-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathdeq_cpNltNet.py
341 lines (278 loc) · 14.6 KB
/
deq_cpNltNet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
import sys, os, inspect
sys.path.append('../../')
import torch
import torch.nn as nn
import argparse
import deq_modules.deq_residual_block as deq_res_blk
import train_eval
from utility import set_device, calculate_simple_hit
import deq_modules.deq_residual_block as deq_res_blk
from deq_modules.deq_cpNltNet_module import CpNltNetDEQModule
import pandas as pd
import numpy as np
import os
import logger
from torch.utils.data import TensorDataset, DataLoader
import copy
import time
from train_eval import CheckpointHandler
# import CpRec.BlockWiseEmbedding as block_emb
def parse_args():
parser = argparse.ArgumentParser(description="Run supervised GRU.")
parser.add_argument('--mode', default='train',
help='Train or test the model. "train" or "test"')
parser.add_argument('--epochs', type=int, default=14,
help='Number of max epochs.')
parser.add_argument('--data', nargs='?', default='data/ML100',
help='data directory')
parser.add_argument('--resume', type=int, default=1,
help='flag for resume. 1: resume training; 0: train from start')
parser.add_argument('--batch_size', type=int, default=16,
help='Batch size.')
parser.add_argument('--hidden_factor', type=int, default=8,
help='Number of hidden factors, i.e., embedding size.')
parser.add_argument('--lr', type=float, default=0.001,
help='Learning rate.')
parser.add_argument('--dilations', type=str, default="1,4",
help='dilations for res blocks. eg "1,4"')
parser.add_argument('--modelname', type=str, default="deqCpnltnet_ML100",
help='model name. eg for checkpoint filename')
return parser.parse_args()
class DEQCpNltNet(nn.Module):
def __init__(self, hidden_size, item_num, device, model_params):
super(DEQCpNltNet, self).__init__()
self.device = device
self.hidden_size = hidden_size
self.item_num = item_num
self.model_params = model_params
self.kernel_size = self.model_params['kernel_size']
# --------------------
# 1. Embeddings
self.item_embeddings = nn.Embedding(
num_embeddings=item_num + 1,
embedding_dim=self.hidden_size,
)
# init embedding
nn.init.normal_(self.item_embeddings.weight, 0, 0.01)
self.inject_conv = nn.Conv2d(in_channels=self.hidden_size, out_channels=self.model_params['dilated_channels'],
kernel_size=(1, self.kernel_size), padding=0, dilation=1, bias=True)
# ---------------------
# 2. DEQ Residual block
self.func = deq_res_blk.DEQCpResidualBlockAdjacentBlock(self.model_params['dilations'],
self.hidden_size, self.model_params['dilated_channels'],
self.kernel_size, 0)
self.func_copy = copy.deepcopy(self.func)
for params in self.func_copy.parameters():
params.requires_grad_(False) # Turn off autograd for func_copy
self.deq = CpNltNetDEQModule(self.func, self.func_copy)
# ---------------------
# 3. Final conv
self.fconv = nn.Conv2d(in_channels=self.hidden_size, out_channels=item_num,
kernel_size=1, padding=0, dilation=1, bias=True)
def forward(self, inputs, inputs_lengths, train_step):
# copy the weights from func to func_copy
self.func_copy.copy(self.func)
# embed the input
context_embedding = self.item_embeddings(inputs)
# create injected input
z1s = context_embedding.permute(0, 2, 1)
padding = [(self.kernel_size - 1), 0, 0, 0, 0, 0]
padded = torch.nn.functional.pad(z1s, padding)
us = padded.unsqueeze(dim=2)
us = self.inject_conv(us)
us = us.squeeze(dim=2)
# deq the residual block
dilate_output = self.deq(z1s, us, train_step=train_step)
# final conv for output
dilate_output = dilate_output.unsqueeze(dim=2)
conv_output = self.fconv(dilate_output)
conv_output = conv_output.squeeze(dim=2)
conv_output = conv_output.permute(0, 2, 1)
return conv_output
class DEQcpNltNetEvaluator(train_eval.Evaluator):
def __init__(self, device, args, data_directory, state_size, item_num):
super(DEQcpNltNetEvaluator, self).__init__(device, args, data_directory, state_size, item_num)
self.softmax = torch.nn.Softmax()
def get_prediction(self, model, states, len_states, device):
pass
def get_deq_prediction(self, model, states, len_states, device, train_step):
