-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlln_bc.tex
1003 lines (873 loc) · 37.6 KB
/
lln_bc.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
\documentclass[12pt,a4paper]{article} % Use this line if this document will be released
%\documentclass[12pt,a4paper,draft]{article} % Use this line if this document is a draft
\usepackage{ifdraft}
%% Bibliography
\usepackage{etoolbox}
\newcommand{\bibfile}{\jobname.bib} % Name of the BibTeX file.
% ref.bib should be a symbolic link to the universal BibTeX file, which should be a local copy of
% https://github.com/equipez/bibliographie/blob/main/ref.bib
% When the paper is finished, run `getbib` in the current directory to get the BibTeX file
% containing only the cited references. The name will be xyz.bib if this TeX file is xyz.tex.
\newcommand{\universalbib}{ref.bib}
\ifdraft{\IfFileExists{\universalbib}{\renewcommand{\bibfile}{\universalbib}}{}}{}
% 20221018: \iscite does not work as intended.
% The counter `cite' is used to count the number of citations.
\newcounter{cite}
\pretocmd{\cite}{\stepcounter{cite}}{}{}
%% Geometry
\voffset=-1.5cm \hoffset=-1.4cm \textwidth=16cm \textheight=22.0cm % Luis' setting
%\usepackage[a4paper, textwidth=16.0cm, textheight=22.0cm]{geometry}
\renewcommand{\baselinestretch}{1.2}
%% Basic packages
\usepackage{amsmath,amsthm,amssymb,amsfonts}
\usepackage{mathtools} % Provides \coloneqq
\usepackage{empheq}
\usepackage{xcolor}
\usepackage[bbgreekl]{mathbbol}
\DeclareSymbolFontAlphabet{\mathbbm}{bbold}
\DeclareSymbolFontAlphabet{\mathbb}{AMSb}
\usepackage{bbm}
\usepackage{upgreek}
\usepackage{accents}
\usepackage{xspace}
\usepackage{rotating}
\usepackage{multirow,booktabs}
\usepackage[en-US]{datetime2}
%% Format of the table of content
\usepackage[normalem]{ulem}
\usepackage[toc,page]{appendix}
\renewcommand{\appendixpagename}{\Large{Appendix}}
\renewcommand{\appendixname}{Appendix}
\renewcommand{\appendixtocname}{Appendix}
%\usepackage{sectsty}
\setcounter{tocdepth}{2}
%% Section title style
\usepackage{sectsty}
\sectionfont{\large}
\subsectionfont{\large}
%% Some colors
\definecolor{darkblue}{rgb}{0,0.1,0.5}
\definecolor{darkgreen}{rgb}{0,0.5,0.1}
\definecolor{darkyellow}{rgb}{0.65,0.65,0.01}
%% Todo notes
\ifdraft{
\setlength{\marginparwidth}{2.42cm}
\usepackage[tickmarkheight=3pt,textsize=small,backgroundcolor=blue!16,linecolor=purple,bordercolor=purple]{todonotes}
}{
\newcommand{\todo}[1]{}
\newcommand{\listoftodos}{}
}
%% Graph, tikz and pgf
%\usepackage{subfigure}
\setlength{\unitlength}{1mm}
% The \unitlength command is a Length command. It defines the units used in the Picture Environment.
\usepackage{graphicx}
%\usepackage{tikz,tikzscale,pgf,pgfarrows,pgfnodes,filecontents,tikz-cd}
\usepackage{tikz,tikzscale,pgf}
\usetikzlibrary{arrows,arrows.meta,patterns,positioning,decorations.markings,shapes}
\usepackage{pgfplots}
\usepackage{pgfplotstable}
\usepackage[justification=centering]{caption}
\usepgfplotslibrary{fillbetween}
\pgfplotsset{compat=1.11}
%% Turn off some unharmful warnings in draft mode
%% N.B.: DO NOT use `silence` together with `hyperref`. They will cause an infinite loop.
\ifdraft{
\usepackage{silence}
\WarningFilter{xcolor}{Incompatible color definition on}
\WarningFilter{hyperref}{Draft mode on}
\WarningFilter{refcheck}{Unused label}
\WarningFilter{microtype}{`draft' option active}
\WarningFilter{latex}{Writing or overwriting file} % Mute the warning about 'writing/overwriting file'
\WarningFilter{latex}{Writing file} % Mute the warning about 'writing/overwriting file'
\WarningFilter{latex}{Tab has} % Mute the warning about 'Tab has been converted to Blank Space'
\WarningFilter{latex}{Marginpar on page} % Mute the warning about 'Marginpar on page xx moved'
\WarningFilter{latex}{author given} % Mute the warning about 'No \author given'
}{}
%% Hyperref, url, and email
%% N.B.: DO NOT use `silence` together with `hyperref`. They will cause an infinite loop.
\ifdraft{\usepackage{refcheck}\newcommand{\url}{\texttt}}{
\usepackage{hyperref}
\hypersetup{colorlinks, linkcolor=darkblue, anchorcolor=darkblue, citecolor=darkblue, urlcolor=darkblue}
\usepackage{url}
} % Check unused labels
\newcommand{\email}{\texttt}
%% Enumerate and itemize
\usepackage{eqlist}
\usepackage{enumitem}
\setlist[itemize]{leftmargin=*}
\setlist[enumerate]{leftmargin=*,label=\normalfont{(\alph*)}}
%% Algorithm environment
\usepackage[section]{algorithm}
\usepackage{algpseudocode,algorithmicx}
\newcommand{\INPUT}{\textbf{Input}}
\newcommand{\FOR}{\textbf{For}~}
\algrenewcommand\algorithmicrequire{\textbf{Input:}}
\algrenewcommand\algorithmicensure{\textbf{Output:}}
\algrenewcommand\alglinenumber[1]{\normalsize #1.}
\newcommand*\Let[2]{\State #1 $=$ #2}
%% Theorem-like environments
\newtheorem{theorem}{Theorem}[section]
\newtheorem{conjecture}{Conjecture}[section]
\newtheorem{corollary}{Corollary}[section]
\newtheorem{exercise}{Exercise}[section]
\newtheorem{lemma}{Lemma}[section]
\newtheorem{problem}{Problem}[section]
\newtheorem{proposition}{Proposition}[section]
\newtheorem{assumption}{Assumption}[section]
\newtheorem{example}{Example}[section]
\newtheorem{question}{Question}[section]
% Change theoremstyle to ``definition'', which uses textnormal for the text.
