forked from mfkiwl/GNSS_Programming
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathSinglePointPosition.py
695 lines (624 loc) · 26.6 KB
/
SinglePointPosition.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
# -*- coding: utf-8 -*-
"""
@title: Style Guide for Python Code
@author: iDeal0103
@status: Active
@type: Process
@created: 14-Apr-2021
@post-History: 14-Apr-2021
comment:
1.单点定位
2.
"""
# import module
import numpy as np
import math
import datetime
import utils.DoFile as DoFile
import utils.SatellitePosition as SatellitePosition
import utils.TimeSystem as TimeSystem
import utils.CoorTransform as CoorTransform
import utils.RecordFilter as RecordFilter
from utils.ErrorReduction import *
import matplotlib.pyplot as plt
import utils.ResultAnalyse as ResultAnalyse
def cal_EmitTime_from_datetime(Tr, the_SVN, P, br_records, doCRC=True, c=299792458):
'''
:param Tr: datetime.datetime , 观测站观测的GPS时刻
:param the_SVN: str , 观测到卫星的SVN , "Gxx"
:param P: 观测所得到的伪距(也可以是改正过的)
:param br_records: list[GPS_brdc_record class] , 所使用的卫星广播星历记录
:param doCRC: bool , 是否进行相对论效应改正
:param c: float , 光速(单位 m/s)
:return: ts: GPSws class , 得到卫星的信号发射时刻
'''
# 将datetime格式时间转换为精度更高的自定义GPSws时间类
w, s = TimeSystem.from_datetime_cal_GPSws(Tr)
Tr_GPSws = TimeSystem.GPSws(w, round(s))
Ts = Tr_GPSws.cal_minus_result(P / c)
# 以下标注的为有问题的计算方法 c!
# # ts为考虑钟差的卫星发射时间
# ts = Ts
# t_del = 10
# dts1 = 0
# # 迭代计算发射时间
# while abs(t_del) > 1e-8:
# # 计算卫星的钟差(单位为s)
# if doCRC:
# # 加入相对论钟差改正
# dts2 = SatellitePosition.cal_ClockError_GPSws(ts, the_SVN, br_records)
# else:
# dts2 = SatellitePosition.cal_ClockError_GPSws_withRelativisticEffect(ts, the_SVN, br_records)
# t_del = dts2 - dts1
# dts1 = dts2
# # 此处计算消除卫星钟差后的时间
# ts = Ts.cal_minus_result(dts2)
# dts = dts2
# 以下为正确的计算方法
# 计算卫星的钟差(单位为s)
if doCRC:
# 加入相对论钟差改正
dts2 = SatellitePosition.cal_ClockError_GPSws_withRelativisticEffect(Ts, the_SVN, br_records)
else:
dts2 = SatellitePosition.cal_ClockError_GPSws(Ts, the_SVN, br_records)
# 此处计算消除卫星钟差后的时间
ts = Ts.cal_minus_result(dts2)
dts = SatellitePosition.cal_ClockError_GPSws_withRelativisticEffect(ts, the_SVN, br_records)
# for i in range(2):
# ts = ts.cal_minus_result(dts)
# dts = SatellitePosition.cal_ClockError_GPSws_withRelativisticEffect(ts, the_SVN, br_records)
# ts = ts.cal_minus_result(5)
# dts = SatellitePosition.cal_ClockError_GPSws(Ts, the_SVN, br_records) # 进行相对论改正是可以给带来8m左右的精度提升(来源论文)
# dts = dts2 # dts和dts2相差非常小,10e-15s量级
return ts, dts
def observation_isnot_null(station_record, FreqBandList=['L1', 'C2']):
'''
station_record : list[GPS_observation_record class] , 所使用观测文件读取 的各条记录
FreqBandList : list[str] , 检查数据是否为空的频率波段 (如 'C1','L2','P1' )
'''
isnot_null_flags = []
for band in FreqBandList:
# 判断波段的数据是否齐全
if not station_record.data.__contains__(band):