prediction = model(states.to(device).long(), len_states.to(device).long(), train_step)
return prediction
def create_val_loader(self, filepath):
eval_sessions = pd.read_pickle(filepath)
sessions = eval_sessions.values
inputs = sessions[:, 0:-1]
inputs = torch.stack([torch.from_numpy(np.array(i, dtype=np.long)) for i in inputs]).long()
len_inputs = [np.count_nonzero(i) for i in inputs]
len_inputs = torch.from_numpy(np.fromiter(len_inputs, dtype=np.long)).long()
targets = sessions[:, 1:]
targets = torch.stack([torch.from_numpy(np.array(i, dtype=np.long)) for i in targets]).long()
val_data = TensorDataset(inputs, len_inputs, targets)
val_loader = DataLoader(val_data, shuffle=True, batch_size=self.args.batch_size)
return val_loader
def evaluate(self, model, val_or_test):
pass
def deq_evaluate(self, model, val_or_test, train_step):
topk = [5, 10, 15, 20]
val_loader = self.create_val_loader(os.path.join(self.data_directory,
val_or_test + '_sessions.df'))
hit = [0, 0, 0, 0]
lens = [0, 0, 0, 0]
ndcg = [0, 0, 0, 0]
with torch.no_grad():
model.eval()
logger.log('Evaluation started...', self.args.modelname)
for batch_idx, (states, len_states, target) in enumerate(val_loader):
target = target[:, -1]
prediction = self.get_deq_prediction(model, states, len_states, self.device, train_step)
del states
del len_states
torch.cuda.empty_cache()
sorted_list = np.argsort(prediction[:, -1, :].tolist())
def cal_hit(sorted_list, topk, true_items, hit, ndcg):
for i in range(len(topk)):
rec_list = sorted_list[:, -topk[i]:]
for j in range(len(true_items)):
if true_items[j] in rec_list[j]:
rank = topk[i] - np.argwhere(rec_list[j] == true_items[j])
hit[i] += 1.0
ndcg[i] += 1.0 / np.log2(rank + 1)
lens[i] += 1
cal_hit(sorted_list, topk, target.tolist(), hit, ndcg)
if batch_idx % 200 == 0:
logger.log('Evaluated {} / {}'.format(batch_idx, len(val_loader)), self.args.modelname)
logger.log('#############################################################', self.args.modelname)
val_acc = 0
for i in range(len(topk)):
hr = hit[i] / float(lens[i])
ng = ndcg[i] / float(lens[i])
val_acc = val_acc + hr + ng
logger.log('~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~', self.args.modelname)
logger.log('hr ndcg @ %d : %f, %f' % (topk[i], hr, ng), self.args.modelname)
logger.log('#############################################################', self.args.modelname)
if val_or_test == "val":
return val_acc
class DEQcpNltNetTrainer(train_eval.Trainer):
def create_model(self, model_params):
deq_cpNltNetTorch = DEQCpNltNet(hidden_size=self.args.hidden_factor, item_num=self.item_num,
device=self.device, model_params=model_params)
total_params = sum(p.numel() for p in deq_cpNltNetTorch.parameters() if p.requires_grad)
print(deq_cpNltNetTorch)
return deq_cpNltNetTorch
def get_model_out(self, state, len_state):
out = self.model(state, len_state)
out2d = torch.reshape(out, [-1, self.item_num])
return out2d
def get_deqmodel_out(self, state, len_state, train_step):
out = self.model(state, len_state, train_step)
out2d = torch.reshape(out, [-1, self.item_num])
return out2d
def preprocess_target(self, target):
target = torch.reshape(target, [-1])
return target
def get_evaluator(self, device, args, data_directory, state_size, item_num):
cpNlt_evaluator = DEQcpNltNetEvaluator(device, args, data_directory, state_size, item_num)
return cpNlt_evaluator
def create_optimizer(self):
optimizer = torch.optim.Adam(self.model.parameters(), lr=self.args.lr)
return optimizer
def get_criterion(self):
criterion = nn.CrossEntropyLoss()
return criterion
def train(self, train_loader):
checkpoint_handler = CheckpointHandler(self.model_name, self.device)
start_epoch, max_acc = checkpoint_handler.load_from_checkpoint(self.args.resume, self.model, self.optimizer)
self.model.to(self.device)
evaluator = self.get_evaluator(self.device, self.args, self.args.data, self.state_size, self.item_num)
criterion = self.get_criterion()
# Start training loop
epoch_times = []
total_step = 0
for epoch in range(start_epoch, self.args.epochs):
self.model.train()
start_time = time.perf_counter()
avg_loss = 0.
