-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathResNet_work.py
178 lines (140 loc) · 6.82 KB
/
ResNet_work.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
import numpy as np
import tensorflow as tf
from hyper_parameters import *
BN_EPSILON = 0.001
def create_variables(name, shape, initializer=tf.contrib.layers.xavier_initializer(), is_fc_layer=False):
'''
:param name: A string. The name of the new variable
:param shape: A list of dimensions
:param initializer: User Xavier as default.
:param is_fc_layer: Want to create fc layer variable? May use different weight_decay for fc
layers.
:return: The created variable
'''
## TODO: to allow different weight decay to fully connected layer and conv layer
if is_fc_layer is True:
regularizer = tf.contrib.layers.l2_regularizer(scale=FLAGS.weight_decay)
else:
regularizer = tf.contrib.layers.l2_regularizer(scale=FLAGS.weight_decay)
new_variables = tf.get_variable(name, shape=shape, initializer=initializer,
regularizer=regularizer)
return new_variables
def output_layer(input_layer, num_labels,fc_num):
'''
:param input_layer: 2D tensor
:param num_labels: int. How many output labels in total? (10 for cifar10 and 100 for cifar100)
:return: output layer Y = WX + B
'''
input_dim = input_layer.get_shape().as_list()[-1]
fc_w = create_variables(name='fc_weights_%d' %fc_num, shape=[input_dim, num_labels], is_fc_layer=True,
initializer=tf.uniform_unit_scaling_initializer(factor=1.0))
fc_b = create_variables(name='fc_bias_%d' %fc_num, shape=[num_labels], initializer=tf.zeros_initializer)
fc_h = tf.matmul(input_layer, fc_w) + fc_b
return fc_h
def batch_normalization_layer(input_layer, dimension):
'''
Helper function to do batch normalziation
:param input_layer: 4D tensor
:param dimension: input_layer.get_shape().as_list()[-1]. The depth of the 4D tensor
:return: the 4D tensor after being normalized
'''
mean, variance = tf.nn.moments(input_layer, axes=[0, 1, 2])
beta = tf.get_variable('beta', dimension, tf.float32,
initializer=tf.constant_initializer(0.0, tf.float32))
gamma = tf.get_variable('gamma', dimension, tf.float32,
initializer=tf.constant_initializer(1.0, tf.float32))
bn_layer = tf.nn.batch_normalization(input_layer, mean, variance, beta, gamma, BN_EPSILON)
return bn_layer
def conv_bn_relu_layer(input_layer, filter_shape, stride, padding = 'SAME'):
'''
A helper function to conv, batch normalize and relu the input tensor sequentially
:param input_layer: 4D tensor
:param filter_shape: list. [filter_height, filter_width, filter_depth, filter_number]
:param stride: stride size for conv
:return: 4D tensor. Y = Relu(batch_normalize(conv(X)))
'''
out_channel = filter_shape[-1]
filter = create_variables(name='conv', shape=filter_shape)
conv_layer = tf.nn.conv2d(input_layer, filter, strides=[1, stride, stride, 1], padding=padding)
bn_layer = batch_normalization_layer(conv_layer, out_channel)
output = tf.nn.relu(bn_layer)
return output
def bn_relu_conv_layer(input_layer, filter_shape, stride):
'''
A helper function to batch normalize, relu and conv the input layer sequentially
:param input_layer: 4D tensor
:param filter_shape: list. [filter_height, filter_width, filter_depth, filter_number]
:param stride: stride size for conv
:return: 4D tensor. Y = conv(Relu(batch_normalize(X)))
'''
in_channel = input_layer.get_shape().as_list()[-1]
bn_layer = batch_normalization_layer(input_layer, in_channel)
relu_layer = tf.nn.relu(bn_layer)
filter = create_variables(name='conv', shape=filter_shape)
conv_layer = tf.nn.conv2d(relu_layer, filter, strides=[1, stride, stride, 1], padding='SAME')
return conv_layer
def residual_block(input_layer, output_channel, first_block=False):
input_channel = input_layer.get_shape().as_list()[-1]
# When it's time to "shrink" the image size, we use stride = 2
if input_channel * 2 == output_channel:
increase_dim = True
stride = 2
elif input_channel == output_channel:
increase_dim = False
stride = 1
else:
raise ValueError('Output and input channel does not match in residual blocks!!!')
# The first conv layer of the first residual block does not need to be normalized and relu-ed.
with tf.variable_scope('conv1_in_block'):
if first_block:
filter = create_variables(name='conv', shape=[3, 3, input_channel, output_channel])
conv1 = tf.nn.conv2d(input_layer, filter=filter, strides=[1, 1, 1, 1], padding='SAME')
else:
conv1 = bn_relu_conv_layer(input_layer, [3, 3, input_channel, output_channel], stride)
with tf.variable_scope('conv2_in_block'):
conv2 = bn_relu_conv_layer(conv1, [3, 3, output_channel, output_channel], 1)
# When the channels of input layer and conv2 does not match, we add zero pads to increase the
# depth of input layers
if increase_dim is True:
pooled_input = tf.nn.avg_pool(input_layer, ksize=[1, 2, 2, 1],
strides=[1, 2, 2, 1], padding='VALID')
padded_input = tf.pad(pooled_input, [[0, 0], [0, 0], [0, 0], [input_channel // 2,
input_channel // 2]])
else:
padded_input = input_layer
output = conv2 + padded_input
return output
def inference(input_tensor_batch, n, reuse):
#34-layer Residual Net
layers = []
with tf.variable_scope('conv0', reuse=reuse):
conv0 = conv_bn_relu_layer(input_tensor_batch, [7, 7, 3, 64], 2)
layers.append(conv0)
for i in range(3):
with tf.variable_scope('conv1_%d' % i, reuse=reuse):
if i == 0:
conv1 = residual_block(layers[-1], 64, first_block=True)
else:
conv1 = residual_block(layers[-1], 64)
layers.append(conv1)
for i in range(4):
with tf.variable_scope('conv2_%d' % i, reuse=reuse):
conv2 = residual_block(layers[-1], 128)
layers.append(conv2)
for i in range(6):
with tf.variable_scope('conv3_%d' % i, reuse=reuse):
conv3 = residual_block(layers[-1], 256)
layers.append(conv3)
for i in range(3):
with tf.variable_scope('conv4_%d' % i, reuse=reuse):
conv4 = residual_block(layers[-1], 512)
layers.append(conv4)
with tf.variable_scope('fc',reuse=reuse):
in_channel = layers[-1].get_shape().as_list()[-1]
bn_layer = batch_normalization_layer(layers[-1], in_channel)
relu_layer = tf.nn.relu(bn_layer)
global_pool = tf.reduce_mean(relu_layer, [1, 2])
output_x = output_layer(global_pool, 3,0)
output_q = output_layer(global_pool, 4,1)
layers.append(tf.concat(1,[output_x , output_q]))
return layers[-1]