isnot_null_flag = False
elif station_record.data[band]['observation'] == "":
isnot_null_flag = False
else:
isnot_null_flag = True
isnot_null_flags.append(isnot_null_flag)
if False in isnot_null_flags:
result = False
else:
result = True
return result
#基于广播星历数据进行单点定位
def SPP_on_broadcastrecords(ob_records, br_records, Tr, doIDC=True, doTDC=True, doCRC=True, recalP=False,
cutoff=30.123456, c=299792458, init_coor=[2000, 2000, 2000]):
"""
ob_records : GPS_observation_record , 所使用的观测文件记录
br_records : GPS_brdc_record , 所使用的卫星广播星历记录
Tr : datetime.datetime , 接收机接收到信号的时刻,GPS时刻
doIDC : bool , 是否进行电离层改正
doTDC : bool , 是否进行对流层改正
doCRC : bool , 是否进行相对论钟差改正
recalP : bool , 是否用高度角定权
cutoff : float , 加入高度角限制条件,单位为度
c : const , 光速(单位为m/s)
init_coor : list , 观测站坐标初值
"""
# 筛选出某时刻的记录
cal_based_record = list(filter(lambda o: o.SVN[0] == "G" and o.time == Tr and o.data != "", ob_records))
# 开始迭代前接收机钟差dtr为0
dtr = 0
# 初始地面点坐标
Xk, Yk, Zk = init_coor
no = 0
Q=0
v=0
print(Tr)
# 平差求解XYZ坐标和接收机钟差
while True:
# 如果超出平差迭代求解超出8次则跳出
if no > 8:
break
# 计数
no += 1
# 初始化矩阵
A = []
l = []
Ps = []
for record in cal_based_record:
# 如果所选观测值数据为空则跳过
if not (record.managed_data_flag['L1_C'] and record.managed_data_flag['L2_C']):
continue
else:
P = record.data['L1_C']['observation']
the_svn = record.SVN
'''根据接收时间,计算信号发射时间及此时卫星所在位置'''
ts, dts = cal_EmitTime_from_datetime(Tr, the_svn, P, br_records, doCRC)
# 修正地球自转影响
coorX, coorY, coorZ = SatellitePosition.cal_SatellitePosition_GPS_GPSws(ts, the_svn, br_records)
dt = P/c
Xeci, Yeci, Zeci = CoorTransform.earth_rotation_correction([coorX, coorY, coorZ], dt)
# dt2 = CoorTransform.cal_distance([Xk, Yk, Zk], [Xeci, Yeci, Zeci])/c
# 检查高度角是否符合限差
if no > 1 and cutoff != 30.123456: # 考虑第一次迭代可能初值不准确,所以第二次后的迭代再加入截止角条件
ele, a = CoorTransform.cal_ele_and_A([Xk, Yk, Zk], [Xeci, Yeci, Zeci])
# print(ele *180 / math.pi, ele *180 / math.pi < cutoff)
if ele *180 / math.pi < cutoff:
continue
# 电离层改正
if doIDC:
P = Ionospheric_Delay_Correction(record, band1='L1_C', band2='L2_C')
if doTDC:
# 对流层延迟改正
# P = Tropospheric_Delay_Correction_Hopfield(P, [Xk, Yk, Zk], [Xeci, Yeci, Zeci])
# P = Tropospheric_Delay_Correction_Saastamoinen(P, [Xk, Yk, Zk], [Xeci, Yeci, Zeci])
P = Tropospheric_Delay_Correction_UNB3(P, Tr, [Xk, Yk, Zk], [Xeci, Yeci, Zeci])
# 计算系数阵成分
lou = CoorTransform.cal_distance([Xk, Yk, Zk], [Xeci, Yeci, Zeci])
axki = (Xk-Xeci)/lou
ayki = (Yk-Yeci)/lou
azki = (Zk-Zeci)/lou
# li = P-lou+c*(dts-dtr)
li = P - lou + c * dts
A.append([axki, ayki, azki, 1])
l.append(li)
# 构造权阵
if recalP:
# 计算Pq矩阵
N, E, U = CoorTransform.cal_NEU([Xk, Yk, Zk], [Xeci, Yeci, Zeci])
Pq = cal_P(N, E, U)
Ps.append(Pq)
else:
Ps.append(1)
# 求解
if Ps == []:
continue
Pz = np.diag(Ps).astype('float')
# 符合高度角条件的卫星数目不够
if len(A) < 4:
Xk, Yk, Zk = init_coor
