-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathmain.py
272 lines (223 loc) · 9.81 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
import argparse
from datetime import datetime
import os
import pickle
import pprint
import torch
import torch.multiprocessing as mp
import torch.nn.functional as F
import torch.optim as optim
from dataset import FTData
from model import FastText
parser = argparse.ArgumentParser()
parser.add_argument('--name', type=str, default='fastText1607')
parser.add_argument('--checkpoint_dir', type=str, default='./ckpt/')
parser.add_argument('--seed', type=int, default=2019)
parser.add_argument('--data_path', type=str,
default='./data/ag_news_csv/ag.pkl')
parser.add_argument('--n_grams', type=int, default=2)
parser.add_argument('--embedding_dim', type=int, default=10)
parser.add_argument('--lr', type=float, default=5e-1,
help='0.05, 0.1, 0.25, 0.5')
parser.add_argument('--momentum', type=float, default=5e-1) # SGD
parser.add_argument('--wd', type=float, default=0)
parser.add_argument('--grad_max_norm', type=float, default=0)
parser.add_argument('--use_bn', type=int, default=0)
parser.add_argument('--use_dropout', type=int, default=0)
parser.add_argument('--batch_size', type=int, default=4096) #
parser.add_argument('--epochs', type=int, default=5)
parser.add_argument('--log_interval', type=int, default=10)
parser.add_argument('--yes_cuda', type=int, default=0)
parser.add_argument('--num_processes', type=int, default=2)
parser.add_argument('--num_workers', type=int, default=8)
parser.add_argument('--num_threads', type=int, default=20)
def train_epoch(device, loader, model, epoch, optimizer, config):
model.train()
pid = os.getpid()
train_loss = 0.
example_count = 0
correct = 0
start_t = datetime.now()
for batch_idx, ex in enumerate(loader):
target = ex[2].to(device)
optimizer.zero_grad()
output = model(ex[0].to(device), ex[1].to(device))
loss = F.nll_loss(output, target)
loss.backward()
if config.grad_max_norm > 0:
torch.nn.utils.clip_grad_norm_(model.parameters(),
config.grad_max_norm)
optimizer.step()
batch_loss = len(output) * loss.item()
train_loss += batch_loss
example_count += len(target)
pred = output.max(1, keepdim=True)[1]
correct += pred.eq(target.view_as(pred)).sum().item()
if (batch_idx + 1) % config.log_interval == 0 \
or batch_idx == len(loader) - 1:
_progress = \
'pid {}, {} Train Epoch {}, [{}/{} ({:.1f}%)],' \
'\tBatch Loss: {:.6f}' \
.format(pid, datetime.now(), epoch,
example_count, len(loader.dataset),
100. * example_count / len(loader.dataset),
batch_loss / len(output))
print(_progress)
train_loss /= len(loader.dataset)
acc = correct / len(loader.dataset)
print('{} Train Epoch {}, Avg. Loss: {:.6f}, Accuracy: {}/{} ({:.1f}%)'.
format(datetime.now()-start_t, epoch, train_loss,
correct, len(loader.dataset), 100. * acc))
return train_loss
def evaluate_epoch(device, loader, model, epoch, mode):
model.eval()
eval_loss = 0.
correct = 0
start_t = datetime.now()
with torch.no_grad():
for batch_idx, ex in enumerate(loader):
target = ex[2].to(device)
output = model(ex[0].to(device), ex[1].to(device))
loss = F.nll_loss(output, target)
eval_loss += len(output) * loss.item()
pred = output.max(1, keepdim=True)[1]
correct += pred.eq(target.view_as(pred)).sum().item()
eval_loss /= len(loader.dataset)
acc = correct / len(loader.dataset)
print('{} {} Epoch {}, Avg. Loss: {:.6f}, '
'Accuracy: {}/{} ({:.1f}%)'.format(datetime.now()-start_t, mode,
epoch, eval_loss,
correct, len(loader.dataset),
100. * acc))
return eval_loss, acc
def save_model(model, optimizer, args, model_save_path):
# save a model and args
model_dict = dict()
model_dict['state_dict'] = model.state_dict()
model_dict['m_config'] = args
model_dict['optimizer'] = optimizer.state_dict()
if not os.path.exists(args.checkpoint_dir):
os.makedirs(args.checkpoint_dir)
torch.save(model_dict, model_save_path)
print('Saved', model_save_path)
def load_model(model, optimizer, load_path):
print('\t-> load checkpoint %s' % load_path)
checkpoint = torch.load(load_path)
model.load_state_dict(checkpoint['state_dict'])
optimizer.load_state_dict(checkpoint['optimizer'])
# https://github.com/pytorch/examples/tree/master/mnist_hogwild
def train(rank, device, model, args, use_cuda):
