diff --git a/HousingPricePredicter.joblib b/HousingPricePredicter.joblib new file mode 100644 index 00000000000..25ec93d9a4b Binary files /dev/null and b/HousingPricePredicter.joblib differ diff --git a/ML House Prediction.ipynb b/ML House Prediction.ipynb new file mode 100644 index 00000000000..b838d064550 --- /dev/null +++ b/ML House Prediction.ipynb @@ -0,0 +1,1709 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Housing Price Predictor" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "import pandas as pd" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "housing= pd.read_csv(\"data.csv\")" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
CRIMZNINDUSCHASNOXRMAGEDISRADTAXPTRATIOBLSTATMEDV
00.0063218.02.3100.5386.57565.24.0900129615.3396.904.9824.0
10.027310.07.0700.4696.42178.94.9671224217.8396.909.1421.6
20.027290.07.0700.4697.18561.14.9671224217.8392.834.0334.7
30.032370.02.1800.4586.99845.86.0622322218.7394.632.9433.4
40.069050.02.1800.4587.14754.26.0622322218.7396.905.3336.2
\n", + "
" + ], + "text/plain": [ + " CRIM ZN INDUS CHAS NOX RM AGE DIS RAD TAX PTRATIO \\\n", + "0 0.00632 18.0 2.31 0 0.538 6.575 65.2 4.0900 1 296 15.3 \n", + "1 0.02731 0.0 7.07 0 0.469 6.421 78.9 4.9671 2 242 17.8 \n", + "2 0.02729 0.0 7.07 0 0.469 7.185 61.1 4.9671 2 242 17.8 \n", + "3 0.03237 0.0 2.18 0 0.458 6.998 45.8 6.0622 3 222 18.7 \n", + "4 0.06905 0.0 2.18 0 0.458 7.147 54.2 6.0622 3 222 18.7 \n", + "\n", + " B LSTAT MEDV \n", + "0 396.90 4.98 24.0 \n", + "1 396.90 9.14 21.6 \n", + "2 392.83 4.03 34.7 \n", + "3 394.63 2.94 33.4 \n", + "4 396.90 5.33 36.2 " + ] + }, + "execution_count": 3, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "housing.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "RangeIndex: 506 entries, 0 to 505\n", + "Data columns (total 14 columns):\n", + " # Column Non-Null Count Dtype \n", + "--- ------ -------------- ----- \n", + " 0 CRIM 506 non-null float64\n", + " 1 ZN 506 non-null float64\n", + " 2 INDUS 506 non-null float64\n", + " 3 CHAS 506 non-null int64 \n", + " 4 NOX 506 non-null float64\n", + " 5 RM 506 non-null float64\n", + " 6 AGE 506 non-null float64\n", + " 7 DIS 506 non-null float64\n", + " 8 RAD 506 non-null int64 \n", + " 9 TAX 506 non-null int64 \n", + " 10 PTRATIO 506 non-null float64\n", + " 11 B 506 non-null float64\n", + " 12 LSTAT 506 non-null float64\n", + " 13 MEDV 506 non-null float64\n", + "dtypes: float64(11), int64(3)\n", + "memory usage: 55.4 KB\n" + ] + } + ], + "source": [ + "housing.info()" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
CRIMZNINDUSCHASNOXRMAGEDISRADTAXPTRATIOBLSTATMEDV
count506.000000506.000000506.000000506.000000506.000000506.000000506.000000506.000000506.000000506.000000506.000000506.000000506.000000506.000000
mean3.61352411.36363611.1367790.0691700.5546956.28463468.5749013.7950439.549407408.23715418.455534356.67403212.65306322.532806
std8.60154523.3224536.8603530.2539940.1158780.70261728.1488612.1057108.707259168.5371162.16494691.2948647.1410629.197104
min0.0063200.0000000.4600000.0000000.3850003.5610002.9000001.1296001.000000187.00000012.6000000.3200001.7300005.000000
25%0.0820450.0000005.1900000.0000000.4490005.88550045.0250002.1001754.000000279.00000017.400000375.3775006.95000017.025000
50%0.2565100.0000009.6900000.0000000.5380006.20850077.5000003.2074505.000000330.00000019.050000391.44000011.36000021.200000
75%3.67708212.50000018.1000000.0000000.6240006.62350094.0750005.18842524.000000666.00000020.200000396.22500016.95500025.000000
max88.976200100.00000027.7400001.0000000.8710008.780000100.00000012.12650024.000000711.00000022.000000396.90000037.97000050.000000
\n", + "
" + ], + "text/plain": [ + " CRIM ZN INDUS CHAS NOX RM \\\n", + "count 506.000000 506.000000 506.000000 506.000000 506.000000 506.000000 \n", + "mean 3.613524 11.363636 11.136779 0.069170 0.554695 6.284634 \n", + "std 8.601545 23.322453 6.860353 0.253994 0.115878 0.702617 \n", + "min 0.006320 0.000000 0.460000 0.000000 0.385000 3.561000 \n", + "25% 0.082045 0.000000 5.190000 0.000000 0.449000 5.885500 \n", + "50% 0.256510 0.000000 9.690000 0.000000 0.538000 6.208500 \n", + "75% 3.677082 12.500000 18.100000 0.000000 0.624000 6.623500 \n", + "max 88.976200 100.000000 27.740000 1.000000 0.871000 8.780000 \n", + "\n", + " AGE DIS RAD TAX PTRATIO B \\\n", + "count 506.000000 506.000000 506.000000 506.000000 506.000000 506.000000 \n", + "mean 68.574901 3.795043 9.549407 408.237154 18.455534 356.674032 \n", + "std 28.148861 2.105710 8.707259 168.537116 2.164946 91.294864 \n", + "min 2.900000 1.129600 1.000000 187.000000 12.600000 0.320000 \n", + "25% 45.025000 2.100175 4.000000 279.000000 17.400000 375.377500 \n", + "50% 77.500000 3.207450 5.000000 330.000000 19.050000 391.440000 \n", + "75% 94.075000 5.188425 24.000000 666.000000 20.200000 396.225000 \n", + "max 100.000000 12.126500 24.000000 711.000000 22.000000 396.900000 \n", + "\n", + " LSTAT MEDV \n", + "count 506.000000 506.000000 \n", + "mean 12.653063 22.532806 \n", + "std 7.141062 9.197104 \n", + "min 1.730000 5.000000 \n", + "25% 6.950000 17.025000 \n", + "50% 11.360000 21.200000 \n", + "75% 16.955000 25.000000 \n", + "max 37.970000 50.000000 " + ] + }, + "execution_count": 5, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "housing.describe()" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [], + "source": [ + "%matplotlib inline" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [], + "source": [ + "import matplotlib.pyplot as plt" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([[,\n", + " ,\n", + " ,\n", + " ],\n", + " [,\n", + " ,\n", + " ,\n", + " ],\n", + " [,\n", + " ,\n", + " ,\n", + " ],\n", + " [,\n", + " , ,\n", + " ]], dtype=object)" + ] + }, + "execution_count": 8, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABIUAAANeCAYAAACMEr7PAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/d3fzzAAAACXBIWXMAAAsTAAALEwEAmpwYAACoIUlEQVR4nOz9fZxkd13n/b/eJBFCQEIMtGMSHfYyopBIkJHFza62BCQCkrALbNgIE806ugYFd1QmeO2CemWv7EK4WQR3B8JmWAMhcmMiyE3M0rL8lgQJRCZ3mEjmipMMGe6hUSMTPr8/6nRS0+meru6um3O6Xs/Hox9d59Q5p95V3f3tU5/6nu83VYUkSZIkSZKmy4MmHUCSJEmSJEnjZ1FIkiRJkiRpClkUkiRJkiRJmkIWhSRJkiRJkqaQRSFJkiRJkqQpZFFIkiRJkiRpClkUkiRJkiRJmkIWhXSQJP8myaeSzCfZl+SDSf55c9+rkny7ue9rSf5Pkp/o23c2yd6+5bkkleQJix7jT5r1s+N6XpI2tiRnN23T4q9K8h+b9ugfkpzQt8/TkuyZYGxJHZdkT9OWnNO0N7+16P69C+c7fedR32y+/jrJHyTZ1Lf9OUk+vtzjNLePT/KeJF9K8vUku5OcM9InKqnzlnuf17RNf7TE9pXkBxetW2jrXrDE9q9Icntz/L1J3jXK56PhsSik+yT598Drgf8EzADfD7wZOKNvs3dV1cOAY4GPAn+8wmH/Gnhx32N8D/AU4ItDCy5p6lXVpVX1sP4v4GXA3cBbms2+BfyHSWWUtOF9BXh5ku8+xDbvqqqHA8cAzwW+F7iuvzA0gP8J/C3wA8D30DvPunttkSVNgwHf5w1iK722buui428FXgQ8rTkH2wJcvb7UGheLQgIgySOA3wPOq6r3VtW3qurbVfWnVfVbi7evqgPApcBxSR51iENfCvzrJIc1yy8E3gf845CfgiTdJ8kTgdcBZ1XVvmb1fwVeuPhTL0kakpuBTwC/sdKGzTnWjcC/pvdB2fZVPM6PA5c052oHquozVfXBNSWWtOGt9n3eIY7zA8BPAduAZySZ6bv7x4EPV9XfAFTVF6pq5xCfhkbIopAW/ATwEHoFmxUl+S56n0x9GfjqITa9C7gJ+Jlm+cXA29ceU5IOLcnRwLuB/6eq5vruupNer6FXjT+VpCnxH4DfSHLMIBtX1b3AFcC/WMVjXAO8KclZSb5/DRklTZdVvc87hBcDn6qq99Argp/dd981wIuT/FaSLX0dAtQBFoW04HuALzU9gA7lBUm+Bvw98EvA8wbY5+30GonHAkdX1SfWnVaSlpAkwC7gBuC/LLHJ/wv8XJLHjzWYpKlQVdcDHwFevord7qJ3Odmgng/8b3oFqNuTXJ/kx1exv6TpMsj7vBc0Y8be97XENi8G3tHcfgd9l5BV1R8BvwY8A/gLYH+SHUNJr5GzKKQFXwaOTXL4CttdXlVH07sW9QbgSQMc+73AU+k1FP9zPSElaQUvB04CtlZVLb6zqr4I/AG9btSSNAr/Efh3Sb53wO2PozdGB8AB4IgltjkC+DZAVX21qnZU1ePpnY9dD/xJUxSXpMUGeZ93eVUd3f/Vf2eSU4HHAJc1q94BnJzklIVtmvEdnwYcDfwK8HtJnjG8p6FRsSikBZ8A/gE4c5CNq+pLwC8Dr1ppcMSq+jvgg8C/w6KQpBFpZvj5HXo9GL92iE1fDfw0gxW1JWlVquoWeh+IvWKlbZM8CPg5ej1/AO4Avr+/wJPkocCjgf9vicf6EvAa4PtYXW8jSdNjVe/zlrEVCHB9ki8A1zbrX7x4w2a8oj8GPkvvgzq1nEUhAVBVX6f3ydabkpyZ5KFJjkjys0mWugRj4aTnw8BvD/AQrwB+qqr2DC20JDWa4vRlwMuq6jOH2rYpGF3EYG2XJK3F7wK/QO8T8wdozrF+BHgnvRnIXtvcdS29N287kjwkyVHAhcCnaIpCSf5zkpOSHJ7k4fQ+dLutqr48yickqZvW8j6vX5KHAC+gN8D0KX1fvwac3bRF5yR5VpKHJ3lQkp8FHs/9xSO1mEUh3aeqXgv8e+D/pjcTxt8CLwH+5BC7vRrYluTRKxz7rqr6+JCiStJiv0TvMoo3JJlf9PXfltj+DcC9440oaVpU1e30ekcfteiuf51kHvgacCW9yzqeVFV3NfvdAzwLmAX2Ap+n1wvoBX2XxD6U3oCxX2vu/wHgOaN7NpK6bo3v8xacSW882bc3s4p9oaq+AFwMHAacDnyDXieAO+i1Tf8F+He+/+uGLDHkgiRJkiRJkjY4ewpJkiRJkiRNIYtCkiRJkiRJU8iikCRJkiRJ0hSyKCRJkiRJkjSFDp90AIBjjz22Nm/ePNC23/rWtzjqqMUTObRfV3NDd7N3NTdMNvt11133pap61EQevIU2WvvUhYzQjZxmHJ5Bc9o+HexQ7VNbf/bmWh1zrY7nT+0y6DlUW3+f+nUhI3QjZxcyQjdyDu38qaom/vWkJz2pBvXRj3504G3bpKu5q7qbvau5qyabHfhUtaBdaMvXRmufupCxqhs5zTg8g+a0fRq8fWrrz95cq2Ou1fH8qV1fg55DtfX3qV8XMlZ1I2cXMlZ1I+ewzp+8fEySJEmSJGkKWRSSJEmSJEmaQhaFJEmSJEmSppBFIUmSJEmSpClkUUiSJEmSJGkKrVgUSvKQJJ9M8ldJbkzyu836VyW5M8n1zdcz+/Y5P8ltST6X5BmjfAKSJEmSJElavcMH2OYe4KlVNZ/kCODjST7Y3Pe6qnpN/8ZJHgecBTwe+D7gz5P8UFXdO4zAu+/8Oufs+MB9y3sufNYwDitJ62b7JEnqgs19/6vA/1eaLM+fpMlasadQM7X9fLN4RPNVh9jlDOCyqrqnqm4HbgOevO6kkiRJkiRJGppBegqR5DDgOuAHgTdV1bVJfhZ4SZIXA58CtlfVV4HjgGv6dt/brFt8zG3ANoCZmRnm5uYGCjxzJGw/+cB9y4PuN2nz8/OdybpYV7N3NTd0O7skSZIkqRsGKgo1l36dkuRo4H1JTgL+EPh9er2Gfh+4CPhFIEsdYolj7gR2AmzZsqVmZ2cHCvzGS6/got33x95z9mD7Tdrc3ByDPse26Wr2ruaGbmeXJEmSJHXDqmYfq6qvAXPA6VV1d1XdW1XfAd7C/ZeI7QVO6NvteOCu9UeVJEmSJEnSsAwy+9ijmh5CJDkSeBpwS5JNfZs9F7ihuX0lcFaSByd5DHAi8MmhppYkSZIkSdK6DNJTaBPw0SSfBf4SuKqq3g/8lyS7m/U/DfwGQFXdCFwO3AR8CDhvWDOPSVK/JA9J8skkf5XkxiS/26x/VZI7k1zffD2zb5/zk9yW5HNJnjG59JIkSZI0WSuOKVRVnwWeuMT6Fx1inwuAC9YXTZJWdA/w1KqaT3IE8PEkH2zue11VvaZ/4ySPA84CHg98H/DnSX7IwrUkSZKkabSqMYUkqU2qZ75ZPKL5esDA9n3OAC6rqnuq6nbgNu4fD02SJEmSpopFIUmdluSwJNcD++ld3nptc9dLknw2yduSPLJZdxzwt327723WSZIkSdLUGWhKeklqq+bSr1OaAfHfl+Qk4A+B36fXa+j3gYuAXwSy1CEWr0iyDdgGMDMzw9zc3EBZZo6E7ScfuG950P3GaX5+vpW5FutCTjMOT1dySpIkbTQWhSRtCFX1tSRzwOn9YwkleQvw/mZxL3BC327HA3ctcaydwE6ALVu21Ozs7EAZ3njpFVy0+/5mdc/Zg+03TnNzcwz6fCapCznNODxdySlJkrTRePmYpM5K8qimhxBJjgSeBtySZFPfZs8FbmhuXwmcleTBSR4DnAh8coyRJU2J5tLV/Ulu6Fv36iS3NJe2vm+h/Wruc2ZESZI0dhaFJHXZJuCjST4L/CW9MYXeD/yXJLub9T8N/AZAVd0IXA7cBHwIOM+ZxySNyCXA6YvWXQWcVFU/Cvw1cD48YGbE04E3JzlsfFElSdK08vIxSZ1VVZ8FnrjE+hcdYp8LgAtGmUuSqupjSTYvWveRvsVrgOc1t++bGRG4PcnCzIifGEdWSZI0vSwKSZIkjd8vAu9qbh9Hr0i0YNmZEQcdCL+tg3eba3VGlat/UgRY/cQI0/Z6SdJGZlFIkiRpjJL8DnAAuHRh1RKbPWBmRBh8IPy2Dt5trtUZVa5zdnzgoOXVTowwba+XJG1kFoUkSZLGJMlW4NnAaVW1UPgZaGZESZKkYXOgaUmSpDFIcjrwcuA5VfV3fXc5M6IkSZoIewpJkiQNWZJ3ArPAsUn2Aq+kN9vYg4GrkgBcU1W/UlU3JlmYGfEAzowoSZLGxKKQJEnSkFXVC5dYffEhtndmREmSNHYrXj6W5CFJPpnkr5LcmOR3m/XHJLkqya3N90f27XN+ktuSfC7JM0b5BCRJkiRJq5PksCSfSfL+Ztn3d9IUGmRMoXuAp1bVE4BTgNOTPAXYAVxdVScCVzfLJHkccBbweOB04M1JDhtBdkmSJEnS2rwUuLlv2fd30hRasShUPfPN4hHNVwFnALua9buAM5vbZwCXVdU9VXU7cBvw5GGGliRJkiStTZLjgWcBb+1b7fs7aQoNNKZQUwm+DvhB4E1VdW2SmaraB1BV+5I8utn8OOCavt33NusWH3MbsA1gZmaGubm5gQLPHAnbTz5w3/Kg+03a/Px8Z7Iu1tXsXc0N3c4uSZKk1ns98NvAw/vWrev9HaztPV4X3t915dy8Czm7kBG6kXNYGQcqCjUzYJyS5GjgfUlOOsTmWeoQSxxzJ7ATYMuWLTU7OztIFN546RVctPv+2HvOHmy/SZubm2PQ59g2Xc3e1dzQ7eySJElqryTPBvZX1XVJZgfZZYl1D3h/B2t7j9eF93ddOTfvQs4uZIRu5BxWxlXNPlZVX0syR+9a0ruTbGqqyJuA/c1me4ET+nY7Hrhr3UklSZIkSet1KvCcJM8EHgJ8d5I/wvd30lQaZPaxRzU9hEhyJPA04BbgSmBrs9lW4Irm9pXAWUkenOQxwInAJ4ecW5IkSZK0SlV1flUdX1Wb6Q0g/b+q6ufx/Z00lQbpKbQJ2NWMK/Qg4PKqen+STwCXJzkXuAN4PkBV3ZjkcuAm4ABwXnP5mSQNVZKHAB8DHkyvPXt3Vb0yyTHAu4DNwB7gBVX11Waf84FzgXuBX6+qD08guiRJUttciO/vpKmzYlGoqj4LPHGJ9V8GTltmnwuAC9adTpIO7R7gqVU1n+QI4ONJPgj8S3pTql6YZAe9KVVfvmhK1e8D/jzJD3liI0mSplFVzQFzzW3f30lTaMXLxySprapnvlk8ovkqnFJVkiRJkla0qoGmJaltmktbrwN+EHhTVV2bZF1Tqq5lOlVwStVh6kJOMw5PV3JKkiRtNBaFJHVac+nXKc2A+O9LctIhNh9oStW1TKcKTqk6TF3Iacbh6UpOSZKkjcbLxyRtCFX1NXrXxJ9OM6UqgFOqSpIkSdLSLApJ6qwkj2p6CJHkSOBpwC04paokSZIkrcjLxyR12SZgVzOu0IOAy6vq/Uk+gVOqSpIkSdIhWRSS1FlV9VngiUusd0pVSROV5G3As4H9VXVSs+4Y4F3AZmAP8IKq+mpz3/nAucC9wK9X1YcnEFuSJE0ZLx+TJEkavkvojXHWbwdwdVWdCFzdLJPkccBZwOObfd7c9ICUJEkaKYtCkiRJQ1ZVHwO+smj1GcCu5vYu4My+9ZdV1T1VdTtwG/DkceSUJEnTzcvHJEmSxmOmqvYBVNW+JI9u1h8HXNO33d5m3QMk2QZsA5iZmWFubm7JB5qfn1/2vkky1+qMKtf2kw8ctLzax5i210uSNjKLQpIkSZOVJdbVUhtW1U5gJ8CWLVtqdnZ2yQPOzc2x3H2TZK7VGVWuc3Z84KDlPWev7jGm7fWSpI3My8ckSZLG4+4kmwCa7/ub9XuBE/q2Ox64a8zZJEnSFLIoJEmSNB5XAlub21uBK/rWn5XkwUkeA5wIfHIC+SRJ0pTx8jFJkqQhS/JOYBY4Nsle4JXAhcDlSc4F7gCeD1BVNya5HLgJOACcV1X3TiS4JEmaKisWhZKcALwd+F7gO8DOqnpDklcBvwR8sdn0FVX1Z80+5wPnAvcCv15VHx5BdkmSpFaqqhcuc9dpy2x/AXDB6BJJkiQ90CA9hQ4A26vq00keDlyX5KrmvtdV1Wv6N07yOOAs4PHA9wF/nuSH/MRLkiRJkiSpPVYcU6iq9lXVp5vb3wRuZplpUhtnAJdV1T1VdTtwG/DkYYSVJEmSJEnScKxqTKEkm4EnAtcCpwIvSfJi4FP0ehN9lV7B6Jq+3fayRBEpyTZgG8DMzAxzc3MDZZg5EraffOC+5UH3m7T5+fnOZF2sq9m7mhu6nV2SJEmS1A0DF4WSPAx4D/CyqvpGkj8Efh+o5vtFwC8CWWL3esCKqp3AToAtW7bU7OzsQDneeOkVXLT7/th7zh5sv0mbm5tj0OfYNl3N3tXc0O3skiRJkqRuGGhK+iRH0CsIXVpV7wWoqrur6t6q+g7wFu6/RGwvcELf7scDdw0vsiT1JDkhyUeT3JzkxiQvbda/KsmdSa5vvp7Zt8/5SW5L8rkkz5hcekmSJEmarEFmHwtwMXBzVb22b/2mqtrXLD4XuKG5fSXwjiSvpTfQ9InAJ4eaWpJ6HAhfkiRJktZokMvHTgVeBOxOcn2z7hXAC5OcQu/SsD3ALwNU1Y1JLgduoveG7TzfcEkahaYwva+5/c0kAw+ED9yeZGEg/E+MPKwkSZIktcyKRaGq+jhLjxP0Z4fY5wLggnXkkqRVcSD8wXRlEPMu5DTj8HQlpyRJ0kazqtnHJKmNHAh/cF0ZxLwLOc04PF3JKUmStNEMNNC0JLWVA+FLkiRJ0tpYFJLUWYcaCL9vs8UD4Z+V5MFJHoMD4UuSpCmT5CFJPpnkr5rZW3+3WX9MkquS3Np8f2TfPs7eKm1QXj4mqcscCF+SJGl17gGeWlXzTY/rjyf5IPAvgaur6sIkO4AdwMudvVXa2CwKSeosB8KXJElanaoqYL5ZPKL5KnqztM4263cBc8DLcfZWaUOzKCRJkiRJUyTJYcB1wA8Cb6qqa5PMVNU+gKral+TRzeYDzd7aHHfVM7g6e+vwdCFnFzJCN3IOK6NFIUmSJEmaIs2lX6ckORp4X5KTDrH5QLO3Nsdd9Qyuzt46PF3I2YWM0I2cw8roQNOSJEljlOQ3msFdb0jyzmbQ12UHeJWkUamqr9G7TOx04O6FyTqa7/ubzZy9VdrALApJkiSNSZLjgF8HtlTVScBh9AZw3UFvgNcTgaubZUkauiSPanoIkeRI4GnALfRmad3abLYVuKK57eyt0gbm5WOSJEnjdThwZJJvAw+l94n7+Sw9wKskDdsmYFczrtCDgMur6v1JPgFcnuRc4A7g+eDsrdJGZ1FIkiRpTKrqziSvofeG6++Bj1TVRw4xwOtBBh3Eta0DZJprdUaVq39QX1j9wL7T9nptNFX1WeCJS6z/MnDaMvs4e6u0QVkUkiRJGpNmrKAzgMcAXwP+OMnPD7r/oIO4tnWATHOtzqhynbPjAwctr3Zg32l7vSRpI3NMIUmSpPF5GnB7VX2xqr4NvBf4Zyw/wKskSdLIrFgUSnJCko8mubmZKeOlzfplZ8lIcn6S25J8LskzRvkEJEmSOuQO4ClJHpok9C7VuJnlB3iVJEkamUF6Ch0AtlfVjwBPAc5L8jiWmSWjue8s4PH0pjZ8czOImSRJ0lSrqmuBdwOfBnbTOxfbCVwIPD3JrcDTm2VJkqSRWnFMoWbQw4WBD7+Z5GbgOHrXw882m/XPknEGcFlV3QPcnuQ24MnAJ4YdXpIkqWuq6pXAKxetvodlBniVJEkalVUNNJ1kM72R6q8Flpsl4zjgmr7d9jbrFh9roNkzFps58uAZE7oyw0CXZ0Poavau5oZuZ5ckSZIkdcPARaEkDwPeA7ysqr7Ruwx+6U2XWFcPWDHg7BmLvfHSK7ho9/2xVztbwqR0eTaErmbvam7odvZxSnIC8Hbge4HvADur6g1JjgHeBWwG9gAvqKqvNvucD5wL3Av8elV9eALRJUmSJGniBpp9LMkR9ApCl1bVe5vVy82SsRc4oW/344G7hhNXkg7imGeSJEmStEaDzD4W4GLg5qp6bd9dy82ScSVwVpIHJ3kMcCLwyeFFlqSeqtpXVZ9ubn+T3gw+C2Oe7Wo22wWc2dy+b8yzqrodWBjzTJIkSZKmziCXj50KvAjYneT6Zt0r6M2KcXmSc+lNr/p8gKq6McnlwE30PsU/r6ruHXZwSeo3zDHPJEmSJGkaDDL72MdZepwgWGaWjKq6ALhgHbkkaWDDHvNsIw+E35VBzLuQ04zD05WckiRJG82qZh+TpLY51JhnTS+hVY95tpEHwu/KIOZdyGnG4elKTkmSpI1moIGmJamNHPNMkiRJktbOnkKSuswxzyRJkiRpjSwKSeosxzyTJEmSpLXz8jFJkiRJkqQpZFFIkiRJkiRpClkUkiRJkiRJmkIWhSRJkiRJkqaQRSFJkiRJkqQpZFFIkiRpjJIcneTdSW5JcnOSn0hyTJKrktzafH/kpHNKkqSNz6KQJEnSeL0B+FBV/TDwBOBmYAdwdVWdCFzdLEuSJI2URSFJkqQxSfLdwE8CFwNU1T9W1deAM4BdzWa7gDMnkU+SJE2XwycdQJIkaYr8E+CLwP9I8gTgOuClwExV7QOoqn1JHr3Uzkm2AdsAZmZmmJubW/JB5ufnl71vksy1OqPKtf3kAwctr/Yxpu31kqSNbMWiUJK3Ac8G9lfVSc26VwG/RO+kBuAVVfVnzX3nA+cC9wK/XlUfHkFuSZKkLjoc+DHg16rq2iRvYBWXilXVTmAnwJYtW2p2dnbJ7ebm5ljuvkky1+qMKtc5Oz5w0PKes1f3GNP2em00SU4A3g58L/AdYGdVvSHJMcC7gM3AHuAFVfXVZh/f40kb1CCXj10CnL7E+tdV1SnN10JB6HHAWcDjm33enOSwYYWVJEnquL3A3qq6tll+N70i0d1JNgE03/dPKJ+kje8AsL2qfgR4CnBe8z5uybHNfI8nbWwrFoWq6mPAVwY83hnAZVV1T1XdDtwGPHkd+SRJkjaMqvoC8LdJHtusOg24CbgS2Nqs2wpcMYF4kqZAVe2rqk83t79Jb7D741h+bDPf40kb2HrGFHpJkhcDn6JXaf4qvcbkmr5t9jbrJEmS1PNrwKVJvgv4PPAL9D6ouzzJucAdwPMnmE/SlEiyGXgicC3Lj23mezxpA1trUegPgd8Hqvl+EfCLQJbYtpY6wKADJS42c+TBg+N1ZTC5Lg9819XsXc0N3c4+To55JqmLqup6YMsSd5025iiSpliShwHvAV5WVd9Ilnor19t0iXVDe4/Xhfd3XTk370LOLmSEbuQcVsY1FYWq6u6F20neAry/WdwLnNC36fHAXcscY6CBEhd746VXcNHu+2OvdmC8SenywHddzd7V3NDt7GN2CfAH9AZL7Pe6qnpN/4pF18N/H/DnSX6oqu4dR1BJkqS2SHIEvYLQpVX13mb13Uk2Nb2E+sc2G+l7vC68v+vKuXkXcnYhI3Qj57AyDjLQ9AMsDITYeC5wQ3P7SuCsJA9O8hjgROCT64soSUtzzDNJkqTVSa9L0MXAzVX12r67lhvbzPd40gY2yJT07wRmgWOT7AVeCcwmOYVet8E9wC8DVNWNSS6nN2DiAeA8P4WXNAHrGvNsI1/e2oWusNCNnGYcnq7klKQN4lTgRcDuJNc3614BXMgSY5v5Hk/a2FYsClXVC5dYffEhtr8AuGA9oSRpHdY95tlGvry1C11hoRs5zTg8XckpSRtBVX2cpc+LYJmxzXyPJ21ca7p8TJLaqqrurqp7q+o7wFu4/xKxga+HlyRJkqRpYFFI0obimGeSJEmSNJi1TkkvSRPnmGeSJEmStHYWhSR1lmOeSZIkSdLaefmYJEmSJEnSFLIoJEmSJEmSNIUsCkmSJEmSJE0hi0KSJEmSJElTyKKQJEmSJEnSFLIoJEmSJEmSNIUsCkmSJEmSJE0hi0KSJEljluSwJJ9J8v5m+ZgkVyW5tfn+yElnlCRJG59FIUmSpPF7KXBz3/IO4OqqOhG4ulmWJEkaKYtCkiRJY5TkeOBZwFv7Vp8B7Gpu7wLOHHMsSZI0hQ5faYMkbwOeDeyvqpOadccA7wI2A3uAF1TVV5v7zgfOBe4Ffr2qPjyS5JIkSd30euC3gYf3rZupqn0AVbUvyaOX2jHJNmAbwMzMDHNzc0s+wPz8/LL3TZK5VmdUubaffOCg5dU+xrS9XpK0ka1YFAIuAf4AeHvfuoUuzhcm2dEsvzzJ44CzgMcD3wf8eZIfqqp7hxtbkiSpe5IsfNB2XZLZ1e5fVTuBnQBbtmyp2dmlDzE3N8dy902SuVZnVLnO2fGBg5b3nL26x5i210uSNrIVLx+rqo8BX1m0erkuzmcAl1XVPVV1O3Ab8OThRJWkgyV5W5L9SW7oW7fsYK1Jzk9yW5LPJXnGZFJLmnKnAs9Jsge4DHhqkj8C7k6yCaD5vn9yESVJ0rQYpKfQUpbr4nwccE3fdnubdQ8waPfnBzzwkQd3ee1KF9Eud2ftavau5oZuZx+zS7Ano6QOqarzgfMBmp5Cv1lVP5/k1cBW4MLm+xWTyihJkqbHWotCy8kS62qpDQft/rzYGy+9got23x97td1dJ6XL3Vm7mr2ruaHb2cepqj6WZPOi1WcAs83tXcAc8HL6ejICtydZ6Mn4ibGElaRDuxC4PMm5wB3A8yecR5IkTYG1FoXuTrKp6SXU38V5L3BC33bHA3etJ6AkrZI9GQ+hK73QupDTjMPTlZzDVlVz9ArXVNWXgdMmmUeSJE2ftRaFrmTpLs5XAu9I8lp6l2ecCHxyvSElaQjsyUh3eqF1IacZh6crOTVamxcPfnzhsyaURJKk6THIlPTvpHcpxrFJ9gKvZJkuzlV1Y5LLgZuAA8B5jtchaczsyShJkiRJA1ixKFRVL1zmriW7OFfVBcAF6wklSetgT0ZJmlL2NpIkaXWGPdC0JI2NPRklSZIkae0sCknqLHsySpIkSdLaPWjSASRJkiRJ45PkbUn2J7mhb90xSa5Kcmvz/ZF9952f5LYkn0vyjMmkljQKFoUkSZI0cpt3fIDdd36dzTs+8ICxf9R+Cz+3hZ+jOu8S4PRF63YAV1fVicDVzTJJHgecBTy+2efNSQ4bX1RJo2RRSJIkSZKmSFV9DPjKotVnALua27uAM/vWX1ZV91TV7cBtwJPHkVPS6DmmkCRJkiRppqr2AVTVviSPbtYfB1zTt93eZt0DJNkGbAOYmZlhbm5u5Qc9EraffOC+5UH2Gbf5+flW5lqsCzm7kBG6kXNYGS0KSZIkSZKWkyXW1VIbVtVOYCfAli1banZ2dsWDv/HSK7ho9/1vS/ecvfI+4zY3N8cgz2XSupCzCxmhGzmHldHLxyRJkiRJdyfZBNB839+s3wuc0Lfd8cBdY84maUQsCkmSJEmSrgS2Nre3Alf0rT8ryYOTPAY4EfjkBPJJGgEvH5MkSZKkKZLkncAscGySvcArgQuBy5OcC9wBPB+gqm5McjlwE3AAOK+q7p1IcElDZ1FIkiRJ67Z4mvk9Fz5rQkkkraSqXrjMXacts/0FwAWjSyRpUrx8TJIkSZIkaQpZFJIkSRqTJCck+WiSm5PcmOSlzfpjklyV5Nbm+yMnnVWSJG186yoKJdmTZHeS65N8qlnnSY0kSdLSDgDbq+pHgKcA5yV5HLADuLqqTgSubpYlSZJGahhjCv10VX2pb3nhpObCJDua5ZcP4XEkaWBJ9gDfBO4FDlTVliTHAO8CNgN7gBdU1VcnlVHS9KmqfcC+5vY3k9wMHAecQW/QV4BdwBwtP39aPIZQFy08h+0nH+CcHR9wHCRJ0tQZxUDTnTupkbRhWbSW1FpJNgNPBK4FZpqCEVW1L8mjl9lnG7ANYGZmhrm5uSWPPT8/v+x9g9h959cPWj75uEc8YJvtJx845DEWP/72kw8wc+T9+y11/6H2H8Rqj7Gw/UKu9bxmo7Den+Ny1vJa9+8zc+Tafj6jNqrXS5I2svUWhQr4SJIC/ntV7WTIJzWL9Z9MQDv/IS2ly/+kupq9q7mh29lbzqK1pFZI8jDgPcDLquobSQbarznX2gmwZcuWmp2dXXK7ubk5lrtvEOcsnkns7Acea/E2iy3e55wdH2D7yQe4aPfhy96/0mOuZLXHOKevp9BFuw9f02OO0np/jstZy2vdv8/2kw/wghHkWq9RvV6StJGttyh0alXd1RR+rkpyy6A7DnpSs9gbL73ivpMJWNsJwyR0+Z9UV7N3NTd0O3uLrLloLUmjlOQIegWhS6vqvc3qu5NsatqmTcD+ySWUJEnTYl1Foaq6q/m+P8n7gCfjSY2kdlhz0Xoj92TsSi+0LuQ04/B0JecwpNcl6GLg5qp6bd9dVwJbgQub71dMIJ4kSZoyay4KJTkKeFAzSOJRwM8Av4cnNZJaYD1F643ck7ErvdC6kNOMw9OVnENyKvAiYHeS65t1r6B33nR5knOBO4DnTyaeJEmaJuvpKTQDvK+5Bv5w4B1V9aEkf4knNZImyKK1pLaqqo8Dyw0gdNo4s0iSJK25KFRVnweesMT6L+NJjaTJsmgtSVq1zUsMnu009cOx+LX1dZWkdhjFlPSSNFEWrSWp/ZYqwKx0v4UESZKG60GTDiBJkiRJkqTxs6eQJEnSlFntpTwr9eqRJEndZE8hSZIkSZKkKWRRSJIkSZIkaQptuMvHnNlAkiRpdbpyeZjneZKkabX4f+Alpx81lONuuKKQJGl5u+/8Ouf0/UPxDZUkjZeFLUlSm3S+KNSVT7YkSZI0WZ43SpJ0sM4XhVbipzGSJEkbk0UeHYrvAyRpZQ40LUmSJEmSNIU2fE+hxQb5RMlPESRJG8HiMaTA/3Ean2ntxWPvFElSl0xdUUiSJEkalmktfm1UFvUkTRuLQmvgPwtJkiRJktR1FoWW4Cc+ktpq2EVpL6mVpPZZaJu3n3yAc3Z8wHZYkjQyIysKJTkdeANwGPDWqrpwVI8lSath+zRcKxWq1lLIWjwWzjCOKXXBqNonP/CStF6eP0kb00iKQkkOA94EPB3YC/xlkiur6qZRPF7bLHXitfBJDyz95sU3ONJ4THv7NA7T8uZzpcLVRrXaIuBS22hptk+S2sr2Sdq4RtVT6MnAbVX1eYAklwFnABuy0VjtG6BBth/FJ++jfsy1ZOpCMWy1GdvyhqgLr+2EbOj2aaX2ZfvJo3+MLmjrZXPjaPtXeu7jeN6LM1xy+lEjf8yO2NDtk6ROs32SNqhU1fAPmjwPOL2q/m2z/CLgn1bVS/q22QZsaxYfC3xuwMMfC3xpiHHHpau5obvZu5obJpv9B6rqURN67JGzfepERuhGTjMOz6A5bZ8Gb5/a+rM31+qYa3U8fxqRQdqnZv1azqHa+vvUrwsZoRs5u5ARupFzKOdPo+oplCXWHVR9qqqdwM5VHzj5VFVtWWuwSelqbuhu9q7mhm5n74Cpbp+6kBG6kdOMw9OVnGMwtPapra+puVbHXKvT1lwbxIrtE6ztHKoLP7cuZIRu5OxCRuhGzmFlfNAwwixhL3BC3/LxwF0jeixJWg3bJ0ltZfskqa1sn6QNalRFob8ETkzymCTfBZwFXDmix5Kk1bB9ktRWtk+S2sr2SdqgRnL5WFUdSPIS4MP0pix8W1XdOKTDr/qSjpboam7obvau5oZuZ28126dOZIRu5DTj8HQl50gNuX1q62tqrtUx1+q0NVfnef7UiYzQjZxdyAjdyDmUjCMZaFqSJEmSJEntNqrLxyRJkiRJktRiFoUkSZIkSZKmUGeKQklOT/K5JLcl2THpPIeS5IQkH01yc5Ibk7y0WX9MkquS3Np8f+Sksy4lyWFJPpPk/c1yV3IfneTdSW5pXvuf6EL2JL/R/J7ckOSdSR7Shdy6X1vbpy61RW1vd7rSvrSxPUnytiT7k9zQt27ZTEnOb/6WPpfkGePMulG0uE3ak2R3kuuTfGqCOVb1OznhXK9Kcmfzml2f5JkTyNW6/yWHyDTx10vLW6ltSs9/be7/bJIfa2HGs5tsn03yf5I8oW0Z+7b78ST3JnneOPP1Pf6KOZPMNn+rNyb5i7ZlTPKIJH+a5K+ajL8wgYwP+N+w6P51/910oiiU5DDgTcDPAo8DXpjkcZNNdUgHgO1V9SPAU4Dzmrw7gKur6kTg6ma5jV4K3Ny33JXcbwA+VFU/DDyB3nNodfYkxwG/DmypqpPoDdx3Fi3Prfu1vH3qUlvU9nan9e1Li9uTS4DTF61bMlPz+3kW8Phmnzc3f2MaUMvbJICfrqpTqmrLBDNcwoC/k2N2CQ/MBfC65jU7par+bMyZoJ3/S5bLBJN/vbSEAdumnwVObL62AX/Ywoy3Az9VVT8K/D5jHox40Da+2e4/0xsYfOwGyZnkaODNwHOq6vHA89uWETgPuKmqngDMAhelN/veOF3C0v8bFqz776YTRSHgycBtVfX5qvpH4DLgjAlnWlZV7auqTze3v0nvzcNx9DLvajbbBZw5kYCHkOR44FnAW/tWdyH3dwM/CVwMUFX/WFVfowPZ6c0CeGSSw4GHAnfRjdzqaW371JW2qO3tTsfal9a1J1X1MeAri1Yvl+kM4LKquqeqbgduo/c3psG1tk1qi1X+To7NMrkmro3/Sw6RSe01SNt0BvD26rkGODrJpjZlrKr/U1VfbRavAY4fY76BMjZ+DXgPsH+c4foMkvPfAO+tqjsAqmrcWQfJWMDDkwR4GL02+sA4Qw7wv2HdfzddKQodB/xt3/JeOtLwJ9kMPBG4Fpipqn3Q+2cGPHqC0ZbzeuC3ge/0retC7n8CfBH4H+ldgvLWJEfR8uxVdSfwGuAOYB/w9ar6CC3PrYN0on1qeVv0etrd7nSifelYe7Jcpk78PbVcm1/DAj6S5Lok2yYdZpE2/p0seElzScDbxnmJ1lLa+L9kUSZo0eulgwzSNk26/Vrt458LfHCkiR5oxYxNz+HnAv9tjLkWG+S1/CHgkUnmmv8LLx5bup5BMv4B8CP0PmTbDby0qr5Du6z776YrRaEssa7GnmKVkjyMXoX2ZVX1jUnnWUmSZwP7q+q6SWdZg8OBHwP+sKqeCHyLyV9usqLmZOUM4DHA9wFHJfn5yabSKrW+fWpzW9SRdqcT7csGaU9a//fUAW1+DU+tqh+j19X9vCQ/OelAHfCHwP8FnEKv2HvRpIK08X/JEpla83rpAQZpmybdfg38+El+ml5R6OUjTbTEQy+xbnHG1wMvr6p7Rx9nWYPkPBx4Er3e4s8A/kOSHxp1sD6DZHwGcD2986pTgD9oepC3ybr/brpSFNoLnNC3fDy9al1rJTmC3j+pS6vqvc3quxe6cjXfJ9WdbzmnAs9Jsode97mnJvkj2p8ber8je6tq4VOid9N7E9f27E8Dbq+qL1bVt4H3Av+M9ufW/VrdPnWgLepCu9OV9qVL7clymVr999QRrX0Nq+qu5vt+4H2069LANv6dUFV3V9W9zSfTb2FCr1kb/5cslaktr5eWNEjbNOn2a6DHT/Kj9C55P6OqvjymbAsGybgFuKw5t3oevfH5zhxLuvsN+vP+UFV9q6q+BHyM3riN4zJIxl+gd4lbVdVt9MaU+uEx5RvUuv9uulIU+kvgxCSPaQZ2Ogu4csKZltVcc3gxcHNVvbbvriuBrc3trcAV4852KFV1flUdX1Wb6b3G/6uqfp6W5waoqi8Af5vksc2q04CbaH/2O4CnJHlo83tzGr3r4tueW/drbfvUhbaoC+1Oh9qXLrUny2W6EjgryYOTPIbeoImfnEC+Lmtlm5TkqCQPX7gN/Ayw5EwqE9LGv5OFYsuC5zKB16yN/0uWy9SG10vLGqRtuhJ4cXqeQu8y6H1typjk++l96PKiqvrrMWYbOGNVPaaqNjfnVu8GfrWq/qRtOem1Gf8iyeFJHgr8Uw6edKQNGe+gdz5FkhngscDnx5hxEOv/u6mqTnwBzwT+Gvgb4HcmnWeFrP+cXpetz9LrbnZ9k/976M3OcGvz/ZhJZz3Ec5gF3t/c7kRuel36PtW87n8CPLIL2YHfBW6hd+LyP4EHdyG3Xwf9DFvZPnWtLWpzu9OV9qWN7QnwTnqXcXyb3qdZ5x4qE/A7zd/S54CfnfRr2sWvNrZJ9Mbm+qvm68ZJ5lrt7+SEc/1PeuNYfJbeif+mCeRq3f+SQ2Sa+Ovl1yF/bg9om4BfAX6luR16s0H9TfNz3NLCjG8Fvtr3e/eptmVctO0lwPPa+PNuln+L3gdtN9C7DLRVGeldNvaR5vfxBuDnJ5Bxqf8NQ/27SXMgSZIkSZIkTZGuXD4mSZIkSZKkIbIoJEmSJEmSNIUsCkmSJEmSJE0hi0KSJEmSJElTyKKQJEmSJEnSFLIoJEmSJEmSNIUsCkmSJEmSJE0hi0KSJEmSJElTyKKQJEmSJEnSFLIoJEmSJEmSNIUsCkmSJEmSJE0hi0KSJEmSJElTyKKQJEmSJEnSFLIoJEmSJEmSNIUsCkmSJEmSJE0hi0KSJEmSJElTyKKQJEmSJEnSFLIoJEmSJEmSNIUsCkmSJEmSJE0hi0JaVpI9Se5OclTfun+bZK65nSS/leTWJH+f5I4kFyZ5cHP/ryW5Icl39e3/siSfSXL42J+QpA2raa/+Psl8ki8kuSTJw5r7LklSSZ6zaJ/XN+vPmUhoSRtekrkkX104N+pbf1aSa5N8K8n+5vavJklz/yVJ/rFp0xa+/moyz0LSRtR37vTNJF9L8n+S/EqSBzX3X5Lk/+nb/twktzTb353kA0kePrlnoGGxKKSVHA68dJn7/iuwDXgx8HDgZ4GnApc3978J+BrwOwBJ/gnwu8C5VXVgdJElTamfq6qHAacATwTO77vvr4GtCwtNYfr5wN+MM6Ck6ZFkM/AvgAKe07d+O/AG4NXA9wIzwK8ApwLf1XeI/1JVD+v7esK4skuaGj9XVQ8HfgC4EHg5cPHijZL8FPCfgBc22/8I97/nU8dZFNJKXg38ZpKj+1cmORH4VeDsqvpEVR2oqhuBfwWcnuSpVfUd4FzgN5L8KPAW4M1V9enxPgVJ06SqvgB8mF5xaMGfAqcmeWSzfDrwWeAL400naYq8GLgGuISmKJ3kEcDvAb9aVe+uqm9Wz2eq6uyqumdycSVNq6r6elVdCfxrYGuSkxZt8uPAJ6rqM832X6mqXVX1zXFn1fBZFNJKPgXMAb+5aP1pwN6q+mT/yqr6W3onQE9vlj8H/L/A/wKOp9dTSJJGJsnx9Hou3ta3+h+AK4GzmuUXA28fczRJ0+XFwKXN1zOSzAA/ATwYuGKSwSRpKc17u730ejn2u5ZeO/a7SU5dfEmsus2ikAbxH4FfS/KovnXHAvuW2X5fc/+C/w18D/DuqvqH0USUJP4kyTeBvwX2A69cdP/bgRc3n9T/FPAn440naVok+ef0Lse4vKquo3ep6r+hd370pf7L6JtxPL7WjO3xk32H+c1m/cLXrrE+CUnT6i7gmP4VVfW/gX8J/BjwAeDLSV6b5LAJ5NOQWRTSiqrqBuD9wI6+1V8CNi2zy6bmfppBpv878EbgJc24QpI0Cmc217nPAj/MwcVpqurjwKOA/xt4f1X9/dgTSpoWW4GPVNWXmuV3NOu+DBzbP+FGVf2zqjq6ua//3Pw1VXV039dWJGn0jgO+snhlVX2wqn6OXsHoDOAc4N+ON5pGwaKQBvVK4JfoNRLQuxzshCRP7t8oyQnAU4Crm1X/gd4n9i8F/hu9ApEkjUxV/QW9MTxes8TdfwRsx0vHJI1IkiOBFwA/1cyG+AXgN4AnAH8H3EPvDZUktUqSH6f3fu/jy21TVd+pqqvpvR9cPPaQOsiikAZSVbcB7wJ+vVn+a3pFnkuTPCXJYUkeD7wH+POq+vMkT2i2/6WqKuBVwOYkvzCRJyFpmrweeHqSUxat/6/0xjz72LgDSZoaZwL3Ao+jN+D9KfRm6vnf9GYh+13gzUmel+RhSR7UtFVHTSKsJCX57iTPBi4D/qiqdi+6/4wkZyV5ZHqeTO9S/GsmkVfDdfjKm0j3+T3gRX3LLwF+i94n78fRu2TsncB/bK4vvRi4oCkoUVV/n+SXgHcn+bOqunus6SVNjar6YpK30+ut+M2+9V/h/p6MkjQKW4H/UVV39K9M8gf0CtPHA3cCv02v1+K3gM/Tmwr6//Tt8ttJXta3/A9VddBlsZK0Tn+a5ADwHeAm4LX0Pvhf7Kv0Puz/A3qD5e8DXl1Vl44rqEYnvQ4ckiRJkiRJmiZePiZJkiRJkjSFLApJkiRJkiRNIYtCkiRJkiRJU8iikCRJkiRJ0hRqxexjxx57bG3evHldx/jWt77FUUd1YybPrmTtSk7oTtYu5Lzuuuu+VFWPmnSOthhG+7Qabf8dMd/atTkbdCPfLbfcYvvUZ6n2qe0/xwVdyQlmHYWu5ITBs3r+9EDjOodq6++TuQbXxkywcXKt2D5V1cS/nvSkJ9V6ffSjH133McalK1m7krOqO1m7kBP4VLWgXWjL1zDap9Vo+++I+dauzdmqupHP9mnl9qntP8cFXclZZdZR6ErOqsGz2j4N1kaNQlt/n8w1uDZmqto4uVZqn7x8TJIkSZIkaQpZFJIkSZIkSZpCFoUkSZIkSZKmkEUhSZIkSZKkKWRRSJIkSZIkaQpZFJIkSZIkSZpCh086wKRt3vGBB6zbc+GzJpBkvKb1eUvaGBa3YbZfkqRhWPz/5ZLTj5pQEi3Hn5E0XPYUkiRJkiRJmkJrLgoleUiSTyb5qyQ3JvndZv0xSa5Kcmvz/ZHDiytJkiRJkqRhWE9PoXuAp1bVE4BTgNOTPAXYAVxdVScCVzfLkiRJkiRJapE1F4WqZ75ZPKL5KuAMYFezfhdw5noCSpIkSZIkafjWNdB0ksOA64AfBN5UVdcmmamqfQBVtS/Jo5fZdxuwDWBmZoa5ubn1RGF+fn5Nx9h+8oEHrFtvlpWsNeswDfK825BzUF3J2pWckiRJkqSNb11Foaq6FzglydHA+5KctIp9dwI7AbZs2VKzs7PricLc3BxrOcY5S83Cdfb6sqxkrVmHaZDn3Yacg+pK1q7klCSNTnPe9FbgJHq9rH8R+BzwLmAzsAd4QVV9dTIJJUnStBjK7GNV9TVgDjgduDvJJoDm+/5hPIYkSdIG8QbgQ1X1w8ATgJtxTEZJkjQB65l97FHNJ10kORJ4GnALcCWwtdlsK3DFOjNKkiRtCEm+G/hJ4GKAqvrH5sM1x2SU1ApJDkvymSTvb5adXVrawNbTU2gT8NEknwX+Eriqqt4PXAg8PcmtwNObZUmSJME/Ab4I/I/mTddbkxwFHDQmI7DkmIySNAYvpdeDcYE9GaUNbM1jClXVZ4EnLrH+y8Bp6wk1aZsXjbez58JnTSiJJGktbMfVYocDPwb8WjNBxxtYxRuslSbq6MqEBl3JCWYdhTbnXDwZS5uzjkKS44FnARcA/75ZfQYw29zeRW/YkJePO5uk0VjXQNOSJElalb3A3qq6tll+N72i0N1JNjUzty47JuNKE3V0ZUKDruQEs45Cm3MunozlktOPam3WEXk98NvAw/vWDTS7NAx/humldKVwZ67BtTETTE8ui0KSJEljUlVfSPK3SR5bVZ+j17v6puZrK73L7h2TUdLYJXk2sL+qrksyu5ZjDHuG6aV0pXDX1uJnG3O1MRNMTy6LQpIkSeP1a8ClSb4L+DzwC/TGebw8ybnAHcDzJ5hP0nQ6FXhOkmcCDwG+O8kfMWBPRkndZFFIkiRpjKrqemDLEnd1ekxGSd1WVecD5wM0PYV+s6p+PsmrsSejtGFNXVFo8eCjXeGgqZIkSZIm4ELsyShtWFNXFJIkSZIkLa+q5ujNMrYhZpeWtDyLQpIkYY9MSZIkTZ8HTTqAJEmSJEmSxs+ikCRJkiRJ0hSyKCRpw0pyWJLPJHl/s3xMkquS3Np8f+SkM0qSJEnSpFgUkrSRvRS4uW95B3B1VZ0IXN0sS5IkSdJUsigkaUNKcjzwLOCtfavPAHY1t3cBZ445liRJkiS1hrOPSdqoXg/8NvDwvnUzVbUPoKr2JXn0Ujsm2QZsA5iZmWFubm60SfvMz8+P9fFWqy35tp984KDlN156BQAzR/Zubz/54O0Hybz4mMN+nm157ZbThXySJEkaLotCkjacJM8G9lfVdUlmV7t/Ve0EdgJs2bKlZmdXfYg1m5ubY5yPt1ptyXfOounjF2w/+QAX7X7gv7Y9Z8+u+piD7LMabXntltOFfJIkSRoui0KSNqJTgeckeSbwEOC7k/wRcHeSTU0voU3A/ommlCRJkqQJckwhSRtOVZ1fVcdX1WbgLOB/VdXPA1cCW5vNtgJXTCiiJEmSJE3cmotCSU5I8tEkNye5MclLm/WvSnJnkuubr2cOL64krcuFwNOT3Ao8vVmWJEmSpKm0nsvHDgDbq+rTSR4OXJfkqua+11XVa9YfT5LWp6rmgLnm9peB0yaZR5IkSZLaYs1FoWYGn4VZfL6Z5GbguGEFkyRJkiTpUHbf+fUHThZx4bMmlEbqnqEMNJ1kM/BE4Fp6A7y+JMmLgU/R60301SX2GeqUz4NOpbt4yuFBrDbb7ju/ftDyycc94qDl/V/5+n3TJy+3zWLLTb886P4rHQ8e+DzbPj1xv65k7UpOSZIkSdLGt+6iUJKHAe8BXlZV30jyh8DvA9V8vwj4xcX7DXvK50Gn0l1uGuNDWe20xCtNa/zGS694wJTJKz3GSrnXm3GpY7R9euJ+XcnalZySpNFKsgf4JnAvcKCqtiQ5BngXsBnYA7xgqQ/WJEmShmVds48lOYJeQejSqnovQFXdXVX3VtV3gLcAT15/TEmSpA3np6vqlKra0izvAK6uqhOBq5tlSZKkkVnP7GMBLgZurqrX9q3f1LfZc4Eb1h5PkiRpapwB7Gpu7wLOnFwUSZI0DdZz+dipwIuA3Umub9a9AnhhklPoXT62B/jldTyGJEnSRlTAR5IU8N+by+pnmok8qKp9SR69eKeVxmTsyth1XckJZh2FNudcPO5mm7NK0jCsZ/axjwNZ4q4/W3scSZKkqXBqVd3VFH6uSnLLIDutNCZjV8au60pOMOsotDnn4nE3Lzn9qNZmlaRhWNeYQpIkSVq9qrqr+b4feB+9MRjvXrgMv/m+f3IJJUnSNBjKlPSSJEkaTJKjgAdV1Teb2z8D/B5wJbAVuLD5fsXkUkpSO2xew+zRkgZnUUiSJGm8ZoD39ebs4HDgHVX1oSR/CVye5FzgDuD5E8woSZKmgEUhSZKkMaqqzwNPWGL9l4HTxp9IkiRNK4tCkqQNb3HX8z0XPmtCSSRJkqT2cKBpSZIkSZKkKWRRSJIkSZIkaQpZFJIkSZIkSZpCjikkSZIkSSLJQ4CPAQ+m917x3VX1yiTHAO8CNgN7gBdU1VcnlXMljiUoDc6eQpIkSZIkgHuAp1bVE4BTgNOTPAXYAVxdVScCVzfLkjYAi0KSJEmSJKpnvlk8ovkq4AxgV7N+F3Dm+NNJGgWLQpIkSZIkAJIcluR6YD9wVVVdC8xU1T6A5vujJxhR0hA5ppAkSZIkCYCquhc4JcnRwPuSnDTovkm2AdsAZmZmmJubW3ee7ScfOOT9M0euvM0wcqzW/Pz8RB53JW3M1cZMMD25LApJkiRJkg5SVV9LMgecDtydZFNV7UuyiV4voqX22QnsBNiyZUvNzs6uO8c5iwaNXmz7yQe4aPeh39buOXv9OVZrbm6OYTz/YWtjrjZmgunJ5eVjkiRJkiSSPKrpIUSSI4GnAbcAVwJbm822AldMJKCkodtwPYWcflCSJEmS1mQTsCvJYfQ6EFxeVe9P8gng8iTnAncAz59kSEnDs+GKQpIkSZKk1auqzwJPXGL9l4HTxp9I0qit+fKxJCck+WiSm5PcmOSlzfpjklyV5Nbm+yOHF1eSJEmSJEnDsJ4xhQ4A26vqR4CnAOcleRywA7i6qk4Erm6WJWlskjwkySeT/FVTtP7dZr1Fa0mSJElqrLkoVFX7qurTze1vAjcDxwFnALuazXYBZ64zoySt1j3AU6vqCcApwOlJnoJFa0mSJEm6z1DGFEqymd61p9cCM1W1D3qFoySPXmafbcA2gJmZGebm5taVYX5+nrm5ObaffOCg9YuPu/j+Qaw220oZZo584DZvvPTgAfxPPu4RhzzmsDMudYyF17QLupK1Kzm7rqoKmG8Wj2i+il7RerZZvwuYA14+5niSRDOI66eAO6vq2UmOAd4FbAb2AC+oqq9OLqEkSZoG6y4KJXkY8B7gZVX1jSQD7VdVO4GdAFu2bKnZ2dl15Zibm2N2dpZzFs8+dvbBx118/yAWH2MlK2V446VXcNHuQ7/0q8293oxLHWPhNe2CrmTtSs6NoHnDdR3wg8CbquraJBMpWq9G2wuHbcm3XKF8qaL7UpZ6DisV9NerLa/dcrqQb4N5Kb1e1t/dLC/0ZLwwyY5m2aK1JEkaqXUVhZIcQa8gdGlVvbdZfXeSTc0brk3A/vWGlKTVqqp7gVOSHA28L8lJq9h3qEXr1Wh74bAt+ZYrlG8/+cCKRXdYupC+UkF/vdry2i2nC/k2iiTHA88CLgD+fbPanoySJGns1lwUSq9L0MXAzVX12r67rgS2Ahc2369YYndJGouq+lqSOeB0LFpLaofXA78NPLxv3VB6Mra9x9eCruQEs45Cm3Mu7jXa5qwb1eY1XNmx3sfYc+GzRv6YUlutp6fQqcCLgN1Jrm/WvYJeMejyJOcCdwDPX1dCSVqlJI8Cvt0UhI4Engb8ZyxaqzGOE05pKUmeDeyvquuSzK52/5V6Mra9x9eCruQEs45Cm3Mu7jV6yelHtTarJA3DmotCVfVxYLkBhE5b63ElaQg2AbuacYUeBFxeVe9P8gksWkuarFOB5yR5JvAQ4LuT/BH2ZJQkSRMwlNnHJKlNquqz9GZEXLz+y1i0ljRBVXU+cD5A01PoN6vq55O8GnsySpKkMXvQpANIkiSJC4GnJ7kVeHqzLEmSNFL2FJIktZ5jAGkjqqo5erOM2ZNRkiRNhD2FJEmSJEmSppA9hbShOL2kJEmSJEmDsaeQJEmSJEnSFLIoJEmSJEmSNIUsCkmSJEmSJE0hi0KSJEmSJElTyKKQJEmSJEnSFLIoJEmSJEmSNIWckl6SJEmStGFt3vGBSUeQWsueQpIkSZIkSVPIopAkSZIkSdIU8vIxaYNa3E12z4XPmlASSZIkSVIb2VNIkiRJkiRpCq2rKJTkbUn2J7mhb92rktyZ5Prm65nrjylJkiRJkqRhWm9PoUuA05dY/7qqOqX5+rN1PoYkSZIkSZKGbF1Foar6GPCVIWWRJEmSJEnSmIxqoOmXJHkx8Clge1V9dfEGSbYB2wBmZmaYm5tb0wPtvvPrAMwcCW+89Aq2n3zw/YuPu/3kA6t+jNVmW/wYi/efOXLlHKvNvd6MSx1jfn7+kMddeO0XnHzcI1aVYZgWsq702k/aSq/pMLX9tZDazsHaNQpJHgJ8DHgwvfOwd1fVK5McA7wL2AzsAV6w1PmTpLVb3K6DbftiSU4A3g58L/AdYGdVvcE2Stq4RlEU+kPg94Fqvl8E/OLijapqJ7ATYMuWLTU7O7umBzunady3n3yAi3Y/8OnsOXt2ye1XY/ExBs203P5vvPSKJbMeap+Vcq8341LHmJub41A/l5We5zgtZG1TpqWs9JoOU9tfC0maUvcAT62q+SRHAB9P8kHgXwJXV9WFSXYAO4CXTzKopKl0gN6H+p9O8nDguiRXAedgGyVtSEOffayq7q6qe6vqO8BbgCcP+zEkSZK6qHrmm8Ujmq8CzgB2Net3AWeOP52kaVdV+6rq083tbwI3A8dhGyVtWEPvKZRkU1XtaxafC9xwqO0lSeoCLyfTsCQ5DLgO+EHgTVV1bZKZhfOnqtqX5NHL7HvIy+/HeZnyenQlJ5h1FCaVc5DhExZv05XXdBSSbAaeCFwLDKWNGsRqh/sYZGiOlYziZ9zW35025mpjJpieXOsqCiV5JzALHJtkL/BKYDbJKfQ+9doD/PL6IkqSJG0cVXUvcEqSo4H3JTlpFfse8vL7cV6mvB5dyQlmHYVJ5Rxk+ITF21xy+lGdeE2HLcnDgPcAL6uqbyQZaL9hDBGy2uE+lhtGZDVGMcxCW/8e25irjZlgenKt66+nql64xOqL13NMSZKkaVBVX0syB5wO3L3Q2zrJJmD/ZNNJ02GpwaenXTPe2XuAS6vqvc1q2yhpgxrV7GMb2rRcQrD7zq8fVKlvw/Ocltde6+PMGZLaKsmjgG83BaEjgacB/xm4EtgKXNh8v2JyKSVNq/S6BF0M3FxVr+27yzZK2qAsCknaiJw5Q1JbbQJ2NeMKPQi4vKren+QTwOVJzgXuAJ4/yZCSptapwIuA3Umub9a9gl4xaGrbKD+Y1kZmUUjShtMMhLgwGOI3k/TPnDHbbLYLmMOikKQxqqrP0hu4dfH6LwOnjT+RJN2vqj4OLDeAkG2UtAENfUp6SWqTQ82cASw5c4YkSZIkTQN7CknasNY6c8YwplNdq7ZOfblgFPl23/n1B6w7+bhHHLQ86FSzw5iWdlBvvPTg4RQWZ15sGn+2wzQ/Pz/pCJIkSRuORSFNPa8R3pjWM3PGMKZTXau2Tn25YBT51jJF8HKGMS3tWq00ne00/myHqc0FK0mSFmvjpD3SUrx8TNKGM8DMGeDMGZIkSZKmnD2FJG1EzpwhSZIkSSuwKCRpw3HmDEmSJA1qGMNJLD7G9pPXFUkaGy8fkyRJkiRJmkL2FBqDjVI1Xvw8JGlUbG8kSZKk0bOnkCRJkiRJ0hSyp5AkSZIkSQOaRI/mpR7Tae41DPYUkiRJkiRJmkL2FJIkSZK04Tg+nSStzKKQOm3hn/32kw9wjv/4JUmSJEkamEUhSZIkSZLGaHFPtrWMDzSMY0jrKgoleRvwbGB/VZ3UrDsGeBewGdgDvKCqvrq+mJIktZsnZpIkSeqa9Q40fQlw+qJ1O4Crq+pE4OpmWZIkaeolOSHJR5PcnOTGJC9t1h+T5KoktzbfHznprJIkaeNbV0+hqvpYks2LVp8BzDa3dwFzwMvX8ziSJEkbxAFge1V9OsnDgeuSXAWcQ+9DtQuT7KD3oZrnT9IqOLC0JK3eKMYUmqmqfQBVtS/Jo5faKMk2YBvAzMwMc3Nza3qw7Scf6D3okfff7rf4uEtts5KVjrHax1gu63qOudrXb5DXapCch9p/951fP2j55OMeseIxVtpnuTyD/vyXstLPc5jm5+dHevx+43xekqTBNOdIC+dJ30xyM3AcfqgmSZImYGIDTVfVTmAnwJYtW2p2dnZNxzmnb/api3Y/8OnsOXt2ye1XY6VjrPYxlsu6nmMu3n4lSx1v8THeeOkVK+Y81P4rvU6D5Br0dRj057+Wxxymubk51vq7vlrjfF6SpNVrels/EbiWAT9UkyRJGqZRFIXuTrKpOaHZBOwfwWNIkiR1VpKHAe8BXlZV30gy6H6H7Gk9zh6p69GVnGDWURhVzrVcEbCSrrymkrRWoygKXQlsBS5svl8xgseQJEnqpCRH0CsIXVpV721WD/Sh2ko9rcfZI3U9upITzDoKo8q5lisCVnLJ6Ud14jXVcE3L+FTOnCpY5+xjSd4JfAJ4bJK9Sc6lVwx6epJbgac3y5IkSVMvvS5BFwM3V9Vr++5a+FAN/FBNkiSNyXpnH3vhMnedtp7jSpIkbVCnAi8Cdie5vln3Cnofol3efMB2B/D8ycSTJEnTZGIDTUuSJE2bqvo4sNwAQn6oJkmSxsqikCRJI7D4Ov1LTj9qQkkkSWqvaRm/ZyVtGN+nDRk0fusaU0iSJEmSJEndZE8hSZIkSRO32l4K9jCRpPWzKKRWa+M/e7tVSpIkSZI2AotCkqSRspAqSVI3JHkb8Gxgf1Wd1Kw7BngXsBnYA7ygqr46qYxd1cYPu0fB877ucUwhSZIkSRLAJcDpi9btAK6uqhOBq5tlSRuERSFJkiRJElX1MeAri1afAexqbu8CzhxnJkmj5eVjkjYkuz9LkrSxTMvlNy00U1X7AKpqX5JHL7dhkm3ANoCZmRnm5uZWPPj2kw+sL9yR6z/GKKw31+LXbpBjDfJ6z8/P37fdSscc5HiLLT7majO1ybTksijUUsP+p+c/UU2hS4A/AN7et26h+/OFSXY0yy+fQDZJkqQNp6p2AjsBtmzZUrOzsyvuc84636dsP/kAF+1u39va9ebac/bsQcuDvE6L91nK3NwcCz+XlY45yPEWW3zM1WZqk2nJ5eVjkjYkuz9LkiQNxd1JNgE03/dPOI+kIWpfSVWSRmeg7s9r6fo8LG3tprpgLflW6kY8zC7fbe1CDrD/K1/njZdecchtTj7uEWNK80Bd+N2TJE3ElcBW4MLm+6H/mUnqFItCkrTIWro+D0tbu6kuWEu+lboRr7fbeL+2diGHwbKtpZv2sHThd0+SNFpJ3gnMAscm2Qu8kl4x6PIk5wJ3AM+fXEIditPBay3aeeYsSaNxd5JNTS8huz9LktRijok5flX1wmXuOm2sQSSNzYYvCg3jn8m0/ENa/Dy3nzyhIEO01M/OivlUs/uzJEmSJDU2fFFI0nSy+7MkyUspJEk6tJEVhZLsAb4J3AscqKoto3osSVrM7s+SJEmSdGijnpL+p6vqFAtCkiRJPUnelmR/khv61h2T5KoktzbfHznJjJIkaTqMuigkSZKkg10CnL5o3Q7g6qo6Ebi6WZYkSRqpUY4pVMBHkhTw35spniVJkqZaVX0syeZFq8+gNw4awC5gDnj5+FJJknSwcUzas3nHB9h+8gHOaR7Lsd/Gb5RFoVOr6q4kjwauSnJLVX1s4c4k24BtADMzM8zNzQ100N13fv2g5YUZsmaOhO0nHxhK8NVanH2lHKPIutLrt5bHW23ON1568EROi2cvG+RnvNbXZTVZV/p5rfa1HPR3F2B+fn5V26/HenJKksZupqr2AVTVvub86QFWOn8a5/+Z9Zifn3/AecPJxz1i3cdd7jxxwVpem668pnB/1sWvw1pe2/Ue41D7L/eaTupc/lC69POXpLUYWVGoqu5qvu9P8j7gycDH+u7fCewE2LJlS83Ozg503HOWmR5++8kHuGj3ZCZT23P27EHLy2VcMIqsizMstlKmpQw750oZYW05YXVZV/p5rfa1HOR5LZibm2PQ3/X1Wk9OSVI7rXT+NM7/M+sxNzfHRR//1kHrhvF/aqXziLU8RldeU7g/6zDOAdZ7jEPtv9xrutbzwFG65PSjOvPzl6S1GEkVJclRwIOq6pvN7Z8Bfm8UjyVJGq3+rsPbTz5w3/UtwzieDrbSa2OX6g3t7iSbml5Cm4D9kw4kSZI2vlF1rZkB3pdk4THeUVUfGtFjSZIkdd2VwFbgwub7FYfeXMOwuBA7icLrIIXyxbnWm3sYz3u1x1j8AUMbewVJG81S7cuk//78cLB9RlIUqqrPA08YxbElSZK6LMk76Q0qfWySvcAr6RWDLk9yLnAH8PzJJZQkSdNiMoPwSJIkTamqeuEyd5021iAjNo5eOOP4xHn3nV8/5Kfqw+7FMwl+ci9J0+tBkw4gSZIkSZKk8bOnkCRJkiRJ2hC62GNzkiwKSZK0QS11SYgnRppmk7hMaqO8OVnptfMSNEnqJi8fkyRJkiRJmkL2FNLY+Im1JEnTa/GU5Gs5DR11b5Slp29e/T7DZi8cSW2xUXo/6n72FJIkSZIkSZpC9hSSJA2Vn2iPzjA+nVvvMfyEUJIkaeOwKCRJkjRlRlHcsyA8OQuv/faTD3COPwdJ0ipYFJIkSZIkqUUstC/PXsvDZVFIE2VjJ7WLf5Pd1pWfnydz7bPS744/I0mSNiYHmpYkSZIkSZpCFoUkSZIkSZKmkJePSVJLLXU5x3ov4RjF7FXqtsUD1DobmSZlWn6XbEMlbSQrtWmrbfPWcv47iXZ1I112bU8hSZIkSZKkKWRPIUmSJK3aqD+ZtUfN8PhaSpKWY1FIkiRJkiS1koXtnvVe8r+ckRWFkpwOvAE4DHhrVV04qseSpNUYVfu00ngYoxgvY7WPqY1lFD9ff2cmy/MnSW1l+yRtTCMpCiU5DHgT8HRgL/CXSa6sqptG8XiSNCjbJ0ltNcr2yWKfpPXw/EnauEY10PSTgduq6vNV9Y/AZcAZI3osSVoN2ydJbWX7JKmtbJ+kDSpVNfyDJs8DTq+qf9ssvwj4p1X1kr5ttgHbmsXHAp9b58MeC3xpnccYl65k7UpO6E7WLuT8gap61KRDjMqE2qfVaPvviPnWrs3ZoBv5jrJ9WrF9avvPcUFXcoJZR6ErOWHwrFN//tSsn8Q5VFt/n8w1uDZmgo2T65Dt06jGFMoS6w6qPlXVTmDn0B4w+VRVbRnW8UapK1m7khO6k7UrOTe4sbdPq9H23xHzrV2bs0Fn8m2edI4RW3f71Paf44Ku5ASzjkJXckK3so7Yiu0TTOYcqq0/I3MNro2ZYHpyjerysb3ACX3LxwN3jeixJGk1bJ8ktZXtk6S2sn2SNqhRFYX+EjgxyWOSfBdwFnDliB5LklbD9klSW9k+SWor2ydpgxrJ5WNVdSDJS4AP05uy8G1VdeMoHqvPRC71WKOuZO1KTuhO1q7k3LAm1D6tRtt/R8y3dm3OBuabuCG1T115nbqSE8w6Cl3JCd3KOjItP39q68/IXINrYyaYklwjGWhakiRJkiRJ7Taqy8ckSZIkSZLUYhaFJEmSJEmSplDnikJJTk/yuSS3JdlxiO1+PMm9SZ43znx9j3/InElmk3w9yfXN13+cRM4my4qvaZP3+iQ3JvmLcWfsy7HS6/pbfa/pDc3vwDEtzPmIJH+a5K+a1/QXxp1R7ZPksCSfSfL+SWdZLMmeJLubv61PTTrPYkmOTvLuJLckuTnJT0w604Ikj+1rl65P8o0kL5t0rgVJfqNph25I8s4kD5l0pn5JXtpku7FNr1vbDHp+NAlJTkjy0eZv88YkL23WH5PkqiS3Nt8fOems8MC2uMU5H9DutTHrUm1MW3ImeVuS/Ulu6Fu3bLYk5zd/Y59L8oxJZNb9lmtb2qCN53RtPVdqy3nIatuDCWZ6dfMz/GyS9yU5er2P06miUJLDgDcBPws8Dnhhkscts91/pjcQ2tgNmhP431V1SvP1e2MN2Rgka/OL9mbgOVX1eOD5487Z5Fgxa1W9euE1Bc4H/qKqvtK2nMB5wE1V9QRgFrgovZkcNN1eCtw86RCH8NPN39eWSQdZwhuAD1XVDwNPoEWvY1V9rq9dehLwd8D7JpuqJ8lxwK8DW6rqJHqDh5412VT3S3IS8EvAk+n9XJ+d5MTJpmqfVZx3TMoBYHtV/QjwFOC8Jt8O4OqqOhG4ullug8VtcVtzLtXutSrrIdqYtuS8BDh90bolszW/s2cBj2/2eXPzt6fJWa5taYM2ntO17lypZechlzBgezDhTFcBJ1XVjwJ/Te8977p0qihE76Twtqr6fFX9I3AZcMYS2/0a8B5g/zjD9Rk0ZxsMkvXfAO+tqjsAqqorr+sLgXeOJdnBBslZwMOTBHgY8BV6/9g0pZIcDzwLeOuks3RNku8GfhK4GKCq/rGqvjbRUMs7Dfibqvr/Jh2kz+HAkUkOBx4K3DXhPP1+BLimqv6uqg4AfwE8d8KZ2qjV5x1Vta+qPt3c/ia9NyLH0cu4q9lsF3DmRAL2WaYtbmPO5dq91mVl6TamFTmr6mP0zsH6LZftDOCyqrqnqm4HbqP3t6cJOUTbMlFtPKdr+blSK85DVtkeTCxTVX2kOScCuAY4fr2P07Wi0HHA3/Yt72XRH35TbXwu8N/GmGuxFXM2fiK9y4c+mOTx44n2AINk/SHgkUnmklyX5MVjS3ewQV9XkjyUXlX1PWPItdggOf+A3pudu4DdwEur6jvjiaeWej3w20Bbfw8K+EjTBmybdJhF/gnwReB/NF2135rkqEmHWsZZTKZYvaSquhN4DXAHsA/4elV9ZLKpDnID8JNJvqdp158JnDDhTG008P/HSUuyGXgicC0wU1X7oPfmDnj0BKMteD0PbIvbmHO5dq9VWQ/RxrQq5yLLZevM39k0WtS2TNrrad85XSvPlTpwHtLmtgrgF4EPrvcgXSsKZYl1tWj59cDLq+re0cdZ1iA5Pw38QHP50BuBPxl1qGUMkvVwepc8PAt4BvAfkvzQqIMtYZCsC34O+P+N+9KxxiA5nwFcD3wfcArwB00FX1MoybOB/VV13aSzHMKpVfVj9C5POS/JT046UJ/DgR8D/rCqngh8i/Zc3nGf5hLR5wB/POksC5pr488AHkOvPToqyc9PNtX9qupmepeDXwV8CPgr7FW5lNX8f5yYJA+j92HNy6rqG5POs1hH2uIFXWn3Wt3GrFIn/s6mUZvalha3I61sMzZYGzFWSX6H3jnRpes9VteKQns5+BPC43lg97ItwGVJ9gDPo3e975ljSXe/FXNW1Teqar65/WfAEUmOHV/E+wzymu6ld/3pt6rqS8DH6F2HOm6DZF0wyU/jB8n5C/Quyauqug24HfjhMeVT+5wKPKdpty4DnprkjyYb6WBVdVfzfT+98XDa1GV+L7C3qhY+HXw3vROftvlZ4NNVdfekg/R5GnB7VX2xqr4NvBf4ZxPOdJCquriqfqyqfpJeF+pbJ52phVbz/3EikhxB703bpVX13mb13Uk2NfdvYnKX/S9Yri1uW05Yvt1rW9bl2pi25ey3XLbW/51No2Xalklq6zldW8+V2n4e0sq2KslW4NnA2VW17uJ014pCfwmcmOQxzSeuZwFX9m9QVY+pqs1VtZneL/uvVtWftC1nku9txpMhyZPp/Sy+POacMEBW4ArgXyQ5vOm+/0+ZzMBkg2QlySOAn6KXexIGyXkHvbFFSDIDPBb4/FhTqjWq6vyqOr5pt84C/ldVteZTkiRHJXn4wm3gZ+hd1tMKVfUF4G+TPLZZdRpw0wQjLWdS45wdyh3AU5I8tPmfdBotGHiyX5JHN9+/H/iXtO81bIOB/j9OSvO7dTFwc1W9tu+uK4Gtze2tTO7/NnDItrhVOeGQ7V7bsi7XxrQtZ7/lsl0JnJXkwUkeA5wIfHIC+dQ4RNsyMW09p2vxuVLbz0Na11YlOR14Ob1JoP5uGMc8fBgHGZeqOpDkJfRmFTsMeFtV3ZjkV5r7JzmO0H0GzPk84N8lOQD8PXDWMKp8o8haVTcn+RDwWXrXxr61qsb+hnAVP//nAh+pqm+NO+Mqcv4+cEmS3fS6I7+86YUltdEM8L6mjn048I6q+tBkIz3ArwGXNm+IP0+vN15rNAX1pwO/POks/arq2iTvpndJ8wHgM8DOyaZ6gPck+R7g28B5VfXVSQdqm+X+70w4Vr9TgRcBu5Nc36x7BXAhcHmSc+m9MZjI7KYDaGvOpdq9B9GirIdoYx5GC3ImeSe9WWCPTbIXeCXL/Lybc7nL6b2RPkCvPZrkcBVapm1prsLQA7XuXKlN5yGraQ8mnOl84MHAVc25+TVV9SvrepwJ1CEkSZIkSZI0YV27fEySJEmSJElDYFFIkiRJkiRpClkUkiRJkiRJmkIWhSRJkiRJkqaQRSFJkiRJkqQpZFFIkiRJkiRpClkUkiRJkiRJmkIWhSRJkiRJkqaQRSFJkiRJkqQpZFFIkiRJkiRpClkUkiRJkiRJmkIWhSRJkiRJkqaQRSFJkiRJkqQpZFFIkiRJkiRpClkUkiRJkiRJmkIWhSRJkiRJkqaQRSFJkiRJkqQpZFFIkiRJkiRpClkUkiRJkiRJmkIWhXRISfYk+fsk80m+kOSSJA/ru/+o5r4/O8S+30zytST/J8mvJPH3TtK6NW3Pwtd3+tqq+SRnN9vMJqkkv71o3ycm+XqSH+xb96Smrdo85qciqeUWnQ/dneR/JPmbvjbn3iT/0Lf8iiTnNOvnk3wjyV8lefYSx35V0049uVk+u+84f9+0b/e1d315ntZ3jOOTXJrky0m+leSTSz2WJK1kUXv31SQfSHLCpHNpdHxzrkH8XFU9DDgFeCJwft99zwPuAX4myaZl9n048APAhcDLgYtHG1fSNKiqhy18AXfQtFXN16XNZluBrzTf+/f9DPAm4C3pOQJ4G/Afq2rP+J6FpA5ZOB/6MeDHgT/ua4P+N/CSvjboPzX7fKK5/2jgzcBlSY5eOGCSAC+ir52qqkv7jvuzwF2L2ruDJDkG+Djwj8DjgWOB1wHvSPK84b8MkqbAQnu3CbgbeOOE82iELAppYFX1BeDD9IpDC7YC/w34LHD2Ifb9elVdCfxrYGuSk0YYVZJI8lB6hevzgBOTbFm0ye/SO9nZBrwCmAf+YKwhJXVOVd0JfBAY+Fymqr4D/E/gKODEvrv+BfB9wEuBs5J81xoi/Qa99uvcqvpCVf19Vb0TuAC4qCk8SdKqVdU/AO8GHjfpLBodi0IaWJLj6X1idVuz/P3ALHBp8/XilY5RVZ8E9tI7CZKkUfpX9N4o/TG9gvZBbVRV3QOcC/xnYDu9N1TfGXdISd3SXEbxTOAzq9jnMOAXgG8D/1/fXVuBPwXe1Syv5ZKvpwPvWaL9uhz4fuCH1nBMSVr4gO1fA9dMOotGx6KQBvEnSb4J/C2wH3hls/7FwGer6ibgncDjkzxxgOPdBRwzkqSSdL+twLuq6l7gHcALm8vE+t0AHAB2V9Ut4w4oqVP+JMnX6F2q9RfAfzr05gA8pdnnH4DXAD9fVfvhvjdbzwfeUVXfpvdp/NblDnQIxwL7lli/r+9+SVqNhfbuG/QKz6+ebByNkkUhDeLMZlygWeCHuf/k4sX0eghRVXfRO0Ea5GTmOHrXzkvSSDSf5P80TRsFXAE8BHjWok0votd2HZ/krPEllNRBZ1bV0VX1A1X1q1X19wPsc01VHQ08EriSg3tKP5deUXphso5LgZ9N8qhV5voSvUthF9vUd78krcaZTdv1YOAlwF8k+d7JRtKoWBTSwKrqL4BLgNck+Wf0rok/v5mV7AvAP6X3Sfzhyx0jyY/TKwp9fAyRJU2vF9H7H/enTfv0eXpFofsuIUtyGnAG8CvN1xuaAVslaaiqah74VeBFfb2qtwIPA+5o2qk/Bo4AXrjKw/858K+WmN31BfR6ef/1moNLmmpVdW9VvRe4F/jnk86j0bAopNV6Pb0uhK8ErqI36NgpzddJwEPpjTt0kCTf3UyNehnwR1W1ezxxJU2pF9MbSPqUvq9/BTwryfckOQp4C/CyqvpiVX2QXpv2uomklbThVdWXgbcC/zHJccBp9MYQOqX5egK9Mc5WewnZ64DvBi5O8r1JHpLkhcDvAL9VVTWcZyBp2jQztJ5Br7fjzZPOo9FYtkeHtJSq+mKSy4EzgRc3M5LdJ8n/5P5BE6H3Kf0B4DvATcBr6c1WJkkjkeQpwGbgTVX1xb67rkxyG71P4U8Ebumbuh7gZcBNSX6mqj4yrrySpsrrgb+hN8j99YvbmiT/Fdie5KSqumGQA1bVl5P8c3oFpZvoXe5xE/CiqrpimOElTY0/TXIvUPQGx99aVTdOOJNGJH54IEmSJEmSNH28fEySJEmSJGkKWRSSJEmSJEmaQhaFJEmSJEmSppBFIUmSJEmSpCnUitnHjj322Nq8eTPf+ta3OOqooyYdZ1XMPB5mHo9vfetb3HLLLV+qqkdNOktbLLRPa9Xm34M2Z4N252tzNmh3vvVku+6662yf+qy3fRqXNv8+LsW8o7VR89o+PdCgbVTXfidW4vNpt432fGDl57Ri+1RVE/960pOeVFVVH/3oR6trzDweZh6Pj370owV8qlrQLrTla6F9Ws9r2lZtzlbV7nxtzlbV7nzryWb7NNz2aVza/Pu4FPOO1kbN26X2CXgI8Engr4Abgd9t1h8DXAXc2nx/ZN8+5wO3AZ8DnjHI4wzaRnXtd2IlPp9222jPp2rl57RS++TlY5IkSZI0Pe4BnlpVTwBOAU5P8hRgB3B1VZ0IXN0sk+RxwFnA44HTgTcnOWwSwSUNn0UhSZIkSZoSTeeB+WbxiOargDOAXc36XcCZze0zgMuq6p6qup1ej6Enjy+xpFFqxZhCkiRJkqTxaHr6XAf8IPCmqro2yUxV7QOoqn1JHt1sfhxwTd/ue5t1Sx13G7ANYGZmhrm5uRWzzM/PD7RdV/h82m2jPR9Y/3OyKCRJkjRkSd4GPBvYX1UnLbrvN4FXA4+qqi81684HzgXuBX69qj485siSpkhV3QuckuRo4H1JTjrE5lnqEMscdyewE2DLli01Ozu7Ypa5uTkG2a4rfD7tttGeD6z/OXn5mCRJ0vBdQm/sjYMkOQF4OnBH3zrH65A0EVX1NWCOXttzd5JNAM33/c1me4ET+nY7HrhrfCkljZJFIUmSpCGrqo8BX1nirtcBv83Bn7I7XoeksUnyqKaHEEmOBJ4G3AJcCWxtNtsKXNHcvhI4K8mDkzwGOJHe7GWSNgAvH5M2qM07PnDQ8p4LnzWhJJI2EtuWtUvyHODOqvqr5KCrMUY6XsekdW38BvOO1kLe3Xd+/QH3nXzcIyaQ6NC69voOaBOwq+mR+CDg8qp6f5JPAJcnOZdeb8bnA1TVjUkuB24CDgDnNZefSRqjUZ2DWRSSJEkasSQPBX4H+Jml7l5i3dDG65i0ro3fYN7RWsh7zqI3NwB7zp4df6AVdO31HURVfRZ44hLrvwyctsw+FwAXjDiapAmwKCRJkjR6/xfwGGChl9DxwKeTPBnH65AkSRPimEKSJEkjVlW7q+rRVbW5qjbTKwT9WFV9AcfrkCRJE2JRSJIkaciSvBP4BPDYJHubMTqWVFU3AgvjdXwIx+uQJElj4uVjkiRJQ1ZVL1zh/s2Llh2vQ5IkjZ09hSRJkiRJkqaQRSFJkiRJkqQpZFFIkiRJkiRpClkUkiRJkiRJmkIWhSRJkiRJkqbQikWhJG9Lsj/JDX3rXp3kliSfTfK+JEf33Xd+ktuSfC7JM0aUW5JsnyRJkiRpHQbpKXQJcPqidVcBJ1XVjwJ/DZwPkORxwFnA45t93pzksKGllaSDXYLtkyRJkiStyYpFoar6GPCVRes+UlUHmsVrgOOb22cAl1XVPVV1O3Ab8OQh5pWk+9g+SZIkSdLaHT6EY/wi8K7m9nH03oQt2Nuse4Ak24BtADMzM8zNzTE/P8/c3NwQIo2PmcfDzKu3/eQDBy0PkmV+fn5EaSZmaO3TWk369+BQ2pwN2p2vzdlgtPnW0rb0a/trJ0mSNE3WVRRK8jvAAeDShVVLbFZL7VtVO4GdAFu2bKnZ2Vnm5uaYnZ1dT6SxM/N4mHn1ztnxgYOW95w9u+I+G+mN2rDbp7Wa9O/BobQ5G7Q7X5uzwWjzraVt6df2106SJGmarLkolGQr8GzgtKpaeGO1Fzihb7PjgbvWHk+SVs/2SZIkSZJWtqYp6ZOcDrwceE5V/V3fXVcCZyV5cJLHACcCn1x/TEkajO2TJEmSJA1mxZ5CSd4JzALHJtkLvJLebD4PBq5KAnBNVf1KVd2Y5HLgJnqXbZxXVfeOKryk6Wb7JEmSJElrt2JRqKpeuMTqiw+x/QXABesJJUmDsH2S1FZJ3kbvMtb9VXVSs+7VwM8B/wj8DfALVfW15r7zgXOBe4Ffr6oPTyK3JEmaLmu6fGzabd7xgfu+dt/59UnHkSRJ7XMJcPqidVcBJ1XVjwJ/Ta9nI0keB5wFPL7Z581JDhtfVEnTJMkJST6a5OYkNyZ5abP+VUnuTHJ98/XMvn3OT3Jbks8lecbk0ksatmFMSS9JkqQ+VfWxJJsXrftI3+I1wPOa22cAl1XVPcDtSW4Dngx8YhxZJU2dA8D2qvp0kocD1yW5qrnvdVX1mv6NFxWuvw/48yQ/5GX40sZgTyFJkqTx+0Xgg83t44C/7btvb7NOkoauqvZV1aeb298EbubQbc59heuquh1YKFxL2gDsKSRJkjRGSX6H3if1ly6sWmKzWmbfbcA2gJmZGebm5kYRcajm5+c7kXOBeUdrIe/2kw884L42Po+uvb6r1fRofCJwLXAq8JIkLwY+Ra830VfpFYyu6dtt2cL1WtqojfYa+3zarcvPZ3G7ufA81vucLApJkiSNSZKt9AagPq2qFgo/e4ET+jY7Hrhrqf2raiewE2DLli01Ozs7urBDMjc3RxdyLjDvaC3kPWfHBx5w356zZ8cfaAVde31XI8nDgPcAL6uqbyT5Q+D36RWlfx+4iF6vxoEL12tpozbaa+zzabcuP5/F7eZCm7ne5+TlY5IkSWOQ5HTg5cBzqurv+u66EjgryYOTPAY4EfjkJDJKmg5JjqBXELq0qt4LUFV3V9W9VfUd4C3cf4nYwIVrSd1jT6ElbF5cgbvwWRNKIkmSuijJO4FZ4Ngke4FX0ptt7MHAVUkArqmqX6mqG5NcDtxE77Ky8xzAVdKopNcAXQzcXFWv7Vu/qar2NYvPBW5obl8JvCPJa+kNNG3hWtpALApJkiQNWVW9cInVFx9i+wuAC0aXSJLucyrwImB3kuubda8AXpjkFHqXhu0BfhnAwrW0sVkUkiRJkqQpUVUfZ+lxgv7sEPtYuJY2KMcUkiRJkiRJmkIWhSRJkiRJkqaQRSFJkiRJkqQpZFFIkiRJkiRpClkUkiRJkiRJmkIWhSRJkiRJkqbQikWhJG9Lsj/JDX3rjklyVZJbm++P7Lvv/CS3JflckmeMKrgk2T5JkiRJ0toN0lPoEuD0Ret2AFdX1YnA1c0ySR4HnAU8vtnnzUkOG1paSTrYJdg+SZIkSdKarFgUqqqPAV9ZtPoMYFdzexdwZt/6y6rqnqq6HbgNePJwokrSwWyfJEmSJGntDl/jfjNVtQ+gqvYleXSz/jjgmr7t9jbrHiDJNmAbwMzMDHNzc8zPzzM3N7fGSMOz/eQDBy0vztR//8yRD7y/7dryOq+GmVdvpd/jpczPz48ozViNpH1aq0n/HhxKm7NBu/O1ORuMNt9a2pZ+bX/tJEmSpslai0LLyRLraqkNq2onsBNgy5YtNTs7y9zcHLOzs0OOtHrn7PjAQct7zp5d9v7tJx/gBS3IvBpteZ1Xw8yrt9Lv8VI2+Bu1dbVPazXp34NDaXM2aHe+NmeD0eZbS9vSr+2vnSRJ0jRZ6+xjdyfZBNB839+s3wuc0Lfd8cBda48nSatm+yRJkiRJA1hrUehKYGtzeytwRd/6s5I8OMljgBOBT64voiStiu2TJEmSJA1gkCnp3wl8Anhskr1JzgUuBJ6e5Fbg6c0yVXUjcDlwE/Ah4LyqundU4SVNN9snSW2V5G1J9ie5oW/dMUmuSnJr8/2Rffedn+S2JJ9L8ozJpJYkSdNmxTGFquqFy9x12jLbXwBcsJ5QkjQI2ydJLXYJ8AfA2/vW7QCurqoLk+xoll+e5HHAWcDjge8D/jzJD1m4liRJo7bWy8ckSZK0jKr6GPCVRavPAHY1t3cBZ/atv6yq7qmq24HbgCePI6ckSZpuw559TJIkSUubqap9AFW1L8mjm/XHAdf0bbe3WfcASbYB2wBmZmY6MWvk/Px8J3IuMO9oLeTdfvKBB9zXxufRtddXklbLopAkSdJkZYl1tdSGVbUT2AmwZcuWmp2dHWGs4Zibm6MLOReYd7QW8p6z4wMPuG/P2bPjD7SCrr2+krRaXj4mSZI0Hncn2QTQfN/frN8LnNC33fHAXWPOJmlKJDkhyUeT3JzkxiQvbdY7GL40hSwKSZIkjceVwNbm9lbgir71ZyV5cJLHACcCn5xAPknT4QCwvap+BHgKcF4z4P3CYPgnAlc3yywaDP904M1JDptIcklDZ1FIkiRpyJK8E/gE8Ngke5OcC1wIPD3JrcDTm2Wq6kbgcuAm4EPAec48JmlUqmpfVX26uf1N4GZ645g5GL40hRxTSJIkaciq6oXL3HXaMttfAFwwukSS9EBJNgNPBK5lQoPhb7TBvH0+7dbl57N4gP6F57He52RRSJIkSZKmTJKHAe8BXlZV30iWGvO+t+kS64Y2GP5GG8zb59NuXX4+iwfoXxicf73PycvHJEmSJGmKJDmCXkHo0qp6b7PawfClKWRRSJIkSZKmRHpdgi4Gbq6q1/bd5WD40hTy8jFJkiRJmh6nAi8Cdie5vln3CnqD31/eDIx/B/B86A2Gn2RhMPwDOBi+tKFYFJIkSZKkKVFVH2fpcYLAwfClqePlY5IkSZIkSVPIopAkSZIkSdIUsigkSZIkSZI0hdZVFEryG0luTHJDkncmeUiSY5JcleTW5vsjhxVWkgZl+yRJkiRJh7bmolCS44BfB7ZU1UnAYcBZwA7g6qo6Ebi6WZaksbF9kiRJkqSVrffyscOBI5McDjwUuAs4A9jV3L8LOHOdjyFJa2H7JEmSJEmHsOYp6avqziSvAe4A/h74SFV9JMlMVe1rttmX5NFL7Z9kG7ANYGZmhrm5Oebn55mbm1trpKHZfvKBg5YXZ+q/f+bIB97fdm15nVfDzKu30u/xUubn50eUZrxG0T6t1aR/Dw6lzdmg3fnanA1Gm28tbUu/tr92kiRJ02TNRaFmLI4zgMcAXwP+OMnPD7p/Ve0EdgJs2bKlZmdnmZubY3Z2dq2RhuacHR84aHnP2bPL3r/95AO8oAWZV6Mtr/NqmHn1Vvo9XspGeaM2ivZprSb9e3Aobc4G7c7X5mww2nxraVv6tf21kyRJmibruXzsacDtVfXFqvo28F7gnwF3J9kE0Hzfv/6YkrQqtk+SJEmStIL1FIXuAJ6S5KFJApwG3AxcCWxtttkKXLG+iJK0arZPklrL2RElSVJbrLkoVFXXAu8GPg3sbo61E7gQeHqSW4GnN8uSNDa2T5LaytkRJUlSm6x5TCGAqnol8MpFq++h96m8JE2M7ZOkFluYHfHb3D874vnAbHP/LmAOePkkwkmSpOmxrqKQJEmSBtem2RHHpWszzpl3tBbyLp7JENo54UXXXl9JWi2LQpIkSWPSptkRx6VrM86Zd7QW8i6eyRBWP5vhOHTt9ZWk1VrPQNOSJElaHWdHlCRJrWFRSJIkaXycHVGSJLWGl49JkiSNSVVdm2RhdsQDwGfoXQ72MODyJOfSKxw9f3IpJUnStLAoJEmSNEbOjihJktrCy8ckSZIkaYokeVuS/Ulu6Fv3qiR3Jrm++Xpm333nJ7ktyeeSPGMyqSWNgkUhSZIkSZoulwCnL7H+dVV1SvP1ZwBJHgecBTy+2efNSQ4bW1JJI2VRSJIkSZKmSFV9DPjKgJufAVxWVfdU1e3AbcCTRxZO0lg5ppAkSZIkCeAlSV4MfArYXlVfBY4DrunbZm+z7gGSbAO2AczMzDA3N7fiA87Pzw+0XVf4fNqty89n+8kHDlpeeB7rfU4WhSRJkiRJfwj8PlDN94uAXwSyxLa11AGqaie9GRXZsmVLzc7Orvigc3NzDLJdV/h82q3Lz+ecHR84aHnP2bPA+p+Tl49JkiRJ0pSrqrur6t6q+g7wFu6/RGwvcELfpscDd407n6TRsKeQJE2xzYs/cbjwWRNKIkmSJinJpqra1yw+F1iYmexK4B1JXgt8H3Ai8MkJRJQ0AhaFJEmSJGmKJHknMAscm2Qv8EpgNskp9C4N2wP8MkBV3ZjkcuAm4ABwXlXdO4HYkkbAopAkSZIkTZGqeuESqy8+xPYXABeMLpGkSVnXmEJJjk7y7iS3JLk5yU8kOSbJVUlubb4/clhh9f9v7/6jJ6vrO88/3wJqh1aBAb7pA2y+mmGcGL8jZL7DuIdM9iuoacERnY0uLGL3arbdHMnR2a+TtGbPaOLJnE4i/jizxk0rDG3EH0QhcESNbMcKw9mIAoINaVnQtNrQdkdF5etONF947x91v6a6ur4/6sete6vu83HO91TdW1X3vu6t+n6q6l2f+7mSNsr2SZIkSZLWNuxA0+8FPpuZ/xx4HrAf2Anszcyzgb3FtCSNm+2TJEmSJK1h4KJQRDwd+BWKboaZ+ZPM/D5wCbCnuNse4OXDRZSk/tg+SZIkSdL6hhlT6FnA3wH/JSKeB9wFvBGYWRm1PjMPRcTpvR4cETuAHQAzMzO0Wi2WlpZotVpDRBqNxbnlo6a7M3XePrPp2Nvrri77uR9m7t96r+NelpaWSkozdiNvnwZV9etgLUtLSyzOHT1OZJ2y1n3f1TUblJtvkLalU933nSRJUpMMUxQ6Hvgl4Dcz846IeC99HIqRmbuB3QDz8/O5sLBAq9ViYWFhiEijsb37FM2XL6x6++LcMq+qQeZ+1GU/98PM/VvvddzLFH1RG3n7NKiqXwdrabVaXHX7j46at5HXybjUfd/VNRuUm2+QtqVT3ffdOETEScAHgefSPsvPa4EHgI8Ds7TP+vOqzHy0moSSJKkphhlT6CBwMDPvKKY/QftL2OGI2AJQXB4ZLqIk9c32SVKdOeaZJEmqhYGLQpn5beBbEfHsYtaFwN8ANwPbinnbgJuGSihJfbJ9klRXjnkmSZLqZJjDxwB+E7guIp4MfB34X2gXmq6PiNcB3wReOeQ6JGkQtk+S6mioMc8kSZJGaaiiUGbeA8z3uOnCYZYrScOyfZJUU0ONeTbKgfDHZdIGFzdvuVbydg9aD/Uc23DS9q8k9WvYnkKSJEnauF5jnu2kGPOs6CW06phnoxwIf1wmbXBx85ZrJW/3oPVQr5MdrJi0/StJ/RpmoGlJkiT1wTHPJElSndhTSJIkabwc80ySJNWCRSFJkqQxcswzSZJUFx4+JkmSJEmS1EAWhSRJkiRJkhrIopAkSZIkSVIDWRSSJEmSJElqIItCkiRJkiRJDWRRSJIkSZIaJCKuiYgjEXFfx7xTIuLWiHiwuDy547a3RMRDEfFARPxqNakllcGikCRJkiQ1y7XA1q55O4G9mXk2sLeYJiKeA1wK/GLxmD+OiOPGF1VSmSwKSZIkSVKDZOZtwPe6Zl8C7Cmu7wFe3jH/Y5n548z8W+Ah4Lxx5JRUvuOrDiBJkiRJqtxMZh4CyMxDEXF6Mf8M4Asd9ztYzDtGROwAdgDMzMzQarXWXenS0tKG7jcp3J56m+TtWZxbPmp6ZTuG3SaLQpIkSZKk1USPednrjpm5G9gNMD8/nwsLC+suvNVqsZH7TQq3p94meXu277zlqOkDly8Aw2+Th49Jkmpnduct7Hv4B8zuvIXZrjdASZJUisMRsQWguDxSzD8InNVxvzOBR8acTVJJhi4KRcRxEfHliPhUMb3qqPWSNE62T5IkSRt2M7CtuL4NuKlj/qUR8ZSIeCZwNvDFCvJJKsEoegq9EdjfMd1z1HpJqoDtkyRJUpeI+Cjw18CzI+JgRLwO2AW8KCIeBF5UTJOZ9wPXA38DfBZ4Q2Y+Xk1ySaM2VFEoIs4ELgY+2DF7tVHrJWlsbJ8kSZJ6y8zLMnNLZp6QmWdm5tWZ+d3MvDAzzy4uv9dx/9/PzJ/PzGdn5meqzC5ptIYdaPo9wG8BT+uYt9qo9UfpNTJ9XUYCX21U7163z2w69va6q8t+7oeZ+7fe67iXpaWlktJU4j2MsH0aVNWvg7UsLS2xOHf0D311ybo4t8zMpn98Hdcl14o6P69Qbr5B2pZOdd934xIRxwF3Ag9n5ksj4hTg48AscAB4VWY+Wl1CSZLUBAMXhSLipcCRzLwrIhb6fXyvkenrMhL4aqN697p9cW6ZV9Ugcz/qsp/7Yeb+rfc67mVavqiV0T4NqurXwVparRZX3f6jo+Zt5HUyDtt33sLi3DJX7Wu/TdUl14o6P69Qbr5B2pZOdd93Y7RyeOvTi+mVw1t3RcTOYvq3qwonSZKaYZjDx84HXhYRB4CPARdExIdZfdR6SRoX2ydJteXhrZIkqS4G7imUmW8B3gJQ/BL/5sx8dUT8Ee3R6ndx9Kj1tdB9auMDuy6uKImkskxq+ySpMd5DDQ5vHZdJO2TQvOVaydt9KCrUs8fypO1fSerXsGMK9bILuL4Ywf6bwCtLWIckDcL2SVKl6nR467hM2iGD5i3XSt7uQ1GhfocKw+TtX0nq10iKQpnZAlrF9e8CF45iuZI0LNsnSTWzcnjrRcBTgad3Ht5a9BLy8FZpAzwCQJKGN9Qp6SVJkrRxmfmW4vTPs8ClwF9m5quBm2kf1goe3ipJksakjMPHJEmS1B8Pb+3S3QsE7AkiSdKoWRSSpCliV3ppcnh4qyRJqpqHj0mSJEmSJDWQRSFJkiRJkqQGsigkSZIkSZLUQBaFJEmSJEmSGsiikCRJkiRJUgNZFJIkSZIkSWogi0KSJEmSJEkNdHzVASRJGtbszluOmj6w6+KKkkiSJEmTw6JQCfxyIkmSJEmS6s6ikCRJkiQJgIg4ADwGPA4sZ+Z8RJwCfByYBQ4Ar8rMR6vKKGl0HFNIkiRJktTpBZl5TmbOF9M7gb2ZeTawt5iWNAWmrqfQtB66Na3bJUmSJKn2LgEWiut7gBbw21WFkZqguwZQloGLQhFxFvAh4GeBJ4DdmfleuxZKqtqktE8WeyVJUg0l8LmISOBPMnM3MJOZhwAy81BEnN7rgRGxA9gBMDMzQ6vVWndlS0tLG7rfpHB76m2StmdxbnnN21e2Y9htGqan0DKwmJl3R8TTgLsi4lZgO+2uhbsiYiftroVWkSWNk+2TJGlq+COCxuz8zHykKPzcGhFf3egDiwLSboD5+flcWFhY9zGtVouN3G9SuD31Nknbs32dnkIHLl8Aht+mgYtCRaV4pVr8WETsB87AroWSKtak9mm9bqV+kZDqZVJ6Mkpqrsx8pLg8EhE3AucBhyNiS9FLaAtwpNKQkkZmJGMKRcQscC5wB0N0LdxIt6d9D//gqOm5M55x1HR3F6vu5a13e7/LmNk02Dr6NcplTlKXuRVm7t8gr5mlpaWS0lRnVO3ToNZ6HYzi/3q9bqXdOtextLTE4tzjQ2cow+LcMjOb/nH71stVRru7lqr/v9dTZr5h93Xd990Y2JNRUm1FxInAk4of1U4EXgz8HnAzsA3YVVzeVF1KSaM0dFEoIjYDnwTelJk/jIgNPa5X18KNdHvq7kK10mVqVLf3u4zFuWVetbD67auto1+jXOYkdZlbYeb+DfKambYvaqNsnwa11utgFP/X63Ur7da5jlarxVW3/2joDGXYvvMWFueWuWpf+21qvVxltLtrqfr/ez1l5ht2X9d935WtST0ZVR+D9Bq1p2ljzQA3Fp+Zjgc+kpmfjYgvAddHxOuAbwKvrDCjpBEaqigUESfQ/sJ1XWbeUMy2a6Gkytk+Saq7qnsyjsugvcN69YQcx/bWsTfbWj30euXt7lm/OHf08jayfWX1wFzJO4rndxy9ROv4eihTZn4deF6P+d8FLhx/Iqk5xnW2sW7DnH0sgKuB/Zn5ro6b7FooqVK2T6ub7erpOKKjiCX1qQ49Gcdl0N5hvXpCjqM347h7s/X6EtDdK2etHnq98m50cNK1HLOMfV09SwfsObSSdxTP7zh6iTa9d6Ok6TfMt4HzgSuAfRFxTzHvrbS/bNm1sE920ZVGyvZJUm3Zk1GSJNXFMGcfux1Y7WctuxZKqkxV7dO0FnendbukKtiTUZIk1YnHDUhSTW3kkAJJE8eejFOmisJ596HAC6WvcX11+AGhDhkkadJYFJIkSRoTe1pLkqQ6eVLVASRJkiRJkjR+9hSSJEnSRPJwIUmShmNPIUmSJEmSpAayp5Akaaz8ZV+qH/8vJUlqJotCkiRJUoNYBJQkrbAoJEmSJNEulizOLbO9o2hiwUSSNM0sCklSTXT/cjvofSRJ1bEXjiRpklgUkiQNZdgvQBa6JEmSpGpYFJIkSZIkSRqTOv0oalFIktSXOr2JSdI0sp2VJI2LRSFJGhM/5EttjrmiSWZbLklazyR91rEoJEmSJKlUK1+Qus/uJklNUOcfFCwKSZIkaSLU+UP1asbxa/Ek7hdJmiaT3A6XVhSKiK3Ae4HjgA9m5q6y1iVJ/bB9Wt0o3tAmqbusVDdltU9N+b9crw2b1u0e1iR/mdH4lNU+7Xv4B0f1HvP/VBqvUopCEXEc8D7gRcBB4EsRcXNm/k0Z65OkjbJ9Gj8LTdLG2D6Nn8UQdet+TVy79cSKktRLle3TpBR7uw+RrEsuHWsjnyub9P5QVk+h84CHMvPrABHxMeASwA81kqo2tvZpductjp1QkmHfqHs93g9vqoGJ+vw0bLHWYq80Ucb6+ansZXa3N/3eXoYy2sQ6trOD7Ouy31+aVADqJTJz9AuN+DVga2b+ejF9BfCvM/PKjvvsAHYUk88GHgBOBb4z8kDlMvN4mHk8TgVOzMzTqg5SliHap0HV+XVQ52xQ73x1zgb1zjdMtp+zfRpp+zQudX499mLeck1r3sa3T8X8QdqoSXtNrMftqbdp2x5Yf5vWbJ/K6ikUPeYdVX3KzN3A7qMeFHFnZs6XlKkUZh4PM49HkXm26hwlG6h9GnhlNX4d1Dkb1DtfnbNBvfPVOVsNjLV9GpdJe87NWy7zTqx12ycYrI2atn3s9tTbtG0PDL9NTxplmA4HgbM6ps8EHilpXZLUD9snSXVl+ySprmyfpClVVlHoS8DZEfHMiHgycClwc0nrkqR+2D5JqivbJ0l1ZfskTalSDh/LzOWIuBL4C9qnLLwmM+/fwEMnqjt0wczjYebxmMTMfRmifRpUnfdpnbNBvfPVORvUO1+ds1WqgvZpXCbtOTdvucw7gUpun6ZtH7s99TZt2wNDblMpA01LkiRJkiSp3so6fEySJEmSJEk1ZlFIkiRJkiSpgWpRFIqIrRHxQEQ8FBE7q86zERFxICL2RcQ9EXFn1Xl6iYhrIuJIRNzXMe+UiLg1Ih4sLk+uMmO3VTK/PSIeLvb1PRFxUZUZu0XEWRHx+YjYHxH3R8Qbi/m13ddrZK71vq6bQZ77iHhL0dY9EBG/WnK+p0bEFyPi3iLf79YpX7G+4yLiyxHxqRpmO6adr0u+iDgpIj4REV8tXn//fY2yPbujDbknIn4YEW+qSz6Vp9d7eMdtb46IjIhTq8jWy2p5I+I3i9fi/RHxh1Xl62WVz0nnRMQXVtqqiDivyowrJu3z0Rp5/6hoa78SETdGxEkVR50aMYHfAaH/71h1fo8b5P+0ztsDk/H5t19R9uflzKz0j/ZAZV8DngU8GbgXeE7VuTaQ+wBwatU51sn4K8AvAfd1zPtDYGdxfSfwB1Xn3EDmtwNvrjrbGpm3AL9UXH8a8P8Cz6nzvl4jc633dd3++n3ui9vuBZ4CPLNo+44rMV8Am4vrJwB3AM+vS75inf878BHgU8V0nbId087XJR+wB/j14vqTgZPqkq0r53HAt4Gfq2M+/0b+fB/zHl7MP4v24LTf6P6fqlte4AXA/w08pZg+veqcG8j8OeAlxfWLgFbVOYssE/X5aI28LwaOL+b/QV3yTvofE/odsMi+4e9YdX+P6/f/tO7bU2Ss/effAbap1M/LdegpdB7wUGZ+PTN/AnwMuKTiTFMhM28Dvtc1+xLaXyYoLl8+zkzrWSVzrWXmocy8u7j+GLAfOIMa7+s1MqsPAzz3lwAfy8wfZ+bfAg/RbgPLypeZuVRMnlD8ZV3yRcSZwMXABztm1yLbGirPFxFPp/2B9GqAzPxJZn6/Dtl6uBD4WmZ+o6b5NEJrvIe/G/gt2u1PbayS9zeAXZn54+I+R8YebA2rZE7g6cX1ZwCPjDXUKibt89FqeTPzc5m5XNztC8CZVWWcMhP7HbDP71i1fo+r+2fZQdT982+/xvF5uQ5FoTOAb3VMH2Qyvpwm8LmIuCsidlQdpg8zmXkI2o0AcHrFeTbqyqLb7jV16WbcS0TMAufSrkhPxL7uygwTsq/rZoPP/djbu6K76T3AEeDWzKxTvvfQ/qL4RMe8umSD3u18HfI9C/g74L8UXYk/GBEn1iRbt0uBjxbX65hPJYuIlwEPZ+a9VWfZoH8G/JuIuCMi/ioi/lXVgTbgTcAfRcS3gHcCb6k2zrEm7fNRj89GK14LfGbsgabTtLX9E/8eV9fPsoOo+efffr2Hkj8v16EoFD3m1eqXpFWcn5m/BLwEeENE/ErVgabY+4GfB84BDgFXVZpmFRGxGfgk8KbM/GHVeTaiR+aJ2Nd108dzP/b2LjMfz8xzaP+yeV5EPHeNu48tX0S8FDiSmXdt9CE95pX9XtFPOz/OfMfT7rb+/sw8F/gR7a7Dq6nkfTYingy8DPiz9e7aY94kfA7QOiLiZ4DfAf5j1Vn6cDxwMu1DDf4DcH1E9HqN1slvAP8+M88C/j1FL8K6mLTPR6vljYjfAZaB66rKNmWa0vZPxHbW+bPsIOr6+bdf4/q8XIei0EHax5qvOJOadHtdS2Y+UlweAW6kRl3M1nE4IrYAFJe16hbdS2YeLv6xnwA+QA33dUScQLshvS4zbyhm13pf98o8Cfu6bvp87itr74rDi1rA1prkOx94WUQcoN1l/IKI+HBNsgGrtvN1yHcQOFj86gXwCdpFojpk6/QS4O7MPFxM1y2fyvfztMc0uLf4Xz8TuDsifrbSVGs7CNxQHH7wRdq/zNZmcOxVbANW3n/+jBq9d0/a56NV8hIR24CXApdnZi2+LE6BaWv7J/Y9blI+yw6ihp9/+zWWz8t1KAp9CTg7Ip5Z/Kp4KXBzxZnWFBEnRsTTVq7THoDumDNt1NTNtD88UFzeVGGWDVl5wRdeQc32dfEL4tXA/sx8V8dNtd3Xq2Wu+76umwGe+5uBSyPiKRHxTOBs4Isl5jstirOkRMQm4IXAV+uQLzPfkplnZuYs7Xb/LzPz1XXIBmu285Xny8xvA9+KiGcXsy4E/qYO2bpcxj8eOraSo075VLLM3JeZp2fmbPG/fpD2gKbfrjjaWv4cuAAgIv4Z7QFwv1NloA14BPgfiusXAA9WmOWnJu3z0RqfjbYCvw28LDP/v6ryTaGJ+w64jol8j6v7Z9lB1Pnzb7/G9nk56zGa9kW0Rzr/GvA7VefZQN5n0R7V+17g/rpmpv1h/BDwD7Q/iL0O+CfAXtofGPYCp1SdcwOZ/xTYB3yleKFvqTpnV+Zfpt0t7yvAPcXfRXXe12tkrvW+rtvfIM897UMpvgY8QHG2mBLz/Qvgy0W++4D/WMyvRb6OdS7wj2dTqEW21dr5GuU7B7izeG7/nPbhLrXIVqzvZ4DvAs/omFebfP6V9rwf8x7edfsB6nX2sV6fOZ4MfLhoM+8GLqg65wYy/zJwV9Fe3QH8y6pzFlkn6vPRGnkfoj1Gx8q8/6vqrNPyx4R9B+zI3dd3rDq/xw3yf1rn7SnyTcTn3wG2a4GSPi9H8UBJkiRJkiQ1SB0OH5MkSZIkSdKYWRSSJEmSJElqIItCkiRJkiRJDWRRSJIkSZIkqYEsCkmSJEmSJDWQRSFJkiRJkqQGsigkSZIkSZLUQBaFJEmSJEmSGsiikCRJkiRJUgNZFJIkSZIkSWogi0KSJEmSJEkNZFFIkiRJkiSpgSwKSZIkSZIkNZBFIUmSJEmSpAayKCRJkiRJktRAFoUkSZIkSZIayKKQJEmSJElSA1kUkiRJkiRJaiCLQpIkSZIkSQ1kUUg/FREHIuKFPea/NSL+NiKWIuJgRHy8mH9/MW8pIh6PiL/vmH5rcZ9nRsQTEfHHHctb6vh7IiL+W8f05ePbYkmTomiffhIRp3bNvyciMiJmI+La4j6dbcy9xf1mi/utzD8cEZ+KiBcVtz81Ir4fERf0WPe7I+IT49lSSZIkaXwsCmlNEbENuAJ4YWZuBuaBvQCZ+YuZubmY/1+BK1emM/M/FYt4DfAocGlEPKV43OaOx30T+Lcd864b8yZKmhx/C1y2MhERc8Cmrvv8YWcbk5nP67r9pKLteR5wK3BjRGzPzL8HPk67zfqpiDiuWOeeEW+LJEmSVDmLQlrPvwL+IjO/BpCZ387M3X08/jXA/wH8A/BvS8gnqTn+lKOLNtuADw2yoKItey/wduAPIuJJtAs//2NE/EzHXX+V9nvlZwZKLEmSJNWYRSGt5wvAayLiP0TEfPGr+YZExL8BzgQ+BlxP1y/wktSnLwBPj4hfKNqi/wn48JDLvAE4HXh2Zv4/wCHg33XcfgXwkcxcHnI9kiRJUu1YFNKaMvPDwG/S/rX8r4AjEbFzgw/fBnwmMx8FPgK8JCJOLyeppIZY6S30IuCrwMNdt7+5GBto5W+9w74eKS5PKS4/VCyfiHg6cAkeOiZJkqQpZVFI68rM6zLzhcBJwP8G/F5E/Opaj4mITcArgeuKZfw17fGD/udy00qacn9Kux3ZTu9Dx96ZmSd1/G1bZ3lnFJffKy4/BLwgIs4Afg14KDO/PILckiRJUu1YFNKGZeY/ZOafAV8BnrvO3V8BPB3444j4dkR8m/aXLw8hkzSwzPwG7QGnL6J96NewXgEcAR4olv9N2gPnX0770LGBxiySJEmSJsHxVQdQ7ZwQEU/tmH417TE2bgN+RPswsl8E7lhnOduAa4Df6Zh3BvCliJjLzH2jiyypYV4HnJyZP4qIgd7HImKGdm/GtwFvzMwnOm7eA7wD+Fns3ShJkqQpZlFI3T7dNb2f9inlPwwcB3wD+I3MvH21BRSHXVwInJuZ3+646dsR8VnaBaM3jzS1pMZYORviKn4rIt7UMf33mXlqx/T3IyJoF7nvBF6ZmZ/tWsYngP8T2JuZh0aRWZIkSaqjyMyqM0iSJEmSJGnMHFNIkiRJkiSpgSwKSZIkSZIkNZBFIUmSJEmSpAayKCRJkiRJktRAtTj72KmnnpqnnXYaJ554YtVRSvWjH/3IbZwC076Nd91113cy87Sqc9TFqaeemrOzs1XHmNjXnbnHa9pz2z5JkiSNVi2KQrOzs7zzne9kYWGh6iilarVabuMUmPZtjIhvVJ2hTmZnZ7nzzjurjjGxrztzj9e057Z9kiRJGi0PH5MkSZIkSWogi0KSJEmSJEkNZFFIkiRJkiSpgSwKSZIkSZIkNZBFIUmSJEmSpAayKCRJkiRJktRAtTgl/bSZ3XnLUdMHdl1cURJJmky2o5IkSVL57CkkSZIkSZLUQBaFJEmSJEmSGsiikCRJkiRJUgNZFJIkSZIkSWogB5qWJI1U5yDRi3PLLFQXRZIkSdIa7CkkaepExFMj4osRcW9E3B8Rv1vMf3tEPBwR9xR/F1WdVZIkSZKqYk8hSdPox8AFmbkUEScAt0fEZ4rb3p2Z76wwmyRJkiTVgkUhSVMnMxNYKiZPKP6yukSSJEmSVD8WhSRNpYg4DrgL+KfA+zLzjoh4CXBlRLwGuBNYzMxHezx2B7ADYGZmhlarNb7gq1haWqpFjo1YnFv+6fWZTQyUu3MZMNgyhjFJ+7uTuSVJktQPi0KSplJmPg6cExEnATdGxHOB9wPvoN1r6B3AVcBrezx2N7AbYH5+PhcWFsaUenWtVos65NiI7V0DTb9qgNydywA4cHn/yxjGJO3vTuaWJElSPxxoWtJUy8zvAy1ga2YezszHM/MJ4APAeVVmkyRJkqQqNa6n0Gz3r8+7Lh7oPpLqKyJOA/4hM78fEZuAFwJ/EBFbMvNQcbdXAPdVFlKSJEmSKta4opCkRtgC7CnGFXoScH1mfioi/jQizqF9+NgB4PXVRZQkSZKkag1cFIqIs4APAT8LPAHszsz3RsTbgf8V+Lvirm/NzE8PG1SSNiozvwKc22P+FRXEkSRJkqRaGqan0DLtM/fcHRFPA+6KiFuL296dme8cPp4kSZIkSZLKMHBRqBiX41Bx/bGI2A+cMapgkiRJkiRJKs9IxhSKiFnah2rcAZwPXBkRrwHupN2b6NEej9kB7ACYmZlhaWmJVqs1ijhrWpxbPmq61zrXu8++h39w1PTcGc/Y0OPHtY1VchslrcfB/CVJkqR6GLooFBGbgU8Cb8rMH0bE+4F30B7I9R3AVcBrux+XmbuB3QDz8/O5efNmFhYWho2zru3dX0YuP3ad691n0NtbrdZYtrFKbqMkSZIkSZPhScM8OCJOoF0Qui4zbwDIzMOZ+XhmPgF8ADhv+JiSJEmSJEkapYGLQhERwNXA/sx8V8f8LR13ewVw3+DxJEmSJEmSVIZhDh87H7gC2BcR9xTz3gpcFhHn0D587ADw+iHWIUmSJEmSpBIMc/ax24HocdOnB48jSZIkSZKkcRhqTCFJkiRJkiRNJotCkiRJkiRJDWRRSJIkSZIkqYEsCkmSJEmSJDWQRSFJUycinhoRX4yIeyPi/oj43WL+KRFxa0Q8WFyeXHVWSZIkSaqKRSFJ0+jHwAWZ+TzgHGBrRDwf2Anszcyzgb3FtCRJkiQ1kkWhMZjdeQuzO29h38M/YHbnLVXHkaZeti0VkycUfwlcAuwp5u8BXj7+dJIkSZJUD8dXHUCSyhARxwF3Af8UeF9m3hERM5l5CCAzD0XE6as8dgewA2BmZoZWqzWm1KtbWlqqRY6NWJxb/un1mU0ck7vzdjj29o3ep0yTtL87mVuSJEn9sCgkaSpl5uPAORFxEnBjRDy3j8fuBnYDzM/P58LCQikZ+9FqtahDjo3Y3tEjcnFumVd15d7e1WPywOVH377R+5RpkvZ3J3NLkiSpHx4+JmmqZeb3gRawFTgcEVsAissj1SWTJEmSpGpZFJI0dSLitKKHEBGxCXgh8FXgZmBbcbdtwE2VBJQkSZKkGvDwsSnRPYD1gV0XV5REqoUtwJ5iXKEnAddn5qci4q+B6yPidcA3gVdWGVKSJEmSqmRRSNLUycyvAOf2mP9d4MLxJ2o2z7ooSZIk1ZOHj0mSJEmSJDWQRSFJkiRJkqQGsigkSZIkSZLUQI4pJEkayrBjBjnmkCRJklSNxheFNvJlpA5fWDy7mCRJkiRJGiUPH5MkSZIkSWqggYtCEXFWRHw+IvZHxP0R8cZi/ikRcWtEPFhcnjy6uJIkSZIkSRqFYXoKLQOLmfkLwPOBN0TEc4CdwN7MPBvYW0xLkiRJkiSpRgYuCmXmocy8u7j+GLAfOAO4BNhT3G0P8PIhM0qSJEmSJGnERjKmUETMAucCdwAzmXkI2oUj4PRRrEOSJEmSJEmjM/TZxyJiM/BJ4E2Z+cOI2OjjdgA7AGZmZlhaWqLVag0bZ12Lc8sjX2Z37tXWMbOpfdsg29m9zPXWOY592cu4nscqNWEbJUmSJEnTb6iiUEScQLsgdF1m3lDMPhwRWzLzUERsAY70emxm7gZ2A8zPz+fmzZtZWFgYJs6GbC/h9PIHLl/Y0DoW55a5at/xx9x/I7qXud46B1nHKLRarbE8j1VqwjZKkiRJkqbfMGcfC+BqYH9mvqvjppuBbcX1bcBNg8eTJEmSJElSGYYZU+h84Arggoi4p/i7CNgFvCgiHgReVExL0thExFkR8fmI2B8R90fEG4v5b4+Ih7vaLEmSJElqpIEPH8vM24HVBhC6cNDlStIILAOLmXl3RDwNuCsibi1ue3dmvrPCbJIkSZJUC0MPNF13syWMISSp3oozH66cBfGxiNgPnFFtKkmSJEmql6kvCklqtoiYBc4F7qB92OuVEfEa4E7avYke7fGYo86OWIezzdX5rHdrndVx5ayLwxr3ttd5f6/F3JIkSeqHRSFJUysiNtM+Q+KbMvOHEfF+4B1AFpdXAa/tflz32RHrcLa5Op/1bq2zOq6cdXFY4z6jYp3391rMLUmSpH4MM9C0JNVWRJxAuyB0XWbeAJCZhzPz8cx8AvgAcF6VGSVJkiSpShaFJE2diAjgamB/Zr6rY/6Wjru9Arhv3NkkSZIkqS48fEzSNDofuALYFxH3FPPeClwWEefQPnzsAPD6KsJJkiRJUh1YFKqpKs6a1r3OA7suHnsGaRQy83Ygetz06XFnkSRJkqS68vAxSZIkSZKkBrIoJEmSJEmS1EAePiZJU8zDQiVJkiStxp5CkiRJkiRJDWRRSJIkSZIkqYEsCkmSJEmSJDWQRSFJkiRJkqQGsigkSZIkSZLUQBaFJEmSJEmSGsiikCRJkiRJUgMdX3UAtc3uvKXqCMfoznRg18UVJZEkSZIkSaNmUUiSVHsWqSVJkqTR8/AxSVMnIs6KiM9HxP6IuD8i3ljMPyUibo2IB4vLk6vOKkmSJElVGaooFBHXRMSRiLivY97bI+LhiLin+Lto+JiS1JdlYDEzfwF4PvCGiHgOsBPYm5lnA3uLaUmSJElqpGF7Cl0LbO0x/92ZeU7x9+kh1yFJfcnMQ5l5d3H9MWA/cAZwCbCnuNse4OWVBJQkSZKkGhhqTKHMvC0iZkeURZJGrmijzgXuAGYy8xC0C0cRcfoqj9kB7ACYmZmh1WqNJ+walpaWBsqxOLd81HQZ29K9jk4zm9a+fVBlPyeD7u+qmVuSJEn9iMwcbgHtL1yfysznFtNvB7YDPwTupH0Ix6M9Htf5petffvCDH2Tz5s1DZell38M/GPkyBzWzCQ7/N5g74xnH3NZvzu5ldD++1zrWs16GjSxzaWmplOexTqZ9G1/wghfclZnzVecYhYjYDPwV8PuZeUNEfD8zT+q4/dHMXHNcofn5+bzzzjtLTrq+VqvFwsJC348bxwDNa509cXFumav2jf6cBmUPND3o/q7atOeOiKlpnyRJkuqgjLOPvR94B5DF5VXAa7vvlJm7gd3Q/tK1efPmUj7Ibq/Rqd5XvhwduHzhmNv6zdm9jO7H91rHetbLsJFlTuoXkn40YRunQUScAHwSuC4zbyhmH46ILUUvoS3AkeoSSpIkSVK1Rn72scw8nJmPZ+YTwAeA80a9DklaS0QEcDWwPzPf1XHTzcC24vo24KZxZ5MkSZKkuhh5T6GVX+GLyVcA9611f0kqwfnAFcC+iLinmPdWYBdwfUS8Dvgm8Mpq4tXHOA4vkyRJklRPQxWFIuKjwAJwakQcBN4GLETEObQPHzsAvH64iJLUn8y8HYhVbr5wnFkkSZIkqa6GPfvYZT1mXz3MMiVJkiRJklS+MgaartRaZ8Gpi1FkXG8ZHhIiSZIkSZLWMvKBpiVJkiRJklR/U9dTSJJUrknokSlJkiRpffYUkiRJkiRJaiCLQpIkSZIkSQ008YePeRjDxrifJEmSJElSJ3sKSZIkSZIkNZBFIUmSJEmSpAayKCRJkiRJktRAFoUkSZIkSZIaaOIHmpYklcuB6jVq3a+pa7eeWFESSZKkZrOnkKSpFBHXRMSRiLivY97bI+LhiLin+LuoyoySJEmSVCWLQpKm1bXA1h7z352Z5xR/nx5zJkmSJEmqDYtCkqZSZt4GfK/qHJIkSZJUVxaFJDXNlRHxleLwspOrDiNJkiRJVXGgaUlN8n7gHUAWl1cBr+2+U0TsAHYAzMzM0Gq1xhixt6WlpYFyLM4tHzX9n6+7qev2o+/fax3dy+jHzKbhHr+a7u2YO+MZI13+oPu7apOSu/s1MSm5JUmSpo1FIUmNkZmHV65HxAeAT61yv93AboD5+flcWFgYS761tFotBsmxvc8zhx24/Nh19LuMTotzy1y1r/y3ml65hzHo/q7apOTufk1du/XEicgtSZI0bTx8TFJjRMSWjslXAPetdl9JkiRJmnb2FJI0lSLio8ACcGpEHATeBixExDm0Dx87ALy+qnySJEmSVLWhikIRcQ3wUuBIZj63mHcK8HFglvaXrldl5qPDxZSk/mTmZT1mXz32IBNmdohDxSRJkiRNlmEPH7sW2No1byewNzPPBvYW05IkSZIkSaqRoYpCmXkb8L2u2ZcAe4rre4CXD7MOSZIkSZIkjV4ZYwrNZOYhgMw8FBGn97pT9ymfR3W65Tor69TM47KRU0A34bTCTdhGSZIkSdL0q2yg6e5TPm/evHksp1uu0rhOzTwuvU4BPSmnQx5GE7ZRkiRJkjT9yjgl/eGV0z4Xl0dKWIckSZIkSZKGUEZR6GZgW3F9G3DTGveVJEmSJElSBYYqCkXER4G/Bp4dEQcj4nXALuBFEfEg8KJiWpIkSZIkSTUy1AA3mXnZKjddOMxyJUmSJEmSVK7pGfVYU2m2ayDxA7suriiJJEmSJEnTpYwxhSRJkiRJklRzFoUkSZIkSZIayKKQJEmSJElSAzmmkCRp6jk+mSRJknQsewpJmkoRcU1EHImI+zrmnRIRt0bEg8XlyVVmlCRJkqQqWRSSNK2uBbZ2zdsJ7M3Ms4G9xbQkSZIkNZJFIUlTKTNvA77XNfsSYE9xfQ/w8nFmkiRJkqQ6cUwhSU0yk5mHADLzUESc3utOEbED2AEwMzNDq9UaX8JVLC0t9cyx7+EfHDU9d8YzjppenFsuM9a6ZjaNJ8N6z1F3hvXuv9r+rrtJyd39fExKbkmSpGljUUiSumTmbmA3wPz8fC4sLFQbiHYRo1eO7d0DKF++sObt47Y4t8xV+8p/q+ne7m7r7aduq+3vupuU3N3Px7VbT5yI3JIkSdPGw8ckNcnhiNgCUFweqTiPJEmSJFXGnkIaWPcpnqHdK2C1ngkbOQV0r2VKI3QzsA3YVVzeVG0cSZIkSaqORSFJUykiPgosAKdGxEHgbbSLQddHxOuAbwKvrC6hqrReAXpxbpmF8USRJEmSKmNRSNJUyszLVrnpwrEGkSRJkqSackwhSZIkSZKkBrIoJEmSJEmS1EAWhSRJkiRJkhrIMYU0Nr0Gdt3IGcmqXmf3Mq7deuJQmaRhrDdAsmfwq073vu9ua6poAyVJkqS12FNIkiRJkiSpgUrrKRQRB4DHgMeB5cycL2tdkiRJkiRJ6k/Zh4+9IDO/U/I6JEmSJEmS1CfHFJKkMVlvvB/HlxmdMsZWcrwmSZIkTZsyi0IJfC4iEviTzNzdeWNE7AB2AMzMzLC0tESr1ep7JYtzyyOIOh4zmyYr7yD63cbu53y9x/b7Gum1vGGXMehrVZIkSZKkOimzKHR+Zj4SEacDt0bEVzPztpUbiyLRboD5+fncvHkzCwsLfa9k+wT9crs4t8xV+6a7c1a/23jg8oWjptd7Prvvv55eyxt2GdduPXGg16okSZIkSXVS2tnHMvOR4vIIcCNwXlnrkiRJkiRJUn9K6bYSEScCT8rMx4rrLwZ+r4x1SdK06hzDZnFueaJ6RkqSJEmqv7KOZZoBboyIlXV8JDM/W9K6JKkvEXEAeAx4HFjOzPlqE0mSJEnS+JVSFMrMrwPPK2PZkjQiL8jM71QdQpIkSZKqMt2jHks9dJ9W2tOAS5IkSZKayKKQpCZK4HMRkcCfFGdD/KmI2AHsAJiZmaHVao1kpYtzy2ve3r2ezvvPbFr/8XU0rtxr7btBzGyC/3zdTV3LHH2m7nXMnfGM/lbSZWlpaWSv1zJ174tJyS1JkjRtLApJaqLzM/ORiDgduDUivpqZt63cWBSJdgPMz8/nwsLCSFa63kDRBy4/ej3buwaavmrf5DXZ48q91r4bxChyD5Kp+zH9arVajOr1WqbufXHt1hMnIrckSdK0Ke2U9JJUV5n5SHF5BLgROK/aRJIkSZI0fhaFJDVKRJwYEU9buQ68GLiv2lSSJEmSNH6TdyyCJA1nBrgxIqDdBn4kMz9bbSRJkiRJGr+JKwp1nzlKk63f57MOZw7b9/APjhoPo4wMddjOaZWZXweeV3UOjda0vDf4vy9JkqRx8vAxSZIkSZKkBrIoJEmSJEmS1EAWhSRJkiRJkhpo4sYUkqS6GnY8mGkZF0fq5mtbkiSpniwKaaoM8sVj1F/kHRhWkiRJkjQJPHxMkiRJkiSpgSwKSZIkSZIkNZCHj0mSVIJRjKNTx3GqPERWkiRpethTSJIkSZIkqYEsCkmSJEmSJDWQh49popVxaMSwy+z1+PUOtyhjnf1mkCRJkiQ1iz2FJEmSJEmSGsieQpJUkjJ6sqnZ1ntNXbv1xMoz2CtRkiRpcpTWUygitkbEAxHxUETsLGs9ktQv2ydJkiRJKqkoFBHHAe8DXgI8B7gsIp5TxrokqR+2T5IkSZLUVlZPofOAhzLz65n5E+BjwCUlrUuS+mH7JEmSJElAZOboFxrxa8DWzPz1YvoK4F9n5pUd99kB7Cgmnw18F/jOyMPUy6m4jdNg2rfx5zLztKpDlGXA9umBsQc91qS+7sw9XtOee6rbJ0mSpHEra6Dp6DHvqOpTZu4Gdv/0ARF3ZuZ8SXlqwW2cDk3YxinXd/tUB5P6ujP3eJlbkiRJ/Sjr8LGDwFkd02cCj5S0Lknqh+2TJEmSJFFeUehLwNkR8cyIeDJwKXBzSeuSpH7YPkmSJEkSJR0+lpnLEXEl8BfAccA1mXn/Og+r1aEaJXEbp0MTtnFqDdg+1cGkvu7MPV7mliRJ0oaVMtC0JEmSJEmS6q2sw8ckSZIkSZJUYxaFJEmSJEmSGqjyolBEbI2IByLioYjYWXWeUYmIayLiSETc1zHvlIi4NSIeLC5PrjLjMCLirIj4fETsj4j7I+KNxfyp2UaAiHhqRHwxIu4ttvN3i/lTtZ2ql0lsPya1TZj0//GIOC4ivhwRnyqma587Ig5ExL6IuCci7izm1T63JEnSNKq0KBQRxwHvA14CPAe4LCKeU2WmEboW2No1byewNzPPBvYW05NqGVjMzF8Ang+8oXjupmkbAX4MXJCZzwPOAbZGxPOZvu1UvVzL5LUfk9omTPr/+BuB/R3Tk5L7BZl5TmbOF9OTkluSJGmqVN1T6Dzgocz8emb+BPgYcEnFmUYiM28Dvtc1+xJgT3F9D/DycWYapcw8lJl3F9cfo/2l5AymaBsBsm2pmDyh+EumbDtVL5PYfkxqmzDJ/+MRcSZwMfDBjtm1z72KSc0tSZI00aouCp0BfKtj+mAxb1rNZOYhaH+BAk6vOM9IRMQscC5wB1O4jcXhGfcAR4BbM3Mqt1O1NzGvuUlrEyb4f/w9wG8BT3TMm4TcCXwuIu6KiB3FvEnILUmSNHWOr3j90WNejj2FBhYRm4FPAm/KzB9G9HpKJ1tmPg6cExEnATdGxHMrjiTV1iS2CZP4Px4RLwWOZOZdEbFQcZx+nZ+Zj0TE6cCtEfHVqgNJkiQ1VdU9hQ4CZ3VMnwk8UlGWcTgcEVsAissjFecZSkScQPvL33WZeUMxe6q2sVNmfh9o0R7rZWq3U7VV+9fcpLcJE/Y/fj7wsog4QPvQ6wsi4sPUPzeZ+UhxeQS4kfah5LXPLUmSNI2qLgp9CTg7Ip4ZEU8GLgVurjhTmW4GthXXtwE3VZhlKNH++f9qYH9mvqvjpqnZRoCIOK3oPUBEbAJeCHyVKdtOTYRav+YmtU2Y1P/xzHxLZp6ZmbO03zv/MjNfTc1zR8SJEfG0levAi4H7qHluSZKkaRWZ1R6tFREX0R4X4Tjgmsz8/UoDjUhEfBRYAE4FDgNvA/4cuB7474BvAq/MzO7BZCdCRPwy8F+BffzjeBZvpT2GyFRsI0BE/Avag54eR7uIen1m/l5E/BOmaDtVL5PYfkxqmzAN/+PF4WNvzsyX1j13RDyLdu8gaB/C/pHM/P2655YkSZpWlReFJEmSJEmSNH5VHz4mSZIkSZKkClgUkiRJkiRJaiCLQpIkSZIkSQ1kUUiSJEmSJKmBLApJkiRJkiQ1kEUhSZIkSZKkBrIoJEmSJEmS1ED/P48isdqJ6umUAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "housing.hist(bins=50,figsize=(20,15))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Train-Test Splitting" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [], + "source": [ + "import numpy as np\n", + "def split_train_test(data, test_ratio):\n", + " np.random.seed(42)\n", + " shuffled =np.random.permutation(len(data))\n", + " test_set_size =int(len(data)*test_ratio)\n", + " test_indices = shuffled[:test_set_size]\n", + " train_indices = shuffled[test_set_size:]\n", + " return data.iloc[train_indices],data.iloc[test_indices]" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [], + "source": [ + "train_set, test_set =split_train_test(housing,0.2)" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Rows in train set: 405 \n", + "Rows in test set : 101\n" + ] + } + ], + "source": [ + "print(f\"Rows in train set: {len(train_set)} \\nRows in test set : {len(test_set)}\")" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Rows in train set: 404 \n", + "Rows in test set : 102\n" + ] + } + ], + "source": [ + "from sklearn.model_selection import train_test_split\n", + "train_set, test_set =train_test_split(housing, test_size=0.2, random_state=42)\n", + "print(f\"Rows in train set: {len(train_set)} \\nRows in test set : {len(test_set)}\")" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [], + "source": [ + "from sklearn.model_selection import StratifiedShuffleSplit\n", + "split= StratifiedShuffleSplit(n_splits=1,test_size=0.2, random_state=42)\n", + "for train_index, test_index in split.split(housing, housing['CHAS']):\n", + " strat_train_set=housing.loc[train_index]\n", + " strat_test_set=housing.loc[test_index]" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
CRIMZNINDUSCHASNOXRMAGEDISRADTAXPTRATIOBLSTATMEDV
count102.000000102.000000102.000000102.000000102.000000102.000000102.000000102.000000102.000000102.000000102.000000102.000000102.000000102.000000
mean3.65594213.45098010.3122550.0686270.5413536.30335366.7333333.9884608.813725391.98039218.385294369.67019612.10431422.625490
std10.40096627.5032416.7611540.2540680.1113970.66299627.7721832.1312478.614667167.8373792.31060468.0757746.7592578.452344
min0.0090600.0000000.4600000.0000000.3850004.1380006.5000001.1370001.000000188.00000012.6000003.6500002.4700005.000000
25%0.0578280.0000004.9500000.0000000.4480005.91275045.8500002.2236504.000000270.00000016.800000377.6850007.48000018.925000
50%0.1761500.0000007.7600000.0000000.5150006.17600071.1000003.4229505.000000307.00000019.150000393.74000010.56500021.500000
75%2.0619550.00000018.1000000.0000000.6127506.53950093.5000005.6092258.000000461.00000020.200000396.90000016.26750025.000000
max88.97620090.00000027.7400001.0000000.8710008.725000100.00000010.58570024.000000711.00000022.000000396.90000037.97000050.000000
\n", + "
" + ], + "text/plain": [ + " CRIM ZN INDUS CHAS NOX RM \\\n", + "count 102.000000 102.000000 102.000000 102.000000 102.000000 102.000000 \n", + "mean 3.655942 13.450980 10.312255 0.068627 0.541353 6.303353 \n", + "std 10.400966 27.503241 6.761154 0.254068 0.111397 0.662996 \n", + "min 0.009060 0.000000 0.460000 0.000000 0.385000 4.138000 \n", + "25% 0.057828 0.000000 4.950000 0.000000 0.448000 5.912750 \n", + "50% 0.176150 0.000000 7.760000 0.000000 0.515000 6.176000 \n", + "75% 2.061955 0.000000 18.100000 0.000000 0.612750 6.539500 \n", + "max 88.976200 90.000000 27.740000 1.000000 0.871000 8.725000 \n", + "\n", + " AGE DIS RAD TAX PTRATIO B \\\n", + "count 102.000000 102.000000 102.000000 102.000000 102.000000 102.000000 \n", + "mean 66.733333 3.988460 8.813725 391.980392 18.385294 369.670196 \n", + "std 27.772183 2.131247 8.614667 167.837379 2.310604 68.075774 \n", + "min 6.500000 1.137000 1.000000 188.000000 12.600000 3.650000 \n", + "25% 45.850000 2.223650 4.000000 270.000000 16.800000 377.685000 \n", + "50% 71.100000 3.422950 5.000000 307.000000 19.150000 393.740000 \n", + "75% 93.500000 5.609225 8.000000 461.000000 20.200000 396.900000 \n", + "max 100.000000 10.585700 24.000000 711.000000 22.000000 396.900000 \n", + "\n", + " LSTAT MEDV \n", + "count 102.000000 102.000000 \n", + "mean 12.104314 22.625490 \n", + "std 6.759257 8.452344 \n", + "min 2.470000 5.000000 \n", + "25% 7.480000 18.925000 \n", + "50% 10.565000 21.500000 \n", + "75% 16.267500 25.000000 \n", + "max 37.970000 50.000000 " + ] + }, + "execution_count": 14, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "strat_test_set.describe()" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "0 95\n", + "1 7\n", + "Name: CHAS, dtype: int64" + ] + }, + "execution_count": 15, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "strat_test_set['CHAS'].value_counts()" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "0 376\n", + "1 28\n", + "Name: CHAS, dtype: int64" + ] + }, + "execution_count": 16, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "strat_train_set['CHAS'].value_counts()" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": {}, + "outputs": [], + "source": [ + "housing= strat_train_set.copy() # use just after split data" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Looking for Correlations" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": {}, + "outputs": [], + "source": [ + "corr_matrix = housing.corr()" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "MEDV 1.000000\n", + "RM 0.679894\n", + "B 0.361761\n", + "ZN 0.339741\n", + "DIS 