Q = -1
no = 0
break
A = np.array(A).astype('float')
l = np.array(l).astype('float')
# 改正数发散太过严重则不再继续平差
if abs(max(l.tolist())) > 1e10:
no = 0
Q = 10000
break
x = np.linalg.inv(A.T@Pz@A)@(A.T@Pz@l)
print(no, ": ", len(Pz), "星", x)
v = A@x-l
# 更新参数
dXk = x[0]
dYk = x[1]
dZk = x[2]
# ddtr = x[3]/c
dtr = x[3]/c
Xk += dXk
Yk += dYk
Zk += dZk
# dtr += ddtr
Q = np.linalg.inv(A.T @ A)
if abs(dXk) < 0.01 and abs(dYk) < 0.01 and abs(dZk) < 0.01:
break
return Xk, Yk, Zk, Q, v
#基于多系统广播星历数据进行单点定位,目前支持GPS+BDS
def SPP_on_mixed_broadcastrecords(ob_records, br_records, Tr, doIDC=True, doTDC=True, doCRC=True, recalP=False,
cutoff=30.123456, c=299792458, init_coor=[2000, 2000, 2000]):
"""
ob_records : GPS_observation_record , 所使用的观测文件记录
br_records : GPS_brdc_record , 所使用的卫星广播星历记录
Tr : datetime.datetime , 接收机接收到信号的时刻,GPS时刻
doIDC : bool , 是否进行电离层改正
doTDC : bool , 是否进行对流层改正
doCRC : bool , 是否进行相对论钟差改正
recalP : bool , 是否用高度角定权
cutoff : float , 加入高度角限制条件,单位为度
c : const , 光速(单位为m/s)
init_coor : list , 观测站坐标初值
"""
# 筛选出某时刻的记录
cal_based_record = list(filter(lambda o:(o.SVN[0]=='G' or o.SVN[0]=='C') and o.time == Tr and o.data != "", ob_records))
# 开始迭代前接收机钟差dtr为0
dtr_gps = 0
dtr_bds = 0
# 初始地面点坐标
Xk, Yk, Zk = init_coor
no = 0
Q=0
v=0
# 平差求解XYZ坐标和接收机钟差
while True:
# 如果超出平差迭代求解超出8次则跳出
if no > 8:
break
# 计数
no += 1
# 初始化矩阵
A = []
l = []
Ps = []
for record in cal_based_record:
# GPS系统
if record.SVN[0] == 'G':
# 如果所选观测值数据为空则跳过
if not observation_isnot_null(record, ['C1C', 'C2X']):
continue
else:
P = record.data['C1C']['observation']
the_svn = record.SVN
print(Tr, the_svn, type(P), P)
'''根据接收时间,计算信号发射时间及此时卫星所在位置'''
ts, dts = cal_EmitTime_from_datetime(Tr, the_svn, P, br_records, doCRC)
# 修正地球自转影响
coorX, coorY, coorZ = SatellitePosition.cal_SatellitePosition_GPS_GPSws(ts, the_svn, br_records)
dt = P/c
Xeci, Yeci, Zeci=CoorTransform.earth_rotation_correction([coorX, coorY, coorZ], dt)
# 电离层改正
if doIDC:
P = Ionospheric_Delay_Correction(record, 'C1C', 'C2X', 1575.42, 1227.60)
# 检查高度角是否符合限差
if no > 1 and cutoff != 30.123456: # 考虑第一次迭代可能初值不准确,所以第二次后的迭代再加入截止角条件
ele, a = CoorTransform.cal_ele_and_A([Xk, Yk, Zk], [Xeci, Yeci, Zeci])
print(ele * 180 / math.pi, ele * 180 / math.pi < cutoff)
if ele * 180 / math.pi < cutoff:
continue
if doTDC:
# 对流层延迟改正
# P = Tropospheric_Delay_Correction_Hopfield(P, [Xk, Yk, Zk], [Xeci, Yeci, Zeci])
# P = Tropospheric_Delay_Correction_Saastamoinen(P, [Xk, Yk, Zk], [Xeci, Yeci, Zeci])
P = Tropospheric_Delay_Correction_UNB3(P, Tr, [Xk, Yk, Zk], [Xeci, Yeci, Zeci])
# doy = cal_doy(Tr)
# ele, a = CoorTransform.cal_ele_and_A([Xk, Yk, Zk], [Xeci, Yeci, Zeci])
# B,L,H = CoorTransform.cal_XYZ2BLH(Xk, Yk, Zk)
# M = Niell(B, H, ele, doy)
# D = UNB3(B, H, doy)
# dtrop = M[0] * D[0] + M[1] * D[1]
# P -= dtrop
# 计算系数阵成分
lou = CoorTransform.cal_distance([Xk, Yk, Zk], [Xeci, Yeci, Zeci])
