forked from MKashifAli/MetaVideoStab
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel_cs.py
217 lines (178 loc) · 7.44 KB
/
model_cs.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
import torch
import torch.nn as nn
#from networks.raft_module import get_raft_module, estimate_flow
from networks.spynet_module import SpyNet
import kornia
def rotate_and_translate(ten, r, t):
rotated = kornia.geometry.transform.rotate(ten, r)
translated = kornia.geometry.transform.translate(rotated, t)
return translated
class CoarseStabilizer(nn.Module):
def __init__(self, in_channels=2):
super(CoarseStabilizer, self).__init__()
self.E0 = nn.Sequential(
nn.Conv2d(in_channels, 16, kernel_size=3, stride=1, padding=1),
nn.LeakyReLU(0.2))
self.E1 = nn.Sequential(
nn.Conv2d(16, 16, kernel_size=3, stride=2, padding=1),
nn.LeakyReLU(0.2))
self.E2 = nn.Sequential(
nn.Conv2d(16, 16, kernel_size=3, stride=2, padding=1),
nn.LeakyReLU(0.2))
self.ups = torch.nn.functional.interpolate # usage: ups(ip, scale_factor= 2)
self.D0 = nn.Sequential(
nn.Conv2d(16, 16, kernel_size=3, stride=1, padding=1),
nn.LeakyReLU(0.2))
self.D1 = nn.Sequential(
nn.Conv2d(16 + 16, 16, kernel_size=3, stride=1, padding=1),
nn.LeakyReLU(0.2))
self.D2 = nn.Sequential(
nn.Conv2d(16, 16, kernel_size=3, stride=1, padding=1),
nn.LeakyReLU(0.2))
self.flat = nn.Flatten()
self.L0 = nn.Linear(65536, 1000)
self.L1 = nn.Linear(1000, 100)
self.L2 = nn.Linear(100, 3)
def forward(self, x):
out = self.E0(x)
E1 = self.E1(out)
out = self.E2(E1)
out = self.ups(out, scale_factor= 2)
out = self.D0(out)
out = torch.cat([E1, out], 1)
out = self.D1(out)
out = self.ups(out, scale_factor= 2)
out = self.D2(out)
out = self.flat(out)
out = self.L0(out)
out = self.L1(out)
out = self.L2(out)
return out
class CoarseStabilizerInferReady(nn.Module):
def __init__(self, flownet, path= "./pretrained_models/CoarseStabilizerLatest.pth"):
super(CoarseStabilizerInferReady, self).__init__()
self.model = CoarseStabilizer().cuda()
self.model.load_state_dict(torch.load(path)["model_state_dict"])
self.model.eval()
for params in self.model.parameters():
params.requires_grad = False
self.flownet = flownet
#self.flownet = self.flownet.cuda()
self.warp_fn = rotate_and_translate
def lerp_angles(self, final_pt, n= 3):
initial_pt = torch.zeros_like(final_pt)
dx = (final_pt - initial_pt)/(n + 1)
interim_pts = []
interim_pts.append(initial_pt)
for i in range(1, n + 2):
interim_pts.append(interim_pts[i - 1] + dx)
return interim_pts
def lerp_translations(self, final_pt, n= 3):
initial_pt = torch.zeros_like(final_pt)
dx = (final_pt[:, 0] - initial_pt[:, 0])/(n + 1)
dy = (final_pt[:, 1] - initial_pt[:, 1])/(n + 1)
interim_pts = []
interim_pts.append(initial_pt)
for i in range(1, n + 2):
x_ = interim_pts[i - 1][:, 0] + dx
y_ = interim_pts[i - 1][:, 1] + dy
temp = torch.stack([x_, y_], 1)
interim_pts.append(temp)
return interim_pts
def intermediate_est(self, angles, translation, n_pts):
angles_all = self.lerp_angles(angles, n_pts)
translations_all = self.lerp_translations(translation, n_pts)
return angles_all, translations_all
def forward(self, x0, x1, intermediary= False, n_pts= 3):
b, c, h, w = x0.shape