\theoremstyle{definition}
\newtheorem{definition}{Definition}[section]
\newtheorem{remark}{Remark}[section]
% proof
\usepackage{xpatch}
\xpatchcmd{\proof}{\itshape}{\normalfont\proofnamefont}{}{}
\newcommand{\proofnamefont}{\bfseries}
%% Equation numbering
\numberwithin{equation}{section}
%% Fine tuning
\usepackage{microtype}
\usepackage[nobottomtitles*]{titlesec} % No section title at the bottom of pages
% Prevent footnote from running to the next page
\interfootnotelinepenalty=10000
% No line break in inline math
\interdisplaylinepenalty=10000
\relpenalty=10000
\binoppenalty=10000
% No widow or orphan lines
\clubpenalty=10000
\widowpenalty=10000
\displaywidowpenalty=10000
% Use @ to put 1 math unit (mu) in math
% See https://nhigham.com/2013/01/07/fine-tuning-spacing-in-latex-equations/
% and also TeXbook p. 155.
\mathcode`@="8000{\catcode`\@=\active\gdef@{\mkern1mu}}
%% Operators, commands
\usepackage{relsize}
\usepackage{nccmath}
%\DeclareMathOperator*{\mcap}{\,\medmath{\bigcap}\,}
%\DeclareMathOperator*{\mcup}{\,\medmath{\bigcup}\,}
\DeclareMathOperator*{\mcap}{\,\mathsmaller{\bigcap}\,}
\DeclareMathOperator*{\mcup}{\,\mathsmaller{\bigcup}\,}
%\renewcommand{\cap}{\mcap}
%\renewcommand{\cup}{\mcup}
\newcommand{\ceil}[1]{ {\lceil{#1}\rceil} }
\newcommand{\floor}[1]{ {\lfloor{#1}\rfloor} }
\DeclareMathOperator{\tr}{tr}
\DeclareMathOperator{\sort}{sort}
\DeclareMathOperator*{\Argmax}{Argmax}
\DeclareMathOperator*{\Argmin}{Argmin}
\DeclareMathOperator*{\Arglocmin}{Arglocmin}
\DeclareMathOperator*{\argmax}{argmax}
\DeclareMathOperator*{\argmin}{argmin}
\DeclareMathOperator*{\diag}{diag}
\DeclareMathOperator*{\Diag}{Diag}
\DeclareMathOperator{\Span}{span}
\DeclareMathOperator{\med}{med}
\DeclareMathOperator{\essinf}{essinf}
\DeclareMathOperator{\cl}{cl}
\DeclareMathOperator{\vol}{vol}
\DeclareMathOperator{\sign}{sign}
\DeclareMathOperator{\rank}{rank}
\DeclareMathOperator{\range}{range}
\DeclareMathOperator{\card}{card}
\DeclareMathOperator{\diam}{diam}
\DeclareMathOperator{\dist}{dist}
\newcommand{\disth}{{\operatorname{\updelta_{\sss{H}}}}}
\newcommand{\ind}{\mathbbm{1}}
%\newcommand*{\defeq}{\stackrel{\mbox{\normalfont\tiny{\textnormal{def}}}}{=}}
\newcommand\defeq{\mathrel{\overset{\makebox[0pt]{\mbox{\normalfont\tiny\sffamily def}}}{=}}}
\newcommand{\RR}{\mathbb{R}}
\newcommand{\BB}{\mathcal{B}}
\renewcommand{\SS}{\mathbb{S}}
\newcommand{\TT}{\mathcal{T}}
\newcommand{\ZZ}{\mathbb{Z}}
\newcommand{\NN}{\mathbb{N}}
\newcommand{\FF}{\mathcal{F}}
\newcommand{\CC}{\mathbb{C}}
\newcommand{\XX}{\mathcal{X}}
\newcommand{\sset}{\mathcal{S}}
\newcommand{\pen}{h}
\newcommand{\penpar}{\mu}
\newcommand{\res}{\rho}
\newcommand{\col}{r}
\newcommand{\ofd}{\mathcal{F}}
\newcommand{\stf}[1]{\mathbb{S}^{#1}}
\newcommand{\sss}[1]{{\scriptscriptstyle{#1}}}
\newcommand{\sK}{{\scriptscriptstyle{K}}}
\newcommand{\sT}{{\scriptscriptstyle{T}}}
\newcommand{\io}{{\text{i.o.}}\xspace}
\newcommand{\as}{{\text{a.s.}}\xspace}
\newcommand{\comp}{{\textnormal{c}}}
\newcommand{\fro}{{\scriptstyle{\textnormal{F}}}}
\newcommand{\trs}{{\scriptstyle{\mathsf{T}}}}
\newcommand{\hmt}{{\scriptstyle{{\mathsf{H}}}}}
\newcommand{\pin}{{\scriptstyle{{\mathsf{+}}}}}
\newcommand{\inv}{{-1}}
\newcommand{\adj}{*}
\newcommand{\ones}{\mathbf{1}}
\newcommand{\cs}{\text{c}}
\newcommand{\hp}{\circ}
\newcommand{\cc}{\sss{\textnormal{C}}}
\newcommand{\dec}{\sss{\textnormal{D}}}
\newcommand{\cauchy}{\sss{\textnormal{C}}}
\newcommand{\scauchy}{\sss{\textnormal{S}}}
\newcommand{\crit}{\textnormal{crit}}
\newcommand{\rsg}{\hat{\partial}}
\newcommand{\gsg}{\partial}
\newcommand{\dom}{\textnormal{dom}}
\newcommand{\tf}{{\textnormal{f}}}
\newcommand{\tg}{{\textnormal{g}}}
\newcommand{\ts}{{\textnormal{s}}}
\newcommand{\st}{\textnormal{s.t.}}
\newcommand{\etc}{{etc.}}
\newcommand{\ie}{{i.e.}}
\newcommand{\eg}{{e.g.}}
\newcommand{\etal}{{et al.}}
\newcommand{\iid}{{\text{i.i.d.}}\xspace}
\newcommand{\me}{\mathrm{e}}
\newcommand{\md}{\mathrm{d}}
\newcommand{\mi}{\mathrm{i}}
\newcommand{\lev}{\mathrm{lev}}
\newcommand{\bA}{\mathbf{A}}
\newcommand{\bx}{\mathbf{u}}
%\newcommand{\bb}{\mathbf{f}}
\newcommand{\bb}{\mathbf{r}}
\newcommand{\nov}{n_{\textnormal{o}}}
\xspaceaddexceptions{]\}}
% tex.stackexchange.com/questions/15252/why-does-xspace-behave-differently-for-parenthesis-vs-braces-brackets
