-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathvisualize_drawings_experiments.py
296 lines (253 loc) · 10.7 KB
/
visualize_drawings_experiments.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
"""
visualize_iterative_experiment | Author: Catherine Wong.
Visualizes the results of the iterative experiments for the drawings domain.
Assumes that the directory structure is:
{experiment_id}/{domain}/{experiment_type}/{replication}/{experiment_type}_{batch_size}
Usage:
python visualize_drawings_experiments.py
--experiments_id default
--domains nuts_bolts
--experiment_type stitch stitch_codex stitch_codex_language_human
--visualize_codex_results
--visualize_inventions # Not yet implemented.
"""
import argparse
import json
import os
import random
from collections import defaultdict
import numpy as np
import PIL
import data.drawings.drawings_primitives as drawings_primitives
from data.drawings.grammar import DrawingGrammar
from data.drawings.make_tasks import TASK_DOMAINS # Drawing task domains.
from dreamcoder.program import Program
from src.models.sample_generator import GPTSampleGenerator
DEFAULT_EXPERIMENTS_DIRECTORY = "experiments_iterative"
DEFAULT_DRAWINGS_GRAMMAR = DrawingGrammar.new_uniform()
DEFAULT_IMAGES_PER_ROW = 10
CODEX_SAMPLE_VISUALIZATION = "codex_sample_visualization.png"
INVENTIONS_VISUALIZTION = "inventions_visualization.png"
DOMAIN_PREFIX = "drawings_"
REPLICATION_PREFIX = "seed_"
CODEX_EXPERIMENT_TAG = "codex"
parser = argparse.ArgumentParser()
parser.add_argument(
"--experiment_name", required=True, help="Top-level experiment directory."
)
parser.add_argument(
"--experiment_types",
nargs="+",
default=["stitch", "stitch_codex", "stitch_codex_language_human"],
)
parser.add_argument(
"--domains",
nargs="+",
default=TASK_DOMAINS,
)
parser.add_argument(
"--visualize_codex_results",
action="store_true",
help="Visualize programs generated by Codex.",
)
parser.add_argument(
"--visualize_inventions",
action="store_true",
help="Visualize inventions generated by Stitch.",
)
def get_replication_directories(args, domain, experiment_type):
# Get the directories for this experiment.
experiment_top_level_directory = os.path.join(
DEFAULT_EXPERIMENTS_DIRECTORY,
args.experiment_name,
DOMAIN_PREFIX + domain,
experiment_type,
)
if not os.path.exists(experiment_top_level_directory):
print(
f"Experiment directory not found, skipping visualization: {experiment_top_level_directory}"
)
return []
replication_directories = [
os.path.join(experiment_top_level_directory, d)
for d in os.listdir(experiment_top_level_directory)
if REPLICATION_PREFIX in d
]
return replication_directories
def get_sampled_programs(codex_results, max_to_display=10):
# Gets sampled programs out of the codex results.
sampled_programs = [
p["program"] for p in codex_results["results"]["programs_valid"]
]
sampled_programs = random.sample(
sampled_programs, min(max_to_display, len(sampled_programs))
)
return [Program.parse(string_program) for string_program in sampled_programs]
def get_prompted_programs(codex_results, max_to_display=10):
# Get programs in the original prompt.
if "programs" not in codex_results["params"]["body_task_types"]:
return []
prompt_programs = []
for query in codex_results["results_by_query"]:
for body_task_data in query["prompt"]["body_task_data"]:
p = body_task_data["task_program"]
if p is not None:
prompt_programs.append(body_task_data["task_program"])
if query["prompt"]["final_task_data"]["task_program"] is not None:
prompt_programs.append(query["prompt"]["final_task_data"]["task_program"])
# Randomly sample per prompt.
prompt_programs = random.sample(
prompt_programs, min(max_to_display, len(prompt_programs))
)
return [Program.parse(string_program) for string_program in prompt_programs]
def stack_images(images):
min_img_shape = sorted([(np.sum(i.size), i.size) for i in images])[0][1]
img_merge = np.vstack(
(np.asarray(i.resize(min_img_shape, PIL.Image.ANTIALIAS)) for i in images)
)
img_merge = PIL.Image.fromarray(img_merge)
return img_merge
def get_blank_spacer(images, percentage=1):
# Adds a spacer that is percentage * height
last_image = images[-1]
spacer = PIL.Image.new(
"RGB",
int(last_image.size[0]),
last_image.size[-1],
(255, 255, 255),
)
return spacer
def visualize_codex_results(args, experiment_type, replication_directory):
if CODEX_EXPERIMENT_TAG not in experiment_type:
print(
f"Assuming {experiment_type} should not have samples visualized, continuing."
