Skip to content

Commit 09beb00

Browse files
authored
Format with ruff (#24)
1 parent 927a8e7 commit 09beb00

File tree

5 files changed

+115
-141
lines changed

5 files changed

+115
-141
lines changed

CHANGELOG.md

+1
Original file line numberDiff line numberDiff line change
@@ -5,6 +5,7 @@
55
+ Pip and wheel are now pinned in CI so that builds don't break
66
when things are updated. (#9)
77
+ CI was migrated to GitHub Actions. (#18, #23)
8+
+ Code was formatted with `ruff`. (#24)
89

910

1011
## 1.0.1 (2017-06-22)

pyerf/__about__.py

+3-1
Original file line numberDiff line numberDiff line change
@@ -29,7 +29,9 @@
2929
__project_url__ = "https://www.github.com/dougthor42/pyerf"
3030
__package_name__ = "pyerf"
3131

32-
__description__ = "A pure-Python implementation of the error function and inverse error function."
32+
__description__ = (
33+
"A pure-Python implementation of the error function and inverse error function."
34+
)
3335
__long_descr__ = __doc__
3436

3537
# Try to read the README file and use that as our long description.

pyerf/pyerf.py

+91-100
Original file line numberDiff line numberDiff line change
@@ -2,16 +2,10 @@
22
"""
33
This is the main module for PyErf.
44
"""
5-
# ---------------------------------------------------------------------------
6-
### Imports
7-
# ---------------------------------------------------------------------------
8-
# Standard Library
5+
96
import math
107

118

12-
# ---------------------------------------------------------------------------
13-
### Constants
14-
# ---------------------------------------------------------------------------
159
# While some of these are used only in _ndtri, we don't want to
1610
# calculate them each time a user calls erfinv. So we define them at the
1711
# module level and they'll only be calculated once.
@@ -23,36 +17,33 @@
2317
try:
2418
from math import inf
2519
except ImportError:
26-
inf = float('inf')
20+
inf = float("inf")
2721

2822

29-
#: Inputs above this value are considered infinity.
23+
# Inputs above this value are considered infinity.
3024
MAXVAL = 1e50
3125

3226

33-
# ---------------------------------------------------------------------------
34-
### Functions
35-
# ---------------------------------------------------------------------------
3627
def _erf(x):
3728
"""
3829
Port of cephes ``ndtr.c`` ``erf`` function.
3930
4031
See https://github.com/jeremybarnes/cephes/blob/master/cprob/ndtr.c
4132
"""
4233
T = [
43-
9.60497373987051638749E0,
44-
9.00260197203842689217E1,
45-
2.23200534594684319226E3,
46-
7.00332514112805075473E3,
47-
5.55923013010394962768E4,
34+
9.60497373987051638749e0,
35+
9.00260197203842689217e1,
36+
2.23200534594684319226e3,
37+
7.00332514112805075473e3,
38+
5.55923013010394962768e4,
4839
]
4940

5041
U = [
51-
3.35617141647503099647E1,
52-
5.21357949780152679795E2,
53-
4.59432382970980127987E3,
54-
2.26290000613890934246E4,
55-
4.92673942608635921086E4,
42+
3.35617141647503099647e1,
43+
5.21357949780152679795e2,
44+
4.59432382970980127987e3,
45+
2.26290000613890934246e4,
46+
4.92673942608635921086e4,
5647
]
5748

5849
# Shorcut special cases
@@ -78,45 +69,45 @@ def _erfc(a):
7869
"""
7970
# approximation for abs(a) < 8 and abs(a) >= 1
8071
P = [
81-
2.46196981473530512524E-10,
82-
5.64189564831068821977E-1,
83-
7.46321056442269912687E0,
84-
4.86371970985681366614E1,
85-
1.96520832956077098242E2,
86-
5.26445194995477358631E2,
87-
9.34528527171957607540E2,
88-
1.02755188689515710272E3,
89-
5.57535335369399327526E2,
72+
2.46196981473530512524e-10,
73+
5.64189564831068821977e-1,
74+
7.46321056442269912687e0,
75+
4.86371970985681366614e1,
76+
1.96520832956077098242e2,
77+
5.26445194995477358631e2,
78+
9.34528527171957607540e2,
79+
1.02755188689515710272e3,
80+
5.57535335369399327526e2,
9081
]
9182