0.240451\n", + "CHAS 0.205066\n", + "AGE -0.364596\n", + "RAD -0.374693\n", + "CRIM -0.393715\n", + "NOX -0.422873\n", + "TAX -0.456657\n", + "INDUS -0.473516\n", + "PTRATIO -0.493534\n", + "LSTAT -0.740494\n", + "Name: MEDV, dtype: float64" + ] + }, + "execution_count": 19, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "corr_matrix['MEDV'].sort_values(ascending=False)" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([[,\n", + " ,\n", + " ,\n", + " ],\n", + " [,\n", + " ,\n", + " ,\n", + " ],\n", + " [,\n", + " ,\n", + " ,\n", + " ],\n", + " [,\n", + " ,\n", + " ,\n", + " ]], dtype=object)" + ] + }, + "execution_count": 20, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAtAAAAHmCAYAAABanLmxAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/d3fzzAAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOz9d5hc+XnfiX5OqJw7VOeE1MgZmJwTyWEYhmESJUqURNvatdf2XVny3md37d1nvZJ8fa3rcO1Lr61VpJjFPCSHw8kJGYNBDp1jdeV08v3jNHrQ6G6gu9HoAPw+z4MHVV1V5/yq6tTvvOf9ve/3KzmOg0AgEAgEAoFAIJgf8koPQCAQCAQCgUAgWEuIAFogEAgEAoFAIFgAIoAWCAQCgUAgEAgWgAigBQKBQCAQCASCBSACaIFAIBAIBAKBYAGIAFogEAgEAoFAIFgAyxpAS5LUKUnSqCRJL0uS9PPJv/2+JEmvS5L015IkeZZzPAKBQCAQCAQCwUJRV2Cfv3Ac50sAkiTVA485jvOgJEl/ADwHfOtGL66rq3M6Oztv+yAFgoXS09PDWjw2ddMGwKve/utpB9ANG1WRUGTphs81LBvHWfi4LNvBtBy8Hpkb7cF23PfuVWVuMpQZ6KaNJIFHmXtstgNVw0IC/B4F3bLRTIuIz80TaKaNV5WQpZk7v/ZzshwH5vE53OjzuvbYHMtXyVYM2hIBAt7lPwVoho1uWYR9HmZ564JVjmbaKJKEqsz+5WmmjSJLqAv4UV17fFYNC8t28HsVlMkDpGJY6KaNZTsEPDKm7eBVFXyqPO24NywHx3Fu+ltxnLl/f9duY7FzkODO4ciRIynHcepne2wlAujHJEl6DfgucB54efLvLwJf5CYBdGdnJ4cPH76tAxQIFsP+/fvX3LF5cazAD08MA/CxXU1sSEZu6/5+dHKIC6NFAl6FrzzQNeeJqT9d5ttHBgB4amsD21ti89p+1bD4szd6qBoWmxsjfHhH05zP/cu3e0kVNOoiPn793o55v4fTQ3l+9v4IAJ/a20JHbWiO7ffw81OjqIrE45uTvHhmjKphsbc9wabGMD2pMmGfylce7JpxMfGDE0NcGitS0U18HgVZknh2ZxObGmb/fvrTZb5zdADHmf3zunpsHr6S4jP/v3eoASrA+3/07Lzf91IwmC3zB98+iWE5PLChjn/0xMZl3b/g1nj3Spo3LqaQJYkv3tNOfcQ37fG3Lk3w9uUJFFniS/d2UBPyzmu7V4/Pl8+N8fV3+8hXDO5bX8fvPbqe94fy/Ksfn+bMSAEJN5htjPmJBbz8k6c28ur5FAC72+KcGMjiOPD45iS72uJz7u87RwboS5eJ+FW+8kAX8uTvbyhb4ZuH+3Ec2NIY4cxIAYAPbW9kS1N04R+YYM0jSVLvXI8t92XVMLAJeAx4EtgP5CcfywGJ2V4kSdJXJUk6LEnS4fHx8WUZqEBwN1DUrKnbhap52/dX0tx9aIaNads3GJc56+2bYdoOmum+p8JNXnd1LMUFvu+SPr+xFSomhm2jmTaZsj41rmzFmPrcK5PZtrnGVtAs7Em32Bvtq6iZXDWVvdHzhrLVqdtzf/q3j0LFxLDcgWbL+gqMQHArXD0ubcehrM88zq4ee5Y9++M3376FYTrYDhQ1A9N2yFV0dMvBdtx/umVjWg6GZZMqalOvTZe0qd9A6Wa//cmxVXTLXeG55v1dvZsq6dP+LhBcz7JmoB3H0QANQJKkH+EGzy2TD0eB7Byv+xrwNYD9+/cL73GBYInY3hx1T3QO7JhnlvdWeHJLA8f7s7TXBAneoHyguyFCvmKgWzZ722e9rp6VsE/lIzua6E+Xb/q6j+5s4uxwgc1NC8u6726Lo02WV2xpnDsr9Yk9LUQDHlRZ4vEtSdYnw5wfKfCpva0EvAon+3Osqw/NmoV/eqv7ObUmAgxkKpwbKeBXlTn3Nd/P6+N7Wvl3L12gZ6LM5/e3Luh9LwWbm6I8sqme86MFfu2e9mXfv+DWuG99LZIEEb9n1pWXBzbUoioS8YCH1kRwwdt/eFMdpmUzUdJ5eFM9fo/CfevrGMpWOdybpqRZbGuKYFgO6xvCPLWlkXjAi27ZHOys4cRAjqphsa8zQa5scLQ/Q1siyIZkeNp+PrStkZMDOdYnw9PKsDYkwzy4sY6KbrG/M8GJ/hyW7dwwmy24e5EcZ/niUUmSIo7jFCZv/xXw74H/xXGcZyVJ+mdAj+M437zRNvbv3++stWVywd3BWizhENxeKrrFD08MoVk2z+5omteS9pVUiYrulqDIssT3jw9yebyEJMFv3t9JPDi/ZfFrufbYHC9oDGUrbGqIEPDOHZTfDlJFjb98y10R3dQQ4dmdc5fYCNYeQ9kKP39/hHjQy7M7m27YI3AtC5k7ddPmBycGuTBa5OltDezrqJn1ed863M9ApoIsSfzOQ12EfCtRsSpY60iSdMRxnP2zPbbcR9RDkiT977hZ6Ncdx3lHkqRXJUl6HegD/nSZx7OidP7hj2/p9T3LXL8oEAgWxsWxIoPZCgDvD+V4aOOsvShT9KfL/N2xQcBdZj7QWUPA4wa5qizNOyCZC820+ObhfnTT5nKqyCf3LG8W2qPIqLKEaTsElzl4F9x+TvRnyZQNMmWDwUyFzrrZ+wNuhYFMmdcupBjJVRnMVuioDVEX9s143tWLQ49684ZlgWAxLHcJx0+An1z3tz8G/ng5xyEQCATLQVtNgKBXwbBsuuYRTJjX1EObk7XCj29O0l4bpC7su+UsmuOAPbmPq7XIy0ks4OHzB9tJl/QZy+qCtc+GZJjzo0UifpWGqP+27KMx5ifgUZAkSAS9s/YQADy9tZENySINET9+j7hYEyw9Yk1DIBAIbhPxoJffeWgdjuOgziN73FUX4ultDVR0i92TdZeqIrP5BrXWC8HvUXhuTwv9mfK8lU2WmvqIb4Z6g+DOYGNDhN+rC6FI0pSyxVIT9Kr8rx/bytG+DMmIf85A3asu3e9GIJgNEUALBALBElDRLV46O4Yiw2Obk/gmm/7c5eP5BxPbmm9vYDtW0BjOVmlLBIn6hXeVYGm51TKj+ZAuG4zkNLw3aKwVCG43Qh1cIBAIloC3Lqc4O5LnzHCBM8OFlR7OrJQ0k1fPj9OXLvPK+ZWRBDUsm3zVWJF9C9YmjuOQKxtT5UdXj+HXL6TEsSRYMUQALRAIBLfIu1fSvHJunPcGcwAkV2mJgk+Vp5RAmmK3p0b1RlQNi794q5f/+toVjvZlln3/grXJz94f4b+9cYXvTjbYNk4eu/GgZ6rJViBYbkQJh0AgENwifeky8aDXrTHe3UJzPIBu2rx0dgzdsnlic3JVyGipisznD7aRqxjUz6JccLtJlzRODWYpaRa1Ye+CNL4Fdy+9E2XAVeAoVAwKFYPmuJ9nd8xfKk8gWGrEkScQCAS3yL3ramiM+blvfS2dda6BxPnRAmeG81waK3KiPzvvbRmWzZnhPBPXuKwtJWXNIlXQ0a3l9yKUcCXsLNthOT0IBGubhzbWk4z6eHhTPe8N5rg0XqI/XeGls2OkS8LRUrAyrHxKRCAQCNY4rYkgXzg43VmvPuJDlSUsx6FhAeUSL54e5exIAa8q85UHupbU7EQ3bf72UD9Vw2LdWIhP7G65+YuWkHjQy46WGCXNYkvTyqiACNYeW5ujbG12FTUujxeRJNdwqGpYDGQrfOWBLiFVJ1h2RAAtEAgEt4GGqJ9fv68D03KoW0BNdMWwADcTbdo2sHSBge046KaFadlUJ/eznAS8Cr9xXydFzZzV/EIguBntNUG+dE8HPzk1zERRxzCdObWgBYLbiQigBQKBYAFkSjpDuQrr68M3zHqlSzrfPNyPadk8t6eF1kRwXtt/YksDx/uztMT9RJZYZs6ryKiKzOVUaUpnernJVwwmSjrxgGde2tgCAcBovkrvRIkjvVlMy+bxzUnGixptNcFV0V8guPsQR51AIBDMk2tLILrqijy3Z+4SiIFMmYruZnl7UuV5B9CxgIdHNt3Y8nuxlA0L3bTprA0xkq/eln3ciFzF4BuH+jFth+G2GI9vblj2MQjWHtmyzjcO9TOcq1DWLTprQ0yUdB7tTq700AR3MeLyXyAQCOaJ7TgYk813NyuB2JiM0JoIkIz62N4yf0e0U4M5vnmon7Mj+Vsa62yEfSq72+PEgx4OdtUu+fZvhluW4i63Vw2bE/1Zvnmon4tjq1M3W7A60C0by3aI+FTSJZ2xQpWNDcIKXrCyiAy0QCAQzBO/R+Hju5rpTZfZOWmFnSpqHOvL0l4TpLsxMvXcgFfh+f1tC9q+4zi8dHYMy3aYKOm3xYr4se4kdC/5ZudFXdjHh3c0Ml7Q2NkS48/e7MFxIF812JCM3HwDgiWlali8dXmCoEfhYFcNknR77LdvlZqgl4aon/cGsmxrjuJTFVIFnaZYYKWHJriLEQG0QCAQLIDOuhCddaGp+y+eHmU4V+X9oRxtNQGC3sVPq5Ik0RwP0J8u05K4M4ODzY1RNje6txujfoZzVVrid+Z7Xe0c6klzvC8LQG3Yu2ovYk4N5RnNV/GoMtmyQWtCJRkVTaiClUUE0AKB4K4iW9aZKOl01YaQ5VvPuEX8HoZzVQIeBVW+9aq4T+5pIVvWSQS9t7yt2ShUDUbzGh21wRU3ofjMvlZyFeO2vVfBjbnapCpJEPYtbcPqUhKebBJMBL08tjnJxmR4qnHQsh16JkrUhXzEgqv3PQjuPEQALRAI7hpKmslfv9OHbtrsWqImtme2NdDdGCEZ9eFVbz0gVWSJ2tsk8WZYNl9/t4+SZrGxIcxHdzbflv3MF1WRb9t7Fdyc3W1xaoJe/B6ZZHT5rd3ny4ZkmM8ecMuhrl+t+OWZUd4fyuPzyEIPWrCsrEj6QZKkfypJ0uuTt39fkqTXJUn6a0mSxOWjQCC4bWimjW66TYCFqrkk21QVmQ3JMNEllpy7HZiWQ0Vf2vcvWNu01wZXdfB8lZZ4YNZSn6vHsW7aaObyu2sK7l6WPQMtSZIP2DV5ux54zHGcByVJ+gPgOeBbyz0mgUBwd1AT8vLU1gaGc1UOdtas9HCWnYBX4cM7GulJldjbkVjp4QgEt8zjm5Mc7s3QHPcTC6z+i1jBncNKZKB/B/jzydsHgZcnb78I3LsC4xEIBHcR21tiPLW14bbWS75yfpw/e+MKZ4aXXoruVhnMVhjMVkiX9JUeikBwyyQmL4q3Nc/fGl4zLb53bIC/fLuX8YJ2G0cnuJNZ1gB6skTjEcdxXpr8Uxy4eobJAbOmRCRJ+qokSYclSTo8Pj5++wcqEAgEi6SsmxztzZAtG7xzeWKlhzONomZyvC+7KscmECwXvRNlelJlUgWNkwPZlR6OYI2y3BnoXwf+5pr7WeCq0Gl08v4MHMf5muM4+x3H2V9ff3scugQCgWApCHgUWicl6DY2zC0LZlo2F0YL5MrGcg2NoEchEfKSLml0XSPFJxCsRfrTZQazlQW/rjHmJ+xTUWRJ/A4Ei2a5a6C7gd2SJP19YBuwH7eM40+AJ4G3l3k8AoFAsKRIksRn9rWimfYNFQF+cXqUsyMF/B6F33qgc1nUA0zboaqbRP0eMssYuAsES825kQI/eW8YgE/sbmZd/fydCaN+D195sAvLdpZEOUdwd7KsAbTjOH9w9bYkSa87jvMvJUn6g0lFjj7gT5dzPAKBQHCVqmFxciBHfcR3y1kpSZJuGhAXNFc9QDOtKXvr241lO4wXdXJlnfqIkI8TrF2K2gcqMumSTqqYJhnxTTM5uhGKLKEsgQ684O5lxXSgHcd5cPL/Pwb+eKXGIRAIBAAvnxvjzHABSYIv39dJInT7zD3G8lUKFQPLcfjo9qYpo4jbjSTBYKbMUK5KY2z1S5cJBOBK1P389AgV3eLpbY3EAh52tcaoGhayJDGSq3JhrIgsSXz5/g7iwphHsAwIIxWBQHBXka8afPvIACXN5LHuJNtb3O59SXKzURISsnR7M1PvXEmTr5ookkTYv3zTcEk36ZkoU9ZNzo4Ulm2/a4krqRIV3WJzY2RJnCoFt87FsSIXRosAHO/P8simelRF5oENdQC8cGqEbFnn9HAeRYbfe3SD+O4Etx0RQAsEgruKbx7q5xenR/GpMiGvOhVAP9adpCHqxytDrmIQ8au37STcXhPk4liRiF+l5jZmuq9HkSRqQ15kCZIrVMKRrxrkygaticDURctqoT9d5ntHB3Bw1VT234Va4auR+ogPjyJh2dCWmGmm8tjmel49P4Zh2bx2IcWe9jgPbJif4IBh2QxlKzRE/cLFULAgRAAtEAjuOuJBDyXNYtM1KhmposZPTg5ztC9NbcjHgxvr+LV7OjBtB8OyCS1hmcWutjjr6kP4VGVZm5iifg/3rqvl9HCeRzcnl22/VylqJn/+Zg9lzeKBDXU8uLFuSbbbO1FCliTaaoK3tJ1sRedYXxbTttmYnH9TmuD2MZAp83fHBpEkief3t9A8ixuhT1U40FnDpfEiumlzcazEPV21qMr039ZEUWOipLO+PowiS+imzfeODjCUq5IIevjy/Z2r7qJOsHoRAbRAILireG5PC1uborTXBmlNfBBw/eD4EEd604zkqowVdGzHIRn10zdRpqSbCzZruBmRFbD+1kwb23FYXx8mXVx+I5V0UePQlTSaaRPwKksSQJ8ZzvPCqREAPr67mfULUGO4HlWWaa0JYFoOwWWqSxfcmMvjJQzLARzSJX3WABrgE7tbMGyHIz1pJooax/uz01YQSprJ3x7qRzdttrfEuHddDV9/t483Lk7QEg+gyBKW7aAqIoAWzA8xQwgEgjsax3EwbQfPZDYq6veQrxqc6M9RG/IR8LrLtiGfQkdtCAfAAd2yOdKTJuB1p8m+ifKSBtArgSJL+DwKtmOtSIDoUWUcx6Gim/iWKPNe1q2p25Vrbi+GrroQe9oTVHSLXa3xWxzZnUeubPDy+TEifpVHNyWXpc54a3OUnokSPlWe9eJoOFfhJyeHGS9obGoM0xhzA+yrv+ur6KaNYdmAW54zXtAoaRbr6kOossyHtjfOyFgLBDdCBNACgeCOxbBsvnGon1RR4/HNSXa2xjkznOfV8+NkKwYXxwo8OZlZ/vS+VrobIvSnS7x9OYNu28iSxPr6EGXdYl/nrEapawqvKvPZ/W1cHi+ycwUCRN2wyZYNirpFurQ0Fsq7WmNopoUiSWxtit78BTfAp8qsqwtRMSyigbV3etRNm0M9aTyKzIHOxJKXI7zbk+byeAmAztrQDO3lim7xbk+aeMDDrrb4ovahmRbvXkkT9CrsbU9QF/bxG/d1zvo8w3L48clhvnOkn0zZoKsuxGf2t2KYDq3x6eU8iZCXD21vZDhXZV9HgpBXZXNjhFzF4IktDULWUbBg1t4MIRAIBPMkU9IZL7iB2oVRN2hUZInLqRKpok6xamI70BD1Uxf28Yszo5wcyFHWLR5YX0tzIsCzO5vvGL1Yy3b46alhxvIaZd3i4U3L6+xqOQ6xoIegT8WjLE3DlqrI3L9+aWqpL42XeO1CCgBZkqZUHtYKx/oyvHslDUA0oLK58dYuKK6nKebn1GAOryrP2vz6xsUU7w3mAKiL+GiZo9ziRhy6kuFwTwaAWMDLhllq0QtVg795p4+KYXFhtEC+alExLBwHjvRkqI/4efHMKJ/e1zrtdZsbo9M+kw/vaFrw+ASCq4gAWiAQ3LHUhX10N0YYyVXZ2+FmkNtrgxzoSHBhzF0W9ijSVDlBSbNwHIewT+ETe5pZXx+5Y4JngIphMZZ3Lyh60+Vl339HbYhP7mmlL13mU3tbln3/NyPoVZAkcBz39lrj2kbXkHfpT+/bW2I0xwOugs0sJUBBn/uZKbKEf5ElOle3IUlzfwfjBW2qdKc25OORTXUMZis8sTlJtmpgWW5J1q3iOA66ZeNT196xILj9iABaIBDcsciyxEeuyzJF/R6+/EAX/RNlJAnaaoJTDX1furedP37hHFG/AkgzFDIKVQOvKq/ZE2rYp7K/M8G5kQIPrK9d9v2btk1JN5EkKFTNm79gnpR1EwlpRt3rQmmOB/jcgTYqurUga+jVwvaWGGGfikeVF5X9nQ83kl28b10tyYifaEClNry4koi97QniAQ8Br0LTZD2zbtpUTYvo5O+0ozbElqYI+YrJZ/e3UtQsWhIBwj7VXXUqaqy7xpFQMy000556/XwwLZtvHRlgJFfl4U317OtY+yVcgqVFBNACgeCOpmpYnB7O0xj1T3XwlzWL1y6mUGSJ5+MBippJWTeJ+D3sbosDDj85OUxPqsSDG+uI+D2cGc7zs/dH8HsUvnhP+4JOxqsFy3bonShTqJr0ZyrLEiSWdZNC1aQh6idd0pmYVP+4OFac0uC+FfrTZb53bBBZguf3t9EQndth0bYdvn1kgExZ5wsH24kGZn6HV4O2tcp8raxvB5IkzVpysVCuPS4rusVfv9NLoWryaHc9e9oTKLLE45sbeH8oh+1Ad+MHcpSJkHfKRfRYX4bL4yX60iVA4sktDexonX7MVQ2LbNmgIeqbVjOer5qM5KoAXBwriABaMAMRQAsEgjVP1bDwqfKsTVMvnhnlwmgRVZb4rQe7CPtUBrJlLNvBsh0ujBU51JPmeH+WxpifzQ0RelJlRvIVDMtGVWSe2tpAf7qM47gn9PGCtiYDaLeEo4plO/QtQwlHRbf4y7d6KesW93TVcM+6WjY1RBgrVNnbvjQByWC24n6XwFC2wkRRJ1812NMen7FS8NblCb5zdABwg+l/8NiGJRmDwOVKqsRP3hsmFvDwmX2tS2JMkinrU6sVfekyeyaPm5fPjXG0L8OZ4QK72+J88Z52GqJ+KrrFsf4MEvDWpQnyVZPBbIWtTVH6M+VpAbRh2fz1O33kKwY7W2M8saVh6rFE0MO25igDmQr7OoShjmAmCw6gJUlqcBxn9HYMRiAQCBbKu1fSvHExRVPMz/P726Zqls+PFnj78gSjOQ1VkXBwaxoBdrbGGclVURWZhqiPiaJGRbcoVNxM6VheI1cxuThe5KltjQDs60iQrRhE/SqdtSuX5bsVgh6Fqmlzaay4JJnCm1HQjKla1bGChiJLPLtzaRu3drTEGM5VkCWJqF/lByeGAfei6tHu6WYxfo9MuqRhWA6SUCxbcs4O59FNm/GCxkiuuiTZ8KaYn52tMVJFjS2NUf723T78HgVVkciWDaqGNdlMWKQh6ueV8+P8/P0R+jNlYgEPWxojbG6M0BIPsP86JZ2qYZGvGACM5qerwkiSxNOTv32BYDYWk4E+IUnSe8DXge84jpNb4jEJBALBvLkwVgBgOFelWDWJBd3M8JsXUxzuzTBR1PjIjiYe7U5O1TqHfSqf2ut26DuOw6PdSXTLoTnmZ0tzlCsTJXa2xkhGfFNLt4mglwc31FEb9q7ZxsKyYeFRJDpqg+SXsAZ5LpIRP/etr2U0X71tihYhn8on97jf5Wi+OtUE6J1F0zfq97C7LUHFsFhXN/MCoqJb/N3xQSq6xUd3NpG8QTmIYCbbmmP0pcvEgx6a4rN/do7jLEheT5Kkqczwy+fGGJ4sq3i0u54Pb2/kaF+GiN9Dd2MEx3EoagbjBQ1FkmivCfKx3c20xQP88OQIPzwxzIe3N06VckX8Hh7prqdvoszBLpFlFiyMxQTQLcCTwOeB/1OSpLdwg+kfOI5TWcrBCQQCwc3wqwpXUiXuX187FTyDm7kaL1QpaRYvnR1jYzJCMuqbsax/9QS9qy3Od48O8PP3R3h6SwNlY7rV9wvvj3BupEBNyMuv39uxLCYSS41PkXj53DgjuSqPb14eCbt71y1fs2JD1M+n97ZSqJpsvqYu9irJqJ8NyTBVw561/rtnojRV9/r+cH5RAbRh2W4Av4wW7auF9togf++R9XM+fnGsyE/fG6Ym7OUz+1oX3IzbURvicE+G00N5zg7nuW9DLf/gUbcMx6PIvHxunN5UmfqIj9ZEgL0dCXTT4Y9eOMdQtsKWpiinBnPT3Az3tieWrJxIcHex4ADacRwL+BnwM0mSvMCHcYPp/48kSb90HOfXlniMq5bOP/zxSg9BILiryZUN+tJluupClDQTw7KnHAef2trIlVSJv323D58q83+9dpkdV+J8ZEcjGxtmBleXx0uUNLfcIFsxptkAA1N60pmyjmHb+OS1p8QxkKmQLev4PTJnRworPZzbQltNcM7HYgEPX3mwC8t2Zq3PbU0EiPhVNNNmwyIaLFNFjW8e7se2HT65t3WGEkZJM/nJe8M4Dnx4R+NtsXMvVA0UWSJ4G2TsbpUzw3lM22EsrzGW1274Xc1GV12I/R0JLo4VyJQNTg/l+dmpES6nilMNspIk0Vkb5LcfWkcs4OGbh/oJ+VR0y3Uk3TTLb18gWAy39AtzHEeXJOk0cAbYB2y90fMlSdoOfA2wgIvAV4D/EfgE0Av8puM4xq2MSSAQ3D0EfQqJoIdjfVkkCf723T6+eE8HiixxbrRAwKuyrSXGUK6KLIPtOFxOldjYEOHlc2OcHSmwvyPB/s4aNjWEOT2UQ5IkNiZnnmQf35zkaF+G9fXhNStj11YTZFtzjCupEk9sSd78BUuMadn86OQwY4UqT25pWBGpOI8iM1dvW8Tv4aGNdZR1a1qWcr4MZCpohmsX3TtRmhFAnx0pMJBxF2pPD+W5Z4mz85fHi/zwxDCqIvH8/laSkdVVgrKjJcZQtkJNyEtjbHFj66gL0RwPUNYtqobFT04NU9YsKqZFV22QQtVkb0eC2KTCyq62OBMlnU/va+Uj2xpRV8nKwECmzAunRogGPHxid/OanVPuZhYVQEuS1A58DvgCEAL+FviE4zhnbvLSc47j3D+5jT8D9gOPOY7zoCRJfwA8B3xrMWMSCAR3Hx5F5ov3dFA1bSq6RaqoUzEsLo4V+PM3e7Edh2jAS13YhyRB1K+yuy2OZTsc68sCcLQvw/7OGuJBL7/5QNec+2qrCS44Y7baUBWZf/+FPaSKOs1z1KjeTsaLGod705Q0i1jAs+q0lnsnSvzkvRHA1R5eaIC7qSHMhdECpu2wrWmmRF9bIjBV2tFeu/TH0nCuiu046Kab5V3qAFozLY70Zoj6PYuSIOysC92wxGM+dNWF+MdPbUIG/tsbPZweznFxrEhrIoBpOTy4sZ4Hr6m3726MTMncnejPkinr3Le+dsUD1lODOQpVV+JxcJkkJQVLy2JUON7ErYP+NvBVx3EOz/e112WXNWAT8PLk/ReBLyICaIHgrqY/Xaakm2xKRuZVZ3ysL0NZM7GBhzbUEfapvH05zVDWzfQ9v7+Ndy5P0Jcuo5sOIa/C377bx+XxItGAhwOdd4+dr207/Isfvs/5kQKf3NvCl+7tXNb9S8BwtkpJN8lXTHJlg/5MmXX1oVVRcqCZlltmYDlsb164DXbQq/L8/rY5H09G/fzuQ+twcG5LALezNcZYoYpXUW5LqcJblyamLjxjAc+yX1A6jsP50SIBjzLpKFrDL8+6omCSBB/d1cxj3clZ540LowX+3784R9Ww6U2V+fIDnUsypotjRV6/ME57bZDHNzdMeyxb1hnIVFhfH55h8tPdGOXiWJGI37PmtcfvVhYzY/1z4FXnqh7UApEk6ePAvwLOT+4/P/lQDpi1kl+SpK8CXwVob29fzG4FAsEaYDhX4TtHB3AcyK43btiAlq8apApV/strl9EMm52tsamMYWdtkPX1IWRZ5kBHnF+cdrOKZd3ku8cG+fHJYWRJYmtTlPtXwJFvpejPlPj5+6Pols1fvt277AF0wKuyqy2Oadl01gX5xuE+SppFU8zP5w8uz9yeKxtUTWtWwxXLhmTUh2k5t61J9FabC6+eemdTsoj4PVOKJLeDq0G/JK1Mk+TRviyvnh8H4DP7WtnZFiMe8ODYoMoSu1pj/PU7vZi2w8d3NU9zQyzpFlXDnizjKmJOaryDe2G52O/73StpMmWDTDnHvvaaqUZmy3b4xqF+yrrF6USez153YdVVF+L3Ht2wJpuRBS4L/gU4jvMK8BuSJB2RJKk0+e+wJEm/Mc/X/8BxnO3AIGACVy/zo0B2jtd8zXGc/Y7j7K+vX57OcYFAsPwYpsPVS3PdtGd9jm7aHOvL8H+9dpk/e6OXQtVAt2wkSWIkV+XyeJGQVwFJYmMyRFtNiN99aB37OhI8s72RsE8hGvBg2TYD2Qr/5hfneOHUMJppLeM7XRn8ikLVMClrJsYcn+/tJBbw8LkDbTyzvZGHN9ZjWO6XrVvLM5ZUUeMv3urhb97p472BmQqszbEAbYkgzfEA61fhkvpovsp/fuUy/+W1y2RK+rLv/56uGj68o/Gmjo+3i2t/o7plE/KpfHxXMyGfStjv4cfvDXN+tMBYXuNXZ8fIlnUs26Gsm+xsifGxnU0EPQoS8IMTQ9i2w3eODPDvXrrAkd7MjP3ZtsOl8SLpG3zWV/XUG6J+wv4PcpK242BMHtdzzWUieF7bLKaE4zeAfwz8U+Ao7qrcXuBfS5KE4zh/cYPX+hzHuapWngcU4BHgT3Cl8d5e6HgEAsGdQ3ttkKe2NlComnNa5/7kvWFO9Ge5OF5kW3OUzroQTdEAfo/CP/irIziOjaoqdDdESJcMSrrJrrY4nXUhakNeSrpFfcQPjsPh3gzH+rJcGC1S1Cw+s+/2Ze9WA7plopk2lsOKBGDgBhpXg6/n9rRwebzI1qaFl0tcRTdtfnl2FGVSjvBGGt3ZsoFpu0F7qqjNeDwW9PDbD3ZhObenxOJWuTRepGq4QWTPRGnKsnq5kGWJzY2L/65ulQOdNSiSRMCrTF3gfGh7E5fHS6iKxOsXJ6gaFsWqq8gzlKsS8ilkywbxoIf19WF2T0rWDWUqDOerU46cZ4bz7OtI8P5QjoFMhf0dCU4N5Tnam8GjSPzG/Z2zuo8e7KphZ2sMryJPC4g9isxze1q4kiqxrfnWLesFq4/FlHD8HvBJx3F6rvnbS5IkfRq3mXDOABr4kCRJ/3Ty9gXgfwaaJEl6HegD/nQR47lruVUZvZ4/enaJRiIQLB03a04qVA2iAZWGqJ8tjVEe3ZzEsmy+8ueH6J0oY9sOezsSVHSLLU1RQl6Fv3m