-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathtrain.py
145 lines (126 loc) · 5.21 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
import argparse
from pprint import PrettyPrinter
import numpy as np
import pytorch_lightning as pl
from pytorch_lightning.callbacks import ModelCheckpoint
from torch.utils.data import DataLoader
from src.data import (
ShapeNetDataset,
ShuffleDataset,
normalize,
transforms
)
from src.image2voxel import Image2Voxel
from src.utils import load_config, get_mlflow_tags
def to_numpy(image):
image.convert("RGB")
return [np.asarray(image, dtype=np.float32) / 255]
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Train transformer conditioned on image inputs')
parser.add_argument('--annot_path', type=str, required=True,
help='Path to the "ShapeNet.json"')
parser.add_argument('--model_path', type=str, required=True,
help='Path to the voxel models')
parser.add_argument('--image_path', type=str, required=True,
help='Path to the input images')
parser.add_argument('--train_batch_size', type=int, default=8,
help='Batch size for training')
parser.add_argument('--val_batch_size', type=int, default=8,
help='Batch size for validation')
parser.add_argument('--num_workers', type=int, default=8,
help='Number of workers for dataloader')
parser.add_argument('--seed', type=int, default=0,
help='Manual seed for python, numpy and pytorch')
parser.add_argument("--transformer_config", type=str, default=None,
help='Path to the image2voxel config file')
parser.add_argument("--sample_batch_num", type=int, default=0,
help='The number of batches to show as example in the logger')
parser.add_argument("--background", type=int, nargs=3, default=(0, 0, 0),
help='The (R, G, B) color for the image background')
parser.add_argument("--lr", type=float, default=1e-4,
help='Learning rate')
parser.add_argument("--sched_factor", type=float, default=1,
help='Multiplication factor each training step for the scheduler')
parser.add_argument("--view_num", type=int, default=1,
help='Number of views for the image input')
parser.add_argument("--threshold", type=float, default=0.5,
help='Threshold for deciding voxel occupancy')
parser.add_argument("--data_aug", action='store_true',
help='use data augmentation')
parser.add_argument("--loss_type", type=str, default='dice',
help='Loss function type ("dice", "ce", "ce_dice", "focal")')
parser.add_argument("--experiment_name", type=str, default='3D-RETR',
help='Experiment name for mlflow.')
parser = pl.Trainer.add_argparse_args(parser)
args = parser.parse_args()
pp = PrettyPrinter(indent=4)
pp.pprint(vars(args))
# =================================================================================
pl.seed_everything(args.seed)
image_trans = transforms.Compose([
to_numpy,
transforms.CenterCrop((224, 224), (128, 128)),
transforms.RandomBackground(((240, 240), (240, 240), (240, 240))),
transforms.ToTensor(),
lambda x: x[0],
normalize
])
dataset_params = {
'annot_path': args.annot_path,
'model_path': args.model_path,
'image_path': args.image_path
}
train_dataset = ShapeNetDataset(
**dataset_params,
image_transforms=image_trans,
split='train',
background=args.background,
view_num=args.view_num
)
val_dataset = ShapeNetDataset(
**dataset_params,
image_transforms=image_trans,
split='val',
mode='first',
background=args.background,
view_num=args.view_num
)
val_dataset = ShuffleDataset(val_dataset)
train_loader = DataLoader(
train_dataset,
batch_size=args.train_batch_size,
num_workers=args.num_workers,
shuffle=True
)
val_loader = DataLoader(
val_dataset,
batch_size=args.val_batch_size,
num_workers=args.num_workers,
shuffle=False
)
# =================================================================================
transformer_config = load_config(args.transformer_config)
pp.pprint(transformer_config)
model = Image2Voxel(
sample_batch_num=args.sample_batch_num,
lr=args.lr,
sched_factor=args.sched_factor,
threshold=args.threshold,
loss_type=args.loss_type,
**transformer_config
)
checkpoint_callback = ModelCheckpoint(
monitor='val_iou_mean',
filename='{epoch:02d}-iou{val_iou:.5f}',
save_top_k=1,
mode='max',
save_last=True
)
mlf_logger = pl.loggers.MLFlowLogger(
experiment_name=args.experiment_name,
tags=get_mlflow_tags()
)
trainer = pl.Trainer.from_argparse_args(args, logger=mlf_logger, callbacks=[checkpoint_callback])
trainer.logger.log_hyperparams(model.hparams_initial)
trainer.logger.log_hyperparams({'command_line': vars(args)})
trainer.fit(model, train_loader, val_loader)