\newcommand{\MATLAB}{\textsc{Matlab}\xspace}
\newcommand{\octave}{\mbox{GNU Octave}\xspace}
\newcommand{\prblm}{\texttt}
\DeclareMathAlphabet{\mathsfit}{T1}{\sfdefault}{\mddefault}{\sldefault}
\SetMathAlphabet{\mathsfit}{bold}{T1}{\sfdefault}{\bfdefault}{\sldefault}
\newcommand{\prbb}{\mathsfit{p}}
\newcommand{\pp}{\mathsf{p}}
\newcommand{\qq}{\mathsf{q}}
\newcommand{\ttt}{\mathsfit{t}}
\newcommand{\tol}{\varepsilon}
\newcommand{\bt}{\mathbf{t}}
\newcommand{\br}{\mathbf{r}}
\newcommand{\dd}{\mathbf{d}}
\newcommand{\ii}{\mathbf{i}}
\newcommand{\jj}{\mathbf{j}}
\newcommand{\xx}{\mathbf{x}}
\renewcommand{\pp}{\mathbf{p}}
\renewcommand{\ggg}{\mathbf{g}}
\newcommand{\GG}{\mathbf{G}}
\DeclareMathOperator{\var}{Var}
\DeclareMathOperator{\cov}{Cov}
\DeclareMathOperator{\expc}{\mathbb{E}}
\renewcommand{\Pr}{\mathbb{P}}
\newcommand{\lb}{\underline}
\newcommand{\ub}{\overline}
% mathlcal font
\DeclareFontFamily{U}{dutchcal}{\skewchar\font=45 }
\DeclareFontShape{U}{dutchcal}{m}{n}{<-> s*[1.0] dutchcal-r}{}
\DeclareFontShape{U}{dutchcal}{b}{n}{<-> s*[1.0] dutchcal-b}{}
\DeclareMathAlphabet{\mathlcal}{U}{dutchcal}{m}{n}
\SetMathAlphabet{\mathlcal}{bold}{U}{dutchcal}{b}{n}
% mathscr font (supporting lowercase letters)
%\usepackage[scr=dutchcal]{mathalfa}
%\usepackage[scr=esstix]{mathalfa}
%\usepackage[scr=boondox]{mathalfa}
%\usepackage[scr=boondoxo]{mathalfa}
\usepackage[scr=boondoxupr]{mathalfa}
%\newcommand{\model}{\mathscr{h}}
\newcommand{\model}{\tilde{f}}
\newcommand{\rmod}{F}
\newcommand{\Set}[1]{\mathcal{#1}}
\DeclareMathAlphabet{\mathpzc}{OT1}{pzc}{m}{it} % The mathpzc font
\newcommand{\slv}{\mathpzc}
% mathpzc looks great, but it stops working on 19 Feb 2020 for no reason.
%\newcommand{\slv}{\mathscr}
\newcommand{\software}{\texttt}
\DeclareMathOperator{\eff}{\mathsf{e}\;\!}
\DeclareMathOperator{\Eff}{\mathsf{E}\;\!}
\newcommand{\out}{{\text{out}}}
%% Commands for revision
\newcommand{\red}[1]{\textcolor{red}{#1}}
\newcommand{\blue}[1]{\textcolor{blue}{#1}}
\newcommand{\green}[1]{\textcolor{darkgreen}{#1}}
\newcommand{\TYPO}[1]{{\color{orange}{#1}}}
\newcommand{\MISTAKE}[1]{{\color{violet}{#1}}}
\newcommand{\REPHRASE}[1]{{\color{darkgreen}{#1}}}
\newcommand{\REVISE}[1]{{\color{blue}{#1}}}
\newcommand{\REVISEred}[1]{{\color{red}{#1}}}
\newcommand{\COMMENT}{\todo} % Needs the todonotes package
%\newcommand{\COMMENT}[1]{\textcolor{brown}{{\small{(comment: #1)}}}} % This puts comments inline
% Use the following if revision is finished
%\newcommand{\TYPO}{}
%\newcommand{\MISTAKE}{}
%\newcommand{\REPHRASE}{}
%\newcommand{\REVISE}{}
%\newcommand{\REVISEred}{}
%\newcommand{\COMMENT}[1]{} % Input ignored.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\title{Notes on the Law of Large Numbers and the Borel-Cantelli Lemmas}
\date{\DTMnow}
\author{Zaikun Zhang
\thanks{Email: [email protected].}
%\and
%Author2
%\thanks{Information2}
}
\begin{document}
\maketitle
%\begin{abstract}
%\end{abstract}
%\textbf{Keywords}: Keyword1, Keyword2
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
For a sequence of random variables~$\{X_k\}$, we will say it is nonnegative if~$X_k \ge 0$ \as for
each~$k$, and uniformly bounded if there exists a constant~$M$ such that~$|X_k| \le M$ \as for
each~$k$. In addition, we define~$\bar{X}_k = k^{-1}\sum_{\ell=1}^k X_\ell$ for each~$k \ge 1$.
\section{The strong law of large numbers}
\label{sec:slln}
\subsection{The \iid case}
\label{sec:sllniid}
\begin{theorem}
\label{th:sllniid}
Let~$\{X_k\}$ be a sequence of \iid random variables.
\begin{enumerate}
\item $\{\bar{X}_k\}$ converges \as to a finite random variable if and only if~$\expc(|X_1|) < \infty$.
When it converges \as, the limit is~$\expc(X_1)$.
\item If~$\{X_k\}$ is nonnegative, then~$\{\bar{X}_k\}$ converges to~$\expc(X_1)$ \as
\end{enumerate}
\end{theorem}
\begin{proof}
(a) See \cite[Theorem~5.23]{Kallenberg_2021}.
(b) If~$\expc(X_1) < \infty$, then the convergence holds according to~(a). Otherwise, for
each integer $n \ge 1$, we have
\[
\liminf_{k\to \infty}\bar{X}_k \;\ge\;
\liminf_{k\to \infty}\frac{1}{k}\sum_{\ell=1}^k \min\{X_\ell, n\}
\;=\; \expc(\min\{X_1, n\}).
\]
Letting~$n\to \infty$, we have~$\liminf_{k}\bar{X}_k = \infty$ \as, because~$\expc(\min\{X_1,
n\}) \to \expc(X_1) = \infty$ according to Levi's monotone convergence theorem.