)
return
# Get all the batches in this directory, ordered by batch size.
batch_directories = sorted(
[d for d in os.listdir(replication_directory) if experiment_type in d],
key=lambda subdir: int(subdir.split("_")[-1]),
)
codex_results_figure = []
for batch_directory in batch_directories:
full_batch_directory = os.path.join(replication_directory, batch_directory)
for iteration in os.listdir(full_batch_directory):
try:
# Visualize gpt_query_results.json for each iteration of this batch size.
codex_results_file = os.path.join(
full_batch_directory,
iteration,
GPTSampleGenerator.query_results_file,
)
print(codex_results_file)
if not os.path.exists(codex_results_file):
print(
f"Could not find codex_results in {codex_results_file}, continuing."
)
continue
with open(codex_results_file) as f:
codex_results = json.load(f)
# Montage the programs in the original prompt.
prompted_programs = get_prompted_programs(codex_results)
if len(prompted_programs) > 0:
prompted_progams_montage = drawings_primitives.display_programs_as_grid(
prompted_programs,
color=(0, 0, 0),
suptitle=f"Codex prompt program examples: {batch_directory}, stitch_iteration={iteration}",
transparent_background=False,
ncols=8,
)
codex_results_figure.append(prompted_progams_montage)
# Montage the programs sampled from Codex.
sampled_programs = get_sampled_programs(codex_results)
if len(sampled_programs) > 0:
sampled_programs_montage = drawings_primitives.display_programs_as_grid(
sampled_programs,
color=(0, 0, 255),
suptitle=f"Codex program samples: {batch_directory}, stitch_iteration={iteration}",
transparent_background=False,
ncols=8,
)
codex_results_figure.append(sampled_programs_montage)
# Add a line spacer.
codex_results_figure.append(get_blank_spacer(codex_results_figure))
except Exception as e:
print(e)
continue
# Concatenate all the images and save it.
codex_visualization_output = os.path.join(
replication_directory, CODEX_SAMPLE_VISUALIZATION
)
print(f"Writing out visualization to: {codex_visualization_output}")
codex_results_image = stack_images(codex_results_figure)
codex_results_image.save(codex_visualization_output)
def get_iteration_inventions_and_programs(args, iteration, full_batch_directory):
inventions = set()
programs = {"codex": set(), "train": set(), "test": set()}
for split in ["train", "test"]:
programs_to_rewrite_file = os.path.join(
full_batch_directory, iteration, split, "stitch_rewrite_input.json"
)
programs_rewritten_file = os.path.join(
full_batch_directory, iteration, split, "stitch_rewrite_output.json"
)
with open(programs_to_rewrite_file) as f:
data = json.load(f)
split_inventions = [
Program.parse(p["expression"])
for p in data["DSL"]["productions"]
if "#" in p["expression"]
]
inventions.update(split_inventions)
with open(programs_rewritten_file) as f:
data = json.load(f)
for f in data["frontiers"]:
task_split = split if "codex" not in f["task"] else "codex"
for program in f["programs"]:
programs[task_split].add(Program.parse(program["program"]))
return inventions, programs
def get_program_primitive_usages(invention, programs):
usages = defaultdict(list)
for split in programs:
for p in programs[split]:
if str(invention) in p.left_order_tokens():
usages[split].append(p)
return usages
def visualize_inventions(args, experiment_type, replication_directory):
# Get the new inventions at this iteration.
# Get all the batches in this directory, ordered by batch size.
batch_directories = sorted(
[d for d in os.listdir(replication_directory) if experiment_type in d],
key=lambda subdir: int(subdir.split("_")[-1]),
)
for batch_directory in batch_directories:
full_batch_directory = os.path.join(replication_directory, batch_directory)
for iteration in os.listdir(full_batch_directory):
if not iteration.isnumeric():
continue
(inventions, programs,) = get_iteration_inventions_and_programs(
args, iteration, full_batch_directory
)
for invention in inventions:
get_program_primitive_usages(invention, programs)
import pdb
pdb.set_trace()
def main(args):
for domain in args.domains:
for experiment_type in args.experiment_types:
replication_directories = get_replication_directories(
args, domain, experiment_type
)
for replication_directory in replication_directories:
print(
f"Now generating visualizations for replication: {replication_directory}"
)
if args.visualize_codex_results:
visualize_codex_results(
args, experiment_type, replication_directory
)
if args.visualize_inventions:
visualize_inventions(args, experiment_type, replication_directory)
if __name__ == "__main__":
args = parser.parse_args()
main(args)