots_adjust(left=0.02, bottom=0.03, right=0.99, top=0.97, wspace=0.20, hspace=0.20)
else:
print 'please choose valid plot type'