-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathhp_tuner.py
182 lines (126 loc) · 6.77 KB
/
hp_tuner.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
import wandb
import os
import copy
from pathlib import Path
import numpy as np
import argparse
from tqdm import tqdm
import time
import torch
from torch import nn
from utils import create_dataset, prepare_data, EmbeddingsNet, recommend_movie
from torch.optim.lr_scheduler import ReduceLROnPlateau, CosineAnnealingLR, CyclicLR
import torch.optim as optim
class run_wandb():
"""
Hyperparameter tuning with wandb tool. parameters_dict is a dictionary that contains the hyperparameters.
Tuning will be done with random search.
"""
def __init__(self, args):
self.args = args
self.device = 'cuda' if torch.cuda.is_available() else 'cpu'
wandb.login()
self.metric = {
'name': 'test_loss',
'goal': 'minimize'
}
self.parameters_dict = {
'optimizer': {'values': ['sgd', 'adam', 'rmsprop']},
'learning_rate': {'values': [0.001, 0.0005, 0.0001, 0.00005]},
'epochs': {'values': [50]},
'model_layers': {'values': [[256, 128, 64, 32], [128, 64, 32], [64, 32]]},
'scheduler': {'values': ['CosineAnnealingLR', 'ReduceLROnPlateau']},
"batch_size": {'values': [512, 1024, 2048, 4096]},
"weight_decay": {'values': [0., 1e-5, 1e-3]}
}
self.sweep_config = {'method': 'random', 'metric': self.metric, 'parameters': self.parameters_dict}
self.sweep_id = wandb.sweep(self.sweep_config, project='Huawei')
wandb.agent(self.sweep_id, function=self.train_model_wandb, count=args.hp_run_number)
def train_model_wandb(self):
"""
Train the model by given arguments
Args:
args (data_url): link of the dataset
args (model_layers): set hidden layers of the model
args (optimizer): set optimizer
args (scheduler): set scheduler
args (epochs): set epochs
args (batch_size): set batch size
args (weight_decay): set weight decay
Return: Saves the best weights with the lowest loss
"""
with wandb.init() as run:
config=wandb.config
model = self.prepare_model(config.model_layers)
best_loss=np.inf
best_model_wts = copy.deepcopy(model.state_dict())
optimizer, scheduler = self.build_optimizer(model, config.optimizer, config.learning_rate, config.scheduler, config.weight_decay)
criterion = nn.MSELoss()
dataloaders = prepare_data(self.args, config.batch_size)
for epoch in tqdm(range(config.epochs)):
for phase in ["train", "test"]:
if phase == "train":
model.train()
dataloader = dataloaders["train"]
else:
model.eval()
dataloader = dataloaders["test"]
running_loss = 0.0
for user, movie, rating in tqdm(dataloader):
user = user.type(torch.LongTensor)
movie = movie.type(torch.LongTensor)
rating = rating.view(-1,1)
user = user.to(self.device)
movie = movie.to(self.device)
rating = rating.to(self.device)
optimizer.zero_grad()
with torch.set_grad_enabled(phase == 'train'):
outputs = model(user, movie)
loss = criterion(outputs, rating)
# backward + optimize only if in training phase
if phase == 'train':
#backpropagate and get gradients
loss.backward()
#update weights with optimizer function
optimizer.step()
# sum up each loss of batch
running_loss += loss.item() * user.size(0)
# divide by image size to obtain overall epoch loss
epoch_loss = running_loss / dataloaders["dataset_size"][phase]
if phase=="train":
train_loss = epoch_loss
wandb.log({'epoch': epoch, 'train loss': train_loss})
else:
test_loss = epoch_loss
wandb.log({'epoch': epoch, 'test loss': test_loss})
# update the lr based on the epoch loss
if phase == "test":
# keep best model weights to use later on inference phase
if epoch_loss < best_loss:
best_model_wts = copy.deepcopy(model.state_dict())
best_epoch = epoch
best_epoch_loss = epoch_loss
print("Found a better model")
# lr = optimizer.param_groups[0]['lr']
scheduler.step(epoch_loss)
print('Epoch:\t %d |Phase: \t %s | Loss:\t\t %.4f'
% (epoch, phase, epoch_loss))
def build_optimizer(self, model, optimizer, learning_rate, scheduler, weight_decay):
if optimizer == "sgd":
optimizer = optim.SGD(model.parameters(), lr=learning_rate, momentum=0.9, weight_decay=weight_decay)
elif optimizer == "adam":
optimizer = optim.Adam(model.parameters(), lr=learning_rate, weight_decay=weight_decay)
elif optimizer == "rmsprop":
optimizer = optim.RMSprop(model.parameters(), lr=learning_rate, momentum=0.9, weight_decay=weight_decay)
else:
raise ValueError(f"Optimizer {optimizer} not found")
if scheduler == "CosineAnnealingLR":
scheduler = CosineAnnealingLR(optimizer, T_max=10, eta_min=1e-7)
elif scheduler == "ReduceLROnPlateau":
scheduler = ReduceLROnPlateau(optimizer, mode="min", verbose=True)
else:
raise ValueError(f"Scheduler {scheduler} not found")
return optimizer, scheduler
def prepare_model(self, model_layers):
_, _, _, _, _, _, n_users, n_movies = create_dataset(self.args)
return EmbeddingsNet(n_users, n_movies, model_layers).to(self.device)