-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathSASRec.py
280 lines (230 loc) · 11.5 KB
/
SASRec.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
import torch
import torch.nn as nn
import argparse
from utility import extract_axis_1_torch, normalize, set_device
from SASRecModules import MultiheadAttention, Feedforward, LayerNorm, SelfAttentionBlock
import train_eval
import os
import pandas as pd
import numpy as np
from torch.utils.data import TensorDataset, DataLoader
import logger
def parse_args():
parser = argparse.ArgumentParser(description="Run SASRec.")
parser.add_argument('--mode', default='train',
help='Train or test the model. "train" or "test"')
parser.add_argument('--epochs', type=int, default=4,
help='Number of max epochs.')
parser.add_argument('--data', nargs='?', default='data\ML20',
help='data directory')
parser.add_argument('--resume', type=int, default=1,
help='flag for resume. 1: resume training; 0: train from start')
parser.add_argument('--batch_size', type=int, default=256,
help='Batch size.')
parser.add_argument('--hidden_factor', type=int, default=64,
help='Number of hidden factors, i.e., embedding size.')
parser.add_argument('--lr', type=float, default=0.01,
help='Learning rate.')
parser.add_argument('--num_heads', default=1, type=int)
parser.add_argument('--num_blocks', default=4, type=int)
parser.add_argument('--dropout_rate', default=0.1, type=float)
parser.add_argument('--modelname', type=str, default="SASrec_256_64",
help='model name. eg for checkpoint filename')
return parser.parse_args()
class SASRecTorch(nn.Module):
def __init__(self, item_num, state_size, device, model_params):
super(SASRecTorch, self).__init__()
self.hidden_size = model_params['hidden_factor']
self.item_num = int(item_num)
self.state_size = state_size
self.device = device
self.num_blocks = model_params['num_blocks']
self.num_heads = model_params['num_heads']
self.dropout_rate = model_params['dropout_rate']
self.item_embeddings = nn.Embedding(
num_embeddings=self.item_num+1,
embedding_dim=self.hidden_size,
)
self.pos_embeddings = nn.Embedding(
num_embeddings=self.state_size,
embedding_dim=self.hidden_size,
)
# init embedding
nn.init.normal_(self.item_embeddings.weight, 0, 0.01)
nn.init.normal_(self.pos_embeddings.weight, 0, 0.01)
# Self Attention Blocks
self_att_blks_list = []
for i in range(self.num_blocks):
bl = SelfAttentionBlock(self.hidden_size, self.num_heads, self.dropout_rate,
state_size, i+1, None)
self_att_blks_list.append(bl)
self.self_att_blks = nn.ModuleList(self_att_blks_list)
#dropout
self.dropout = nn.Dropout(self.dropout_rate)
self.f_layer_norm = LayerNorm(self.hidden_size)
#Fully connected Layer
self.fc1 = nn.Linear(self.hidden_size,self.item_num)
def forward(self, inputs, inputs_lengths):
input_emb = self.item_embeddings(inputs)
pos_emb_input = inputs.size(0) * [torch.arange(start=0, end=inputs.size(1)).unsqueeze(0)]
pos_emb_input = torch.cat(pos_emb_input)
pos_emb_input = pos_emb_input.long().to(self.device)
pos_emb = self.pos_embeddings(pos_emb_input)
x = input_emb+pos_emb
x = self.dropout(x)
padid = 0
mask = torch.ne(inputs, padid).float().unsqueeze(-1)
x = x * mask
for i in range(self.num_blocks):
x = self.self_att_blks[i](x)
x = x * mask
x = self.f_layer_norm(x)
#out = self.extract_unpadded(x, inputs_lengths-1)
#out = self.fc1(out)
indcs = torch.ones(inputs.size(0)) * self.state_size-1
out = self.extract_unpadded(x, indcs.long().to(self.device)-1)
out = self.fc1(out)
return out
# def layer_norm(self, x, epsilon=1e-8):
# shape = x.shape
# x = x.permute(0, 2, 1)
# mean = x.mean(dim=len(shape) - 1, keepdim=True)
# variance = x.var(dim=len(shape) - 1, keepdim=True)
#
# x = (x - mean) / torch.sqrt(variance + epsilon)
# y = x.permute(0, 2, 1)
# return y
def extract_unpadded(self, data, ind):
"""
Get true elements from each sequence (not padded)
:param data: Tensorflow tensor that will be subsetted.
:param ind: Indices to take (one for each element along axis 0 of data).
:return: Subsetted tensor.
