Skip to content

Latest commit

 

History

History
192 lines (97 loc) · 15.9 KB

CITATIONS.md

File metadata and controls

192 lines (97 loc) · 15.9 KB

Citations for neuronal transmission ground-truth

updated 2024-12-05

  1. Alekseyenko, O. V., Lee, C. & Kravitz, E. A. Targeted manipulation of serotonergic neurotransmission affects the escalation of aggression in adult male Drosophila melanogaster. PLoS One 5, e10806 (2010).

  2. Alekseyenko, O. V., Chan, Y.-B., Li, R. & Kravitz, E. A. Single dopaminergic neurons that modulate aggression in Drosophila. Proc. Natl. Acad. Sci. U. S. A. 110, 6151–6156 (2013).

  3. Brown, M. P. et al. A subclass of evening cells promotes the switch from arousal to sleep at dusk. Curr. Biol. 34, 2186–2199.e3 (2024).

  4. Aso, Y. et al. The neuronal architecture of the mushroom body provides a logic for associative learning. Elife 1–47 (2014).

  5. Barnstedt, O. et al. Memory-Relevant Mushroom Body Output Synapses Are Cholinergic. Neuron 89, 1237–1247 (2016).

  6. Busch, S., Selcho, M., Ito, K. & Tanimoto, H. A map of octopaminergic neurons in the Drosophila brain. J. Comp. Neurol. 513, 643–667 (2009).

  7. Aso, Y. et al. Nitric oxide acts as a cotransmitter in a subset of dopaminergic neurons to diversify memory dynamics. Elife 8, (2019).

  8. Cao, C. & Brown, M. R. Localization of an insulin-like peptide in brains of two flies. Cell Tissue Res. 304, 317–321 (2001).

  9. Carlsson, M. A., Diesner, M., Schachtner, J. & Nässel, D. R. Multiple neuropeptides in the Drosophila antennal lobe suggest complex modulatory circuits. J. Comp. Neurol. 518, 3359–3380 (2010).

  10. Cavanaugh, D. J., Vigderman, A. S., Dean, T., Garbe, D. S. & Sehgal, A. The Drosophila circadian clock gates sleep through time-of-day dependent modulation of sleep-promoting neurons. Sleep 39, 345–356 (2016).

  11. Certel, S. J. et al. Octopamine neuromodulatory effects on a social behavior decision-making network in Drosophila males. PLoS One 5, e13248 (2010).

  12. Chen, J. et al. Isoform-specific expression of the neuropeptide orcokinin in Drosophila melanogaster. Peptides 68, 50–57 (2015).

  13. Cheong, H. S. J. et al. Transforming descending input into behavior: The organization of premotor circuits in the Drosophila Male Adult Nerve Cord connectome. (2024) doi:10.7554/elife.96084.1.

  14. Chiang, A.-S. et al. Three-dimensional reconstruction of brain-wide wiring networks in Drosophila at single-cell resolution. Curr. Biol. 21, 1–11 (2011).

  15. Chou, Y.-H. et al. Mating-driven variability in olfactory local interneuron wiring. Sci. Adv. 8, eabm7723 (2022).

  16. Croset, V., Treiber, C. & Waddell, S. Cellular diversity in the Drosophila midbrain revealed by single-cell transcriptomics. Elife 7, e34550 (2018).

  17. Dacks, A. M., Christensen, T. A. & Hildebrand, J. G. Phylogeny of a serotonin-immunoreactive neuron in the primary olfactory center of the insect brain. J. Comp. Neurol. 498, 727–746 (2006).

  18. Davis, F. P. et al. A genetic, genomic, and computational resource for exploring neural circuit function. Elife 9, (2020).

  19. Deng, B. et al. Chemoconnectomics: Mapping Chemical Transmission in Drosophila. Neuron 101, 876–893.e4 (2019).

  20. Schlichting, M., Díaz, M. M., Xin, J. & Rosbash, M. Neuron-specific knockouts indicate the importance of network communication to Drosophila rhythmicity. Elife 8, (2019).

  21. Dolan, M.-J. et al. Facilitating Neuron-Specific Genetic Manipulations in Drosophila melanogaster Using a Split GAL4 Repressor. Genetics 206, 775–784 (2017).

  22. Dolan, M.-J. et al. Neurogenetic dissection of the Drosophila lateral horn reveals major outputs, diverse behavioural functions, and interactions with the mushroom body. Elife 8, e43079 (2019).

  23. Syed, S., Duan, Y. & Lim, B. Modulation of protein-DNA binding reveals mechanisms of spatiotemporal gene control in early Drosophila embryos. Elife 12, (2023).

  24. Frenkel, L. et al. Organization of Circadian Behavior Relies on Glycinergic Transmission. Cell Rep. 19, 72–85 (2017).