torch.manual_seed(args.seed + rank)
with open(args.data_path, 'rb') as f:
ft_dataset = pickle.load(f)
args_dict = vars(args)
args_dict['num_classes'] = ft_dataset.num_classes
if hasattr(ft_dataset, 'hashed') and ft_dataset.hashed:
n_features = 10 * 1000000 if ft_dataset.config.n_gram == 2 \
else 100 * 1000000
args_dict['vocab_size'] = 1 + n_features # PAD, #hasher features
else:
args_dict['vocab_size'] = len(ft_dataset.ngram2idx)
print('real_max_len', ft_dataset.real_max_len)
train_loader, valid_loader, test_loader = \
ft_dataset.get_dataloaders(batch_size=args.batch_size,
num_workers=args.num_workers,
pin_memory=use_cuda)
print(len(train_loader.dataset), len(valid_loader.dataset),
len(test_loader.dataset))
# optimizer = optim.SGD(model.parameters(), lr=args.lr,
# momentum=args.momentum)
optimizer = optim.Adam(model.parameters(), lr=args.lr, amsgrad=True)
for epoch in range(1, args.epochs + 1):
train_epoch(device, train_loader, model, epoch, optimizer, args)
evaluate_epoch(device, valid_loader, model, epoch, 'Valid')
evaluate_epoch(device, test_loader, model, epoch, 'Test')
def hog_wild():
args = parser.parse_args()
assert args.yes_cuda == 0
pprint.PrettyPrinter().pprint(args.__dict__)
use_cuda = args.yes_cuda > 0 and torch.cuda.is_available()
device = torch.device("cuda" if use_cuda else "cpu")
torch.manual_seed(args.seed)
if use_cuda:
torch.cuda.manual_seed(args.seed)
print('CUDA device_count {0}'.format(torch.cuda.device_count())
if use_cuda else 'CPU')
print(torch.get_num_threads())
model = FastText(args).to(device)
model.share_memory()
processes = []
for rank in range(args.num_processes):
p = mp.Process(target=train, args=(rank, device, model, args, use_cuda))
p.start()
processes.append(p)
for p in processes:
p.join()
def main():
args = parser.parse_args()
print('torch version', torch.__version__)
use_cuda = args.yes_cuda > 0 and torch.cuda.is_available()
device = torch.device("cuda" if use_cuda else "cpu")
torch.manual_seed(args.seed)
if use_cuda:
torch.cuda.manual_seed(args.seed)
print('CUDA device_count {0}'.format(torch.cuda.device_count())
if use_cuda else 'CPU')
torch.set_num_threads(args.num_threads)
print('#threads', torch.get_num_threads())
with open(args.data_path, 'rb') as f:
ft_dataset = pickle.load(f)
args_dict = vars(args)
args_dict['num_classes'] = ft_dataset.num_classes
if hasattr(ft_dataset, 'hashed') and ft_dataset.hashed:
n_features = 10 * 1000000 if ft_dataset.config.n_gram == 2 \
else 100 * 1000000
args_dict['vocab_size'] = 1 + n_features # PAD, #hasher features
else:
args_dict['vocab_size'] = len(ft_dataset.ngram2idx)
print('real_max_len', ft_dataset.real_max_len)
pprint.PrettyPrinter().pprint(args.__dict__)
train_loader, valid_loader, test_loader = \
ft_dataset.get_dataloaders(batch_size=args.batch_size,
num_workers=args.num_workers,
pin_memory=use_cuda)
print('train size', len(train_loader.dataset))
if valid_loader is not None:
print('valid size', len(valid_loader.dataset))
print('test size', len(test_loader.dataset))
model = FastText(args).to(device)
# optimizer = optim.SGD(model.parameters(), lr=args.lr,
# weight_decay=args.wd, momentum=args.momentum)
optimizer = optim.Adam(model.parameters(), lr=args.lr,
weight_decay=args.wd, amsgrad=True)
best_acc = 0.
best_epoch = 0
for epoch in range(1, args.epochs + 1):
print()
train_epoch(device, train_loader, model, epoch, optimizer, args)
# valid
if valid_loader is not None:
valid_loss, valid_acc = \
evaluate_epoch(device, valid_loader, model, epoch, 'Valid')
if valid_acc > best_acc:
best_acc = valid_acc
best_epoch = epoch
save_model(model, optimizer, args,
os.path.join(args.checkpoint_dir,
'{}.pth'.format(args.name)))
# TODO early stopping
print('\tHighest Valid Accuracy {:.2f}%, Epoch {}'.
format(100 * best_acc, best_epoch))
# optional
evaluate_epoch(device, test_loader, model, epoch, 'Test')
# learning rate decay
if epoch < args.epochs:
model.lr_decay(epoch, optimizer)
# load the best
if valid_loader is not None:
load_model(model, optimizer, os.path.join(args.checkpoint_dir,
'{}.pth'.format(args.name)))
evaluate_epoch(device, test_loader, model, best_epoch, 'Test')
if __name__ == '__main__':
main()
# hog_wild()