Hence~$\bar{X}_k\to \infty =\expc(X_1)$ \as
\end{proof}
\begin{remark}
\label{rem:pair}
For the ``if'' part of Theorem~\ref{th:sllniid}, see
also~\cite[Theorem~1]{Etemadi_1981} and~\cite[Theorem~2.4.1]{Durrett_2019}, which show that
the mutual independence assumption can be weakened to pairwise independence.
\end{remark}
\begin{remark}
\label{rem:kolmogorov01}
Suppose that~$\{X_k\}$ is a sequence of mutually independent random variables.
If~$\{\bar{X}_k\}$ converges \as, then the limit is a constant \as according to Kolmogorov's
zero-one law.
For the same reason, if~$\{X_k\}$ converges \as, then its limit is a constant \as.
\end{remark}
Item~(b) of Theorem~\ref{th:sllniid} can be generalized to the following, with a very similar proof.
\begin{theorem}
\label{th:sllniid2}
Let~$\{X_k\}$ be a sequence of~\iid random variables. If~$\expc(X_1^+) < \infty$
or~$\expc(X_1^-) < \infty$, then~$\{\bar{X}_k\}$ converges to~$\expc(X_1)$ \as
\end{theorem}
\begin{proof}
If~$\expc(X_1^+)<\infty$ and~$\expc(X_1^-) < \infty$, then~$\expc(|X_1|) < \infty$. Thus the
convergence holds. If~$\expc(X_1^+) = \infty$ and~$\expc(X_1^-) < \infty$,
then~$\expc(X_1) = \infty$ and the convergence can be established by considering the truncated
sequence $\{\min\{X_k, n\}\}$ for each integer~$n\ge 1$.
The case with~$\expc(X_1^+) < \infty$ and~$\expc(X_1^-)$ is similar to the last case.
\end{proof}
\subsection{The martingale-difference case}
\label{sec:md}
\begin{theorem}[Martingale convergence theorem~\mbox{\cite[Theorem 4.2.11]{Durrett_2019}}]
\label{th:ml1}
If~$\{X_k\}$ is a submartingale with~$\sup_k\expc(X_k^+)< \infty$, then~$X_k\to X$ \as for
some random variable~$X$ with~$\expc(|X|)<\infty$.
\end{theorem}
\begin{corollary}[~\mbox{\cite[Theorem 4.2.12]{Durrett_2019}}]
\label{coro:ml1}
If~$\{X_k\}$ is a nonnegative supermartingale, then $X_k\to X$ \as for some random variable~$X$
with~$\expc(X) \le \expc(X_1)$.
\end{corollary}
By Theorem~\ref{th:ml1}, if~$\{X_k\}$ is an~$L^1$-bounded martingale,
then~$X_k\to X$~\as for some random variable~$X\in L^1$. However, the convergence may not hold
in~$L^1$. See~\cite[Example~4.2.13]{Durrett_2019}. In contrast, the following theorem ensures
the convergence in~$L^p$ for~$p>1$.
\begin{theorem}[Martingale ~$L^p$ convergence theorem~\mbox{\cite[Theorem~4.4.6]{Durrett_2019}}] \label{th:mlp}
If~$p> 1$ and~$\{X_k\}$ is a martingale with~$\sup_{k\ge 1} \|X_k\|_p< \infty$,
then there exists a random variable~$X\in L^p$ such that~$X_k\to X$ \as and in~$L^p$.
\end{theorem}
\begin{lemma}[Kronecker's Lemma]
\label{lem:kronecker}
Let~$\{a_k\}$ be a sequence of nonnegative numbers and~$\{b_k\}$ be a non-decreasing sequence
with~$b_k\to \infty$.
\begin{enumerate}
\item If~$\sum_{k=1}^\infty b_k^{-1}a_k < \infty$, then~$b_k^{-1}\sum_{\ell=1}^k a_\ell\to 0$.
\item If~$\sum_{k=1}^\infty a_k < \infty$, then~$b_k^{-1}\sum_{\ell=1}^k b_\ell a_\ell\to 0$.
\end{enumerate}
\end{lemma}
\begin{remark}
\label{rem:kronecker}
In item~(a) of Lemma~\ref{lem:kronecker}, we trivially have~$b_k^{-1} a_k\to 0$,
and Kronecker's Lemma strengthens it to~$b_k^{-1}\sum_{\ell=1}^k a_\ell\to 0$.
In item~(b), we trivially have~$b_k^{-1} \sum_{\ell=1}^k a_\ell\to 0$,
and Kronecker's Lemma strengthens it to~$b_k^{-1}\sum_{\ell=1}^k b_\ell a_\ell\to 0$.
\end{remark}
\begin{definition}
\label{def:md}
Let $\{X_k\}$ be a sequence of random variables and~$\{\FF_k\}$ be a filtration.
Then~$\{X_k\}$ is called a martingale difference sequence
adapted to~$\{\FF_k\}$ if there exists a martingale~$\{S_k\}_{k\ge 0}$ adapted to~$\{\FF_k\}$
such that~$X_k = S_k - S_{k-1}$ for each~$k\ge 1$, or, equivalently,
if~$\mathbb{E}(|X_k|) < \infty$ and $\mathbb{E}(X_k \mathrel{|} \FF_{k-1}) = 0$ \as for each $k \ge 1$.
\end{definition}
If~$\{X_k\}$ is a martingale difference sequence, so is~$\{c_kX_k\}$ for any constant
sequence~$\{c_k\}$.
\begin{lemma}[Orthogonality]
\label{lem:orth}
If~$\{X_k\}$ is a martingale difference sequence, then
$\expc(X_iX_j) = 0$ and~$\cov(X_i, X_j) = 0$ for any distinct~$i$ and~$j$.
\end{lemma}
\begin{proof}
For any~$i > j \ge 1$, we have
\[
\expc(X_iX_j) \;=\; \expc(X_j\expc(X_i\mathrel{|}\FF_{i-1})) \;=\; 0.
\]
In addition, $\expc(X_i) = \expc(\expc(X_i\mathrel{|}\FF_{i-1})) = 0$ and
similarly~$\expc(X_j) = 0$. Hence~$\cov(X_i, X_j) = 0$.
\end{proof}
\begin{theorem}[Chow~\cite{Chow_1967}]
\label{th:sllnmd1}
Let~$\{X_k\}$ be a martingale difference sequence. If there exists a constant~$p\ge 1$ such that
\[
\sum_{k=1}^\infty k^{-p-1} \expc(|X_k|^{2p}) < \infty,
\]
then~$\bar{X}_k \to 0$ \as
\end{theorem}
\begin{remark}
\label{rem:chow}
Chow's theorem is a consequence of \cite[Theorem~2]{Chow_1960} and
\cite[Theorem~9]{Burkholder_1966}. Chow~\cite{Chow_1967} mentions these references without
specifying the theorems. See also
\begin{center}
\url{https://math.stackexchange.com/questions/4965300/}.