9283
Q = [
93-
1.32281951154744992508E1,
94-
8.67072140885989742329E1,
95-
3.54937778887819891062E2,
96-
9.75708501743205489753E2,
97-
1.82390916687909736289E3,
98-
2.24633760818710981792E3,
99-
1.65666309194161350182E3,
100-
5.57535340817727675546E2,
84+
1.32281951154744992508e1,
85+
8.67072140885989742329e1,
86+
3.54937778887819891062e2,
87+
9.75708501743205489753e2,
88+
1.82390916687909736289e3,
89+
2.24633760818710981792e3,
90+
1.65666309194161350182e3,
91+
5.57535340817727675546e2,
10192
]
10293

10394
# approximation for abs(a) >= 8
10495
R = [
105-
5.64189583547755073984E-1,
106-
1.27536670759978104416E0,
107-
5.01905042251180477414E0,
108-
6.16021097993053585195E0,
109-
7.40974269950448939160E0,
110-
2.97886665372100240670E0,
96+
5.64189583547755073984e-1,
97+
1.27536670759978104416e0,
98+
5.01905042251180477414e0,
99+
6.16021097993053585195e0,
100+
7.40974269950448939160e0,
101+
2.97886665372100240670e0,
111102
]
112103

113104
S = [
114-
2.26052863220117276590E0,
115-
9.39603524938001434673E0,
116-
1.20489539808096656605E1,
117-
1.70814450747565897222E1,
118-
9.60896809063285878198E0,
119-
3.36907645100081516050E0,
105+
2.26052863220117276590e0,
106+
9.39603524938001434673e0,
107+
1.20489539808096656605e1,
108+
1.70814450747565897222e1,
109+
9.60896809063285878198e0,
110+
3.36907645100081516050e0,
120111
]
121112

122113
# Shortcut special cases
@@ -188,72 +179,72 @@ def _ndtri(y):
188179
"""
189180
# approximation for 0 <= abs(z - 0.5) <= 3/8
190181
P0 = [
191-
-5.99633501014107895267E1,
192-
9.80010754185999661536E1,
193-
-5.66762857469070293439E1,
194-
1.39312609387279679503E1,
195-
-1.23916583867381258016E0,
182+
-5.99633501014107895267e1,
183+
9.80010754185999661536e1,
184+
-5.66762857469070293439e1,
185+
1.39312609387279679503e1,
186+
-1.23916583867381258016e0,
196187
]
197188

198189
Q0 = [
199-
1.95448858338141759834E0,
200-
4.67627912898881538453E0,
201-
8.63602421390890590575E1,
202-
-2.25462687854119370527E2,
203-
2.00260212380060660359E2,
204-
-8.20372256168333339912E1,
205-
1.59056225126211695515E1,
206-
-1.18331621121330003142E0,
190+
1.95448858338141759834e0,
191+
4.67627912898881538453e0,
192+
8.63602421390890590575e1,
193+
-2.25462687854119370527e2,
194+
2.00260212380060660359e2,
195+
-8.20372256168333339912e1,
196+
1.59056225126211695515e1,
197+
-1.18331621121330003142e0,
207198
]
208199

209200
# Approximation for interval z = sqrt(-2 log y ) between 2 and 8
210201
# i.e., y between exp(-2) = .135 and exp(-32) = 1.27e-14.
211202
P1 = [
212-
4.05544892305962419923E0,
213-
3.15251094599893866154E1,
214-
5.71628192246421288162E1,
215-
4.40805073893200834700E1,
216-
1.46849561928858024014E1,
217-
2.18663306850790267539E0,
218-
-1.40256079171354495875E-1,
219-
-3.50424626827848203418E-2,
220-
-8.57456785154685413611E-4,
203+
4.05544892305962419923e0,
204+
3.15251094599893866154e1,
205+
5.71628192246421288162e1,
206+
4.40805073893200834700e1,
207+
1.46849561928858024014e1,
208+
2.18663306850790267539e0,
209+
-1.40256079171354495875e-1,
210+
-3.50424626827848203418e-2,
211+
-8.57456785154685413611e-4,
221212
]
222213

223214
Q1 = [
224-
1.57799883256466749731E1,
225-
4.53907635128879210584E1,
226-
4.13172038254672030440E1,
227-
1.50425385692907503408E1,
228-
2.50464946208309415979E0,
229-
-1.42182922854787788574E-1,
230-
-3.80806407691578277194E-2,
231-
-9.33259480895457427372E-4,
215+
1.57799883256466749731e1,
216+
4.53907635128879210584e1,
217+
4.13172038254672030440e1,
218+
1.50425385692907503408e1,
219+
2.50464946208309415979e0,
220+
-1.42182922854787788574e-1,
221+
-3.80806407691578277194e-2,
222+
-9.33259480895457427372e-4,
232223
]
233224

234225
# Approximation for interval z = sqrt(-2 log y ) between 8 and 64
235226
# i.e., y between exp(-32) = 1.27e-14 and exp(-2048) = 3.67e-890.
236227
P2 = [
237-
3.23774891776946035970E0,
238-
6.91522889068984211695E0,
239-
3.93881025292474443415E0,
240-
1.33303460815807542389E0,
241-
2.01485389549179081538E-1,
242-
1.23716634817820021358E-2,
243-
3.01581553508235416007E-4,
244-
2.65806974686737550832E-6,
245-
6.23974539184983293730E-9,
228+
3.23774891776946035970e0,
229+
6.91522889068984211695e0,
230+
3.93881025292474443415e0,
231+
1.33303460815807542389e0,
232+
2.01485389549179081538e-1,
233+
1.23716634817820021358e-2,
234+
3.01581553508235416007e-4,
235+
2.65806974686737550832e-6,
236+
6.23974539184983293730e-9,
246237
]
247238

248239
Q2 = [
249-
6.02427039364742014255E0,
250-
3.67983563856160859403E0,
251-
1.37702099489081330271E0,
252-
2.16236993594496635890E-1,
253-
1.34204006088543189037E-2,
254-
3.28014464682127739104E-4,
255-
2.89247864745380683936E-6,
256-
6.79019408009981274425E-9,
240+
6.02427039364742014255e0,
241+
3.67983563856160859403e0,
242+
1.37702099489081330271e0,
243+
2.16236993594496635890e-1,
244+
1.34204006088543189037e-2,
245+
3.28014464682127739104e-4,
246+
2.89247864745380683936e-6,
247+
6.79019408009981274425e-9,
257248
]
258249

259250
sign_flag = 1
@@ -266,7 +257,7 @@ def _ndtri(y):
266257
# between -0.135 and 0.135
267258
if y > EXP_NEG2:
268259
y -= 0.5
269-
y2 = y ** 2
260+
y2 = y**2
270261
x = y + y * (y2 * _polevl(y2, P0, 4) / _p1evl(y2, Q0, 8))
271262
x = x * ROOT_2PI
272263
return x
@@ -275,7 +266,7 @@ def _ndtri(y):
275266
x0 = x - math.log(x) / x
276267

277268
z = 1.0 / x
278-
if x < 8.0: # y > exp(-32) = 1.2664165549e-14
269+
if x < 8.0: # y > exp(-32) = 1.2664165549e-14
279270
x1 = z * _polevl(z, P1, 8) / _p1evl(z, Q1, 8)
280271
else:
281272
x1 = z * _polevl(z, P2, 8) / _p1evl(z, Q2, 8)

0 commit comments

Comments
 (0)