-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathdataset.py
62 lines (51 loc) · 2 KB
/
dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
import os
import matplotlib.pyplot as plt
import numpy as np
import torch
import torchvision
import torchvision.transforms as transforms
from PIL import Image
class Mydataset(torch.utils.data.Dataset):
def __init__(self, set):
comic = []
face = []
print(set.class_to_idx)
self.dataset = []
for (_, img) in enumerate(set):
if img[1] == 0:
comic.append(img[0])
else:
face.append(img[0])
size = len(comic)
self.dataset = []
for i in range(size):
self.dataset.append([face[i],comic[i]])
def __getitem__(self, index):
return self.dataset[index]
def __len__(self):
return len(self.dataset)
class FaceDataSet:
def __init__(self, args, batch_size=5, dataset_path=""):
self.batch_size = batch_size
self.dataset_path = dataset_path
self.resize = args.resize
self.crop_size = args.crop_size
self.trans = self.get_transform()
self.train_loader, self.val_loader = self.get_dataloader()
def get_transform(self):
trans_list = [
transforms.Resize(self.resize, Image.BICUBIC),
transforms.RandomCrop(self.crop_size),
transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
]
trans = transforms.Compose(trans_list)
return trans
def get_dataloader(self):
train_set = torchvision.datasets.ImageFolder(os.path.join(self.dataset_path,'train'), transform=self.trans)
val_set = torchvision.datasets.ImageFolder(os.path.join(self.dataset_path,'train'), transform=self.trans)
train_dataset= Mydataset(train_set)
val_dataset = Mydataset(val_set)
train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=self.batch_size)
val_loader = torch.utils.data.DataLoader(val_dataset, batch_size=self.batch_size)
return train_loader, val_loader