\end{center}
\end{remark}
\begin{theorem}[\mbox{\cite[Theorem~2.18]{Hall_Heyde_1980}}]
\label{th:sllnmd2}
If~$1\le p\le 2$ and~$\{X_k\}$ is a martingale difference sequence adapted to a filtration~$\{\FF_k\}$,
then~$\bar{X}_k \to 0$ \as on the set
\[
\left\{ \sum_{k=1}^\infty k^{-p} \expc(|X_k|^p
\mathrel{|} \FF_{k-1}) < \infty \right\}.
\]
In particular, if~$\sum_{k=1}^\infty k^{-p} \expc(|X_k|^p) < \infty$, then~$\bar{X}_k \to 0$ \as
\end{theorem}
Theorem~\ref{th:sllnmd2} follows from Kronecker's Lemma and the theorem below due to
Chow~\cite{Chow_1965}. It generalizes the Kolmogorov's two-series theorem
(Theorem~\ref{th:kolmogorov2}) to martingale difference sequences.
\begin{theorem}[\mbox{\cite[Corollary~5]{Chow_1965}}]
\label{th:kolmogorov2c}
If~$1\le p\le 2$ and $\{X_k\}$ is a martingale difference sequence adapted to a filtration~$\{\FF_k\}$,
then~$\sum_{k=1}^\infty X_k$ converges \as on the set
\[
\left\{\sum_{k=1}^\infty \expc(|X_k|^p\mathrel{|}\FF_{k-1}) < \infty\right\}.
\]
In particular, if~$\sum_{k=1}^\infty \expc(|X_k|^p) < \infty$, then~$\sum_{k=1}^\infty X_k$
converges \as
\end{theorem}
Theorem~\ref{th:kolmogorov2c} in turn is a consequence of the following lemma, which is a conditional
version of Kolmogorov's three-series theorem (Theorem~\ref{th:kolmogorov3}). See~\cite[pages~33--36]{Hall_Heyde_1980}
for more details.
\begin{theorem}[\mbox{\cite[Theorem~2.16]{Hall_Heyde_1980}}]
\label{th:kolmogorov3c}
Let~$\{X_k\}$ be a sequence of random variables adapted to a filtration~$\{\FF_k\}$, $c$ be a
positive constant, and~$Y_k = X_k\ind(X_k \le c)$ for each~$k\ge 1$. Then~$\sum_{k=1}^\infty X_k$
converges \as on the set
\[
\left\{
\sum_{k=1}^\infty \ind(X_k > c \mathrel{|} \FF_{k-1}) < \infty,
\sum_{k=1}^\infty \expc(Y_k \mathrel{|} \FF_{k-1})~\text{converges},
\sum_{k=1}^\infty \var(Y_k \mathrel{|} \FF_{k-1}) < \infty
\right\}.
\]
\end{theorem}
\begin{corollary}
\label{coro:mdl2}
Let~$\{X_k\}$ be a martingale difference sequence. If~$\sum_{k=1}^\infty k^{-2}\var(X_k) < \infty$,
then~$\bar{X}_k \to 0$ \as
\end{corollary}
\begin{proof}
This is the special case of Theorem~\ref{th:sllnmd1} with~$p=1$
or that of Theorem~\ref{th:sllnmd2} with~$p=2$.
We now provide an alternative proof using the martingale $L^p$ convergence theorem and
Kronecker's Lemma.
Define~$Y_k \;=\; \sum_{\ell=1}^k \ell^{-1}X_\ell$ for each~$k\ge 1$. Then~$\{Y_k\}$ is
a martingale. In addition, due to Lemma~\ref{lem:orth}, we have
\[
\expc(Y_k^2) \;=\; \sum_{\ell=1}^k \ell^{-2}\expc(X_\ell^2) \;\le\; \sum_{\ell=1}^\infty \ell^{-2}
\expc(X_\ell^2) \;<\; \infty.
\]
Thus~$\{Y_k\}$ is bounded in $L^2$ and hence converges \as
Invoking Kronecker's Lemma, we have~$\bar{X}_k \to 0$ \as
\end{proof}
\subsection{The independent case with moment conditions}
\label{sec:sllnindep}
\begin{lemma}
\label{lem:expc}
Let~$X$ be a random and and~$p \ge 1$ be a constant.
\begin{enumerate}
\item $\expc(|X|) \le \expc(|X|^p)^{\frac{1}{p}}$.
\item If~$\expc(|X|) < \infty$, then~$\expc(|X - \expc(X)|^p)\le 2^p \expc(|X|^p)$.
\end{enumerate}
\end{lemma}
\begin{proof}
(a) Jensen's inequality (or H\"older's inequality).
(b) By the triangle inequality, we have~$\|X - \expc(X)\|_p \le \|X\|_p + |\expc(X)| \le 2\|X\|_p$.
\end{proof}
\begin{theorem}
\label{th:sllnindep}
Let~$\{X_k\}$ be a sequence of independent random variables. If
either
\begin{equation}
\label{eq:sum1}
\sum_{k=1}^\infty k^{-p-1}\expc(|X_k|^{2p}) \;<\; \infty
\end{equation}
for a constant~$p\ge 1$, or
\begin{equation}
\label{eq:sum2}
\sum_{k=1}^\infty k^{-p}\expc(|X_k|^{p}) \;<\; \infty
\end{equation}
for a constant~$p\in[1, 2]$, then~$\bar{X}_k - \expc(\bar{X}_k)\to 0$ \as
\end{theorem}
\begin{proof}
According to Lemma~\ref{lem:expc}, we have~$\expc(|X_k|) < \infty$ for each~$k\ge 1$ in both cases.
Define~$Y_k = X_k - \expc(X_k)$ for each~$k\ge 1$. Then~$\{Y_k\}$ is a martingale difference
sequence. In addition,
\[
\expc(|Y_k|^{p}) \;\le\; 2^{p} \expc(|X_k|^p)
\]
for all~$k\ge 1$ and~$p\ge 1$. Hence~\eqref{eq:sum1} implies
\begin{equation}
\label{eq:sum1}
\sum_{k=1}^\infty k^{-p-1}\expc(|Y_k|^{2p}) \;<\; \infty,
\end{equation}
and~\eqref{eq:sum2} implies
\begin{equation}
\label{eq:sum2}
\sum_{k=1}^\infty k^{-p}\expc(|Y_k|^{p}) \;<\; \infty.
