forked from MKashifAli/MetaVideoStab
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_time_adaptation_DIF.py
433 lines (343 loc) · 18.3 KB
/
test_time_adaptation_DIF.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
import os
os.environ["CUDA_DEVICE_ORDER"]="PCI_BUS_ID"
os.environ['CUDA_VISIBLE_DEVICES'] = '4'
#os.chdir("/home/ali/stab_new_repo/mvs_carla_gt_v3/")
import random
import argparse
import numpy as np
import cv2
from tqdm import tqdm
import natsort
import glob
import re
from collections import OrderedDict
import time
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
import higher
import kornia as K
from tensorboardX import SummaryWriter
from datasets import MultiFramesDataset, create_data_loader
from losses_test_time_adapt import inner_loop_loss_perc_affine as inner_loop_loss
import utils
from networks.GPWC_module.get_global_pwc_module import get_global_pwc as GPWC
import copy
####
#### Some useless counters, cuz I'm lazy af :D
INNER_ITER_COUNTER = 0
OUTER_ITER_COUNTER = 0
LBLS_GIVEN = True
USE_PREV_CROP_LOCS = False
PREV_CROP_H = 0
PREV_CROP_W = 0
SKIP = False
def get_model(opts):
if opts.model == "DMBVS":
from models.model_enet import Generator as Model
model = Model(in_channels=15, out_channels=3, residual_blocks=64)
elif opts.model == 'difrint':
from models.difrint import DIFNet_ours as Model
model = Model()
state_dict = torch.load('./pretrained_models/DIFNet2.pth')
##### create new OrderedDict that does not contain `module.`
new_state_dict = OrderedDict()
for k, v in state_dict.items():
name = k[7:] # remove `module.`
new_state_dict[name] = v
# load params
model.load_state_dict(new_state_dict)
for i, child in enumerate(model.children()):
if i < 2:
for param in child.parameters():
param.requires_grad = False
#print(f'Freezed {child.__class__}')
else:
pass
else:
raise Exception("Model not implemented: (%s)" %opts.model)
return model
def get_test_dataset(opts):
test_dataset = MultiFramesDataset(mode= "val", opts= opts)
return test_dataset # intentionally returning dataset instead of dataloader to gauge the performance on a single video [0]
def ip_gen_dif(frames, frames_op, start_id, device= "cuda", return_orig= False):
if len(frames_op) == 0:
frames_op.append(frames[start_id].clone())
if device == "cuda":
ip = torch.cat([frames_op[-1].cpu(),
frames[start_id + 1],
frames[start_id + 2]], 1).cuda()
if return_orig:
temp = frames[start_id + 1].clone().cuda()
else:
ip = torch.cat([frames_op[-1].cpu(),
frames[start_id + 1],
frames[start_id + 2]], 1)
if return_orig:
temp = frames[start_id + 1].clone()
if return_orig:
return ip, temp
else:
return ip
def ip_gen_dif_test(frames, frames_op, start_id, device= "cuda", patch_size= 320):
b, c, h, w = frames[0].shape
global USE_PREV_CROP_LOCS
global PREV_CROP_H
global PREV_CROP_W
if not USE_PREV_CROP_LOCS:
if h == patch_size:
h_ = 0
else:
h_ = np.random.randint(0, h - patch_size)
w_ = np.random.randint(0, w - patch_size)
PREV_CROP_H = h_
PREV_CROP_W = w_
USE_PREV_CROP_LOCS = True
else:
h_ = PREV_CROP_H
w_ = PREV_CROP_H
if len(frames_op) == 0:
frames_op.append(utils.tensor_crop(frames[start_id], h_, w_, patch_size))
if device == "cuda":
ip = torch.cat([frames_op[-1].cpu(),
utils.tensor_crop(frames[start_id + 1], h_, w_, patch_size),
utils.tensor_crop(frames[start_id + 2], h_, w_, patch_size)], 1).cuda()
spt = utils.tensor_crop(frames[start_id + 1], h_, w_, patch_size).cuda()
else:
ip = torch.cat([frames_op[-1].cpu(),
utils.tensor_crop(frames[start_id + 1], h_, w_, patch_size),
utils.tensor_crop(frames[start_id + 2], h_, w_, patch_size)], 1)
spt = utils.tensor_crop(frames[start_id + 1], h_, w_, patch_size)
return ip, spt
def ip_gen_dif_for_outer(frames, frames_op, frames_lbl, start_id, device= "cuda", return_orig= True, resize= True):
if len(frames_op) == 0:
frames_op.append(frames[start_id])
if device == "cuda":
ip = torch.cat([frames_op[-1].cpu(),
frames[start_id + 1],
frames[start_id + 2]], 1).cuda()
if return_orig:
temp = frames_lbl[start_id + 1].clone().cuda()
else:
ip = torch.cat([frames_op[-1].cpu(),
frames[start_id + 1],
frames[start_id + 2]], 1)
if return_orig:
temp = frames_lbl[start_id + 1].clone()
if return_orig:
if resize:
ip = nn.functional.interpolate(ip, (192, 192))
temp = nn.functional.interpolate(temp, (192, 192))
return ip, temp
else:
ip = nn.functional.interpolate(ip, (192, 192))
return ip
def test_no_adaptation(db, net, device, opts, video_ptr):
net.eval()
final_op_list = []
final_ip_list = []
interim_ops = []
frame_pointer = 0
test_batch = db[video_ptr]
frames = test_batch['X']
video_name = test_batch['meta_data']["video_name"].split("/")[-2]
save_path = "./DIF_evaluation_study_all_256_5iter_1e6/output_" + opts.model_name + "_" + str(opts.epoch_to_test) + "_comparative/" + video_name
no_adapt_path = save_path + "/no_adapt/"
unstab_path = save_path + "/unstable/"
if not os.path.exists(save_path):
os.makedirs(save_path)
else:
global SKIP
SKIP = True
return 0, 0, 0, 0, 0
if not os.path.exists(no_adapt_path):
os.makedirs(no_adapt_path)
if not os.path.exists(unstab_path):
os.makedirs(unstab_path)
pbar = tqdm(total= len(frames) - 5 - 3)
while(frame_pointer < len(frames) - 5 - 3):
with torch.no_grad():
ip_ = ip_gen_dif(frames, interim_ops, frame_pointer, return_orig= False)
op_ = torch.clamp(net(ip_), min= 0.0, max= 1.0)
final_op_list.append((utils.tensor2img(op_)*255).astype(np.uint8))
final_ip_list.append((utils.tensor2img(frames[frame_pointer + 2])*255).astype(np.uint8))
pbar.update(1)
frame_pointer += 1
pbar.close()
for i in range(len(final_op_list)):
cv2.imwrite(no_adapt_path + str(i) + ".png", final_op_list[i])
for i in range(len(final_ip_list)):
cv2.imwrite(unstab_path + str(i) + ".png", final_ip_list[i])
print("Written unstable and prestable videos...")
def test(db, net, device, L_in, opts, video_ptr):
final_op_list = []
final_ip_list = []
frame_pointer = 0
test_batch = db[video_ptr]
frames = test_batch['X']
video_name = test_batch['meta_data']["video_name"].split("/")[-2]
save_path = "./DIF_evaluation_study_all_256_5iter_1e6/output_" + opts.model_name + "_" + str(opts.epoch_to_test) + "_comparative/" + video_name
base_path = save_path
save_path = save_path + "/adapted/"
if not os.path.exists(save_path):
os.makedirs(save_path)
lr = opts.lr_init
adaptation_number = opts.adpt_number
frame_pad = 8
optimizer = optim.Adam(net.parameters(), lr)
total_adapt = opts.total_adapt
samples = range(len(frames) - adaptation_number - frame_pad)
pbar = tqdm(total= len(samples))
global USE_PREV_CROP_LOCS
while(frame_pointer < len(samples)):
interim_op = []
USE_PREV_CROP_LOCS = False
for _ in range(adaptation_number):
optimizer.zero_grad()
ip1, spt_ip1 = ip_gen_dif_test(frames, interim_op, start_id= samples[frame_pointer], patch_size= opts.crop_size_adap)
spt_op1 = torch.clamp(net(ip1), min= 0.0, max= 1.0)
interim_op.append(spt_op1.clone())
ip2, spt_ip2 = ip_gen_dif_test(frames, interim_op, start_id= samples[frame_pointer] + 1, patch_size= opts.crop_size_adap)
spt_op2 = torch.clamp(net(ip2), min= 0.0, max= 1.0)
interim_op.append(spt_op2.clone())
ip3, spt_ip3 = ip_gen_dif_test(frames, interim_op, start_id= samples[frame_pointer] + 2, patch_size= opts.crop_size_adap)
spt_op3 = torch.clamp(net(ip3), min= 0.0, max= 1.0)
interim_op.append(spt_op3.clone())
ip4, spt_ip4 = ip_gen_dif_test(frames, interim_op, start_id= samples[frame_pointer] + 3, patch_size= opts.crop_size_adap)
spt_op4 = torch.clamp(net(ip4), min= 0.0, max= 1.0)
interim_op.append(spt_op4.clone())
ip5, spt_ip5 = ip_gen_dif_test(frames, interim_op, start_id= samples[frame_pointer] + 4, patch_size= opts.crop_size_adap)
spt_op5 = torch.clamp(net(ip5), min= 0.0, max= 1.0)
interim_op.append(spt_op5.clone())
spt_loss = 0.5 * L_in([spt_op1, spt_op2, spt_op3, spt_op4, spt_op5], [spt_ip1, spt_ip2, spt_ip3, spt_ip4, spt_ip5])
spt_loss.backward(retain_graph= True)
optimizer.step()
pbar.update(1)
frame_pointer += 1
pbar.close()
frame_pointer = 0
interim_ops = []
tik = time.time()
while(frame_pointer < len(frames) - 5 - 5):
with torch.no_grad():
net.eval()
