-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathhousing.py
245 lines (210 loc) · 9.4 KB
/
housing.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
from random import seed
from random import choice, randint, shuffle
import numpy
from time import time
import blocking_group as bg
# seed random number generator
# seed(1)
class Housing:
def __init__(self):
self.num_rooms = 160
self.num_students = 280
self.rooms = [[] for x in range(9)] # list of lists, where first index is room size
# rooms are tuples: (room id, proximity, quality, size)
self.blocking_groups = [] # list of blocking_group objects
self.rg_configs = { # maximally 3 rooming groups per blocking group
1: [[1]],
2: [[2], [1,1]],
3: [[3], [2,1], [1,1,1]],
4: [[4], [3,1], [2,2], [2,1,1]],
5: [[5], [4,1], [3,2], [3,1,1], [2,2,1]],
6: [[6], [5,1], [4,2], [4,1,1], [3,3], [3,2,1], [2,2,2]],
7: [[7], [6,1], [5,2], [5,1,1], [4,3], [4,2,1], [3,3,1], [3,2,2]],
8: [[8], [7,1], [6,2], [6,1,1], [5,3], [5,2,1], [4,4], [4,3,1], [4,2,2], [3,3,2]]
}
self.time_elapsed = None
def randomly_generate_rooms(self):
''' generate random room proximities and qualities based on fixed room size distribution '''
room_size_quantities = [32, 80, 13, 24, 5, 3, 1, 2]
i = 0
# unique id for each room
counter = 0
while i < len(room_size_quantities):
for j in range(room_size_quantities[i]):
room_id = counter
counter += 1
proximity = randint(1, 10)
quality = randint(0, 10)
self.rooms[i + 1].append((room_id, proximity, quality))
i += 1
# print(self.rooms)
def randomly_generate_blocking_groups(self):
''' randomly generate blocking group sizes from blocking size distribution '''
students_remaining = self.num_students
curr_id = 0
# distribution information from HODP: https://medium.com/harvard-open-data-project/harvard-housing-part-2-how-do-students-form-groups-a4c95cdf97a6
blocking_size_dist = [1] * 9 + [2] * 6 + [3] * 7 + [4] * 12 + [5] * 13 + [6] * 19 + [7] * 16 + [8] * 18
while students_remaining > 0:
block_size = choice(blocking_size_dist) # randomly choose item from blocking_size_dist
if block_size > students_remaining:
block_size = students_remaining
self.blocking_groups.append(bg.BlockingGroup(curr_id, block_size, self))
students_remaining = students_remaining - block_size
curr_id += 1
def set_bg_room_prefs(self):
for bg in self.blocking_groups:
bg.set_preferences()
def run_adams(self, is_random_rg_config = True):
''' run adams house style lottery, returns blocking group assignments.
