forked from wesgohn/g2Qsim
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdofit.C
165 lines (138 loc) · 5.54 KB
/
dofit.C
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
#include "TH1.h"
#include "TF1.h"
#include "TGraph.h"
#include "TGraphErrors.h"
#include "TCanvas.h"
#include "TMinuit.h"
#include "TMath.h"
TFile *file0;
TF1 *precessf, *sigmaf;
TH1D *hTime, *hResi;
TCanvas *ct = new TCanvas("ct","time distribution",1400,700);
Double_t fprec(Double_t *x, Double_t *par)
{
// simple precession function with sinosoidal amplitude, freqeuncy and phase
//
// par[0] - N
// par[1] - lambda
// par[2] - A
// par[3] - omega_a
// par[4] - phi
// par[5] - bkd
Double_t xx =x[0];
Double_t f = par[0] * exp( -xx * par[1] ) * ( 1.0 + par[2]*cos( par[3]*xx + par[4] ) ) + par[5];
return f;
}
Double_t fsigma(Double_t *x, Double_t *par)
{
// simple sigma function with counting statistics and uniform noise term
//
// par[0] - sigma1^2 for counting statistics
// par[1] - sigma2^2 for uniform noise
Double_t xx =x[0];
if (xx >= 12000. && xx <= 12100.) printf("xx %f, precessf->Eval( hTime->GetBinCenter(xx) %f, par[0] %f, par[1] %f\n", xx, precessf->Eval( hTime->GetBinCenter(xx) ), par[0], par[1]);
Double_t f = par[0] * precessf->Eval( hTime->GetBinCenter(xx) ) + par[1];
return f;
}
void dofit(){
// read root file, get time distribution
file0 = TFile::Open("test.root");
file0->GetObject( "hFlush1D", hTime);
hTime->SetName("hTime");
hTime->SetTitle("positron time distribution");
hTime->SetLineColor(kBlack);
// Qmethod rebin factor
double nsToBin = 16.;
// function range
double minT = 0.0/nsToBin, maxT = 700000./nsToBin;
// precession function parameters
// in rand.cu
double tau0 = 6.4e4; //ns
double omega_a0 = 1.438e-3; // rad/ns
// fit initial values
double tau = 64100.; // time-dilated muon lifetime [ns]
double omega_a = 1.4381e-3; // anomalous precession frequency [ns]
omega_a = omega_a*nsToBin; // convert to Q-method bins
double lambda = (1./tau)*nsToBin; // convert to rate and Q-method bins
double N0 = 3.5e8 , ampl = 0.4, phase = TMath::Pi(), bkgd = 0.0;
// precession function definition
precessf = new TF1( "precessf", fprec, minT, maxT, 6);
precessf->SetParNames("N0","lambda","amplitude","omega_a","phase","bkgd");
precessf->SetParameters( N0, lambda, ampl, omega_a, phase, bkgd);
precessf->SetLineColor(kRed);
precessf->SetLineWidth(2);
precessf->SetNpx(10000);
// statistics parameters
double sig12 = 1.0, sig22 = 0.0;
// sigma^2 function definition
sigmaf = new TF1( "sigmaf", fsigma, minT, maxT, 2);
sigmaf->SetParNames("sigma1^2","sigma2^2");
sigmaf->SetParameters( sig12, sig22);
sigmaf->SetLineColor(kRed);
sigmaf->SetLineWidth(2);
sigmaf->SetNpx(10000);
// fit range
double minTF = 10000.0/nsToBin, maxTF = 400000./nsToBin;
//precessf->FixParameter( 1, 0.0);
//precessf->FixParameter( 1, 1./lambda);
//precessf->FixParameter( 2, ampl);
//precessf->FixParameter( 3, omega_a);
//precessf->FixParameter( 4, phase);
printf("start fit ...\n");
hTime->Fit(precessf,"","RV", minTF, maxTF);
hTime->Draw();
double tauF = 1./(precessf->GetParameter(1)/nsToBin);
double dtauF = tauF*(precessf->GetParError(1)/precessf->GetParameter(1));
double omega_aF = precessf->GetParameter(3)/nsToBin;
double domega_aF = omega_aF*precessf->GetParError(3)/precessf->GetParameter(3);
double DeltatauF = (tauF - tau0)/tau0;
double Deltaomega_aF = (omega_aF - omega_a0)/omega_a0;
double SigDeltauF = (tauF - tau0)/dtauF;
double SigDelomega_aF = (omega_aF - omega_a0)/domega_aF;
double ndf = precessf->GetNDF();
double chiSq = precessf->GetChisquare();
printf(" tau = %e +/- %e ns, omega_a = %e +/- %e ns\n", tauF, dtauF, omega_aF, domega_aF);
printf(" NDF %i, Chi-squared %f, Delta tau = %e (%06f2.1 sig), Delta omega_a = %e (%06f2.1 sig)\n", ndf, chiSq, DeltatauF, SigDeltauF, Deltaomega_aF, SigDelomega_aF);
for (int ib = minTF; ib <= maxTF; ib++){
hTime->SetBinError( ib, sqrt(hTime->GetBinContent(ib)*chiSq/ndf) );
}
hTime->Fit(precessf,"","RV", minTF, maxTF);
hTime->Draw();
tauF = 1./(precessf->GetParameter(1)/nsToBin);
dtauF = tauF*(precessf->GetParError(1)/precessf->GetParameter(1));
omega_aF = precessf->GetParameter(3)/nsToBin;
domega_aF = omega_aF*precessf->GetParError(3)/precessf->GetParameter(3);
DeltatauF = (tauF - tau0)/tau0;
Deltaomega_aF = (omega_aF - omega_a0)/omega_a0;
SigDeltauF = (tauF - tau0)/dtauF;
SigDelomega_aF = (omega_aF - omega_a0)/domega_aF;
ndf = precessf->GetNDF();
chiSq = precessf->GetChisquare();
printf(" tau = %e +/- %e ns, omega_a = %e +/- %e ns\n", tauF, dtauF, omega_aF, domega_aF);
printf(" NDF %i, Chi-squared %f, Delta tau = %e (%06f2.1 sig), Delta omega_a = %e (%06f2.1 sig)\n", ndf, chiSq, DeltatauF, SigDeltauF, Deltaomega_aF, SigDelomega_aF);
hResi=(TH1D*)hTime->Clone();
hResi->Reset();
hResi->SetName("hResi");
hResi->SetTitle("(data - fit) residuals time distribution");
hResi->SetLineColor(kBlue);
hResi2=(TH1D*)hTime->Clone();
hResi2->Reset();
hResi2->SetName("hResi2");
hResi2->SetTitle("(data - fit)^2 residuals time distribution");
hResi2->SetLineColor(kBlue);
for (int ib = minTF; ib <= maxTF; ib++){
double resi = ( hTime->GetBinContent(ib) - precessf->Eval( hTime->GetBinCenter(ib) ) );
hResi->SetBinContent( ib, resi );
hResi2->SetBinContent( ib, resi*resi );
//printf("ib %i, resi %f\n", ib, resi);
}
/*
sig12 = hResi2->Integral(minTF,maxTF)/hTime->Integral(minTF,maxTF);
sigmaf->SetParameters( sig12, sig22);
sigmaf->FixParameter( 1, 0.0);
hResi2->Draw();
sigmaf->Draw("same");
hResi2->Fit(sigmaf,"","RW", minTF, maxTF);
hResi2->Draw();
*/
}