\end{equation}
In both cases, $\bar{Y}_k \to 0$ \as by Theorems~\ref{th:sllnmd1} and~\ref{th:sllnmd2}.
Thus~$\bar{X}_k - \expc(\bar{X}_k) \to 0$ \as
\end{proof}
\begin{theorem}[Kolmogorov's two-series theorem~\mbox{\cite[Theorems~2.5.6]{Durrett_2019}}]
\label{th:kolmogorov2}
Let~$\{X_k\}$ be a sequence of independent random variables.
Then~$\sum_{k=1}^\infty X_k$ converges \as if the two series~$\sum_{k=1}^\infty \expc(X_k)$
and~$\sum_{k=1}^\infty \var(X_k)$ both converge.
\end{theorem}
\begin{remark}
\label{rem:kolmogorov2}
Theorem~\ref{th:kolmogorov2} is a special case of Theorem~\ref{th:mlp} with~$p=2$.
To see this, define~$Y_k = \sum_{\ell=1}^k [X_\ell-\expc(X_\ell)]$ for each~$k\ge 1$. Then~$\{Y_k\}$ is a
martingale. In addition, it is bounded in~$L^2$, since
\[
\expc(Y_k^2) \;=\; \sum_{\ell=1}^k \var(X_\ell)
\;\le\; \sum_{\ell=1}^\infty \var(X_\ell) \;<\; \infty.
\]
Thus~$\{Y_k\}$ converges \as Combining this with the convergence of~$\sum_{k=1}^\infty \expc(X_k)$,
we obtain the almost sure convergence of~$\sum_{k=1}^\infty X_k$.
\end{remark}
\begin{theorem}[Kolmogorov's three-series theorem~\mbox{\cite[Theorems~2.5.8]{Durrett_2019}}]
\label{th:kolmogorov3}
Let~$\{X_k\}$ be a sequence of independent random variables, $c$ be a positive constant,
and~$Y_k = X_k\ind(|X_k| \le c)$. Then~$\sum_{k=1}^\infty X_k$ converges \as \textbf{if and
only if} the three series~$\sum_{k=1}^\infty \Pr(|X_k| > c)$, $\sum_{k=1}^\infty \expc(Y_k)$, and
$\sum_{k=1}^\infty \var(Y_k)$ all converge.
\end{theorem}
The following proposition is sometimes known as ``Kolmogorov's Criterion of SSLN''.
It follows from Theorem~\ref{th:kolmogorov2} and Kronecker's Lemma
(consider the sequence~$\{\sum_{\ell=1}^k\ell^{-1}X_\ell\}$).
It is also a special case of Corollary~\ref{coro:mdl2} and Theorem~\ref{th:sllnindep}.
\begin{corollary}
\label{coro:kolmogorov2}
Let~$\{X_k\}$ be a sequence of independent random variables with~$\expc(X_k)=0$ for each~$k\ge 0$.
If~$\sum_{k=1}^\infty k^{-2}\var(X_k) < \infty$, then~$\bar{X}_k\to 0$ \as
\end{corollary}
As a side note, we have the following result due to L\'evy.
\begin{theorem}[L\'evy~\mbox{\cite[Theorem 5.3.4]{Chung_2001}}]
\label{th:levy}
If~$\{X_k\}$ is a sequence of independent random variables
then~$\sum_{k=1}^\infty X_k$ converges \as if and only if it converges in probability.
\end{theorem}
\begin{question}
What if~$\sum_{k=1}^\infty X_k$ diverges to infinity in probability or \as?
\end{question}
Note that Theorem~\ref{th:levy} cannot be extended to the case with~$\{X_k\}$ being a martingale
difference sequence. In other words, for a martingale, the convergence in probability does not imply
the almost sure convergence, as illustrated by the following example.
\begin{example}[\mbox{~\cite[Example 4.2.14]{Durrett_2019}}]
\label{exp:durret}
Let~$\{A_k\}$ and~$\{B_k\}$ be two sequences of \iid random variables with
\[
\Pr(A_k = 1) = \frac{1}{k}, \quad \Pr(A_k = 0) = 1-\frac{1}{k},
\quad \text{and} \quad
\Pr(B_k=1) = \frac{1}{2} = \Pr(B_k = -1).
\]
Additionally, we require that~$\{A_k\}$ and~$\{B_k\}$ are independent of each other.
Define~$X_1 = 0$ and
\[
X_{k+1} \;=\; A_k[B_k \ind(X_k=0) + k X_k], \quad k \ge 1.
\]
Then~$X_k$ is independent of $\{A_\ell\}_{\ell \ge k}$, and~$\{B_\ell\}_{\ell\ge k}$ for
each~$k\ge 1$. Thus
\[
\expc(X_{k+1} \mathrel{|} X_1, \ldots, X_k)
\;=\;
\expc(A_k) [\expc(B_k) \ind(X_k=0) + k X_k]
\;=\; X_k, \quad k \ge 1.
\]
Hence~$\{X_k\}$ is a martingale. Noting that~$B_k \ind(X_k=0) + k X_k \neq 0$, we have
\[
\{X_{k+1} =0\} \;=\; \{A_k = 0\},
\]
implying that the events $\{X_k = 0\}$ \textnormal{(}$k = 1, 2, \ldots$\textnormal{)} are mutually
independent of each other. In addition,
\[
\Pr(X_{k+1} \neq 0) \;=\; 1-\Pr(A_k = 0) \;=\; \frac{1}{k}.
\]
Thus~$X_k\to 0$ in probability, while the second Borel-Cantelli Lemma
\textnormal{(}Theorem~\ref{th:bc}\textnormal{)}
ensures that~$\Pr(X_k \neq 0~\io) = 1$, preventing the almost sure convergence to zero,
because~$\{X_k\}$ takes only integer values.
\end{example}
\begin{question}
What if~$\{X_k\}$ is a martingale with bounded increments?
\end{question}
For a sequence of independent random variables, the convergence in probability does not imply
the almost sure convergence either. This can be seen by considering a sequence~$\{X_k\}$ with~$\Pr(X_k = 1) = 1/k$
and~$\Pr(X_k = 0) = 1-1/k$ independently for each~$k\ge 1$ and applying the same argument as the
end of Example~\ref{exp:durret}.