denorm_factor_h = h/64
denorm_factor_w = w/64
f01 = self.flownet(x0.clone().detach(), x1.clone().detach())
f01 = nn.functional.interpolate(f01, (64, 64))
op = self.model(f01)
angles = op[:, 0]*360
w_t = op[:, 1]*denorm_factor_w
h_t = op[:, 2]*denorm_factor_h
translation = torch.stack([w_t, h_t], 1)
if intermediary:
angles_all, translations_all = self.intermediate_est(angles, translation, n_pts)
#print(len(translations_all), translations_all[0].shape)
op_interim = []
for i in range(len(angles_all)):
op_interim.append(torch.stack([angles_all[i], translations_all[i][:, 0], translations_all[i][:, 1]], 1))
t_x1 = self.warp_fn(x1, angles, translation)
op_ = torch.stack([angles, w_t, h_t], 1)
if intermediary:
return t_x1, op_, op_interim
else:
return t_x1, op_
def rescale_half(ten):
img = ten2img(ten)
#img = np.transpose(img, (1, 2, 0))
img = cv2.resize(img, (0, 0), fx= 0.5, fy= 0.5)
img = np.expand_dims(np.transpose(img, (2, 0, 1)), 0)/255.0
return torch.tensor(img.astype(np.float32))
def rescale_back(ten):
img = ten2img(ten)
#img = np.transpose(img, (1, 2, 0))
img = cv2.resize(img, (0, 0), fx= 2.0, fy= 2.0)
img = np.expand_dims(np.transpose(img, (2, 0, 1)), 0)/255.0
return torch.tensor(img.astype(np.float32))
def stabilize(model, loi):
with torch.no_grad():
lot = []
lot.append(ten2img(loi[0])) # first frame remains the same...
pbar = tqdm(total=len(loi))
for i in range(1, len(loi)):
i0 = rescale_half(loi[0]).cuda()
it = rescale_half(loi[i]).cuda()
tx, _ = model(i0, it)
#print(tx.shape)
it_ = rescale_back(tx)
lot.append(ten2img(it_))
pbar.update(1)
pbar.close()
return lot
if __name__ == '__main__':
import os
os.chdir(os.path.dirname(os.path.realpath(__file__)))
import cv2
import numpy as np
import natsort
from networks.GPWC_module.get_global_pwc_module import get_global_pwc as GPWC
from tqdm import tqdm
#from PWC_Module.PWC_Module import FlowNet_PWC as Flownet
def read_img_as_tensor(path):
img = cv2.imread(path)
img = cv2.resize(img, (640, 320))
img = np.expand_dims(np.transpose(img, (2, 0, 1)), 0)/255.0
img_t = torch.tensor(img.astype(np.float32))
return img_t
def ten2img(ten):
img_t = ten[0]*255
img_t = img_t.cpu().detach().numpy()
img = np.transpose(img_t, (1, 2, 0))
return img
# FlowNet = Flownet().cuda().eval() #### <------ Loads PWC with weights...
# for param in FlowNet.parameters():
# param.requires_grad = False
GFlowNet = GPWC().eval()
for param in GFlowNet.parameters():
param.requires_grad = False
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = CoarseStabilizerInferReady(GFlowNet, path= "./pretrained_models/GPWC_Stabilizer.pth").to(device)
vid_name = "Crowd_21"
folder_to_test = "../ds_bm/frames2/PX/" + vid_name + "/"
save_dir = "../ds_bm/frames2/NF/" + vid_name + "_gpwc/"
if not os.path.exists(save_dir):
os.makedirs(save_dir, exist_ok= True)
lof = natsort.natsorted(os.listdir(folder_to_test))
loi = []
for f in lof:
loi.append(read_img_as_tensor(folder_to_test + f).to(device))
print("Stabilizing...")
tx_imgs = stabilize(model, loi)
print("Saving...")
for i in range(len(tx_imgs)):
cv2.imwrite(save_dir + str(i) + ".png", tx_imgs[i])
#tx, op_, op_interim = model(img0, img1, True)