forked from alberto-spadoni3/SSD-Project
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathplot_functions.py
155 lines (114 loc) · 5.67 KB
/
plot_functions.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
import numpy as np
import matplotlib.pyplot as plt
from statsmodels.tsa.seasonal import seasonal_decompose
from statsmodels.graphics.tsaplots import plot_acf
def plot_data(museum):
"""
Plot che evidenzia i valori misurati durante la pandemia del COVID-19.
Viene anche mostrato un grafico dei dati esenti dagli effetti della pandemia.
:param museum: Museo di cui vengono mostrati i dati
:return: void
"""
period_without_covid = 74
visitors_before_covid = museum.iloc[:period_without_covid]
visitors_during_covid = museum.iloc[period_without_covid - 1:]
fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(15, 6))
fig.suptitle("Grafici dei dati con e senza le misurazioni nel periodo COVID-19")
ax1.plot(visitors_before_covid.Visitors, label="Visitatori in assenza del COVID-19")
ax1.plot(visitors_during_covid.Visitors, 'r-.', label="Visitatori durante il periodo COVID-19")
ax1.legend()
# Grafico dei valori dei visitatori al museo Avila Adobe che verranno utilizzati da qui in avanti
ax2.plot(visitors_before_covid.Visitors, label="Visitatori in assenza del COVID-19")
ax2.legend()
plt.show()
def plot_pearson(pearson_indexes, max_pearson):
plt.title("Individuazione della stagionalità tramite l'indice di Pearson")
x = np.linspace(0, len(pearson_indexes) - 1, len(pearson_indexes))
barlist = plt.bar(x, pearson_indexes)
barlist[max_pearson["index"]].set_color("r")
plt.text(max_pearson["index"], 0.95,
"Valore massimo: {0}\nIndice: {1}".format(round(max_pearson["pearson"], 2), max_pearson["index"]),
fontsize=8, color="red", ha="center")
plt.show()
def plot_seasonal_decomposition(museum, period):
mul = seasonal_decompose(museum.Visitors, model='multiplicative', period=period)
add = seasonal_decompose(museum.Visitors, model='additive', period=period)
plt.semilogy(mul.resid, 'bo', label="Modello moltiplicativo")
plt.semilogy(add.resid, 'ro', label="Modello additivo")
plt.yscale("symlog")
plt.legend()
plt.plot()
plt.title("Confronto dei residui tra modello moltiplicativo e additivo")
plt.show()
plt.rcParams['figure.figsize'] = (10.0, 6.0)
mul.plot()
plt.show()
def plot_trend(data, yfit):
plt.title("Individuazione del trend")
plt.plot(data, label="Dati originali")
plt.plot(yfit, label="Trend lineare decrescente")
plt.legend()
plt.show()
def plot_notrend_noseason(nt, ns):
plt.title("Eliminazione trend e stagionalità")
plt.plot(nt, label="Dati senza trend")
plt.plot(ns, label="Dati senza trend e stagionalità")
plt.legend()
plt.show()
def plot_model(museum, ts):
data = museum.Visitors
plt.title("Comparazione dati originali con il modello ottenuto")
plt.plot(np.linspace(0, len(data) - 1, len(data)), data, label="Dati originali")
plt.plot(ts, 'r--', label="Modello")
plt.legend()
plt.show()
def plot_prediction(museum, trend_season_data, predicted_data, regression, dates):
data = museum.Visitors
plt.plot(dates[:len(data)],
data, label="Dati originali")
plt.plot(dates[:len(data)],
trend_season_data, 'r--', label="Modello")
plt.plot(dates[len(data):],
predicted_data[74:], '--', label="Previsione")
plt.plot(dates, regression, label="Trend")
plt.title("Previsione dei dati su 24 periodi")
plt.legend()
plt.show()
def plot_SARIMA_predicition(x, xfore, yfore, ypred, ci, cutpoint, period_to_predict, museum):
data = museum.Visitors
plt.plot(x[:len(data)], data, label="Dati originali")
plt.plot(x[:cutpoint], ypred, 'y', label="Modello (train set)")
plt.plot(x[cutpoint:len(data) + 1], yfore[:-period_to_predict + 1], 'r', label="Modello (test set)")
plt.plot(x[len(data):], yfore[period_to_predict - 1:], '--', label="Previsione")
plt.legend()
plt.title("Previsione dei dati su 24 periodi tramite SARIMA")
plt.show()
def plot_autocorrelation(museum):
data = museum.Visitors
plot_acf(data)
plt.show()
def plot_diagnostic(fitted_model):
fitted_model.plot_diagnostics(figsize=(10, 6))
plt.show()
def plot_all_museums(museum_visitors):
for museum in museum_visitors:
plt.plot(museum_visitors[museum], label=museum)
plt.legend()
plt.show()
def plot_MLP_forecasts(museum_visitors, train_predict, test_predict, forecasts, look_back, cutpoint, dates):
plt.title("Previsione dei dati su 24 periodi tramite MLP")
plot_NN_forecasts(museum_visitors, train_predict, test_predict, forecasts, look_back, cutpoint, dates)
def plot_LSTM_forecasts(museum_visitors, train_predict, test_predict, forecasts, look_back, cutpoint, dates):
plt.title("Previsione dei dati su 24 periodi tramite LSTM")
plot_NN_forecasts(museum_visitors, train_predict, test_predict, forecasts, look_back, cutpoint, dates)
def plot_RF_forecasts(museum_visitors, train_predict, test_predict, forecasts, look_back, cutpoint, dates):
plt.title("Previsione dei dati su 24 periodi tramite Random Forest")
plot_NN_forecasts(museum_visitors, train_predict, test_predict, forecasts, look_back, cutpoint, dates)
def plot_NN_forecasts(museum_visitors, train_predict, test_predict, forecasts, look_back, cutpoint, dates):
numbers_of_measurements = len(museum_visitors)
plt.plot(dates[:numbers_of_measurements], museum_visitors.Visitors.to_numpy(), label='Visitatori museo')
plt.plot(dates[look_back:cutpoint], train_predict, label='Previsione sul training set')
plt.plot(dates[cutpoint:numbers_of_measurements], test_predict, label='Previsione sul test set')
plt.plot(dates[numbers_of_measurements:], forecasts, label="Previsione su ulteriori 24 periodi")
plt.legend()
plt.show()