\section{The Borel-Cantelli Lemmas}
\label{sec:bc}
\begin{theorem}[The Borel-Cantelli Lemmas]
\label{th:bc}
Let~$\{E_k\}$ be a sequence of events.
\begin{enumerate}
\item If~$\sum_{k=1}^\infty \Pr(E_k) < \infty$, then~$\Pr(E_k~\io) = 0$.
\item If~$\{E_k\}$ is mutually independent and~$\sum_{k=1}^\infty \Pr(E_k)
= \infty$, then~$\Pr(E_k~\io) = 1$.
\end{enumerate}
\end{theorem}
\begin{remark}
\label{rem:01}
The Borel-Cantelli Lemmas lead to a 0-1 law: For a sequence of mutually independent
events~$\{E_k\}$, the probability~$\Pr(\{E_k~\io\})$ is either 0 or 1, corresponding
to~$\sum_{k=1}^\infty \Pr(E_k) < \infty$ or $\sum_{k=1}^\infty \Pr(E_k) = \infty$, respectively.
\end{remark}
\begin{lemma}
\label{lem:sumprod}
For a sequence~$\{x_k\} \subset [0,1)$, $\sum_{k=1}^\infty x_k = \infty$ if and only if
$\prod_{k=1}^\infty (1-x_k) = 0$.
\end{lemma}
\begin{proof}
If~$\sum_{k=1}^\infty x_k = \infty$, then~$\prod_{k=1}^\infty (1-x_k)\le \exp(-\sum_{k=1}^\infty
x_k) = 0$. If~$\sum_{k=1}^\infty x_k < \infty$, then there exists an integer~$K$ such
that, for each~$k\ge K$, we have~$x_k \le 1/2$ and hence~$1-x_k \ge \exp(-2x_k)$. Thus
$\prod_{k=K}^\infty (1-x_k) \ge \exp(-2\sum_{k=K}^\infty x_k) > 0$, implying that~$\prod_{k=1}^\infty
(1-x_k) > 0$.
\end{proof}
\begin{theorem}
\label{th:inf}
Let~$\{X_k\}$ be a sequence of nonnegative random variables.
\begin{enumerate}
\item If~$\sum_{k=1}^\infty\expc(X_k) < \infty$, then~$\sum_{k=1}^\infty X_k < \infty$~\as
\item If~$\sum_{k=1}^\infty\expc(X_k)= \infty$, then~$\sum_{k=1}^\infty X_k = \infty$~\as
provided that the random variables~$\{X_k\}$ are~\iid or mutually independent and
uniformly bounded.
\end{enumerate}
\end{theorem}
\begin{proof}
(a) By the Fubini-Tonelli theorem (or Levi's monotone convergence theorem), we have
\[
\expc\left(\sum_{k=1}^\infty X_k\right) \;=\; \sum_{k=1}^\infty \expc(X_k) \;<\; \infty.
\]
Hence~$\sum_{k=1}^\infty X_k < \infty$~\as
(b) Suppose that~$\{X_k\}$ is \iid. By the strong law of large numbers (Theorem~\ref{th:sllniid}),
we have~$k^{-1} \sum_{\ell=1}^k X_\ell \to \expc(X_1)$~\as, which is positive (possibly
infinite) since~$\sum_{k=1}^\infty\expc(X_k) = \infty$. Hence~$\sum_{k=1}^\infty X_k = \infty$~\as
Now suppose that~$\{X_k\}$ is a sequence of mutually independent and uniformly bounded random variables.
Without loss of generality, we assume that~$X_k< 1$ \as for each~$k\ge 1$. Then~$\expc(X_k) < 1$
for each~$k\ge 1$. According to Lemma~\ref{lem:sumprod}, $\sum_{k=1}^\infty \expc(X_k) = \infty$
implies that~$\prod_{k=1}^\infty [1-\expc(X_k)] = 0$.
Due to the independence of~$\{X_k\}$, we have
\[
\expc\left[\prod_{k=1}^\infty (1-X_k)\right]
\;=\; \prod_{k=1}^\infty \expc(1-X_k)
\;=\; \prod_{k=1}^\infty [1-\expc(X_k)]
\;=\; 0.
\]
Thus~$\prod_{k=1}^\infty (1-X_k) = 0$~\as since this is a nonnegative random variable,
implying that~$\sum_{k=1}^\infty X_k = \infty$~\as according to Lemma~\ref{lem:sumprod}.
\end{proof}
\begin{remark}
\label{rem:bc}
The Borel-Cantelli Lemmas are special cases of Theorem~\ref{th:gbc} with~$X_k = \ind(E_k)$.
Note that~$\{E_k~\io\} = \{\sum_{k=1}^\infty X_k = \infty\}$.
\end{remark}
The following theorem generalizes item~(b) of Theorem~\ref{th:inf} in the uniformly bounded case.
\begin{theorem}
\label{th:gbc}
Let~$\{X_k\}$ be a sequence of uniformly bounded random variables adapted to
a filtration~$\{\FF_k\}$.
Define
\begin{equation}
\nonumber
%\label{eq:gbc}
A \;=\; \left\{ \sum_{k=1}^\infty X_k =\infty \right\}
\quad \text{and} \quad
B \;=\; \left\{ \sum_{k=1}^\infty \expc(X_k\mathrel{|}\FF_{k-1}) =\infty \right\}.
\end{equation}
\begin{enumerate}
\item \label{it:a}If~$\{\expc(X_k\mathrel{|}\FF_{k-1})\}$ is
nonnegative, then $\Pr(A \cap B^\comp) = 0$.
\item If~$\{X_k\}$ is nonnegative,
then~$\Pr((A \cap B^\comp) \cup (B\cap A^\comp)) = 0$.
\end{enumerate}
\end{theorem}
\begin{proof}
This proof is essentially the same as that of~\cite[Theorem~4.3.4]{Durrett_2019}.
Define
\[
Y_k \;=\; \sum_{\ell = 1}^{k} X_\ell - \sum_{\ell = 1}^{k} \expc(X_\ell\mathrel{|}
\FF_{\ell-1}).
\]
Then~$\{Y_k\}$ is a martingale with respect to the filtration~$\{\FF_k\}$, and it has bounded
increments if~$\{X_k\}$ is uniformly bounded.
Hence~$\Pr(C\cup D) = 1$ with
\begin{align*}
C \;=\; & \left\{ \lim_{k\to\infty} Y_k~\text{exists and is finite} \right\}, \\
D \;=\; & \left\{ \liminf_{k\to \infty} Y_k = -\infty~\text{and}~\limsup_{k\to \infty} Y_k = \infty \right\}.