ip_ = ip_gen_dif(frames, interim_ops, frame_pointer)
op_ = torch.clamp(net(ip_), min= 0.0, max= 1.0)
interim_ops.append(op_.clone())
final_op_list.append((utils.tensor2img(op_)*255).astype(np.uint8))
final_ip_list.append((utils.tensor2img(frames[frame_pointer + 1])*255).astype(np.uint8))
frame_pointer += 1
net.train()
tok = time.time()
print("="*50, "\n", "Inference time only:", tok-tik, "\n", "="*50)
for i in range(len(final_op_list)):
cv2.imwrite(save_path + str(i) + ".png", final_op_list[i])
print("Writtent adapted video...")
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Meta Stabilization")
### model options
parser.add_argument('-model', type=str, default="difrint", help='Model to use')
parser.add_argument('-ckp_name', type=str, default="best_stab_vf_v1.h5", help='baseline checkpoint name')
parser.add_argument('-model_name', type=str, default='dif_eval', help='path to save model') #### Choices: {"rec_eval": DMBVSr, "eval": DMBVS, "dif_eval": DIFRINT}
parser.add_argument('-adpt_number', type=int, default=1, help='adaptation iterations')
parser.add_argument('-total_adapt', type=int, default=100, help='total adapt')
parser.add_argument('-lambda1', type=int, default=1, help='define weights for different losses (unused at the moment...)')
parser.add_argument('-lambda2', type=int, default=1, help='define weights for different losses (unused at the moment...)')
parser.add_argument('-lambda3', type=int, default=1, help='define weights for different losses (unused at the moment...)')
### dataset options
parser.add_argument('-train_data_dir', type=str, default='/data/ali/mvs/ds_bm/ds_bm/frames/', help='path to train data folder')
parser.add_argument('-data_dir', type=str, default='/data/ali/mvs/ds_bm/ds_bm/frames/', help='path to test data folder')
parser.add_argument('-checkpoint_dir', type=str, default='pretrained_models/checkpoints', help='path to checkpoint folder')
parser.add_argument('-crop_size', type=int, default=256, help='patch size')
parser.add_argument('-crop_size_adap', type=int, default=256, help='patch size')
parser.add_argument('-geometry_aug', type=int, default=1, help='geometry augmentation (rotation, scaling, flipping)')
parser.add_argument('-order_aug', type=int, default=0, help='temporal ordering augmentation')
parser.add_argument('-scale_min', type=float, default=0.5, help='min scaling factor')
parser.add_argument('-scale_max', type=float, default=2.0, help='max scaling factor')
parser.add_argument('-sample_frames', type=int, default=100, help='#frames for training')
### training options
parser.add_argument('-solver', type=str, default="ADAM", choices=["SGD", "ADAM"], help="optimizer")
parser.add_argument('-momentum', type=float, default=0.9, help='momentum for SGD')
parser.add_argument('-beta1', type=float, default=0.9, help='beta1 for ADAM')
parser.add_argument('-beta2', type=float, default=0.999, help='beta2 for ADAM')
parser.add_argument('-weight_decay', type=float, default=0, help='weight decay')
parser.add_argument('-batch_size', type=int, default=1, help='training batch size')
parser.add_argument('-train_epoch_size',type=int, default=20, help='train epoch size')
parser.add_argument('-valid_epoch_size',type=int, default=100, help='valid epoch size')
parser.add_argument('-epoch_max', type=int, default=100, help='max #epochs')
### learning rate options
parser.add_argument('-lr_init', type=float, default=1e-6, help='initial learning Rate')
parser.add_argument('-lr_offset', type=int, default=20, help='epoch to start learning rate drop [-1 = no drop]')
parser.add_argument('-lr_step', type=int, default=20, help='step size (epoch) to drop learning rate')
parser.add_argument('-lr_drop', type=float, default=0.5, help='learning rate drop ratio')
parser.add_argument('-lr_min_m', type=float, default=0.1, help='minimal learning Rate multiplier (lr >= lr_init * lr_min)')
### other options
parser.add_argument('-unstab_coeff', type=float, default=0.25, help="artificial unstabilizer set 0 for training on unstable videos only...")
