-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathUCIWine.py
141 lines (124 loc) · 5.48 KB
/
UCIWine.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
'''
Created on Nov 24, 2020
@author: david
Experiment: Bayesian optimization on GBoost with Wine dataset
Optimized hyperparameters: Number of trees, Number of samples, Number of features, learning rate, Tree deapth
'''
import csv
import numpy as np
from numpy import std
from sklearn.datasets import make_classification
from sklearn.model_selection import cross_val_score
from sklearn.model_selection import RepeatedStratifiedKFold
from sklearn.ensemble import GradientBoostingClassifier
from sklearn.model_selection import GridSearchCV, RandomizedSearchCV
from sklearn.svm import SVC
from skopt.space import Integer
from skopt.space import Real
from skopt.space import Categorical
import os.path
import matplotlib.pyplot as plt
from Experiment import Experiment
#TODO: one hot encoding
#TODO: Bayesian optimization
def load_wine():
X,y = [],[]
with open('datasets/wine.data') as data_file:
data_reader = csv.reader(data_file, delimiter = ',')
for row in data_reader:
X.append(row[1:])
y.append(row[0])
data_file.close()
X = np.array(X).astype(np.float)
y = np.array(y).astype(np.integer)
return X,y
X,y = load_wine()
def evaluate_model(params):
model = GradientBoostingClassifier(n_estimators=params[0], subsample=params[1],
#max_features=params[2],
learning_rate=params[2], max_depth=params[3])
cv = RepeatedStratifiedKFold(n_splits=10, n_repeats=3, random_state=1)
n_scores = cross_val_score(model, X, y, scoring='accuracy', cv=cv, n_jobs=-1, verbose=1)
return 1 - np.mean(n_scores)
def max_array(arr):
new_arr = []
min = float('inf')
for i in range(len(arr)):
if min > arr[i]:
min = arr[i]
new_arr.append(min)
return np.array(new_arr)
def monte_carlo_grid_search(means, stds, n_repeats):
avg_means = np.zeros(len(means))
avg_stds = np.zeros(len(means))
for _ in range(n_repeats):
shuffler = np.random.permutation(len(means))
new_means = max_array(1 - means[shuffler])
new_stds = stds[shuffler]
avg_means = new_means + avg_means
avg_stds = new_stds + avg_stds
avg_means /= n_repeats
avg_stds /= n_repeats
return avg_means, avg_stds
def save_results(params,means,stds, tarfile):
with open(tarfile, mode='w', newline='') as result_file:
result_writer = csv.writer(result_file, delimiter=',')
for mean, stdev, param in zip(means, stds, params):
result_writer.writerow([param, mean, stdev])
def load_results(tarfile):
points, means, stds = [], [], []
with open(tarfile, mode='r') as result_file:
result_reader = csv.reader(result_file, delimiter=',')
for row in result_reader:
points.append(row[2])
means.append(row[0])
stds.append(row[1])
result_file.close()
return points, np.array(means).astype(np.float), \
np.array(stds).astype(np.float)
def init_space():
search_space = list()
search_space.append(Integer(10, 5000, 'log-uniform', name='n_estimators'))
search_space.append(Real(0.1, 1.0, 'uniform', name='subsample'))
#search_space.append(Integer(1, 20, 'uniform', name='max_features'))
search_space.append(Real(0.0001, 1.0, 'log-uniform', name='learning_rate'))
search_space.append(Integer(1, 10, 'uniform', name='max_depth'))
return search_space
if __name__ == '__main__':
if os.path.isfile('datasets/wineGS.csv'):
search_space = init_space()
experiment = Experiment(evaluate_model, search_space, numberOfEpochs=180, numberOfRepetitions=5, numberOfRandom=10)
experiment.run(['EI'])
experiment.plot_convergence()
#plt.close()
axes = plt.gca()
axes.set_ylim([0.01,0.035])
_, means, stds = load_results('datasets/wineGS.csv')
GS_mean, GS_std = monte_carlo_grid_search(means, stds, 100000)
plt.plot(range(180), max_array(GS_mean), 'b', label='GS')
#=======================================================================
# plt.fill_between(range(180), max_array(mean) - max_array(std),
# max_array(mean) + max_array(std), color='blue', alpha=0.2)
#=======================================================================
plt.legend()
plt.show()
else:
grid = dict()
grid['n_estimators'] = [10, 50, 100, 500]
grid['learning_rate'] = [0.0001, 0.001, 0.01, 0.1, 1.0]
grid['subsample'] = [0.5, 0.7, 1.0]
grid['max_depth'] = [3, 7, 9]
model = GradientBoostingClassifier()
cv = RepeatedStratifiedKFold(n_splits=10, n_repeats=3, random_state=1)
grid_search = GridSearchCV(estimator=model, param_grid=grid, n_jobs=-1, cv=cv, scoring='accuracy', verbose=1)
grid_result = grid_search.fit(X, y)
means = grid_result.cv_results_['mean_test_score']
stds = grid_result.cv_results_['std_test_score']
params = grid_result.cv_results_['params']
save_results(means,stds,params, 'E:/UCIwine/grid_search.csv')
print("Best: %f using %s" % (grid_result.best_score_, grid_result.best_params_))
#===============================================================================
# Literatura in viri:
# https://en.wikipedia.org/wiki/Gradient_boosting
# https://machinelearningmastery.com/gradient-boosting-machine-ensemble-in-python/
#===============================================================================