  25. Gao, S. et al. The neural substrate of spectral preference in Drosophila. Neuron 60, 328–342 (2008).

  26. Goda, T. et al. Drosophila DH31 neuropeptide and PDF receptor regulate night-onset temperature preference. J. Neurosci. 36, 11739–11754 (2016).

  27. González Segarra, A. J., Pontes, G., Jourjine, N., Del Toro, A. & Scott, K. Hunger- and thirst-sensing neurons modulate a neuroendocrine network to coordinate sugar and water ingestion. Elife 12, (2023).

  28. Guo, Y., Flegel, K., Kumar, J., McKay, D. J. & Buttitta, L. A. Ecdysone signaling induces two phases of cell cycle exit in Drosophila cells. Biol. Open 5, 1648–1661 (2016).

  29. Hasenhuetl, P. S. et al. A half-centre oscillator encodes sleep pressure. bioRxiv (2024) doi:10.1101/2024.02.23.581780.

  30. Haynes, P. R., Christmann, B. L. & Griffith, L. C. A single pair of neurons links sleep to memory consolidation in Drosophila melanogaster. Elife 4, e03868 (2015).

  31. Hergarden, A. C., Tayler, T. D. & Anderson, D. J. Allatostatin-A neurons inhibit feeding behavior in adult Drosophila. Proc. Natl. Acad. Sci. U. S. A. 109, 3967–3972 (2012).

  32. Hermann-Luibl, C., Yoshii, T., Senthilan, P. R., Dircksen, H. & Helfrich-Förster, C. The ion transport peptide is a new functional clock neuropeptide in the fruit fly Drosophila melanogaster. J. Neurosci. 34, 9522–9536 (2014).

  33. Hulse, B. K. et al. A connectome of the Drosophila central complex reveals network motifs suitable for flexible navigation and context-dependent action selection. Elife 10, e66039 (2021).

  34. Isaacson, M. D. et al. Small-field visual projection neurons detect translational optic flow and support walking control. bioRxiv (2023) doi:10.1101/2023.06.21.546024.

  35. Ito, M., Masuda, N., Shinomiya, K., Endo, K. & Ito, K. Systematic Analysis of Neural Projections Reveals Clonal Composition of the Drosophila Brain. Curr. Biol. 23, 644–655 (2013).

  36. Jiang, H. et al. Natalisin, a tachykinin-like signaling system, regulates sexual activity and fecundity in insects. Proc. Natl. Acad. Sci. U. S. A. 110, E3526–34 (2013).

  37. Jin, X. et al. A subset of DN1p neurons integrates thermosensory inputs to promote wakefulness via CNMa signaling. Curr. Biol. 31, 2075–2087.e6 (2021).

  38. Johard, H. A. D. et al. Intrinsic neurons of Drosophila mushroom bodies express short neuropeptide F: relations to extrinsic neurons expressing different neurotransmitters. J. Comp. Neurol. 507, 1479–1496 (2008).

  39. Jones, J. D. et al. The dorsal fan-shaped body is a neurochemically heterogeneous sleep-regulating center in Drosophila. bioRxiv (2024) doi:10.1101/2024.04.10.588925.

  40. Konstantinides, N. et al. Phenotypic convergence: Distinct transcription factors regulate common terminal features. Cell 174, 622–635.e13 (2018).

  41. Konstantinides, N. et al. A complete temporal transcription factor series in the fly visual system. Nature 604, 316–322 (2022).

  42. Krashes, M. J. et al. A neural circuit mechanism integrating motivational state with memory expression in Drosophila. Cell 139, 416–427 (2009).

  43. Krzeptowski, W. et al. Mesencephalic Astrocyte-derived Neurotrophic Factor regulates morphology of pigment-dispersing factor-positive clock neurons and circadian neuronal plasticity in Drosophila melanogaster. Front. Physiol. 12, 705183 (2021).

  44. Kubrak, O. I., Lushchak, O. V., Zandawala, M. & Nässel, D. R. Systemic corazonin signalling modulates stress responses and metabolism in Drosophila. Open Biol. 6, (2016).

  45. Landayan, D., Wang, B. P., Zhou, J. & Wolf, F. W. Thirst interneurons that promote water seeking and limit feeding behavior in Drosophila. Elife 10, (2021).

  46. Lee, Y.-J. et al. Conservation and divergence of related neuronal lineages in the Drosophila central brain. Elife 9, (2020).

  47. Liang, L. et al. GABAergic Projection Neurons Route Selective Olfactory Inputs to Specific Higher-Order Neurons. Neuron 79, 917–931 (2013).

  48. Liu, X. & Davis, R. L. The GABAergic anterior paired lateral neuron suppresses and is suppressed by olfactory learning. Nat. Neurosci. 12, 53–59 (2009).

