-
Notifications
You must be signed in to change notification settings - Fork 349
Open
Description
I am trying to run this program, but it is returning
RuntimeError: Expected object of device type cuda but got device type cpu for argument #2 'mat1' in call to _th_addmm.
Note: I am using the notebook file as an actual python file.
from IPython import display
from utils import Logger
import torch
from torch import nn, optim
from torch.autograd.variable import Variable
from torchvision import transforms, datasets
DATA_FOLDER = './torch_data/VGAN/MNIST'
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
print(torch.cuda.is_available(), device)
def mnist_data():
compose = transforms.Compose([
transforms.ToTensor(), transforms.Normalize([0.5], [0.5])])
out_dir = '{}/dataset'.format(DATA_FOLDER)
return datasets.MNIST(root=out_dir, train=True, transform=compose, download=True)
# Load data
data = mnist_data()
# Create loader with data, so that we can iterate over it
data_loader = torch.utils.data.DataLoader(data, batch_size=100, shuffle=True)
# Num batches
num_batches = len(data_loader)
class DiscriminatorNet(torch.nn.Module):
"""
A three hidden-layer discriminative neural network
"""
def __init__(self):
super(DiscriminatorNet, self).__init__()
n_features = 784
n_out = 1
self.hidden0 = nn.Sequential(
nn.Linear(n_features, 1024),
nn.LeakyReLU(0.2),
nn.Dropout(0.3)
)
self.hidden1 = nn.Sequential(
nn.Linear(1024, 512),
nn.LeakyReLU(0.2),
nn.Dropout(0.3)
)
self.hidden2 = nn.Sequential(
nn.Linear(512, 256),
nn.LeakyReLU(0.2),
nn.Dropout(0.3)
)
self.out = nn.Sequential(
torch.nn.Linear(256, n_out),
torch.nn.Sigmoid()
)
def forward(self, x):
x = self.hidden0(x)
x = self.hidden1(x)
x = self.hidden2(x)
x = self.out(x)
return x
class GeneratorNet(torch.nn.Module):
"""
A three hidden-layer generative neural network
"""
def __init__(self):
super(GeneratorNet, self).__init__()
n_features = 100
n_out = 784
self.hidden0 = nn.Sequential(
nn.Linear(n_features, 256),
nn.LeakyReLU(0.2)
)
self.hidden1 = nn.Sequential(
nn.Linear(256, 512),
nn.LeakyReLU(0.2)
)
self.hidden2 = nn.Sequential(
nn.Linear(512, 1024),
nn.LeakyReLU(0.2)
)
self.out = nn.Sequential(
nn.Linear(1024, n_out),
nn.Tanh()
)
def forward(self, x):
x = self.hidden0(x)
x = self.hidden1(x)
x = self.hidden2(x)
x = self.out(x)
return x
def images_to_vectors(images):
return images.view(images.size(0), 784)
def vectors_to_images(vectors):
return vectors.view(vectors.size(0), 1, 28, 28)
def noise(size):
'''
Generates a 1-d vector of gaussian sampled random values
'''
n = Variable(torch.randn(size, 100))
return n
discriminator = DiscriminatorNet()
generator = GeneratorNet()
if torch.cuda.is_available():
discriminator.cuda()
generator.cuda()
# Optimizers
d_optimizer = optim.Adam(discriminator.parameters(), lr=0.0002)
g_optimizer = optim.Adam(generator.parameters(), lr=0.0002)
# Loss function
loss = nn.BCELoss()
# Number of steps to apply to the discriminator
d_steps = 1 # In Goodfellow et. al 2014 this variable is assigned to 1
# Number of epochs
num_epochs = 200
def real_data_target(size):
'''
Tensor containing ones, with shape = size
'''
data = Variable(torch.ones(size, 1))
if torch.cuda.is_available(): return data.cuda()
return data
def fake_data_target(size):
'''
Tensor containing zeros, with shape = size
'''
data = Variable(torch.zeros(size, 1))
if torch.cuda.is_available(): return data.cuda()
return data
def train_discriminator(optimizer, real_data, fake_data):
# Reset gradients
optimizer.zero_grad()
# 1.1 Train on Real Data
prediction_real = discriminator(real_data)
# Calculate error and backpropagate
error_real = loss(prediction_real, real_data_target(real_data.size(0)))
error_real.backward()
# 1.2 Train on Fake Data
prediction_fake = discriminator(fake_data)
# Calculate error and backpropagate
error_fake = loss(prediction_fake, fake_data_target(real_data.size(0)))
error_fake.backward()
# 1.3 Update weights with gradients
optimizer.step()
# Return error
return error_real + error_fake, prediction_real, prediction_fake
def train_generator(optimizer, fake_data):
# 2. Train Generator
# Reset gradients
optimizer.zero_grad()
# Sample noise and generate fake data
prediction = discriminator(fake_data)
# Calculate error and backpropagate
error = loss(prediction, real_data_target(prediction.size(0)))
error.backward()
# Update weights with gradients
optimizer.step()
# Return error
return error
num_test_samples = 16
test_noise = noise(num_test_samples)
logger = Logger(model_name='VGAN', data_name='MNIST')
for epoch in range(num_epochs):
for n_batch, (real_batch,_) in enumerate(data_loader):
# 1. Train Discriminator
real_data = Variable(images_to_vectors(real_batch))
if torch.cuda.is_available(): real_data = real_data.cuda()
# Generate fake data
fake_data = generator(noise(real_data.size(0))).detach()
# Train D
d_error, d_pred_real, d_pred_fake = train_discriminator(d_optimizer,
real_data, fake_data)
# 2. Train Generator
# Generate fake data
fake_data = generator(noise(real_batch.size(0)))
# Train G
g_error = train_generator(g_optimizer, fake_data)
# Log error
logger.log(d_error, g_error, epoch, n_batch, num_batches)
# Display Progress
if (n_batch) % 100 == 0:
display.clear_output(True)
# Display Images
test_images = vectors_to_images(generator(test_noise)).data.cpu()
logger.log_images(test_images, num_test_samples, epoch, n_batch, num_batches);
# Display status Logs
logger.display_status(
epoch, num_epochs, n_batch, num_batches,
d_error, g_error, d_pred_real, d_pred_fake
)
# Model Checkpoints
logger.save_models(generator, discriminator, epoch)
Reactions are currently unavailable
Metadata
Metadata
Assignees
Labels
No labels