counter = 0
for state, len_state, target in train_loader:
counter += 1
self.model.zero_grad()
self.optimizer.zero_grad()
out = self.get_deqmodel_out(state.to(self.device).long(), len_state.to(self.device).long(), total_step)
target = self.preprocess_target(target)
loss = criterion(out, target.to(self.device).long())
all_params = torch.cat([x.view(-1) for x in self.model.parameters()])
lambda2 = 0.001
l2_regularization = lambda2 * torch.norm(all_params, 2)
loss = loss + l2_regularization
loss.backward()
# torch.nn.utils.clip_grad_norm_(self.model.parameters(), 0.07)
self.optimizer.step()
if total_step % 500 == 0:
logger.log("Epoch {}......Batch: {}/{}....... Loss: {}".format(epoch, counter,
len(train_loader),
loss.item()), self.model_name)
total_step += 1
current_time = time.perf_counter()
logger.log("Epoch {}/{} Done, Total Loss: {}".format(epoch, self.args.epochs, avg_loss / len(train_loader)), self.model_name)
logger.log("Total Time Elapsed: {} seconds".format(str(current_time - start_time)), self.model_name)
val_acc = evaluator.deq_evaluate(self.model, 'val', total_step)
self.model.train()
is_best = val_acc > max_acc
max_acc = max(max_acc, val_acc)
checkpoint_handler.save_checkpoint({
'epoch': epoch + 1,
'state_dict': self.model.state_dict(),
'max_acc': max_acc,
'optimizer': self.optimizer.state_dict(),
}, is_best)
epoch_times.append(current_time - start_time)
logger.log("Total Training Time: {} seconds".format(str(sum(epoch_times))), self.model_name)
TRAIN = 'train'
TEST = 'test'
def train_model(args, device, state_size, item_num, model_name, model_param, train_loader):
nlt_trainer = DEQcpNltNetTrainer(model_name, args, device, state_size, item_num, model_param)
nlt_trainer.train(train_loader)
def test_model(device, args, data_directory, state_size, item_num, model_name, model_params):
cpNltTorch = DEQCpNltNet(hidden_size=args.hidden_factor, item_num=item_num, device=device,
model_params=model_params)
checkpoint_handler = train_eval.CheckpointHandler(model_name, device)
optimizer = torch.optim.Adam(cpNltTorch.parameters(), lr=args.lr)
_, _ = checkpoint_handler.load_from_checkpoint(True, cpNltTorch, optimizer)
cpNltTorch.to(device)
cpNlt_evaluator = DEQcpNltNetEvaluator(device, args, data_directory, state_size, item_num)
cpNlt_evaluator.evaluate(cpNltTorch, 'val')
# prepare a dataloader as described in nextlt paper: input :{1,2,3,4,5} output:{2,3,4,5,6}
def prepare_dataloader_whole(data_dir, batch_size):
basepath = os.path.dirname(__file__)
sessions_df = pd.read_pickle(os.path.abspath(os.path.join(basepath, data_dir, 'train_sessions.df')))
sessions = sessions_df.values
inputs = sessions[:, 0:-1]
inputs = torch.stack([torch.from_numpy(np.array(i, dtype=np.long)) for i in inputs]).long()
len_inputs = [np.count_nonzero(i) for i in inputs]
len_inputs = torch.from_numpy(np.fromiter(len_inputs, dtype=np.long)).long()
targets = sessions[:, 1:]
targets = torch.stack([torch.from_numpy(np.array(i, dtype=np.long)) for i in targets]).long()
train_data = TensorDataset(inputs, len_inputs, targets)
train_loader = DataLoader(train_data, shuffle=True, batch_size=batch_size)
return train_loader
if __name__ == '__main__':
# Network parameters
args = parse_args()
device = set_device()
data_directory = args.data
model_name = args.modelname
state_size, item_num = train_eval.get_stats(data_directory)
train_loader = prepare_dataloader_whole(data_directory, args.batch_size)
model_param = {
'dilated_channels': args.hidden_factor, # larger is better until 512 or 1024
'dilations': [int(item) for item in args.dilations.split(',')],
# YOU should tune this hyper-parameter, refer to the paper.
'kernel_size': 3,
'seqlen': state_size
# 'param-share' : ''
}
torch.set_default_tensor_type('torch.cuda.FloatTensor')
if args.mode.lower() == TRAIN:
train_model(args, device, state_size, item_num, model_name, model_param, train_loader)
else:
test_model(device, args, data_directory, state_size, item_num, model_name, model_param)