is_random_rg_config := true means randomly assigning committed rg configs
return # of unallocated people '''
#testing
for bg in self.blocking_groups:
bg.set_general_rg_preferences()
if (is_random_rg_config):
print("=== Running ADAMS with random RG configs ===")
else:
print("=== Running ADAMS with opt RG configs ===")
start = time()
# blocking groups choose rooming configurations according to room size distribution/randomly
for bg in self.blocking_groups:
rg_config = choice(self.rg_configs[bg.size])
bg.set_rg_config(is_random_rg_config)
# generate blocking group preferences
print("setting ADAMS bg preferences")
for bg in self.blocking_groups:
bg.set_rg_config_preferences()
print("done setting ADAMS preferences")
# run RSD
shuffle(self.blocking_groups)
taken_rooms = []
unallocated_ppl_count = 0
for bg in self.blocking_groups:
chosen_rooms = []
room_prefs = bg.rg_preferences
i = 0
while chosen_rooms == []:
try:
desired_rooms = room_prefs[i]
# check if each room in the combo has been taken
for room in desired_rooms[1]:
room_id = room[0]
if room_id not in taken_rooms:
chosen_rooms.append(room)
else:
chosen_rooms = []
# go to the next combination in the preference order
i += 1
break
except IndexError: # unallocated by end of lottery
unallocated_ppl_count += bg.size
chosen_rooms = [(None, None, 3, bg.size)] # default quality 3 for whole bg
# update chosen rooms
bg.assigned_rooms = chosen_rooms
if (chosen_rooms[0][0]): # if actual room allocated
taken_rooms.extend([room_id for (room_id, _, _, _) in chosen_rooms])
end = time()
self.time_elapsed = end - start
print("# of unallocated people: %i" % unallocated_ppl_count)
return unallocated_ppl_count
def run_currier(self):
print("=== Running CURRIER ===")
start = time()
# generate blocking group preferences
print("setting CURRIER bg preferences")
for bg in self.blocking_groups:
bg.set_full_rg_preferences()
print("done setting CURRIER preferences")
# run RSD
shuffle(self.blocking_groups)
taken_rooms = []
for bg in self.blocking_groups:
chosen_rooms = []
room_prefs = bg.rg_preferences
i = 0
while chosen_rooms == []:
desired_rooms = room_prefs[i]
# check if each room in the combo has been taken
for room in desired_rooms[1]:
room_id = room[0]
if room_id not in taken_rooms:
chosen_rooms.append(room)
else:
chosen_rooms = []
# go to the next combination in the preference order
i += 1
break
# update chosen rooms
bg.assigned_rooms = chosen_rooms
taken_rooms.extend([room_id for (room_id, _, _, _) in chosen_rooms])
end = time()
self.time_elapsed = end - start
return self.blocking_groups
def run_dunster(self):
print("=== Running DUNSTER ===")
start = time()
# decide who enters specialized housing lottery
for bg in self.blocking_groups:
best_size = (-1, -1)
for room_size in bg.preferences[1:]:
qualities = [quality for (_, _, quality, size) in room_size]
avg_quality = float(sum(qualities)) / float(len(room_size))
if avg_quality > best_size[1]:
best_size = (size, avg_quality)
if best_size[0] >= 5 and best_size[0] == bg.size:
bg.specialized = True
# run specialized lottery
print("running specialized lottery")
shuffle(self.blocking_groups)
taken_rooms = []
for bg in self.blocking_groups:
if bg.specialized:
chosen_room = None
for room in bg.preferences[bg.size]:
if room[0] not in taken_rooms:
chosen_room = room
bg.assigned_rooms = [chosen_room]
taken_rooms.append(room[0])
break
if chosen_room is None:
# drop down to general lottery
bg.specialized = False
# run general lottery
print("running general lottery")
for bg in self.blocking_groups:
if not bg.specialized:
bg.set_general_rg_preferences()
chosen_rooms = []
room_prefs = bg.rg_preferences
i = 0
while chosen_rooms == []:
desired_rooms = room_prefs[i]
# check if each room in the combo has been taken
for room in desired_rooms[1]:
room_id = room[0]
if room_id not in taken_rooms:
chosen_rooms.append(room)
else:
chosen_rooms = []
# go to the next combination in the preference order
i += 1
break
# update chosen rooms
bg.assigned_rooms = chosen_rooms
taken_rooms.extend([room_id for (room_id, _, _, _) in chosen_rooms])
end = time()
self.time_elapsed = end - start
return self.blocking_groups
def print_lottery_statistics(self):
# calculate average quality and standard deviation
qualities = []
for bg in self.blocking_groups:
for (_, _, quality, size) in bg.assigned_rooms:
addition = [quality for i in range(size)]
qualities.extend(addition)
avg_quality = float(sum(qualities)) / float(self.num_students)
sd = numpy.array(qualities).std()
print("average: {}".format(avg_quality))
print("sd: {}".format(sd))
print("time: {}".format(self.time_elapsed))
return(avg_quality, sd, self.time_elapsed)