axki = (Xk - Xeci) / lou
ayki = (Yk - Yeci) / lou
azki = (Zk - Zeci) / lou
# li = P-lou+c*(dts-dtr)
li = P - lou + c * dts
A.append([axki, ayki, azki, 1, 0])
l.append(li)
# 构造权阵
if recalP:
# 计算Pq矩阵
N, E, U = CoorTransform.cal_NEU([Xk, Yk, Zk], [Xeci, Yeci, Zeci])
Pq = cal_P(N, E, U)
Ps.append(Pq)
else:
Ps.append(1)
# BDS系统
elif record.SVN[0] == 'C':
# 如果所选观测值数据为空则跳过
if not observation_isnot_null(record, ['C1X', 'C5X']):
continue
else:
P = record.data['C1X']['observation']
the_svn = record.SVN
print(Tr, the_svn, type(P), P)
'''根据接收时间,计算信号发射时间及此时卫星所在位置'''
ts, dts = cal_EmitTime_from_datetime(Tr, the_svn, P, br_records, doCRC)
# 修正地球自转影响
coorX, coorY, coorZ = SatellitePosition.cal_SatellitePosition_BDS_GPSws(ts, the_svn, br_records)
dt = P / c
Xeci, Yeci, Zeci = CoorTransform.earth_rotation_correction([coorX, coorY, coorZ], dt)
# 电离层改正
if doIDC:
P = Ionospheric_Delay_Correction(record, 'C1X', 'C5X', 1575.42, 1176.45)
# 检查高度角是否符合限差
if no > 1 and cutoff != 30.123456: # 考虑第一次迭代可能初值不准确,所以第二次后的迭代再加入截止角条件
ele, a = CoorTransform.cal_ele_and_A([Xk, Yk, Zk], [Xeci, Yeci, Zeci])
print(ele * 180 / math.pi, ele * 180 / math.pi < cutoff)
if ele * 180 / math.pi < cutoff:
continue
if doTDC:
# 对流层延迟改正
# P = Tropospheric_Delay_Correction_Hopfield(P, [Xk, Yk, Zk], [Xeci, Yeci, Zeci])
# P = Tropospheric_Delay_Correction_Saastamoinen(P, [Xk, Yk, Zk], [Xeci, Yeci, Zeci])
P = Tropospheric_Delay_Correction_UNB3(P, Tr, [Xk, Yk, Zk], [Xeci, Yeci, Zeci])
# doy = cal_doy(Tr)
# ele, a = CoorTransform.cal_ele_and_A([Xk, Yk, Zk], [Xeci, Yeci, Zeci])
# B,L,H = CoorTransform.cal_XYZ2BLH(Xk, Yk, Zk)
# M = Niell(B, H, ele, doy)
# D = UNB3(B, H, doy)
# dtrop = M[0] * D[0] + M[1] * D[1]
# P -= dtrop
# 计算系数阵成分
lou = CoorTransform.cal_distance([Xk, Yk, Zk], [Xeci, Yeci, Zeci])
axki = (Xk - Xeci) / lou
ayki = (Yk - Yeci) / lou
azki = (Zk - Zeci) / lou
# li = P-lou+c*(dts-dtr)
li = P - lou + c * dts
A.append([axki, ayki, azki, 0, 1])
l.append(li)
# 构造权阵
if recalP:
# 计算Pq矩阵
N, E, U = CoorTransform.cal_NEU([Xk, Yk, Zk], [Xeci, Yeci, Zeci])
Pq = cal_P(N, E, U)
if the_svn in ["C01", "C02", "C03", "C04", "C05", "C59", "C60"]:
Ps.append(0.5 * Pq)
else:
Ps.append(Pq)
else:
if the_svn in ["C01", "C02", "C03", "C04", "C05", "C59", "C60"]:
Ps.append(0.5)
else:
Ps.append(1)
# 求解
if Ps == []:
continue
Pz = np.diag(Ps).astype('float')
# 符合高度角条件的卫星数目不够
if len(A) < 4:
Xk, Yk, Zk = init_coor
Q = -1
no = 0
break
A = np.array(A).astype('float')
l = np.array(l).astype('float')
# 改正数发散太过严重则不再继续平差
if abs(max(l.tolist())) > 1e10:
no = 0
Q = 10000
break
x = np.linalg.inv(A.T@Pz@A)@(A.T@Pz@l)
v = A@x-l
# 更新参数
dXk = x[0]
dYk = x[1]
dZk = x[2]
# ddtr = x[3]/c
dtr_gps = x[3]/c
dtr_bds = x[4]/c
Xk += dXk
Yk += dYk
Zk += dZk