parser.add_argument('-loss', type=str, default="L1", help="Loss [Options: L1, L2]")
parser.add_argument('-seed', type=int, default=9487, help='random seed to use')
parser.add_argument('-threads', type=int, default=8, help='number of threads for data loader to use')
parser.add_argument('-suffix', type=str, default='', help='name suffix')
parser.add_argument('-gpu', type=int, default=0, help='gpu device id')
parser.add_argument('-cpu', action='store_true', help='use cpu?')
### testing options
parser.add_argument('-epoch_to_test', type=int, default= 69, help="epoch to load the model from...")
opts = parser.parse_args()
#### adjust the training data folder
# opts.data_dir = "../data/"
opts.data_dir = "/data/ali/mvs/ds_bm/ds_bm/frames2/PY/"
opts.cuda = (opts.cpu != True)
opts.lr_min = opts.lr_init * opts.lr_min_m
### default model name
if opts.model_name == 'none':
opts.model_name = "%s_%s" %(opts.model, opts.ckp_name)
if opts.suffix != "":
opts.model_name += "_%s" %opts.suffix
opts.size_multiplier = 2 ** 6 ## Inputs to FlowNet need to be divided by 64
print(opts)
### model saving directory
opts.model_dir = os.path.join(opts.checkpoint_dir, opts.model_name)
print("========================================================")
print("===> Taking model ckpts from: %s" %opts.model_dir)
print("========================================================")
if not os.path.isdir(opts.model_dir):
os.makedirs(opts.model_dir)
### initialize loss writer
loss_dir = "./DIF_evaluation_study_all_256_5iter_1e6/output_" + opts.model_name + "_" + str(opts.epoch_to_test) + "_comparative/loss/"
loss_writer = SummaryWriter(loss_dir)
### initialize model
#print('===> Initializing model from %s...' %opts.model)
model = get_model(opts)
### Meta optimizer...
### initialize optimizer
if opts.solver == 'SGD':
meta_opt = optim.SGD(model.parameters(), lr=opts.lr_init, momentum=opts.momentum, weight_decay=opts.weight_decay)
elif opts.solver == 'ADAM':
meta_opt = optim.Adam(model.parameters(), lr=opts.lr_init, weight_decay=opts.weight_decay, betas=(opts.beta1, opts.beta2))
else:
raise Exception("Not supported solver (%s)" %opts.solver)
if opts.loss == 'L2':
criterion = nn.MSELoss(size_average=True)
elif opts.loss == 'L1':
criterion = nn.L1Loss(size_average=True)
else:
raise Exception("Unsupported criterion %s" %opts.loss)
num_params = utils.count_network_parameters(model)
GFlowNet = GPWC().eval()
for param in GFlowNet.parameters():
param.requires_grad = False
### convert to GPU
device = torch.device("cuda" if opts.cuda else "cpu")
model = model.to(device)
baseline_model = copy.deepcopy(model)
GFlowNet = GFlowNet.to(device)
L_in = inner_loop_loss(criterion, GFlowNet)
test_dataset = get_test_dataset(opts)
for video in range(len(test_dataset)):
print("Processing videos: {}/{}".format(video + 1, len(test_dataset)))
SKIP = False
print("Testing without adaptation...")
test_no_adaptation(test_dataset, model, device, opts, video)
model, _ = utils.load_model(model, meta_opt, opts, opts.epoch_to_test) # Meta-trained, epoch 34
print("Testing without adaptation...")
test(test_dataset, baseline_model, device, L_in, opts, video)