\end{align*}
It is clear that
\begin{equation}
\label{eq:C}
A\cap C \;=\; B\cap C.
\end{equation}
Suppose that~$\{\expc(X_k\mathrel{|}\FF_{k-1}\}$ is nonnegative. Then
\[
B^\comp \;=\; \left\{ \sum_{k=1}^\infty \expc(X_k\mathrel{|}\FF_{k-1}) <\infty \right\}.
\]
Therefore, we can check that
\begin{equation}
\label{eq:D1}
A \cap B^\comp \cap D \;=\; \emptyset.
\end{equation}
Combining~\eqref{eq:C} and~\eqref{eq:D1}, we have
\[
(A \cap B^\comp) \cap (C\cup D) \;=\; \emptyset,
\]
which implies that~$\Pr(A\cap B^\comp) = 0$ since~$\Pr(C\cap D) = 1$.
If~$\{X_k\}$ is nonnegative, then so is~$\{\expc(X_k\mathrel{|}\FF_{k-1})\}$,
and hence~$\Pr(A\cap B^\comp) = 0$. In addition, we have
\[
A^\comp \;=\; \left\{ \sum_{k=1}^\infty X_k <\infty \right\},
\]
which implies~$\Pr(B\cap A^\comp) = 0$ in a way similar to the above.
Thus~$\Pr((A \cap B^\comp) \cup (B\cap A^\comp)) = 0$.
\end{proof}
\begin{question}
What if~$\{X_k\}$ is a sequence of identically distributed but not necessarily independent
variables? What if~$\{\expc(X_k\mathrel{|}\FF_{k-1})\}$ is identically distributed?
\end{question}
\begin{remark}
\label{rem:equal}
$\Pr((A \cap B^\comp) \cup (B\cap A^\comp)) = 0$ means that the symmetric difference between
the events~$A$ and~$B$ is a null event, or the two events are equal except for a null event.
\end{remark}
\begin{remark}
\label{rem:durret}
\cite[Theorem~4.3.4]{Durrett_2019} is a special case of Theorem~\ref{th:gbc}, where~$X_k
= \ind(E_k)$ with an event~$E_k \in \FF_k$ for each~$k\ge 1$.
However, the conclusion of~\cite[Theorem~4.3.4]{Durrett_2019}
is
\begin{equation}
\label{eq:durret}
\{E_k~\io\} \;=\; \left\{\sum_{k=1}^\infty \Pr(E_k\mathrel{|}\FF_{k-1})
= \infty\right\},
\end{equation}
which seems not completely rigorous. The correct conclusion should be that the events on the
left and right sides of~\eqref{eq:durret} are equal except for a null event.
In addition, in the second line of the proof of~\cite[Theorem~4.3.4]{Durrett_2019},
the~$A$ and~$B$ seem to be reversed. Finally, the proof refers to Doob's decomposition
theorem~(\cite[Theorem~4.3.2]{Durrett_2019}), which seems not necessary.
\end{remark}
The following proposition shows that~$\Pr(B\cap A^\comp)$ is not necessarily zero in
item~\ref{it:a} of Theorem~\ref{th:gbc}.
\begin{proposition}
\label{prop:sum}
Let $\{X_k\}$ be a sequence of mutually independent random variables taking either $1$ or $-1$ with
$\mathbb{E}(X_k) = Ck^{-\alpha}$ for each $k\ge 1$,
where $C$ and $\alpha$ are positive constants.
Then, almost surely,
\[
\liminf_{k\to \infty} \sum_{\ell=1}^k X_\ell \;=\;
\begin{cases}
+\infty & \text{ if } \alpha < \dfrac{1}{2}, \\[2ex]
-\infty & \text{ if } \alpha \ge \dfrac{1}{2}.
\end{cases}
\]
\end{proposition}
\begin{proof}
According to Kolmogorov's iterated law of logarithm~\cite{Kolmogoroff_1929} (see
also~\cite[Theorems~7.1--7.3]{Petrov_1995}), we have
\begin{equation}
\label{eq:kolmogorov}
\liminf_{k\to\infty} \frac{\sum_{\ell=1}^k [X_\ell -\expc(X_\ell)]}{\sqrt{2B_k\log\log B_k}} \; =\; -1,
\end{equation}
where~$B_k = \sum_{\ell=1}^k \var(X_\ell)$. The law is applicable because~$B_k\to \infty$
and
\[
\|X_k-\expc(X_k)\|_\infty = o(\sqrt{B_k/\log\log B_k}).
\]
Since~$B_k = \sum_{\ell=1}^k (1-1/\ell)$, it is clear that~$(B_k \log\log B_k)/(k\log\log k) \to 1$.
Hence~\eqref{eq:kolmogorov} implies
\begin{equation}
\label{eq:sumXdE}
\liminf_{k\to\infty} \frac{\sum_{\ell=1}^k [X_\ell -\expc(X_\ell)]}{\sqrt{2k\log\log k}} \; =\; -1.
\end{equation}
Meanwhile, since~$\expc(X_k) = Ck^{-\alpha}$, we have
\begin{equation}
\label{eq:sumE}
\lim_{k\to \infty} \frac{\sum_{\ell=1}^\infty \expc(X_\ell)}{\sqrt{2k\log\log k}} \;=\;
\begin{cases}
+\infty & \text{ if } \alpha < \dfrac{1}{2}, \\[2ex]
0 & \text{ if } \alpha \ge \dfrac{1}{2}.
\end{cases}
\end{equation}
Combining~\eqref{eq:sumXdE} and~\eqref{eq:sumE}, we have
\[
\liminf_{k\to\infty} \frac{\sum_{\ell=1}^k X_\ell}{\sqrt{2k\log\log k}} \; =\;
\begin{cases}
+\infty & \text{ if } \alpha < \dfrac{1}{2}, \\[2ex]
-1 & \text{ if } \alpha \ge \dfrac{1}{2},
\end{cases}
\]
which implies the desired conclusion.
\end{proof}
\begin{remark}
\label{rem:ms}
For more discussions on Proposition~\ref{prop:sum}, including a perspective from the
Kakutani's Dichotomy theorem~\cite{Kakutani_1948}, see
\begin{center}
\url{https://math.stackexchange.com/questions/4968996/}.
\end{center}
\end{remark}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% References
% Include references only if there are citations.
\ifnum\value{cite}>0
\small
\bibliography{\bibfile}
\bibliographystyle{plain}
\fi