-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathovr_plot.py
executable file
·204 lines (163 loc) · 6.8 KB
/
ovr_plot.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
# @Time : 2/24/22 3:00 PM
# @Author : Ruizhi Cheng
# @FileName: ovr_plot.py
# @Email : [email protected]
#This program is used to plot the metrics collected by OVR metrics tool.
import matplotlib.pyplot as plt
from plot_paper import plot_trace
import numpy as np
import pandas as pd
import os
PLATFORM = '../Worlds'
TYPE='dis'
# DATE='0323_dis/shooting_downlink_throughput_2'
DATE='0406_dis/downlink_shooting_1'
FILENAME = 'dis_process_0414_fps.csv'
FILENAME = '20220406_155342_worlds_downlink_shooting_dis_process.csv'
file = os.path.join(PLATFORM,TYPE,DATE,FILENAME)
def get_time_stamp(filename):
data = pd.read_csv(filename, encoding='gbk',engine='python',header= None)
x = data.iloc[1:, 0].astype(int)
return np.array(x)
def get_battery_level_percentage(filename):
data = pd.read_csv(filename, encoding='gbk',engine='python',header= None)
x = data.iloc[1:, 3].astype(int)
return np.array(x)
def get_battery_temperature_celcius(filename):
data = pd.read_csv(filename, encoding='gbk',engine='python',header= None)
x = data.iloc[1:, 4].astype(int)
return np.array(x)
def get_cpu_level(filename):
data = pd.read_csv(filename, encoding='gbk',engine='python',header= None)
x = data.iloc[1:, 10].astype(int)
return np.array(x)
def get_gpu_level(filename):
data = pd.read_csv(filename, encoding='gbk',engine='python',header= None)
x = data.iloc[1:, 11].astype(int)
return np.array(x)
def get_average_frame_rate(filename):
data = pd.read_csv(filename, encoding='gbk',engine='python',header= None)
x = data.iloc[1:, 17].astype(int)
return np.array(x)
def get_avg_pred_ms(filename):
data = pd.read_csv(filename, encoding='gbk', engine='python', header=None)
x = data.iloc[1:, 19].astype(int)
return np.array(x)
def get_screen_tear_count(filename):
data = pd.read_csv(filename, encoding='gbk',engine='python',header= None)
x = data.iloc[1:, 20].astype(int)
return np.array(x)
def get_early_frame_count(filename):
data = pd.read_csv(filename, encoding='gbk',engine='python',header= None)
x = data.iloc[1:, 21].astype(int)
return np.array(x)
def get_stale_frame_count(filename):
data = pd.read_csv(filename, encoding='gbk',engine='python',header= None)
x = data.iloc[1:, 22].astype(int)
return np.array(x)
def get_foveation_level(filename):
data = pd.read_csv(filename, encoding='gbk', engine='python', header=None)
x = data.iloc[1:, 24].astype(int)
return np.array(x)
def get_eye_buffer_width(filename):
data = pd.read_csv(filename, encoding='gbk',engine='python',header= None)
x = data.iloc[1:, 25].astype(int)
return np.array(x)
def get_eye_buffer_height(filename):
data = pd.read_csv(filename, encoding='gbk',engine='python',header= None)
x = data.iloc[1:, 26].astype(int)
return np.array(x)
def get_app_gpu_time(filename):
data = pd.read_csv(filename, encoding='gbk', engine='python', header=None)
x = data.iloc[1:, 27].astype(int)
return np.array(x)
def get_time_wrap_gpu_time(filename):
data = pd.read_csv(filename, encoding='gbk',engine='python',header= None)
x = data.iloc[1:, 28].astype(int)
return np.array(x)
def get_cpu_utilization_percentage(filename):
data = pd.read_csv(filename, encoding='gbk',engine='python',header= None)
x = data.iloc[1:, 30].astype(int)
return np.array(x)
def get_gpu_utilization_percentage(filename):
