-
Notifications
You must be signed in to change notification settings - Fork 26
/
Copy pathloggers.py
149 lines (125 loc) · 5.44 KB
/
loggers.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
# Copyright 2020-present, Pietro Buzzega, Matteo Boschini, Angelo Porrello, Davide Abati, Simone Calderara.
# All rights reserved.
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
import csv
import os
import sys
from typing import Dict, Any
from utils.metrics import *
from utils import create_if_not_exists
from utils.conf import base_path
import numpy as np
useless_args = ['dataset', 'tensorboard', 'validation', 'model',
'csv_log', 'notes', 'load_best_args']
def print_mean_accuracy(mean_acc: np.ndarray, task_number: int,
setting: str) -> None:
"""
Prints the mean accuracy on stderr.
:param mean_acc: mean accuracy value
:param task_number: task index
:param setting: the setting of the benchmark
"""
if setting == 'domain-il':
mean_acc, _ = mean_acc
print('\nAccuracy for {} task(s): {} %'.format(
task_number, round(mean_acc, 2)), file=sys.stderr)
else:
mean_acc_class_il, mean_acc_task_il = mean_acc
print('\nAccuracy for {} task(s): \t [Class-IL]: {} %'
' \t [Task-IL]: {} %\n'.format(task_number, round(
mean_acc_class_il, 2), round(mean_acc_task_il, 2)), file=sys.stderr)
class CsvLogger:
def __init__(self, setting_str: str, dataset_str: str,
model_str: str) -> None:
self.accs = []
if setting_str == 'class-il':
self.accs_mask_classes = []
self.setting = setting_str
self.dataset = dataset_str
self.model = model_str
self.fwt = None
self.fwt_mask_classes = None
self.bwt = None
self.bwt_mask_classes = None
self.forgetting = None
self.forgetting_mask_classes = None
def add_fwt(self, results, accs, results_mask_classes, accs_mask_classes):
self.fwt = forward_transfer(results, accs)
if self.setting == 'class-il':
self.fwt_mask_classes = forward_transfer(results_mask_classes, accs_mask_classes)
def add_bwt(self, results, results_mask_classes):
self.bwt = backward_transfer(results)
self.bwt_mask_classes = backward_transfer(results_mask_classes)
def add_forgetting(self, results, results_mask_classes):
self.forgetting = forgetting(results)
self.forgetting_mask_classes = forgetting(results_mask_classes)
def log(self, mean_acc: np.ndarray) -> None:
"""
Logs a mean accuracy value.
:param mean_acc: mean accuracy value
"""
if self.setting == 'general-continual':
self.accs.append(mean_acc)
elif self.setting == 'domain-il':
mean_acc, _ = mean_acc
self.accs.append(mean_acc)
else:
mean_acc_class_il, mean_acc_task_il = mean_acc
self.accs.append(mean_acc_class_il)
self.accs_mask_classes.append(mean_acc_task_il)
def write(self, args: Dict[str, Any]) -> None:
"""
writes out the logged value along with its arguments.
:param args: the namespace of the current experiment
"""
for cc in useless_args:
if cc in args:
del args[cc]
columns = list(args.keys())
new_cols = []
for i, acc in enumerate(self.accs):
args['task' + str(i + 1)] = acc
new_cols.append('task' + str(i + 1))
args['forward_transfer'] = self.fwt
new_cols.append('forward_transfer')
args['backward_transfer'] = self.bwt
new_cols.append('backward_transfer')
args['forgetting'] = self.forgetting
new_cols.append('forgetting')
columns = new_cols + columns
create_if_not_exists(base_path() + "results/" + self.setting)
create_if_not_exists(base_path() + "results/" + self.setting +
"/" + self.dataset)
create_if_not_exists(base_path() + "results/" + self.setting +
"/" + self.dataset + "/" + self.model)
write_headers = False
path = base_path() + "results/" + self.setting + "/" + self.dataset\
+ "/" + self.model + "/mean_accs.csv"
if not os.path.exists(path):
write_headers = True
with open(path, 'a') as tmp:
writer = csv.DictWriter(tmp, fieldnames=columns)
if write_headers:
writer.writeheader()
writer.writerow(args)
if self.setting == 'class-il':
create_if_not_exists(base_path() + "results/task-il/"
+ self.dataset)
create_if_not_exists(base_path() + "results/task-il/"
+ self.dataset + "/" + self.model)
for i, acc in enumerate(self.accs_mask_classes):
args['task' + str(i + 1)] = acc
args['forward_transfer'] = self.fwt_mask_classes
args['backward_transfer'] = self.bwt_mask_classes
args['forgetting'] = self.forgetting_mask_classes
write_headers = False
path = base_path() + "results/task-il" + "/" + self.dataset + "/"\
+ self.model + "/mean_accs.csv"
if not os.path.exists(path):
write_headers = True
with open(path, 'a') as tmp:
writer = csv.DictWriter(tmp, fieldnames=columns)
if write_headers:
writer.writeheader()
writer.writerow(args)