  49. Lu, J. et al. Transforming representations of movement from body- to world-centric space. Nature 601, 98–104 (2022).

  50. Ma, D. et al. A transcriptomic taxonomy of Drosophila circadian neurons around the clock. Elife 10, (2021).

  51. Mao, Z. & Davis, R. L. Eight different types of dopaminergic neurons innervate the Drosophila mushroom body neuropil: anatomical and physiological heterogeneity. Front. Neural Circuits 3, 5 (2009).

  52. Mao, R. et al. Conditional chemoconnectomics (cCCTomics) as a strategy for efficient and conditional targeting of chemical transmission. Elife 12, (2024).

  53. Martelli, C. et al. SIFamide Translates Hunger Signals into Appetitive and Feeding Behavior in Drosophila. (2017) doi:10.1016/j.celrep.2017.06.043.

  54. Matheson, A. M. M. et al. Addendum: A neural circuit for wind-guided olfactory navigation. Nat. Commun. 15, 1903 (2024).

  55. Mattaliano, M. D., Montana, E. S., Parisky, K. M., Littleton, J. T. & Griffith, L. C. The Drosophila ARC homolog regulates behavioral responses to starvation. Mol. Cell. Neurosci. 36, 211–221 (2007).

  56. Mauss, A. S., Meier, M., Serbe, E. & Borst, A. Optogenetic and pharmacologic dissection of feedforward inhibition in Drosophila motion vision. J. Neurosci. 34, 2254–2263 (2014).

  57. McKim, T. H. et al. Synaptic connectome of a neurosecretory network in the Drosophila brain. bioRxivorg (2024) doi:10.1101/2024.08.28.609616.

  58. Meiselman, M. R. et al. Recovery from cold-induced reproductive dormancy is regulated by temperature-dependent AstC signaling. Curr. Biol. 32, 1362–1375.e8 (2022).

  59. Meschi, E., Duquenoy, L., Otto, N., Dempsey, G. & Waddell, S. Compensatory enhancement of input maintains aversive dopaminergic reinforcement in hungry Drosophila. Neuron 112, 2315–2332.e8 (2024).

  60. Mollá-Albaladejo, R., Jiménez-Caballero, M. & Sánchez-Alcañiz, J. A. Molecular characterization of gustatory second-order neurons reveals integrative mechanisms of gustatory and metabolic information. (2024) doi:10.7554/elife.100947.1.

  61. Nässel, D. R. & Elekes, K. Aminergic neurons in the brain of blowflies and Drosophila: dopamine- and tyrosine hydroxylase-immunoreactive neurons and their relationship with putative histaminergic neurons. Cell Tissue Res. 267, 147–167 (1992).

  62. Nässel, D. R., Enell, L. E., Santos, J. G., Wegener, C. & Johard, H. A. D. A large population of diverse neurons in the Drosophila central nervous system expresses short neuropeptide F, suggesting multiple distributed peptide functions. BMC Neurosci. 9, 90 (2008).

  63. Nern, A. et al. Connectome-driven neural inventory of a complete visual system. bioRxiv (2024) doi:10.1101/2024.04.16.589741.

  64. Ni, J. D. et al. Differential regulation of the Drosophila sleep homeostat by circadian and arousal inputs. Elife 8, (2019).

  65. Niens, J. et al. Dopamine Modulates Serotonin Innervation in the Drosophila Brain. Front. Syst. Neurosci. 11, 76 (2017).

  66. Palavicino-Maggio, C. B., Chan, Y.-B., McKellar, C. & Kravitz, E. A. A small number of cholinergic neurons mediate hyperaggression in female Drosophila. Proceedings of the National Academy of Sciences 116, 17029–17038 (2019).

  67. Pooryasin, A. & Fiala, A. Identified serotonin-releasing neurons induce behavioral quiescence and suppress mating in Drosophila. J. Neurosci. 35, 12792–12812 (2015).

  68. Reinhard, N. et al. Synaptic connectome of theDrosophilacircadian clock. (2023) doi:10.1101/2023.09.11.557222.

  69. Scheunemann, L., Plaçais, P.-Y., Dromard, Y., Schwärzel, M. & Preat, T. Dunce Phosphodiesterase Acts as a Checkpoint for Drosophila Long-Term Memory in a Pair of Serotonergic Neurons. Neuron 98, 350–365.e5 (2018).

  70. Scott, R. L. et al. Non-canonical eclosion hormone-expressing cells regulate Drosophila ecdysis. iScience 23, 101108 (2020).

  71. Shang, Y., Claridge-Chang, A., Sjulson, L., Pypaert, M. & Miesenböck, G. Excitatory local circuits and their implications for olfactory processing in the fly antennal lobe. Cell 128, 601–612 (2007).

  72. Shinomiya, K. et al. Candidate neural substrates for off-edge motion detection in Drosophila. Curr. Biol. 24, 1062–1070 (2014).