data = pd.read_csv(filename, encoding='gbk',engine='python',header= None)
x = data.iloc[1:, 39].astype(int)
return np.array(x)
average_frame_rate = get_average_frame_rate(file)
early_frame_rate = get_early_frame_count(file)
stale_frame_rate = get_stale_frame_count(file)
app_gpu_time=get_app_gpu_time(file)
time_wrap_gpu_time=get_time_wrap_gpu_time(file)
eye_buffer_width=get_eye_buffer_width(file)
eye_buffer_height=get_eye_buffer_height(file)
foveation_level = get_foveation_level(file)
screen_tear_count = get_screen_tear_count(file)
avg_pred_ms=get_avg_pred_ms(file)
time_stamp = get_time_stamp(file)
cpu_utilization_percentage=get_cpu_utilization_percentage(file)
gpu_utilization_percentage=get_gpu_utilization_percentage(file)
print(cpu_utilization_percentage)
frame = [[average_frame_rate,'Average'],[stale_frame_rate,'Stale'],[early_frame_rate,'Early']]
frame = [[average_frame_rate,'Average'],[stale_frame_rate,'Stale']]
resolution = [[eye_buffer_width,'Width'],[eye_buffer_height,'Height']]
#print(resolution)
twgt= [[time_wrap_gpu_time,'time_wrap_gpu_time']]
pred = [[avg_pred_ms,'avg_pred_ms']]
foveation=[[foveation_level,'foveation_level']]
tear = [[screen_tear_count,'screen_tear_count']]
app_gpu_time=[[app_gpu_time,'app_gpu_time']]
#print(tear)
#print(resolution)
utilization = [[cpu_utilization_percentage,'CPU'],[gpu_utilization_percentage,'GPU']]
trace_and_label=utilization
xlabel='Time (s)'
# ylabel='Frame Rate'
ylabel='Utilization (%)'
x = np.arange(1, len(trace_and_label[0][0]) + 1, 1)
fig, ax1 = plt.subplots()
ax1.set_xlabel(xlabel, fontsize=90)
ax1.set_ylabel(ylabel, fontsize=90)
##linewidth = 8 or 15
for i in range(len(trace_and_label)):
ax1.plot(x, trace_and_label[i][0],label=trace_and_label[i][1],linewidth = 8)
ax1.spines['top'].set_visible(False)
ax1.spines['right'].set_visible(False)
### 120 or 80
ax1.tick_params(axis='x', labelsize = 90)
ax1.tick_params(axis='y', labelsize = 90)
ax1.set_xticks([40,80, 120, 160,200, 240, 300])
# ax1.set_yticks([0,10, 20, 30,40, 50, 60,72])
# ax1.set_ylim(0, 80)
ax1.set_xlim(0, 300)
plt.subplots_adjust(bottom=0.14)
# ax1.text(5, 40, '1.0', fontsize=90, color='red')
# ax1.text(45, 40, '0.7', fontsize=90, color='red')
# ax1.text(85, 40, '0.5', fontsize=90, color='red')
# ax1.text(125, 40, '0.3', fontsize=90, color='red')
# ax1.text(165, 40, '0.2', fontsize=90, color='red')
# ax1.text(205, 40, '0.1', fontsize=90, color='red')
# ax1.text(260, 40, 'N', fontsize=90, color='red')
ax1.set_yticks([0,50,70,100])
ax1.set_ylim([0,100])
ax1.text(5, 20, '1.0', fontsize=90, color='red')
ax1.text(45, 20, '0.7', fontsize=90, color='red')
ax1.text(85, 20, '0.5', fontsize=90, color='red')
ax1.text(125, 20, '0.3', fontsize=90, color='red')
ax1.text(165, 20, '0.2', fontsize=90, color='red')
ax1.text(205, 20, '0.1', fontsize=90, color='red')
ax1.text(260, 20, 'N', fontsize=90, color='red')
ax1.set_ylim([0, 110])
plt.subplots_adjust(bottom=0.14)
plt.grid()
# altspace VR
#plt.legend(fontsize=60, loc='upper center', bbox_to_anchor=(0.23, 1.15))
plt.legend(fontsize=90, loc='upper center', bbox_to_anchor=(0.5, 1.2),ncol=2,columnspacing=0.4)
#plt.legend(fontsize=95, loc='upper center', bbox_to_anchor=(0.5, 1.2), ncol=2)
#plt.legend(fontsize=100, loc='best')
plt.show()
# plot_trace(frame,'Time (s)','frame')
#plot_trace(resolution,'Time (s)','Resolution')
#print(height)
#plot_trace(height,'timestamp','value')
#plot_trace(utilization,'Time (s)', 'Utilization (%)' )
#plot_trace(utilization,'Time (s)','value')