Q = np.linalg.inv(A.T @ A)
if abs(dXk) < 0.01 and abs(dYk) < 0.01 and abs(dZk) < 0.01:
break
return Xk, Yk, Zk, Q, v
# 权函数
def cal_P(N, E, U):
R = math.sqrt(N ** 2 + E ** 2 + U ** 2)
A = math.atan2(E, N)
Ez = math.asin(U / R)
# 定权方法1
if Ez > math.pi / 6:
P = 1
else:
P = 2 * math.sin(Ez)
# #定权方法2
# P=sin(E)**2
return P
# 计算GDOP
def cal_GDOP(QXYZt): # QXYZt或QNEUt
GDOP = math.sqrt(QXYZt[0, 0] + QXYZt[1, 1] + QXYZt[2, 2] + QXYZt[3, 3])
return GDOP
# 计算PDOP
def cal_PDOP(QXYZt): # QXYZt或QNEUt
PDOP = math.sqrt(QXYZt[0, 0] + QXYZt[1, 1] + QXYZt[2, 2])
return PDOP
# 计算TDOP
def cal_TDOP(QXYZt): # QXYZt或QNEUt
TDOP = math.sqrt(QXYZt[3, 3])
return TDOP
# 由QXYZt计算QNEUt
def cal_QNEUt(X, Y, Z, QXYZt):
R = CoorTransform.cal_R_THS2TES([X, Y, Z]) # 站心地平坐标系到站心赤道坐标系的旋转矩阵
T = np.linalg.inv(R) # 站心赤道坐标系站到地心地平坐标系的旋转矩阵
QXYZ = QXYZt[:3, :3]
QNEU = T @ QXYZ @ T.T
QNEUt = QXYZt
QNEUt[:3, :3] = QNEU
return QNEUt
# 计算HDOP
def cal_HDOP(QNEUt):
HDOP = math.sqrt(QNEUt[0, 0] + QNEUt[1, 1])
return HDOP
# 计算VDOP
def cal_VDOP(QNEUt):
VDOP = math.sqrt(QNEUt[2, 2])
return VDOP
# 计算(并绘制)NEU误差序列
def cal_NEUerrors(true_coors, cal_coors, form="plot", ylimit=None, T_series="", save_path=""):
"""
true_coors : [[Xs,Ys,Zs],……],真实坐标列表
cal_coors : [[Xa,Ya,Za],……],计算坐标列表
save_path : 绘图存储
"""
delta_N = []
delta_E = []
delta_U = []
for i in range(len(true_coors)):
n, e, u = CoorTransform.cal_NEU(true_coors[i], cal_coors[i])
delta_N.append(n)
delta_E.append(e)
delta_U.append(u)
# 绘图
plt.rcParams['font.sans-serif'] = ['SimHei']
plt.rcParams['axes.unicode_minus'] = False
if not T_series:
if form == "scatter":
plt.scatter([i for i in range(len(delta_U))], delta_U, color="b", label="U")
plt.scatter([i for i in range(len(delta_N))], delta_N, color="r", label="N")
plt.scatter([i for i in range(len(delta_E))], delta_E, color="g", label="E")
plt.xlabel("epoch", fontsize=15)
elif form == "plot":
plt.plot(delta_U, color="b", label="U")
plt.plot(delta_N, color="r", label="N")
plt.plot(delta_E, color="g", label="E")
plt.xlabel("epoch", fontsize=15)
else:
if form == "scatter":
plt.scatter(T_series, delta_U, color="b", label="U")
plt.scatter(T_series, delta_N, color="r", label="N")
plt.scatter(T_series, delta_E, color="g", label="E")
plt.xlabel("GPST", fontsize=15)
elif form == "plot":
plt.plot(T_series, delta_U, color="b", label="U")
plt.plot(T_series, delta_N, color="r", label="N")
plt.plot(T_series, delta_E, color="g", label="E")
plt.xlabel("GPST", fontsize=15)
plt.ylabel('各方向定位误差/m', fontsize=15)
plt.legend(loc='upper right', fontsize=17)
plt.xticks(fontsize=15)
plt.yticks(fontsize=15)
plt.title("NEU误差序列图")
plt.grid()
if save_path != "":
plt.savefig(save_path)
if ylimit:
plt.ylim(-ylimit, ylimit)
plt.show()
return delta_N, delta_E, delta_U