  73. Sinakevitch, I. & Strausfeld, N. J. Comparison of octopamine-like immunoreactivity in the brains of the fruit fly and blow fly. J. Comp. Neurol. 494, 460–475 (2006).

  74. Sitaraman, D. et al. Serotonin is necessary for place memory in Drosophila. Proc. Natl. Acad. Sci. U. S. A. 105, 5579–5584 (2008).

  75. Sizemore, T. R., Jonaitis, J. & Dacks, A. M. Heterogeneous receptor expression underlies non-uniform peptidergic modulation of olfaction in Drosophila. Nat. Commun. 14, 5280 (2023).

  76. Söderberg, J. A. E., Carlsson, M. A. & Nässel, D. R. Insulin-producing cells in the Drosophila brain also express satiety-inducing cholecystokinin-like peptide, drosulfakinin. Front. Endocrinol. (Lausanne) 3, 109 (2012).

  77. Song, T. et al. Dietary cysteine drives body fat loss via FMRFamide signaling in Drosophila and mouse. Cell Res. 33, 434–447 (2023).

  78. Sun, L., Jiang, R. H., Ye, W. J., Rosbash, M. & Guo, F. Recurrent circadian circuitry regulates central brain activity to maintain sleep. Neuron 110, 2139–2154.e5 (2022).

  79. Takemura, S.-Y. et al. Cholinergic circuits integrate neighboring visual signals in a Drosophila motion detection pathway. Curr. Biol. 21, 2077–2084 (2011).

  80. Shinomiya, K. et al. A common evolutionary origin for the ON- and OFF-edge motion detection pathways of the Drosophila visual system. Front. Neural Circuits 9, 33 (2015).

  81. Tanaka, N. K., Endo, K. & Ito, K. Organization of antennal lobe-associated neurons in adult Drosophila melanogaster brain. J. Comp. Neurol. 520, 4067–4130 (2012).

  82. Turner-Evans, D. B. et al. The Neuroanatomical Ultrastructure and Function of a Biological Ring Attractor. Neuron 108, 145–163.e10 (2020).

  83. Raghu, S. V. & Borst, A. Candidate glutamatergic neurons in the visual system of Drosophila. PLoS One 6, e19472 (2011).

  84. Vitzthum, H., Homberg, U. & Agricola, H. Distribution of Dip-allatostatin I-like immunoreactivity in the brain of the locust Schistocerca gregaria with detailed analysis of immunostaining in the central complex. J. Comp. Neurol. 369, 419–437 (1996).

  85. Waddell, S., Douglas Armstrong, J., Kitamoto, T., Kaiser, K. & Quinn, W. G. The amnesiac Gene Product Is Expressed in Two Neurons in the Drosophila Brain that Are Critical for Memory. Cell 103, 805–813 (2000).

  86. Wang, F. et al. Neural circuitry linking mating and egg laying in Drosophila females. Nature 579, 101–105 (2020).

  87. Wang, K. et al. Neural circuit mechanisms of sexual receptivity in Drosophila females. Nature 589, 577–581 (2021).

  88. Wei, H., Kyung, H. Y., Kim, P. J. & Desplan, C. The diversity of lobula plate tangential cells (LPTCs) in the Drosophila motion vision system. J. Comp. Physiol. A Neuroethol. Sens. Neural Behav. Physiol. 206, 139–148 (2020).

  89. Winther, A. M. E., Siviter, R. J., Isaac, R. E., Predel, R. & Nässel, D. R. Neuronal expression of tachykinin-related peptides and gene transcript during postembryonic development of Drosophila: TRP and Gene Transcript Expression inDrosophila. J. Comp. Neurol. 464, 180–196 (2003).

  90. Wolff, T. et al. Cell type-specific driver lines targeting the Drosophila central complex and their use to investigate neuropeptide expression and sleep regulation. bioRxivorg (2024) doi:10.1101/2024.10.21.619448.

  91. Wu, Y., Bidaye, S. S. & Mahringer, D. Drosophilafemale-specific brain neuron elicits persistent position- and direction-selective male-like social behaviors. (2019) doi:10.1101/594960.

  92. Xie, X. et al. The laminar organization of the Drosophila ellipsoid body is semaphorin-dependent and prevents the formation of ectopic synaptic connections. Elife 6, (2017).

  93. Yao, Z. & Scott, K. Serotonergic neurons translate taste detection into internal nutrient regulation. Neuron 110, 1036–1050.e7 (2022).

  94. Yurgel, M. E. et al. A single pair of leucokinin neurons are modulated by feeding state and regulate sleep-metabolism interactions. PLoS Biol. 17, e2006409 (2019).

  95. Zhao, A. et al. A comprehensive neuroanatomical survey of the Drosophila Lobula Plate Tangential Neurons with predictions for their optic flow sensitivity. bioRxivorg (2023) doi:10.1101/2023.10.16.562634.