@@ -14,7 +14,7 @@ PyGSP: Graph Signal Processing in Python
14
14
:target: https://pygsp.readthedocs.io
15
15
.. |pypi | image :: https://img.shields.io/pypi/v/pygsp.svg
16
16
:target: https://pypi.python.org/pypi/PyGSP
17
- .. |zenodo | image :: https://zenodo.org/badge/16276560 .svg
17
+ .. |zenodo | image :: https://zenodo.org/badge/DOI/10.5281/zenodo.1003157 .svg
18
18
:target: https://doi.org/10.5281/zenodo.1003157
19
19
.. |license | image :: https://img.shields.io/pypi/l/pygsp.svg
20
20
:target: https://github.com/epfl-lts2/pygsp/blob/master/LICENSE.txt
@@ -33,13 +33,11 @@ PyGSP: Graph Signal Processing in Python
33
33
34
34
The PyGSP is a Python package to ease
35
35
`Signal Processing on Graphs <https://arxiv.org/abs/1211.0053 >`_.
36
- It is a free software, distributed under the BSD license, and
37
- available on `PyPI <https://pypi.python.org/pypi/PyGSP >`_.
38
36
The documentation is available on
39
37
`Read the Docs <https://pygsp.readthedocs.io >`_
40
38
and development takes place on
41
39
`GitHub <https://github.com/epfl-lts2/pygsp >`_.
42
- (A `Matlab counterpart <https://lts2.epfl.ch/gsp >`_ exists.)
40
+ A (mostly unmaintained) `Matlab version <https://lts2.epfl.ch/gsp >`_ exists.
43
41
44
42
The PyGSP facilitates a wide variety of operations on graphs, like computing
45
43
their Fourier basis, filtering or interpolating signals, plotting graphs,
@@ -60,8 +58,15 @@ main objects of the package.
60
58
61
59
>>> from pygsp import graphs, filters
62
60
>>> G = graphs.Logo()
63
- >>> G.estimate_lmax()
64
- >>> g = filters.Heat(G, tau = 100 )
61
+ >>> G.compute_fourier_basis() # Fourier to plot the eigenvalues.
62
+ >>> # G.estimate_lmax() is otherwise sufficient.
63
+ >>> g = filters.Heat(G, tau = 50 )
64
+ >>> g.plot()
65
+
66
+ .. image :: ../pygsp/data/readme_example_filter.png
67
+ :alt:
68
+ .. image :: pygsp/data/readme_example_filter.png
69
+ :alt:
65
70
66
71
Let's now create a graph signal: a set of three Kronecker deltas for that
67
72
example. We can now look at one step of heat diffusion by filtering the deltas
@@ -73,11 +78,11 @@ structure!
73
78
>>> s = np.zeros(G.N)
74
79
>>> s[DELTAS ] = 1
75
80
>>> s = g.filter(s)
76
- >>> G.plot_signal(s, highlight = DELTAS , backend = ' matplotlib ' )
81
+ >>> G.plot_signal(s, highlight = DELTAS )
77
82
78
- .. image :: ../pygsp/data/readme_example .png
83
+ .. image :: ../pygsp/data/readme_example_graph .png
79
84
:alt:
80
- .. image :: pygsp/data/readme_example .png
85
+ .. image :: pygsp/data/readme_example_graph .png
81
86
:alt:
82
87
83
88
You can
@@ -86,7 +91,7 @@ look at the
86
91
`tutorials <https://pygsp.readthedocs.io/en/stable/tutorials/index.html >`_
87
92
to learn how to use it, or look at the
88
93
`reference guide <https://pygsp.readthedocs.io/en/stable/reference/index.html >`_
89
- for an exhaustive documentation of the API. Enjoy the package !
94
+ for an exhaustive documentation of the API. Enjoy!
90
95
91
96
Installation
92
97
------------
@@ -115,6 +120,16 @@ research purpose at the `EPFL LTS2 laboratory <https://lts2.epfl.ch>`_.
115
120
This project has been partly funded by the Swiss National Science Foundation
116
121
under grant 200021_154350 "Towards Signal Processing on Graphs".
117
122
123
+ The code in this repository is released under the terms of the `BSD 3-Clause license <LICENSE.txt >`_.
124
+
118
125
If you are using the library for your research, for the sake of
119
126
reproducibility, please cite the version you used as indexed by
120
127
`Zenodo <https://doi.org/10.5281/zenodo.1003157 >`_.
128
+ Or cite the generic concept as::
129
+
130
+ @misc{pygsp,
131
+ title = {PyGSP: Graph Signal Processing in Python},
132
+ author = {Defferrard, Micha\"el and Martin, Lionel and Pena, Rodrigo and Perraudin, Nathana\"el},
133
+ doi = {10.5281/zenodo.1003157},
134
+ url = {https://github.com/epfl-lts2/pygsp/},
135
+ }
0 commit comments