def cal_XYZerrors(true_coors, cal_coors, form="plot", ylimit=None, T_series="", save_path=""):
"""
true_coors : [[Xs,Ys,Zs],……],真实坐标列表
cal_coors : [[Xa,Ya,Za],……],计算坐标列表
save_path : 绘图存储
"""
delta_X = []
delta_Y = []
delta_Z = []
for i in range(len(true_coors)):
dX = cal_coors[i][0] - true_coors[i][0]
dY = cal_coors[i][1] - true_coors[i][1]
dZ = cal_coors[i][2] - true_coors[i][2]
delta_X.append(dX)
delta_Y.append(dY)
delta_Z.append(dZ)
# 绘图
plt.rcParams['font.sans-serif'] = ['SimHei']
plt.rcParams['axes.unicode_minus'] = False
if not T_series:
if form == "scatter":
plt.scatter([i for i in range(len(delta_X))], delta_X, color="r", label="X")
plt.scatter([i for i in range(len(delta_Y))], delta_Y, color="g", label="Y")
plt.scatter([i for i in range(len(delta_Z))], delta_Z, color="b", label="Z")
plt.xlabel("epoch", fontsize=15)
elif form == "plot":
plt.plot(delta_X, color="r", label="X")
plt.plot(delta_Y, color="g", label="Y")
plt.plot(delta_Z, color="b", label="Z")
plt.xlabel("epoch", fontsize=15)
else:
if form == "scatter":
plt.scatter(T_series, delta_X, color="r", label="X")
plt.scatter(T_series, delta_Y, color="g", label="Y")
plt.scatter(T_series, delta_Z, color="b", label="Z")
plt.xlabel("GPST", fontsize=15)
elif form == "plot":
plt.plot(T_series, delta_X, color="r", label="X")
plt.plot(T_series, delta_Y, color="g", label="Y")
plt.plot(T_series, delta_Z, color="b", label="Z")
plt.xlabel("GPST", fontsize=15)
plt.ylabel('各方向定位误差/m', fontsize=15)
plt.legend(loc='upper right', fontsize=17)
plt.title("XYZ误差序列图")
plt.xticks(fontsize=15)
plt.yticks(fontsize=15)
plt.grid()
if ylimit:
plt.ylim(-ylimit, ylimit)
if save_path != "":
plt.savefig(save_path)
plt.show()
return delta_X, delta_Y, delta_Z
def cal_Coorerrors(true_coors, cal_coors, ylimit=None, save_path=""):
"""
true_coors : [[Xs,Ys,Zs],……],真实坐标列表
cal_coors : [[Xa,Ya,Za],……],计算坐标列表
save_path : 绘图存储
"""
delta_d = []
for i in range(len(true_coors)):
dX = cal_coors[i][0] - true_coors[i][0]
dY = cal_coors[i][1] - true_coors[i][1]
dZ = cal_coors[i][2] - true_coors[i][2]
delta_d.append(math.sqrt(dX**2 + dY**2 + dZ**2))
# 绘图
plt.rcParams['font.sans-serif'] = ['SimHei']
plt.rcParams['axes.unicode_minus'] = False
plt.plot(delta_d, color="turquoise", label="delta d / m")
plt.legend(loc='upper right')
plt.title("坐标误差序列图")
if ylimit:
plt.ylim(-ylimit, ylimit)
if save_path != "":
plt.savefig(save_path)
plt.show()
return delta_d
# 计算NEU误差
def cal_NEUerror(true_coor, cal_coor):
"""
true_coors : [Xs,Ys,Zs]真实坐标
cal_coors : [Xa,Ya,Za]计算坐标
"""
dn, de, du = CoorTransform.cal_NEU(true_coor, cal_coor)
return dn, de, du
if __name__=="__main__":
# observation_file=r"E:\大三下\卫星与导航定位\代码集合\Satellite_Navigation_and_Positioning\data\obs\warn3100.20o"
# observation_file = r"edata\obs\leij3100.20o"
# observation_file = r"edata\obs\chan3100.20o"
observation_file = r"edata\obs\wab23100.20o"