"""
batch_range = torch.arange(0, data.shape[0], dtype=torch.int64).to(self.device)
indices = torch.stack([batch_range, ind], dim=1)
res = data[indices.transpose(0, 1).tolist()]
return res
class SASRecEvaluator(train_eval.Evaluator):
def get_prediction(self, model, states, len_states, device):
prediction = model(states.to(device).long(), len_states.to(device).long())
return prediction
def create_val_loader(self, filepath):
eval_sessions = pd.read_pickle(filepath)
sessions = eval_sessions.values
inputs = sessions[:, 0:-1]
inputs = torch.stack([torch.from_numpy(np.array(i, dtype=np.long)) for i in inputs]).long()
len_inputs = [np.count_nonzero(i) for i in inputs]
len_inputs = torch.from_numpy(np.fromiter(len_inputs, dtype=np.long)).long()
targets = sessions[:, 1:]
targets = torch.stack([torch.from_numpy(np.array(i, dtype=np.long)) for i in targets]).long()
val_data = TensorDataset(inputs, len_inputs, targets)
val_loader = DataLoader(val_data, shuffle=True, batch_size=self.args.batch_size)
return val_loader
def evaluate(self, model, val_or_test):
topk = [5, 10, 15, 20]
val_loader = self.create_val_loader(os.path.join(self.data_directory,
val_or_test + '_sessions.df'))
hit = [0, 0, 0, 0]
lens = [0, 0, 0, 0]
ndcg = [0, 0, 0, 0]
with torch.no_grad():
model.eval()
logger.log('Evaluation started...', self.args.modelname)
for batch_idx, (states, len_states, target) in enumerate(val_loader):
target = target[:, -1]
prediction = self.get_prediction(model, states, len_states, self.device)
del states
del len_states
torch.cuda.empty_cache()
sorted_list = np.argsort(prediction.tolist())
def cal_hit(sorted_list, topk, true_items, hit, ndcg):
for i in range(len(topk)):
rec_list = sorted_list[:, -topk[i]:]
for j in range(len(true_items)):
if true_items[j] in rec_list[j]:
rank = topk[i] - np.argwhere(rec_list[j] == true_items[j])
hit[i] += 1.0
ndcg[i] += 1.0 / np.log2(rank + 1)
lens[i] += 1
cal_hit(sorted_list, topk, target.tolist(), hit, ndcg)
if batch_idx % 200 == 0:
logger.log('Evaluated {} / {}'.format(batch_idx, len(val_loader)), self.args.modelname)
logger.log('#############################################################', self.args.modelname)
val_acc = 0
for i in range(len(topk)):
hr = hit[i] / float(lens[i])
ng = ndcg[i] / float(lens[i])
val_acc = val_acc + hr + ng
logger.log('~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~', self.args.modelname)
logger.log('hr ndcg @ %d : %f, %f' % (topk[i], hr, ng), self.args.modelname)
logger.log('#############################################################', self.args.modelname)
if val_or_test == "val":
return val_acc
class SASRecTrainer(train_eval.Trainer):
def create_model(self, model_params):
sasrecTorch = SASRecTorch(item_num=item_num, state_size=state_size, device=device, model_params=model_params)
total_params = sum(p.numel() for p in sasrecTorch.parameters() if p.requires_grad)
print(total_params)
return sasrecTorch
def get_model_out(self, state, len_state):
out = self.model(state, len_state)
out2d = torch.reshape(out, [-1, self.item_num])
return out2d
def preprocess_target(self, target):
target = torch.reshape(target, [-1])
return target
def get_evaluator(self, device, args, data_directory, state_size, item_num):
sasrec_evaluator = SASRecEvaluator(device, args, data_directory, state_size, item_num)
return sasrec_evaluator
def create_optimizer(self):
optimizer = torch.optim.Adam(self.model.parameters(), lr=self.args.lr)
return optimizer
def get_criterion(self):
criterion = nn.CrossEntropyLoss()
return criterion
TRAIN = 'train'
TEST = 'test'
def train_model(args, device, state_size, item_num, model_name, model_param, train_loader):
sasrec_trainer = SASRecTrainer(model_name, args, device, state_size, item_num, model_param)
sasrec_trainer.train(train_loader)
def test_model(device, args, data_directory, state_size, item_num, model_name, model_params):
sasrecTorch = SASRecTorch(item_num=item_num, state_size=state_size, device=device, model_params=model_params)
checkpoint_handler = train_eval.CheckpointHandler(model_name, device)
optimizer = torch.optim.Adam(sasrecTorch.parameters(), lr=args.lr)
_, _ = checkpoint_handler.load_from_checkpoint(True, sasrecTorch, optimizer)
sasrecTorch.to(device)
sasrec_evaluator = SASRecEvaluator(device, args, data_directory, state_size, item_num)
sasrec_evaluator.evaluate(sasrecTorch, 'val')
#prepare a dataloader: input :{1,2,3,4,5} output:{6}
def prepare_dataloader_whole(data_dir, batch_size):
basepath = os.path.dirname(__file__)
sessions_df = pd.read_pickle(os.path.abspath(os.path.join(basepath, data_dir, 'train_sessions.df')))
sessions = sessions_df.values
inputs = sessions[:, 0:-1]
inputs = torch.stack([torch.from_numpy(np.array(i, dtype=np.long)) for i in inputs]).long()
len_inputs = [np.count_nonzero(i) for i in inputs]
len_inputs = torch.from_numpy(np.fromiter(len_inputs, dtype=np.long)).long()
targets = sessions[:, -1]
targets = torch.stack([torch.from_numpy(np.array(i, dtype=np.long)) for i in targets]).long()
train_data = TensorDataset(inputs, len_inputs, targets)
train_loader = DataLoader(train_data, shuffle=True, batch_size=batch_size)
return train_loader
if __name__ == '__main__':
# Network parameters
args = parse_args()
device = set_device()
data_directory = args.data
model_name = args.modelname
state_size, item_num = train_eval.get_stats(data_directory)
train_loader = prepare_dataloader_whole(data_directory, args.batch_size)
model_param = {
'hidden_factor': args.hidden_factor, # larger is better until 512 or 1024
'num_blocks' : args.num_blocks,
'num_heads' : args.num_heads,
'dropout_rate' : args.dropout_rate
}
if args.mode.lower() == TRAIN:
train_model(args, device, state_size, item_num, model_name, model_param, train_loader)
else:
test_model(device, args, data_directory, state_size, item_num, model_name, model_param)