-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathdataloader.py
52 lines (42 loc) · 1.55 KB
/
dataloader.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
from torch.utils.data import Dataset
import h5py
import numpy as np
import torch
class MyECGDataset(Dataset):
def __init__(self, path):
# open pointer to h5 file
self.f = h5py.File(path, "r")
# length of dataset
self.dset_length = len(self.f["x_ecg_test"])
# load ids, labels, age, sex immediately since those are not too large
self.ids = torch.arange(0, self.dset_length).long()
self.labels = torch.tensor(self.f["y_test"]).long()
self.age = torch.tensor(self.f["x_age_test"])
self.sex = torch.tensor(self.f["x_is_male_test"]).long()
age_mean, age_std = 62.60858, 19.514
self.normalize_age(age_mean, age_std)
def get_num_leads_outputs(self):
# get number of leads / outputs
try:
num_leads = self.f["x_ecg_train_nodup"][0].shape[0]
num_outputs = len(np.unique(self.f["y_train_nodup"]))
except:
# default values
num_leads = 8
num_outputs = 3
return num_leads, num_outputs
def normalize_age(self, mean, std):
# normalize age
self.age_normalized = (self.age - mean) / std
def __len__(self):
return self.dset_length
def __getitem__(self, item):
"""
return: traces, labels, ids, age_sex
"""
traces = self.f["x_ecg_test"][item].astype(np.float32)
labels = self.labels[item]
age = self.age_normalized[item]
sex = self.sex[item]
ids = self.ids[item]
return traces, labels, ids, age, sex