# observation_file = r"edata\obs\warn3100.20o"
# observation_file = r"edata\obs\warn3120.20o"
# observation_file = r"edata\obs\zimm3100.20o" # zimm
# observation_file = r"edata\obs\zim23100.20o" # zim2
# observation_file = r"edata\obs\renix3\WARN00DEU_R_20203100000_01D_30S_MO.rnx"
broadcast_file = r"edata\sat_obit\brdc3100.20n"
# broadcast_file = r"edata\sat_obit\brdc3120.20n"
# broadcast_file = r"edata\sat_obit\BRDM00DLR_S_20203100000_01D_MN.rnx"
# igs_file=r"E:\大三下\卫星与导航定位\代码集合\Satellite_Navigation_and_Positioning\data\sat_obit\igs21304.sp3"
# clk_file=r"F:\360MoveData\Users\hp\Desktop\emr21304.clk"
# 读入观测文件内容,得到类型对象列表
ob_records = DoFile.read_Rinex2_oFile(observation_file)
# ob_records = DoFile.read_Rinex3_oFile(observation_file)
br_records = DoFile.read_GPS_nFile(broadcast_file)
# br_records = DoFile.read_Renix304_nFile(broadcast_file)
# br_records = RecordFilter.GPSBrdcRecord_HourIntegerRecord_Filter(br_records)
# pe_records=DoFile.read_GPS_sp3File(igs_file)
# clk_records=DoFile.read_GPS_clkFile(clk_file)[0]
# 给入选定时刻
Tr = datetime.datetime(2020, 11, 5, 0, 1, 0)
# init_coor=[3658785.6000, 784471.1000, 5147870.7000] #warn
# init_coor=[-2674431.9143, 3757145.2969, 4391528.8732] #chan
# init_coor = [10, 10, 10]
# init_coor = [4331297.3480, 567555.6390, 4633133.7280] # zimm
# init_coor = [4331300.1600, 567537.0810, 4633133.5100] # zim2
init_coor = [4327318.2325, 566955.9585, 4636425.9246] # wab2
true_coors = []
cal_coors = []
vs = []
while Tr < datetime.datetime(2020, 11, 5, 10, 59, 00):
# Xk,Yk,Zk,Q=SPP.SPP_on_broadcastfile(observation_file,broadcast_file,Tr)
Xk, Yk, Zk, Q, v = SPP_on_broadcastrecords(ob_records, br_records, Tr, init_coor=init_coor, recalP=True, doTDC=True, doIDC=True)
# Xk, Yk, Zk, Q, v = SPP_on_mixed_broadcastrecords(ob_records, br_records, Tr, cutoff=15, init_coor=init_coor,
# recalP=True, doTDC=True, doIDC=True)
cal_coors.append([Xk, Yk, Zk])
vs.append(v)
# print(Xk, Yk, Zk, Q, v)
# true_coors.append([0.365878555276965E+07, 0.784471127238666E+06, 0.514787071062059E+07]) #warn
# true_coors.append([4331297.3480, 567555.6390, 4633133.7280]) # zimm
# true_coors.append([4331300.1600, 567537.0810, 4633133.5100]) # zim2
# true_coors.append([0.389873613453103E+07,0.855345521080705E+06,0.495837257579542E+07]) #leij
# true_coors.append([-0.267442768572702E+07, 0.375714305701559E+07, 0.439152148514515E+07]) #chan
true_coors.append([4327318.2325, 566955.9585, 4636425.9246]) # wab2
Tr += datetime.timedelta(seconds=30)
cal_NEUerrors(true_coors, cal_coors)
cal_XYZerrors(true_coors, cal_coors)
# plt.plot(vs)
# plt.show()
print("neu各方向RMSE:", ResultAnalyse.get_NEU_rmse(true_coors, cal_coors))
print("坐标RMSE:", ResultAnalyse.get_coor_rmse(true_coors, cal_coors))