-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils.py
108 lines (76 loc) · 3.21 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
import numpy as np
import scipy.linalg
import cv2
def fid(reals, fakes):
"""FID score calculation.
Args:
reals (numpy.array): Real images.
fakes (numpy.array): Fake images.
"""
reals = reals.reshape(reals.shape[0], -1)
fakes = fakes.reshape(fakes.shape[0], -1)
mu_real = np.mean(reals, axis=0)
mu_fake = np.mean(fakes, axis=0)
sigma_real = np.cov(reals, rowvar=False)
sigma_fake = np.cov(fakes, rowvar=False)
diff = mu_real - mu_fake
covmean = np.dot(sigma_real, sigma_fake.T)
covmean, _ = scipy.linalg.sqrtm(sigma_real.dot(sigma_fake), disp=False)
if not np.isfinite(covmean).all():
eps=1e-6
offset = np.eye(sigma_real.shape[0]) * eps
ncovmean = scipy.linalg.sqrtm((sigma_real + offset).dot(sigma_fake + offset))
covmean = ncovmean
if np.iscomplexobj(covmean):
covmean = covmean.real
return diff @ diff + np.trace(sigma_real) + np.trace(sigma_fake) - 2 * np.trace(covmean)
def kl(reals, fakes):
"""KL divergence calculation.
Args:
reals (numpy.array): Real images.
fakes (numpy.array): Fake images.
"""
reals = reals.transpose(1, 0, 2, 3).reshape(reals.shape[1], -1)
fakes = fakes.transpose(1, 0, 2, 3).reshape(fakes.shape[1], -1)
hist_real = np.apply_along_axis(lambda a: np.histogram(a, bins=40, range=(-1, 1))[0], 1, reals)
hist_fake = np.apply_along_axis(lambda a: np.histogram(a, bins=40, range=(-1, 1))[0], 1, fakes)
hist_real = hist_real + 1
hist_fake = hist_fake + 1
hist_real = hist_real / np.sum(hist_real)
hist_fake = hist_fake / np.sum(hist_fake)
return np.mean(np.log(hist_real / hist_fake))
def jsd(reals, fakes):
"""Jensen-Shannon divergence calculation.
Args:
reals (numpy.array): Real images.
fakes (numpy.array): Fake images.
"""
reals = reals.transpose(1, 0, 2, 3).reshape(reals.shape[1], -1)
fakes = fakes.transpose(1, 0, 2, 3).reshape(fakes.shape[1], -1)
hist_real = np.apply_along_axis(lambda a: np.histogram(a, bins=40, range=(-1, 1))[0], 1, reals)
hist_fake = np.apply_along_axis(lambda a: np.histogram(a, bins=40, range=(-1, 1))[0], 1, fakes)
hist_real = hist_real + 1
hist_fake = hist_fake + 1
hist_real = hist_real / np.sum(hist_real)
hist_fake = hist_fake / np.sum(hist_fake)
hist_avg = (hist_real + hist_fake) / 2
return 0.5 * (np.mean(np.log(hist_real / hist_avg)) + np.mean(np.log(hist_fake / hist_avg)))
def haar(image):
# Load the Haar cascade for face detection
face_cascade = cv2.CascadeClassifier(cv2.data.haarcascades + 'haarcascade_frontalface_default.xml')
# Convert the image to grayscale
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
# Perform face detection
faces = face_cascade.detectMultiScale(gray, scaleFactor=1.1, minNeighbors=4)
# Draw rectangles around the detected faces
for (x, y, w, h) in faces:
cv2.rectangle(image, (x, y), (x+w, y+h), (255, 0, 0), 2)
# Display the result
cv2.imshow('Face Detection', image)
cv2.waitKey(0)
cv2.destroyAllWindows()
if __name__ == '__main__':
# Load the image
image = cv2.imread('data/edface/500/03120500_000.png')
# Perform face detection
haar(image)