3n/GCxtbmKM9sa+ShjfVYtkOqqHOsL0tD1E+xeucLAKVLBiAh47ACCegZtMQDM5QqFsovTo/wl2/1IkkSqiLNqEO9lnV1IfZ1JChpJgfmMM5QFfnW5KluI5sbo5wfKaAq8qKcJC3b4eRAloBXWdFAeLF4FHlGY2fIp9IQ83NhtEBD1EdtyMfFsQIhn0qhalDSTLIVgzPDefIVk866ENmyTn+6zLcP95OMeClqFnva4+SrBr84PYrjQK5iEJqsyzcsh6phzRpAA3NalrcmgrQm1nbjsWBuFjNPRK8LngFwHKdHkqQb/iIdx/k+8P3r/vzHk/8EgjsC07I53JtBlSX2tifEMt0S88z2Rk705/j47tBUFqqsu656sgSqKrOzNcq6+ggbG8IYtsOVVJErqRJ96TL3rqslFvCgyBKf3NvK7vYEF8eK7Gy987NEW1vi1Ee8jBc07l13Z5hHVAxryqa9atz4qkCWJR7etHbLAGtCN1aKuRmHe9K8eWkCcOuZu5bAanulGctXmSjq1IR8tMYDxENentnWyFC2QmPMx2he4+RADv9kzbZHlnAcCHoVbAc2N8WmVruqhoXfo1DRLXDc+SQZ9WHbDiO56qqTBZyL3okSV1IldrbGqVnmVYq7icUE0DdyGxROhIK7nhMDWd6aPEkFvIpYvlsgmZLOO1fSNMf97GyNz3g8GfHz1NbpJ7KgV+VzB9p453Ka1kSAZCTA5fESPakyv/1QFyXNpCdVJhE0+OWZ0Skbb3Cbee6EQGI+DGbKlDQLr6pwbrS4JNt8byDHYLbCPV01y15SAPCRHU2UNNei/PHNy69tvZa49mL+jrmul5iyb6+L+nis2z0Gtk6qqGxvgSe2NDCSq9KfKfH6hQnMydrkjQ1htl2jtuL3KHzxnnZSBY2Xzo4xmK0wmKnQkvDzyzNjJILeVStlOZApc2owR1ddmJ+/P4JpOwxkKnzp3o6VHtody2IC6C2SJJ2c5e8SsO4WxyMQrHmurZ0MzOXYcAdzbXf7Ynjl/DhXUiXODOdpTQRvmEG5dl8f3taEZUN3Q4SxgsZovspwvsor58ZYVxeiL13Bp8qcm5SzemZrI9sWoWW7lgl6VAzLQjMcbHtRQkrTyJR0XjzjyoiVdXPahclyEfSqfPn+ToCpwOhGnBspUNRMdrXGbuk4XYvsa0/gVxUCXpmO2jvjojEZ8fPsjiYO92ZoiH6gupErG5wZydNVF0KWJHomSsQDHiTJLdO5b10tLYkA1+qJOY5DyKsSrffw9uU0qaLGaKGKMaka41sCBRXb4YZ1+ovlhVMjFKom50YK+FQZ03buyvPPcrKoAHrJRyEQ3EFsb4kR9CqosnxbzBJWK47j8L1jg/ROlHlgQx0H56gxvRlXHcR8Hhm/Z+4T1hsXU7x7Jc26+hCf2N3CaxdTjBc0Joo6j2yq41hfhvOjBa6kSjzWXc8/fGwD2arBX7zZg+3AULbC/+v53Ysa41qlohtcjTGXQvnC71HwexSqhkU8uHBb6v50eaoZ9FaXx189P86R3gwbkmE+tqt5zv395L1hwF2uf+Aaw427AVmW2HEHlioNZiuM5KqM5Kokgl6aYgF+eHKI8YLG0d4MFd2kL12hvTbIFw62U9JMzo8WeOvyBNGAhy/f14Fm2nzjUD8lzeSju5p5bk8z33i3H5qhqJncu66W5C0oj5R1k28c6qdYNfnIzqYlV3mJBTwUqibxoJfndrcwmK2wrv7OuEharSwmgA44jnMWZqhqIEnSvbiW3ALBXc3d6CpV1i16J9yO9rMj+UUH0I9sqqerLkQi5L2hucaZYVdC/vJ4Cc20prI6tuPw4pkxMmWddEmnIeqnatrct6GO4VyF7/k95CoGNUHfnNu+U9Em9Y1VYHFK/tMJeBV+7d520kWd9gUubVu2w/ePD2JYDr2p0i3V9oKbWQbX2GKuVZBrpZPlWXSUBWuTq9+lJH1we+p/WeL8aJFsxaCgmdSFfTTHA7xzJQ24TcmG5TCcq5CruI3EF0YLdNWF2N9Zw4tnRon4PbfcdDmcq5ItX91+cckD6E9MBs1NMT9+jzKlRy24fSwmgP4bXNk6gLeuuQ3w/73uvkAguEsI+VR2tMS4kirNKUE3H4q6yUi+ikeVKVQNIn7PVFb6Wg501vDulTQbG8L4VIXHNydJRnwkIz5eeH8ERXal7Tpqgzy3pwWApliAf/ZMN/2ZCvfdRQYqV9nUGOVjO5o41JPmv3vs1iyVrxL1e+ZUJ5iNfNUgVzZoibsnesMyl8SFcH9ngsM9GbobI3OWZrQmgnxidzMlzZqqkRWsfe5f7zYGxwKeKYnEbc1RbNvh8S31BD0yb19J01kbnKr9fnJLA4d703TVhQh4FdpqgrQmAhSq5lSWfltzlGTU5+pM+27tGG1LBGmvCZKrGLelYdmryndNL8dqYTFHhDTH7dnuCwSCu4gnt84tIXY9tu1Q1E0iPhVJkjg9lOdoX4a+iTIXxwr0TJTorAuxoznGQ931rK8L41NlXjg1zGCuytNbG/jdh9dh2Q7nRwuMF6oc6slQF/bxqb2tnB7KcyVVoq0mQP01jmQbGiJsmLQ5zpR0fnF6lJBP5eltDXju8JrYsmbyq3Nj5CoG3zoyyPMHlrfBqKiZ/NXbvWiGzYHOGj6yo5Hj/bkpN0jbdvju0QEGshU+d6CNpliAsm7ys/ddJ8lntjXOGWzvaU+wp/3mF25LvTo0kCljWg6dd0jwUtZNFFlalTrY4Kpu5KsG6+vDU26MqiKzqy0+9ZzxgsYvTo8wmq/y01PDxAIqHlWhL13mz968wramGPdvqOOjOz8o9fGpyjQb9iM9af6n772Hbto8t6eZD21rYl0yvOg5wqvKfPoO15m/21hMAO3McXu2+wKBQDCDQz1pfnhiiKBXYV9HDTtbo/zZm5fxqwpnhgvkKzq5islQpkrVsHn7ShrDsllXF+Tdngz5isEPjw/xzz+yhYphcW6kwJnhPLLkNpU9sTnJREkjXXLLOLY1x2Z1TjvWn2Ew64oHbWwIs2kysL5TOdIzQarkLiMf6pnpvHa7KWsm2qTUXLqk8bNTw5wZznNhNM//8GQ3Z0fyfHvSyl03bf7ZhzZzeihPT8otDTo9lGd/5+JKg24HvRMlvnt0EICntjbcVMN8pakaFq9dSBHwKNy/vnaGxObFsQI/PjmCzyPzhQPtq64MIFXU+Pq7/diOw73raqetIqWKGj95bxi/qrCpIcy7V9KcGSkgAZLkEA/4kCSo6DbFqsXOtvicWWXNtPg3vzhHT6qE5Tj86MQw7w3muX99HV+8px3Dsrk4VqSzNjQv5ZlzIwUujRfZ0x6nKebqng9mK0wUNbY0Re/4C/c7lcUE0K2SJP073Gzz1dtM3m9ZspEJBII7ksFshVfOjXNupEBd2EtNyMv3jg1wuCeNZti01gTweWSSER8NUT/5ik5fpoIiSRQrBqO5KqbtoBllfvzeEH5VpmeiTH+6TMTvoSUe4Pxogbqwj55UeWpp91ryVYNsyaA1EeC9gTxeVaZhjWi83graNe4py5XtcByHU4N5dMtmd1uchzfVMZbX2NMW51/84H0My2Y4r/E/PNlNyKsiwaRphXt6ao4H8CjS1O3VRFm3ZtweL2hYtkNjbObxpJkWL50ZwwEe35yc04DjdnGoJ82pQdfCvD7ioznu51fnxgl6FB7bnKQvXcZ2HCq6xWihuuoC6IpuYU8W71/Vfr/KGxdTHO/PEvKqHOlNM5KrYFsWVdPBp8qMFzW8isxgtkw0oPKdIwPs70xMyYw6jkN/ukIkoPL9Y4OkSzqm7SABluMQC7i9E9mywV+93ctovsq6+hB//5H1U5nw2dBMixdOjWA7Dqmixm/c10m2rPPtwwPYjsNYXlvQyp1g9bCYAPr3r7l9+LrHrr8vEAjuQE4OZDkxkGNnS2za0ul8CPvUqZrDWMDDgxvqeOHUCLrpUDUtRvMa21tcc4PGqI+3L09wZaJMbdhDybAnZahc17lUQUOVZc4M56kYNpYNQZ/C6xdTFKomHTUB7l9fMy1QqegWf/12H1XDYnd7nN95qAtVWb1L1kuJYVo3f9ISc2GsOCV1Bw77OtwMsqabhHwqJd0kGnBPRYmwl3X1YbJlg02N7mpAczzA7zzkKqTKksT/+ZPTjBV0fvfhLrY2rWzGt7shQlEzMUybPe1x+tNlvjOZQX92Z9OMFY33h/KcnWx2rI/4OLDM2fRE0EumpONRZeJBD0d6M1wac/XA22qC7G5LMF7QCPnUVVlP21YT5PHNSbIVg4PXfHb96RJvXZrg3HCBTFmnPuKjqFl4PSp+LyiSRMWwiPhVUkWdQ1fSvDeQ45Xz43xsZxMf3tHEu1fSHOnNIEmQKmj4VIWgVyUZ9fHIpno2JCMkIz500+LUYI6KYc1LS9sjy0T8KrmKQTzoZqttB5zJS1hzCeQk1zrnRgq825OmuyGy6ObzlWDBAbTjOH9+OwYiENxt9E2UyVZ0tjZF15we7avnxzEsh1fPj08F0OMFjf5Mme6GCKE5lkaLmsmPTw5jWg73rqvhqa2NBL0Ke9vjTBR1Ah6JkM8DjsNQpsKhnjQ9qRLNMT+72mK8eSlN0KviOLCpMcxYQaOiW6iyhGXbqArUhrx4FJkrqRJRv8q7PRk2XxNoVQyLquEGktmyPudY70RWQnniWs1bRf7gOPd5Vf6Xj23lV2fH+eRkk2dpUiWhLuyb5ip49QLo1fNjvHhmDNNy+Is3Jf7o07uW6V3MjoObeTZMG8t2yFWMKXWTTEmf8fxkxIcy6YS3EisehmXjUSUUyb3dGPO7F6SyRF3YSyzgYVuzK8O5WssKrr9gd8toBuhPlwGHZMRLZvICrDHqI+xXOTtcoHeijFeVKFYdJqoamuVQqBp01ARZnwyTKbvfl+O4FzfJiA/LdtjYEKY5HuD5/W5fxXhRY1NjhNFclV1t8Rtmn8FV9BjJVfF7ZO5bV0NZNznckybiV/HIEge7bs0RNFcxeOtSipqQb00Fn9fy+sUU+YpBqqCxuy2O9xb1tpeLBZ85JEn6wY0edxzn44sfjkBwdzBWqPLdY26mKlM2eGSN2Qt31Ia4OFakYzJLVdQM/o8fn0YzbR7cUMevXed+pZs2MvDNQ328dWmCbNmgrSZIX7rMRFHn7EieppifeNCDJDkUqxaXU0UsG/yqgm07vHFxgrF8FcN2CPvck6JhO9SGPMSCbimIV1FoiQdRFQj5FEzbmWEYURPy8tjmJCO5Cge77i4ljmxlZlB3K1i2w98dG2QoW+GJLQ2zKlusr3d1mQ3LZnNjhNcujDOW13hoUx1PbW3kqa2NU8+tDfnQTIvhXJXHJl0F0yWd7x4dcLeVDGHbDqZtE1iEckdZN/nOkQGKmsXHdjXRmrg1nfazI3mO9rq15CGfyoHOxOTSv83u9viM57cmgvzmA504DrMqy8wH07KRJGlRZhwV3SLsc/dbNSw2N0ZpiPjxqDJhn8rblyemXFSf3996y5/PcvDeYI7TQwWaY/7Jiy8vY4UqYb+Hsmbx2vkJ8lUdv0fBpyhEAm7gLDlQqJoM5Sr87P0RogEP6+qCeFSF7sYINSEvEyWdkE9hf2eCP3nhLCcHssQCXp7amiRd0hnMVPhPL18kHvDwSHeSmpCXbx0ZYDyvce+6GtbVh/izN3u4kirREPVxYayIYTmcHMhxtC/D+voQL50d5zOLaC7UTAuvIvPGxdSkhGOB1kRg1ZU5zYfO2iAnB3K0JD4o11oLLCb1ch/QD3wdeAehvCEQLBjH+UCHdykc4Zabj+5soqC5ChrgNneNFjRs26EvXZ723ItjRf78zR7OjeRdo5OSjkeRaIz5uThaZDhX4fJ4iYjfw6WxAj6PQl3EhypL1IZ8dNYFONqbZSRXxbDcz6qqW3hUmYBHQZZlHtlUz6GeNJbloJs2mmmzvTlGXdg368XJ7rY4LLD05E5gML009t1XSZf0qe/71FBuTmm4DUlX+WIkV+XwZPPiW5cm+MTu6W0zo/kqpuUQ8an0pkrsbotzabxIoerWu3oUmY/uamIkp/GFg20slIFMhVTRvYg4O1y45QAxGvAwlK1g2g5Pb21AVWQevsnF8EIk/65nOFfhu0cHkSWJz+5vpTa8MC3z/Z01OLgZ/as6xNc2wV07F9m37rNz23Ech0tjReJBlYFMhb3tCWRZYp0/wmCmwki+iiK77zfkVbGBWEBloqigmTYhn8q6uhCqLFPWLIyQw+UR13zpS/d28Ndv9/LmxQnevpQGXGvsXMXg+8eH0EybUwM5CppJc8zP5VSJz+xrZShT5nBvhh+eHGR9fYj6sB+PIqNIEuvqwowXNBzc2mqfR5kx/797Jc25kTz7Omrm/D29eTHFO1fStNUEaYm7KxleVSbsX5uraU9saeBAVw1hr3rTjP5qYjGfdiPwFPAF4IvAj4GvO47z/lIOTCC4k2mI+vnYriayZYOdrfEVG0eubPDGpRS1IS/3rJt/NlaSpGmBQGsiyPbmKNmywcd2NU177tuXU7w3mKOkmYwVNHTTIhjysr4+jKJIjBc1ogEPmmGSq5p4TZu6iI+ntzXy6b2tDGUrHOk5iiRJyLKDqkju2rkDrYkAz+1u4fxYAcdxl6UTIS+qImFaDj6PzH959TJNcT/72hP89NQIYb/Kx3c1L3sD13JxeijP5VSRve2JGdkoVVnaprB4wMNEUeNSqsRvNt9cEi8W8BDyKZQ0a0qN4Fr8Hpm+dJmS9oEW74b6MO8NTDa+hXycHy1S1ixOD+XZ1PBBgHG0L8PhnjTdjdE5V3TaEkHqIz5KmsmWJdCBLlZNEkEPtuOWJxU1k+8fH8SyHT66s/mGNvSL4UqqhD7ZCNqXLi84gLZsh6JmYtkOjjPdWAbgYFcNPo9MyKeuCRdVSZJoigUwLJt81cTBracN+1VCHhnbcfAoEvWRAIOZKo0BDxsbw2yoj3C4N0Mi6CFTNjjeP07U7yERcldDdNOmP13mRyeHJrP2KnvbE/ROlIn4VJrjAc4OFxjMljEsB0lyOKDU0JoIEg96mSjqlDWTS2MlDnTU8Ik9LexoiXF2JM+F0SK247C3I8G+jgR7r9HMHy9U+eWZUfwehTcupqYF0LmygeU41IS8nB916+j702U+sqORtpogkQXqsa821uLYF1MDbQEvAC9IkuTDDaRfliTpf3Mc598v9QAFgjuVDcmVl0x741JqysGttSZIyyKX/5rjAf7RExuxr1uaHitU6UmVMS2bsE8h4lMp4KpBDGbLDE26c7UmAlR0E90q41VkFAneuTzBmxdTBL0KIZ9KxG8R8Li3xwsarTVBOmuD/NaDXfzjvz2G36NQG/Lxuw914VFl8hWTV86PU9RMLowW0QyLXMUgVzHoS5fvSMm6qmHx89MjbmlQSefX7+uc9nhrYmnrbkcLVXonyti2w+GeDM9sa7rh8wNehd+4r5PiZK3z9TgObGlyg4ZYwA0+EyEvX3nQdSl89/LElJvb1Wa8qxzpyVDSLI72Znhgfe2sfQUBr8KX7r15oD9fQl51qpQk5FO5OFZkLO+a854dznP/EluFb2tyjYpUWVrU8Xu4N83pIdfBsyHqp7tx+jZURZ5q8lwrfGpvC+myzpmhPC+cGqEm5NZyd9WFqAn7KVQNjvVncYBMxWBTMsK6+jCSLCHjKpO4OER8HjyKjG7a9E6UaEsEuDheYmdbjP2dCU4O5jAsm+aYH8dx3Qtl2aazJshvP9iFIkv85gOdVA2L7x8foqgZvHR2jIPraijpJq+eT9E7UaJqWGxsiDCSr9KTKrGzNU7vRIm/OzZET6pMc9w/TRJxKFvh20dc1Y6P7WrmYFctb12eYH19iKBXXRIjIsHCWdSnPhk4P4sbPHcC/w747tINSyAQLAdXM2Re1e0Unw8lzUSa1Fu+lshsGQTHDSye2NJAc9zPX73VQ75qEAt4SRV1RnJVwG0088gyQa+KblqcHy1QNd1lzoDX7Ybf2BDh+X2tNMX8vH4xxUCmMtV89pEdTRzry7C7Pc6poTyGZXNPVy3dDREGMmUaon52tcUZzlUJeNU1WSc4HzyKTPSqVXloZoBaNIwl3p+bwixp5rxUTGzb4ZXz44wVNB7rrp9RQpGM+nl6WwMTRZ39nTObq3a2xdndFidV1PjYzunB+uamCId7MmxsCC9bU257bZDPHWjDsGw6akNkSjpBr4LlOEtu2AIQC3r4tXsWfwFw9feuyBLxVSZRt1hURSYZ8ZPs9hMPennp7BiqLPHAhloO92awbYeSZmHbDk0xP8/uaiYZceeDP3ujh4rhqmrEg17qIl7+7zd6qIv4yJUDaJYrR/jZ/W2cGsxT1kyKusWl8RJ//5F1nJ28MN/fWcN/e+OKu52Al7baAHVhL6mixoWxIv/xV5f4lx/fht+jUBPyUtRMMmUd3bQZzlYJehWyZQPbcehuDHNwXQ0PrP/g4itVdKURwW3WvnddrXDSXAUsponwz4HtwE+Bf+k4zqkFvPYe4N8CFnDYcZx/IknS7wOfAHqB33QcZ2ln+JvQ+Yc/Xs7dCQSrinvX1U4u/6nzWkLrT5f53rFBZAk+s69tVq3ba0lG/XxsVzPZss7JwSwV3cZ2HEq6RcWwCHkVEiGva64hAThopo2EhGPbyLJEWbfwyLKr0BDxce/6Ou5dX4dlO1ONVE9va+SJLQ2cGylMudb5VIWDXW4d4dXn/d6jYSSJNVVntxAUWeKL97QzXtBmv0iwl/Z9h30eWhIBgl6FtpqbX5QM5Sp89+gARc3k0liBj+1yneA2NkSmjr+rurxX0U2bV8+PA/Dwpnr+8MObsR1mNNE9tLGe+9fXLaq57la49nNOhLx89eF1OA4zTEpWA9sm+wK8ijwvA5C1xq62OMmoj4BHIR700lbjNhB/ck8r3zs6wFDeXTFJRtxg+6mtDfg8Mk9vbWRDMsT//qMz9EyU8IzJfHh7A/WTyiSnh/N899ggI4UqflVGktzVkic3N2DaNvGgj5+eGiZV0Ej7dCZKGrbjYDtu2Ux/usxfvt3LxmSYg51xNjdGOTta4NXzKXfgDtSGvXQ3hFEUmQOdNdPmqC1NUUbzGuaklvqZ4TyW7bCtOXrHzmVrgcVkoH8dKAGbgH90zZcnAY7jODe6LOoFHnccpypJ0l9LkvQQ8JjjOA9KkvQHwHPAtxYxJoFAsEgWUrZxJVUkVdSI+j2cG83z5qUUEb+HxzcnZwQuRc3kRH+WppifxpifKymVwWwFzXRwqgajOfd22KfSWRvk9Yspxgsaqizh86gkIwqa5dY8h70qtWEv3usyiz9/f4SiZvLE5gZiQc80Z7GQz82IXjuu1RjULDV+j6uxPRtLXZNrTmboGqL+edWUm5ZD1bCYKGqYlsOFsfN0N0RYnyzMmVl9bzDHe5PmH4mQl6BXIVPW2duemLHP5Q6eZ0OSpBm1xauJ2Rw57yRmq62XJOjPVnAcONyTmdLf3t4SY3tLDNOy+Q8vXaSgmUiShO3AmeECkiQxXtA5M5zn7GTQqioyhuUQ9Kl8Ynczh3omGC+4yis+j4yEu9LSVRvCdhyyZQNZggujRYayFQ55Feojfj6/vw1Fhu3NMd7pSTOW1+iqC/HczsYZ4/coMk9Nmq2cGynwwik3SWA7zpL30BQ1k7F8lfaa4JqTV11uFlMDvehP1HGckWvumsBO4OXJ+y/iNiWKAFogWIU4jsPpoQJD2QoX9eKkMYAHWZJYVx+a6uq/yi/PjHJ5vER/usR4QaM3XZnSalZkmVzFwKPIjBQ0EkEvVdNGlmVsHOojXoIehYFMhfKk9FbYq05J0uXKBn/+1hVODebZmAwTC3h4YksD7bVBPn+wDdNy5gwi72Z6JipLur1Y0MOzO5oYzlXZM4ts2/U0xwM8uaWRQz0ThH0qvROugse1QgQjuSqZss6mhgiKLFEb8k4FpJZt88IpNxtd0S2e2CIc3AQ3R5IkNjdGOTOcZ0vTzNpx07Y5P1bAp8q01wZpTwTomShTF/JRE/aSLWuuaYoikQz72NYcJRH08ovTo7x8fpx0UcdxXIfTqmFRH/bzSHeSJ7c28p9fuUCh6vZf6KbFkZ4SSPBuTxoceH8wz/pkGI8iM5iZrHW2HT60o3HWVUHnGg9Rx5nx8A0ZylY4NZhjU0OEzlmMcgzL5uvv9FHUTDY2hPnozuaF7eAuY0UqzyVJ2gnUAVnccg6AHDCrorgkSV8FvgrQ3t6+DCMUCATXY9kOumXjUSQujxfpT5foqgtz7/pa6q6rt02XdE4O5Lg4VqA/XaFqWKTLuqvNalisrwvh88iM5qsUqwYnB3NE/Co+RUa3LDY3RTkzlMd0HLyKTL5icClV5Ovv9vFPntrEqaEcJc2iqJmky/q0ZfTZMlACl2JVW/JtbmyIsHGeDW1eVebX7+vgs/tbOTWUx7Tdcp3uyddnSjrfPNyPZTuM5qs82p2ksy40rfHvrUtpbMeZ1WxBMy2+f2yIfNXgwzuaFt0Ue6cylq/yw5PDBDwKz+1pvquazz60vZGntjZMrVI4jsPP3h+hZ6LM5sYIXXUhGiJ+NjaEONaXQ1Uk/F6Fz+1v4S/f7kNVZDyKxMGuGn79vk5iAQ/5qoFXcZVjPIpEdtL+27KrXBovciVVolC1KOsWdSG3HKlsWMQCHkpVg5BPpaCZPLihlp+eGqWoGYzkq9SEvJweynPvLMpI3Q0RTMshXdJpn0fZ1LX85L1hMmWdw70Z/tnT3ajX/YZMy5mypM9XXOnIU4M5Lo0X2deRWBO64MvJsv96JEmqAf4D8FlgH3BVCDSKG1DPwHGcrwFfA9i/f//aE80VCO4AVEXm2Z1NpEuaqyLnSNSGvfzW/V0EvNOX0l+7MI5tO4wXNAJembJuUhf2Ypg2EVnl/GiBWNBDRbMo6hYeRaI55sfrUUhGfeA4RAMet15as4gGPIS8rvoGQHtNkLBP5Z51NXxsZ/Ntadi6Ewl6lr5x7D+/fIlL40W+eE87e9rn56rm8yjs65j5XMOyKWommmGhGR/Yjl+r2PGZ/a3kysYMBQlwdZ4Hs26W/dRgblUG0Fdl6FbCbe30cJ58xSBfMehJle+6RrRrS3wKmsn7Q3lsx61R3t4cY7yo8dDGJIos05wNkCpo/KufnmM4V3UNbJA5O5KfUhr68I4mSpqJR4bTw0WKmklYkdnYEKYpFqAnVaKomZR1i/GSTjTgWqRHAx5+9+EufnBsCFmSePtymlhAxedxs9CKLDGWr1LWTYJelZ+8N8yVVIn719VQ0Cx8HpkjvRmO92d5fn/rvJMGIa/Cq+dzSJLEL8+N8cy26eUiAa/Ch7Y30jNRYk97nKph8eKZURzHdTz8jetUfe52ljWAliRJBf4K+H3HcUYkSToE/B7wJ8CTwNvLOR6BQLAw1teH+f1nuqeyvx/d2TwteH79QoqLYwUUSWKiqDFeqBLyqCQCHtprg5wfLdKfKWParo32pC8Kpu0gy668c1EzaYgGaIj6efVCinvXxehujJApm3z+gGue0VYT5BN7mnlvIM8a9KFZMcKLdL+bi/OjBX51bgyAr7/bN+8A+ipvXZrg3Eie/Z01bG+J4fMoaIZFvmrimSPAbIkH5gyMm2MBakJeClVjVcoUjuWrfOuI66r4qb0ty75asrEhwtHeDAGvOq+mzzsZyYHeiTKj+Sof29XMh3d8oOryjL+RkwM5fvb+CFXdvZizHQfNtOhPV/jmoX6e399K1K/y1NYG/u0vzqNbFo92Jwl6Ff7+I+v56akRBjJuZlqWXMnDLQ1R6qN+PrS9kS1NUXpSZd69nKY/U2Z7S4zhXJUH1tUyXKhyYazI+dEinXXBqbKOl8+Ncf/6OrJlnXjQS0+qxP/9Rg8f29U8TfZuLj60vZHTwwUi/g+SEdfT3RiZuji1bId4wNXKnk128m5nuTPQzwMHgD+ebD7858CrkiS9DvQBf7rM4xEI7khyZYPzYwU6a0PURxY38Vm2q3NaF/ZNa9YK+Tz8i49vI1cxaLpGhaNqWBzqSaOZFhfGikwUNGRJpmxaqKpMZlK/V5EkzMlKvtqgF92ySYa91Ef9jOY1akNeHumu46Uz48QDHhzcmunasJdTQzk8isSx/izvD+UJeBQujRf5B4+ux3ObG17SJR3bcdb0iSSwxDa5TTE/8YCHbMWYKsOYL6Zl8/Zl1zb6rUsTbG+JUdEt4kEv8eCkMssCCXgVvnx/J7btrMqG0f5M5QMjlInysgfQFd1EliRsx5kax93KeFGjoyZIrqzz1qUJWhMBHu127ePjQS8Pb6pHNy0GMxXiIS9Rn4e3r6QIeBVePjfGpsYIr5wbZzRfoa0mSCLkJRnx86V7Ozg1mCNXmTQ+CXppTQT5R09sZKKkc2G0yC/PjNJeEyTmV9EsG8ly5+yqbjGQrTA62Uxd0U3ODOfoTZUJ+ZSp+XZdfZi6sI9TQ1l8qmvnPZ8AOhHy8fz+Vq6kSlONlDdCkSU+f7CdiZJO4xI1ny7nPDqSq9KfcUt0ZpVZvUWWNYB2HOfruBbg1/IW8MfLOQ6B4E7nBycGSRV1jvRm+HsPr1uU1NFPTw1zYbRIIujhN+7rnBaQhHwqId/06ePSWIHDPWnKuklLIkg86AZWIa9KNKBiO9BVF8S0bFLFKjVhP09vTeL3quxri/PLc+MEvCpVw+LV8ymqpkXAq+L3KJR1N+P92vlxvn98kI3JCL0TJdbXh4n4vSi3WfagP13mO0fdzOHHd63dkhFZWdp0fcTv4X/9+FbOjxZ5aOONLayv52qH/6nBHI92u69tjPl5bHOSiaLGwa7FG3qsxuAZYHNjhEvjRRzHWZHyicFsFQe3jGSsoC3YyfBOoq0mSGtNkFNDOZpi/qnSn2t5cmsj+zpqsB2H//r6FepTfiaKGnURH4Wqq9sc8qlUTYv2miCf2tvKWKHKuz1pSppJd2OE5liAT+xuobMuxPePDwKQLmn8yx++z3ihis+j0J+pEvYq9GcrHOys4d51NUR8Hn50cogLo0UCXpnO2hD/7EPd6JbDuvqQ64SYqXJuuLigcqCdrfEFKXf4PcqcKz5Vw3I1/OeZvFjOeVQ3bb5zdADdtLkyXuKzk6uXS8nd00EgENxNLEFAOVHUAchWDAzbxifPLVOWrxr8p1cuc2GsgGHaRP0eDna51rYdtUF2tMa5Ml7kxdNjBH0qtVIAryzxyoUJaoJehrJVntiS5NRAnoFsGY8i89DGejY3RmiOB7g4VuTP3ujB53EbCo/2ZWivCfLwpjp2tMSnAqbj/VmO9WXY2hRdkDX5zUgVtamO93RJZ93CYsVVgywvbRamrJt879gQumljWg5Pbp2/KoZp2YBDd2ME7Zps6O62+C2N6VBPmnzF4L71tauuSS7kU/ns/qU/kc+XPe1x0iWNgEdhQ3JtXgQuFR5F5nMH2uioDdI3Uea+9bPPF1f1sh/eVE9/usSu1hj1ER+7W+OkSzqqLPNIdx1eRUGV4U9fPE9FNwn5PMQDXmwHJkoanXUhntjSgFcZ50cnh3j78gQ+j0LQqxD1eyjqJgc6a7h3XS17O1yJxkupIlcmSuQrBvVRHxsbIlPJkLFClZhfJexTp2VXj/ZlmCjq3LOuZoaKR7qk89NTw/hVhWd3Ns1LenIuLo4V+PHJEQJemc8fbCfq9/DS2VF6J8o8tLFuVqfdiZI+NY9OLOc8epuup1fX7CIQCJaEj+9q5sJogc660KKF9p/YkuRoX5b19aGbusypsoTfo2Bajhu8S26TTm3Yh+1AvmLw8rlxRgpVwn4Vw3JYnwwxmKkwmqswUdR4ZmsD8ZCH0YJMUTN5rDs5VV+9vSXGP/9wN//2xQsYpkO2opMtG3z/+BAbk5GpbPhblyaoGhZvXkpxoDOBLC9NWce25tjk0iPsaL35UulqRV6o7tVN0E2bYtWkaljkq/qCXqsqMi3xIIPZCq2JpSll6J0o8fqF1NR9IXM3najfwyf3tK70MFYV966rnVXtYrbn9aRKDOeq+FWFsF/lE7tbpj2nd6JEtmyQqxh0+TxTAWq+6ipahH0qsaCHi2NF8hUTSbOI+BRqgl7qQj7+4eMbp2WTn93exOnhPDG/yo6W+LS5/P4NdfSly1wYK1DWTX5xeoTtzTFeOefKPBqWzUd2THfrfG8wN2U1f2m8OMO0aCH0pMpTTd5j+SqOAyf6Xb32d66kZw2gtzVHmShq2A7snGUeLU06NLbEA7dsEONVZZ7f10pfuszmptuz2iMCaIHgDiQW8LB/HjVu4NaJaaY1pbEM0JMq8dblCTpqg/OaZINeld9/upuwT+HNSyls2+H8SIGqafPAhlq+f3yIdEmnYlhsa47y7OPN6KbFeFHjz9/swa/K/PLsGF11oam67avBc9Ww6E+XaY4H+PS+Vl54b4S3L6dIFTX8HoXXL6amTmQbkmHeuOg+9mdv9vK5A23TzFUWi1eV74hgLB5d2gy036OgmZb7XagL/5w/va+V/KSe+FVMy0a37EVlj8M+FUWWsGxnSilBIFgqPr67mcvjJdpqgkiShGnZHO7N4FEk1teHGc1X6W6MkC7pHOxM0JIIUtBM7rsmQB+dlKkbyFTwKhIBrzplLX41eK4aFt883E+2bPDpPS2UdItsWef1C+M8OFkqFfV7+K0Huvif/+4U7w/luThW5B89sRGPImFYDpbt8I1DfSQjfh7trkeSJLpqQ5zsz+JV5VtWqNndHmesoBHyKXTUhpAliaaYn+FclQ1zlGZ4lLnn0aph8dfv9FLSLHa3xXlsc/KWxgeuE27yNhoHiQBaILiLGcxW+NbhfhwHHt+cZNfk8vkbl1KM5TVGclV2tMTmbMCoGq7GaU3IS0PMz5fu6SBbNjAtm3NjRQIehaFshfaaIBNFjT1tcf6nj2zBq8p8+8gAI7kqYZ+KR5VpTQR5bk8LZ4cL05aX/+7YIMO5KvGgh9+8v5OXz46xoyVGf6bCuvrpTZJPbW3Asm3OTMp1DWYqs8qd3a1Y1s2fsxDKukXE7yHi91AxFr5xRZamWUpXdIu/ebePQtXgyS0N82qMupbasI9fu6edkmbRXis0awVLS9CrTjsmj/dneevSBJZt8+OTw0T8HkI+lWLV5HKqTEddmMe6pweC6+td05RoQCXm97IhGeb+DbU8s/0DSbnRfJX+dBlFkkgVdfJVg1+eGUMC/KrC/sn+AFWWpi4UQz6VaMDDr93TQa5icKwvw1C2ylC2ypamKI0xP+21Qf7eI+uRJW7ZZbAu7OOL90z35fj03hZGCxrNk82xQ9kK6ZLO5sbITfdXNSxKmjuHpIpLr1d/OxAB9F1M5x/++JZe3/NHzy7RSAQrRVkzcRxXUu5Ib5pNDRECXoW2RJCxvEZd2Etgjjq5kmbyH1++iG07PLW1kT1tcf78rR4O9aRRZZloQMGvykQDXv7Jk5s4NZilPuJmA/7r61d4/UKK9fVhHtxYz0Mb69jSFKVqWLzbk+ZIb4bn9rTQ3RihqLnLn2XdwrZdA426iB8HdxK/vpZzT3uCoWx1MjMigqhrifqW1sq7JuSqFQznKvNaBr8ZEyWNfMVVa7mSKi04gAY3iK69u8t7BcvE1RIN2wHdshnMVIgG3EAWoDhZunEt9REfu9vi7G6Lk51UJsqUDbf8bZLzY4VJF1e3NtuyHRzHQVFkqqaFZTsMZV2FpP/+sXX8u5cuEfGrJCM+4kEviZCXiZJOz0SZiF+dtsJj2Q6/PDeGIks8tjm5ZOpFjuPwrSODU1n4+9bV8q3DA9iOw1ihyuObb7yCFw96ebS7nsFshXu6lq5/5XYiAmiB4C5mQzLMnrY4Pzjhllj88uwoH93ZzMOb6tnZGiPsU+fMHLx0dowjPRkU2V2+TAQ9XBgrAuD3yBzsrGUoW2EsV+H7xwf58I4mwj6Vi2NF12o7EUCS4JltjQS8CvmqwRsXJzjRn0WRJXa0uPrPD22s44cnhrBs+Pe/ukDE56E+rLouhCWd186n+PS+D+o6G6J+PrO/laO9GfrT5Xm75M3G+dECh3sydDeG2dexeFWI1cJoobrk2yxUDQqTddC3SnMswJamCKmizv7OhWlKCwS3i96JEm9cdEvaHthQN/X37S0xAl4Fjyzz4tlRjvVm8ChedrXFUGSZA10JBrMVXj0/TmPMz6Ob6mmI+NneEmOsoNFWE2RgUtpwoqRNrcacHiygyBIRv6tClCnreFWZzY0RGmN+/s3Pz2FYNo2xAKWqwavnx4kFPGyoj/CRnW7d876OBBuSYc4M5/nu0UH2dSToboxwvD/L2ZEC4Lq2LlVPh2W7gTK4mWfTdqZsxw1rfr0Xe9oTC9aSX0lEAC0Q3KWcHy3w2oUUybCPxpif8aJO5zVBUDx442ylLLmyYxXdYktTlJqQl/3tCWzbYX19mPbaIEXNomeixKnBHEPZKg9tqmNXa5wdLTG66kI81p3kykSJ7749wHDOLfWoj/gwLJuuercm++RAjoFMhWN9GTyKzD1dNTy0qZ7akBfNtGmYpcbtpTNjXEmVON6f5bei/kXXw756fpxC1WQ0X2Vna/y2a03fbpYiyL2WVFHjWF8WcBs4n99/axl/WZb40Pammz9RIFhG3rg4wWi+ymi+yo7W2DR1i/WT9b6t8QC5soEsSextd1U0Xr+Q4p0rafyqzEiuyvZmV8Hj6UkHwFzF4Fdnxwj5VLrq3O2UNJOJUpWKbtI0aRqUregYlsPZkQL/8oenKWsm0YAHRZI4M5ynrFuUdItEyDO1jTcvTRDwyhy6kgYkXrswTndjhPqID0kCWZKoiyzdipSqyDzWneT8aIG9HQnqIz6e3dFEqqizpz1+w9ce6klzoj/L7rb4vHt35kNRM7k4VqRjUqd7qREBtEBwl/Lu5TS5sk6+4uqZ4kCmNH8lhfvWu5mYurBvaqn98wfbMWwbv0dFQqIh6qNiWIwXNCRJ4pVz47QmAlNyZycHsvzNO72cGXZNUSI+D/evr0U37SnloYBXoaJb6JaNaTtcSZXwe1XiAQ87W2OMFaqcGylMlXtkSjp+jxvoehQZ3bT40clxfKrCY931C6r9a68J8v5QnpZ4YM0HzwAhdWn1nKJ+D4mg61TWXiPKZQR3Ju01QUbzVeoiPoJzlLQ92p2kPuKjLuyWUbxxMcXJgRzpko5PldmQDBMNTA+5YgEPz+1pwbDcDPQPjg9hWDZXUmU00yYR8vCZfa2YhxyGMlVM26ZQNZAlt9zp/WG3tGNdfYi2RJB719VSNSz+468u0jtRprMuSNirUjXtqd/nhmSYL0/q+s+VWEgVNSzbmUpOXBwrki7p7GqL3VCRaVdbfKqPBlzny42TlRumZc859759aQLTdnj78sSSBtA/OD7EaL5KwKvwlfs78d6CbN9siABaILgLSZd0zo7kuZwq8Wh3PUGvMjkxzi/A6k+X+faRAQJeZSqQzlcNvn1kgOP9OVoTAerCXv7p091UDYvXLoxzajCPV5UJelXKusnl8RLfOtyPaTkEPArN8QAFzeC1c2OMFnV+emqErzzYxdNbG4n6VeLvefAqCvURL5bt2n+/eyWN36MwnKvSURvkv752GdNy2NUW55ltDQR9KmdHClwYdUtLWuKBBRlYPLW1gXu6agn774ypsqjPrMm8FbyqzK/d20FZt4TqheCO5cGNdexojRHyKnMGgV5VnlZ+cPX30JYI8pEdjXTWhWa9CP/VuTGO92WxHQdZkqjoFnVhL2MFjaFMlb98u5cHN9SxIRnmcE+aYtXk/FiRy+NFxvIaBzpreHZnEw9sqEOSJE4N5kgVNVJFjYhf5ctPdeJTlWnB+42ysf3pMn/7bh9Vw+ZzB9uIBz388MQQ4MqRzkfr3bBsNNOeUkA60pvm1fMpWiaVlJTrjI42NkQ4M5y/pXK72TBtG9O2OXQlR9WweHZH05Lu4844KwgEggXRly5TO5kp2dYUZWNjhIujxTknl4FMmXRJZ0tTFMt2+Nqrlzk/WqCrLkTvRImakJeSZuIAHbVBfB6Fbc0xjvdn2dwY4cktDXTWhHjz8gTfPTpAvmLw1uUJRnNV6sI+HulOkgiofPfYEKmiRqak01YT5EqqxDPbZB7elGRrcwzNtHFshxfPjCJJEmXdpGrYJCM+Xjs/PrlsqdCSCDCSr3J+tMBESQNHorshsuAlS0mSiAXvnMBQX1oZaMDN8scCaz87LxDciIVeIG5viVET8rpNzzdwfDw3WY9cNSzqwj5iAZWmuJ83LqboqAlxuCfDcK5CpmzQHPPh9yjUhLxcGncbq/1emae2NqLIkusMKEm0xINE/Cqf3NM6TcYtXzX41y+cZaKk85UHumbN9valS/z01AiaaeH1SHx6bysnB7LIssSWppsHn64cXR/5isFjm5Psbovzi9Nj9KVLVAyLYtWcMad+aHsjj22uv6nfwEL52M5mXj43RlW3cRy4MDb3OW4xiABaILgL2TjZXGJaNlubYyRCXpKR2fUyMyWd7xwZxHYcxgsam5uiBL2ug5YDUxNSUyzAvetqeOX8OC2JID9/f4TxosbWpii//dA6DNshPVkicnIgS6akk6sYbGmK8uyOJl4+N0Zz3M9ovkp7TZBowMOu1jiD2Qot8QB1Ydc+98/f6uHyWAlVkWiI+HlqWwNbm6J8+8gAnXUhClWDrU1Rfnl2jOFcFdOy2ZiM8NHdTXO+x7uFqzJRAoHg9tM8D63lg101HO3NcLCrhgc21HGsL8PL58ZpjPoJehXaawOcGS6QKmqUtSBbm2NsbozQkyriU2XiAS9XUkXGClXX6dWrsqs1zsGumhmB6vG+LOcnV+NeODUyLYA+O5LneF+W3okSDq5FeaFqMpLT6KwNUTGsWftNridd0qeUdHonSrTEAxQ1t9HYsp0ZZSxXWergGdxM+0d3NSNJEumSPqt5y60gAmiB4C4k5FP5wsH2mz8RsJwPuqlN26Ep6mdfR4KO2hCPb05OMyqJ+D34VIXhbIWjfVkkyW3k+OyBNloSAcI+Fc20+OiuZr7+Ti91YdcwJR708MCGOlRFpr0miCLLbGwIc6gnzduXJ6YyGSf6c7xybpyKbtESD9AUC5AIelEV2ZV7chxaE0F2tsXJV010y6KsWXTUBWlLiBrdDfXiMxAIVhN72xPsvab0w7IdTMvmykQJSXIz2emSTltNAMty2NIU4dHuJMmojwujRfwehRP9Wc4MF3j9Ygq/qlCoGjy1zS21KFQNfKqCV5XZ1BimJuQlVzHY3/XBPgcyZX58cph3r6RpiHhpiQeoj/h5fn8rdWE/dQM+VFmiqy40Y/zX0xh1VUbGCxoHu2oI+dzyvNqQj70diVt2GFwoHkXmuT0tN3/iIhABtECwShnMVjjel2VDMrzkZiCO43BmuICqSGy6yZJWXdjHh7c38cMTQ/SkSgxmK1Nd5NeTjLgTrSTJHFxXw3C2QnM8gCy5kky//WAXtuOgKjK6aXN5vEjE70GWpcmGE3csumlzcjDL6aE8HkUmU3Yz16eHcuQrJoZt0ZwI8NCGOtomm2M6akPT3BQf3FjHgxvrMCx7ckzLO3GvRlqvEUj2iKoLgWDFsWyHVFGjJuTFo7h11EXNJF3WqQn58Cgy/4+nu+lPV9jWEp1SAPnknlaO92fxqTKaadGXrrjlVEEVrypj2w7vD+V58cwoYZ/Kr93bTmM0wH/44l4My57SsAbX0EiWIOhVUBWFJ7fUUB/xE/V78SoyB7tq2NwQIRLw8N5AjrcvT7ChYaZJDLhKOk9dVyf9pXs7yJUNWhMzM/KpokZfusymhsiSuMYuJ2trtIJVhTBiub384v0RMmWDi2NF1tXP3oCyWE4O5Hjp7BgA8i7YkLxxEB30KiiyRFm3ePNSCl+v25Ty6KYksiyRrxqkizrtNUF+84FOLNsh4FU4O1ygIeonNDkxyrKEPNmo+Om9rZwZzpOM+qbJQgG8P5Tj1XPjTJR07l9fyz2Tzlthv0pjzM9wroJh2pwayk25cs3FnaCesVRour3SQxAIBNfwo5NDXB4v0Rjz84WD7SiyxKPdSRJBL8O5Cge7aqkJeWm9bgVNkSX2dbhZZMdxCHhUNiRdO/GtzVFkWaIvXQbcLPQLp0YAeGhj/TT3VnDL7z61t5XHupM0RP1899gA6ZE8R3vThCfn5iupEp/d38ahnjRFzeR4X5b71tVOC8TnIur3zJjjwVXm+NbhAaqGxYXRAp87ML9V0dWCCKAFglVKIuQlUzaIBlSUJc6eWs4H3WTWPGKq+oiPmpCXbNmgrFsMZV3B/K66MI1RP3/9dh9Vw2JXW2ya49S1kkbgWjU7OAS9bpbk+sevcrgnw4n+HB21QXa3xQl63anqya0NyJLEoZ40iZAXy3Ez9RXdZH19WGSZb4J6zbWE+KgEgpWhalhcHnfrg0fz7lw6ltewbQd5UqHiekm4GyFJElubozMUhg50JihUDSSgJ+U28Y0Vqty/vo6Jos6+zsRUYHvtCl5tyMfrF1MUqwa6ZbOnLY5tu+eMzY0R3rmSpqsuhE+99eSEPXkums95aLWxrAG0JEnNwI+ArUDYcRxTkqTfBz4B9AK/6TiOsZxjEty9rPYM+rM7mhjKVklGfVOT6kIYylYYyVfZ2hSdkSXY3RpHliRUWWJTw819j/0ehU/vbSGvGUwUDF48M4rPI1MT8lI1rCmDjqvWtNdj2w6vnB/nlfNj1IZ8fGpfKy1zNNhUdIu3r0wwkC1T1A0ar2lcSUb8fP5gO09saeDSeJGIT+Vbh/txHHh4U90d4RZ4O/H7PEiAA6iyyMwLBCvBT94bpneiTNCr8NjmJKcGc2xujC5qnr8Ryag7X5Z1k//6+hUO9aSpj/g5NZhnfX2YQtVgXX0YnypPU6f45N4WMmWd4/1ZchUDzXL48A7X4Oj+DXUc6KqZc2XvqqtiMuKfIVdnWjanh/NE/B666kKoisyn97bSM1FiS9P85UVXC8udgU4DTwDfA5AkqR54zHGcByVJ+gPgOeBbyzwmgWBVoioy7bWLa/oqTGoyW7bDSK7KR3Z84O7mOA5vXEoxmtd4eGPdvLK2harBX77di2bYPLypji/f34nfI09lhp/YkmQoW+XgHOUUR/oy/M07vVwaL7G9OcrQpLLGbCiyhFdxpZ9qw15mU16rj/ioj/i4PF7kajK9IsoTbkq+pE99nropPi+BYCWoTCYcdNOmszbEpoYIharB948P4vcoPLE5uSDDp5sR9Ko8v6+VQtVAkWX6J0s7RvJVLo2XAPj4bmnKVdGnKjy/v43zowU2N0WJ+DxEr9HCnyt4dhyHbxzuJ1XQ2NgQ5qM7m6c9/vblNId60gB84WA7jTH/1L/rOdGf5dxogX0dialxrTaWNYB2HKcKVK85YR8EXp68/SLwRRYYQN9qFlEguBNxYCqwtOzpIehYQeNwTwaANy9N8NyeFizb4Z0rEzgO3NNVM2PyzlUMNMMNuEbz2oxM787WODtb5x6PbTvkKiaSBPmqybYbmJl4VZl//uHNvHYhxcGummnZ84puYTkOsuTW5LXVBHm0u56ybnFgCR2s7lS8HhkZsAHPEiy/CgSChfOhbY28N5ijqy6Ed/J3eLQvy+XJYLajNsjmxrnnyIpucTlVpDURnLc+dWMswKf3tjGSr/KFg+3opkW6pPPGxQnADX6vpS7s43cfWs/x/iwdtUE0056xkuk4rpmVZtrcs64GWZKYKGqAe564HvuafdjO3KL0hmXzq3NjOI5r3iIC6NmJA/nJ2zkgMduTJEn6KvBVgPb2tVVkLhCsBFG/h0/uaWEkX2VHS2zGY2GfSlEzp3RK3x/K8c5lNzPg9yhTzSlXaYkHONBZQ7qsc9+62gWPZ39nDfesqyFd0jnQWTOVuZ6L9toQv1Y7XTJpvKDxzUnnQklyLwyuKnuI2uf5URcOoCoShuVMyygJBILlozbs49HrFCyaYn4kyc3u3sh4BeCHJ4YYzFYI+9z5b76lH92NkWmKTrbt4FUVPIo0ayP51uYokgQ/e3+E9wZzfOFg+7SA/fxokTcvuQG4qkjcv76OJ7c0cGGsME2a7yr3ra8l5FOI+j031MhWZYlkxPUEmGulcjWw0jNoFrgq0BedvD8Dx3G+BnwNYP/+/bfBS0sgWFtkyzqnBvN01AanZNyup702OGsJSMCr8Ov3dVDSTGonJ+rpWs4zpwVJknhwY92ix6vIEv/4yU2kSzo1kzay709K0u3tiE8T0R8rVNEMe8b7Gs1Xp8oO0kV3O5rpOkyJ+Hl+OJJDxKdSMkxqwwtzZRQIBLePTQ0RGiJ+VEWaUi2ai6rploBopjVridv1nB3Jky7p7G1PTMsiy7LE7ps0KvanyziOm/VOFbVpAXTIpyBJ7mpnxOdBN20CXoVntjXOmiTxKPK8+lQkSeLhTXWc6M+xt2PWvOqqYKUD6EPA7wF/AjwJvL2ywxEI1gY/PTXCSK7Ksb4MX31k3YJdnPweZdpEuq4+zGcPtGHbzpwBObiT6KXxIm2J4JTLlW7a/PTUMEXN5OmtjdMkkvrTZV4+N0ZD1M9TWxuoj/gYL2i8dHaUV8+Pk4z60S2bRzbVAzCSq/KNQ/3YjsPjm5PTutA3NUTomSihmzaf2N1Mf6bChmT4ptmXVFHjWF+Wztrgktq4rkXUSclBw4ZUQV/p4QgEgmu43jlwLj6yo4n3h/KsqwvNaNQDGMxU+PaRfuoiPg521fDT91wJu7Jm8eR1Gs1XKWom71yeoDbsmxZU7++sIVcxsG13/jcte6rErzUR5PMH2tFNm/baIN8+MkB/ukw86OE37+9kKFflpbNj1Ie9PL21cd6Zcsdx+OGJYaqGxUi+ym8/2DWv112lpJm8c2WCRNDLnlky4UvFcqtweICfAruAnwH/E/CqJEmvA33Any7neASCtcrVJg5VkZGXKP3aEg9wJVXia69eoj7i42M7m2fUQl9dOgz5FH7nwXXIskTvRGmqdu9Ef3baBH2oJ02qqJMq6uxqixP2qXzjUB8vnxsnVzHIVQye3vqBKUtRM6Zq4/LV6YoeXlWe1pSybp51cb84PcpIrsrpoTxfTQQJeJfeMnatcLIvzWQpO+NFEUALBGuRurBvKulwPZpp8Z9euciF0SKJoIe6sA9ZkrAdZ6reejZevzDOmeEC4LoJXm3sqwl5eXpbI3/xZg9DpyuM5qs8seWDOf7aBsCrFt7FqontwOGeNKmCRqqgsaM1Pmc5hmZafP/4EPmKwYe2N9KaCOJRJKoGNxzznO/lYorTQ251cEPUPy9L9cWw3E2EBm6m+VreAf54OcchEKx1PrqziQujRVoSgSUxCulPl/GqMicHspQ0i5JWZqygzZh4NPOD7nHbcZCRaIj5CfkUKrpN53VWr+vqw/ROlKkJeYkHPVR1G9N2CPtUgl6FXW3xKZMUgPX1Ye5bX0tliZoCeydKDGbKmJZDTdiLqtzdtR7Xfp938XWEQHDHYtsQ8qoosoQD7GiJsb0lRras37AxMexzs9+qLBG4rlnQtNx5G0C7Tr1noqhxejhPV12ID213myM3JsMossS6ujBXUiViAQ+1oblLxgYzFQYzFQBODeZoTQR5fn8bfRNluuqnn1MMy6Z3okxjzD+nc2Fk8u+qLBG8jRPdSpdwCASCReD3KOxond4cOJKrMlHS2NwYnXVZby5ODeb4xelRJAn2tsdRZInasHfWRparS4dXNTzBbUr8ygNdmLYzU2+6LU53QwSvKqPIEj5V4aM7m9jeEqU+4qe7ITJtWU+SJO69SZNi30SZX50bozHm5+mtDXM2EFZ0N6sBEmGfwucPtt/1roQtNSFiPpmCZtN9l5ezCAR3IgGvwhcOtnPPeJEdLXHqo+48frNmvAc21NIc9xMPemeUktSGfXxkRxPjBY29HfFpj/3kvWFSRZ2TAzn+3sPreGbbByuKO1pjbEiGp+b/a3Ech1+dG6M/XeFAZ4KakJd8xWDT5LwUC3hmnOPALV+8NFYk7FP5rQc6Z5X7u299LU3xAFG/Sjw4/16PoWyFbNmguzEyr3OoCKAFgjuAbFnnm4f7sWyHsYLGY9d1eN+Iq8tujgMN0QD//WP1c9aq1YZ9PDzL0qGqyMxVhn19ycSGZOSm1uE34t2eNOmSTrqks6c9TjIyU0MUQJbdznDLlmirDc5qJXu3kS7pIMsEfRJ5zVrp4QgEgttAZ11oxmrgzZAk6YZlcdcreFzlav+NR5FmLSecq2QuVzE40Z8D4MRAji/f3znNiXEurp6vyrqFaTuznnckSaJrge8/VdT41uEBbMdhoqTx0MbZS2SuRQTQAsEdgGE5U3rPV/Wa58u+zgS6ZeNTFTbOoylvsRQ1k1+cHsGjyDy1tWHBjY9XWV8foj9dpi7sJR6YO7vgUxU+t7+N4VyVDcnVqSO63CQjfhqjfsYKGttvoMUtEAgE8+Fju5qnGssXcu4I+1Qaoq5U3VWd59PDeU4N5tjZGp9hS36Vp7c1cLwvS1ddaMaK561gWPZU/818TaZEAC1YMYQJztJRH3GX2FJFbVb9zRvhU5UZmqS3g5P9WXpSrgNWe02Qna1xSpqJ5TgLyg7vaU+wpSmKV5FvOmHXhn1TUn0C10DlQFcN43mNnTeRrxIIBIKbEfAqbL/Oa6ComTiOQ+QG87qqyHz+QBu69YFBy0tnx7Bsh4nS2JwBdDLi5+lrykSWiqZYgGe2NZIt6/OWzhMBtEBwh9DdGKGb1VvX2hwPIEsSisxkFrTKNw/1Y9nw0V1NC3KbWsrMw92EV5HJlg2yFYOKLko4BALB0jKYrfCdIwMAfHJPyw1lUWVZwi9/MJe3JgL0TpRpTayMecpcQftciABaIBAsOWP5Ki+fG6c27OWx7iSyLNFZF+K3H+pCliDoVTk1mMOw3CWzkVx11dq13kkYlo1HlvCq8rwMGAQCwd1Dtqzzi9OjhH0qT21tmLVB72aM5KpT5YQj+eoNA+jreW53C7mKMW978pVGBNACgWDJeedKmsFshcFshe7GCK0JdxK9VnZoU0OE/nQZ3bKnGaYIbh8O7tKpT5WRubsl/QQCwXSO9GYYmJST25AML8p4altzlOFcBceB7c0zVTRuhCxLJG4gd7faEAG0QCBYctpqglyclBqqmWNC9KoyH97RtMwju7sJeFzt7fGCxs62hZ3cBALBnU1rIsh7gzl8qjLNUXYh+D3KNMOrOxkRQAsEgiVnd1t8sktaXrTahmDpUWSJzx9oo6iZC9JHFQgEdz7djRGa4348iiz6TOaB5DhrqxKurq7O6ezsXOlhCAQz6OnpQRybgtWIODYFqxlxfApWK0eOHHEcx5m1GHzNZaA7Ozs5fPjwSg9j2bmSKnFxrMiOltg073nB6mH//v135bEpWP1ce2xeGC3QM1FmT3t8VrdJgWC5Waq5s2pYvHV5gohPZV9HYk6XUoFgvkiSdHSux9ZcAH03YtkOPzoxhGk7DGTK/NYDXSs9pLuequFKgIllLsFaoqJb/OS9EWzHIVXU+MLB9mUfg2nZ6JZN0CtOP4Kl5fUL4xzry6IqMrVh34Ld6ASChSBmsDWALEHIp5KrGNNUDAQrw1C2wnePDiBJEp/Z10pDVKwICNYGqiIR8MqUNIuIf/nnkqph8fV3+8iWDR7bnGS3UF8RLBGZks7L58e5OFZkc2OUkE8kNwS3FxGNrQEkSeJzB9oYzlUWpKkouD0MZCqT+sXuioAIoAVrBY8i8/mD7Yzlq3TULn92LlPWyZYNAHpSJRFAC5aM4VyV2pAPpUFiT3ucZETMy4Lbiwig1wghn8qG5Op1mbub2NocpS9dRgI2Ny7Muehu4lat2nv+6NklGongWqJ+z4Ks05eShoifbc1RxgoaB7pqVmQMgjuT9ckQ68ZCVA0/j2yqX+nhCO4CRAAtECyQsE/lM/taV3oYAsGaQ5Ylnt7WuNLDENyB+FSFT+xuWelhCO4iFu7TKBAIBAKBQCAQ3MWIAFogmAemZbPWNNMFgtWI4ziYlr3SwxDcBYjjTHA7ESUcAsFNODWY48Uzo9RHfDy/rw1FljjUk0YC9nfWoMhCa1Swdrg0XqRvoszutjiJOWzWbxe6afONw/2kizpPbk2yrVnYiQvmh2nZvNuTxqPI7GtPIN9k3j3Sm+bV8ylaEgE+vbdVzNOCJUcE0ALBTTg/WsBxYCyvkSnrDGUrvHkxBUDAq7CzNb6yAxQI5klFt/jRiWFsx2E0X+Xzy6wDPVHSSBU0HMfhwmhRBNCCeXOsP8s7l9MAhLwqW5tv3MB9dqQAwGCmQrFqEgtOb5w1LRtVEYvwgsUjjh7BHUXVsOidKKGZ1ozHiprJif4smZI+7+1ZtsOutjgRv8rGhjB1YR9Vw+JIb4YjfRk0UywRCtYOiixh2jbD2QqeFQge4gEvw7kKJ/pzhH3q1O/VEEvtgpsQmDStKlZNqoZFsWpwvC/DWKE66/P3d9QQ8buBdjQwPVf4xsUU//6li3z/+OBtH7fgzkVkoAV3FN8+MsB4QaM57udzB6Zn135wfIjRfJWgV+F3H1p30yXAkVyV7xwdQJElnt/XSu2k7bEiy2xIhpEkCbEqKFhLWLbNmeE8o/kqteHlLd8AyFZ0mmIBmmIBClWDv323j0zZoKM2yKf2CmUbwdxsb4kxlq/y2oUU3zs2SH+6jAPsaY/z9x9ZP8MVtrsxQnfj7NKvZ4bzAFwed5MtPlWYrggWjshAC+4ochXXpCEzadZwLaZtT/7vMJ92wCupErppU9Et+tLlqb93N0TY0BBhQzLMxgahzS1YO5Q0i5JmEvSqDOdnz9zdTpIRP+uTYSJ+lZ2tcfJVE5j99yoQXE/QpxINeJgoalQMi6phka8Y2Ats8D7QWUPYp7KnPS6CZ8GiERlowR3Fh7c3cnakwLZZ6uM+urOZs8N5uupD82oo2dIU4eJ4EVWWpgXKsaCHX7+3Y0nHLRAsB3URH5/Y3cJ7gzme27P8mrmKLPHxXc1T9z+yo5Hzo0V2topaaMHN2dMep6ybdNQGGc5VKGkWn9nbStC7sFBmV1ucXcIFU3CLrHgALUlSEPgWEAJywGcdx9FWdlSClcS2HY4PZFFliR0tMSRp/nUS6+rDrKsPz/pYTcjL/Rvq5r2teNArAmXBHceDG+voqA3Nuby9nGxIRoTDqmDe+FSFxzc3AO554sRAloJm4jjOgs4TAsFSsOIBNPAh4B3Hcf43SZL+n5P3v7/CYxIsI4Wqwd8dH8IwbT6+u5m+dJlXzo0D4FXlVWeXXdJMfvb+CJIEz2xrXHD2QyBYKSq6yZ+8cJaJos7+jhr+ydObVnpIgjuIsUKVl86MEQ96eGpr45JIxxWqBj88McSx/izr68N8ak8Lyaifk4M5Xp48T6iKJBRdBMvOaqiBvgT4Jm/HgYmVG4pgJbiSKpEqaOQqBudGCqjXTLqqvBoO0em8P5Snd6JMT6o81YwiEKwFyrpFqqhj2g4D2fLNXyAQLICjvRmGc1XODBfoTy/N8XVqMM+pwRx9E2WujJc4MylPd+15YiUUZQSC1ZA6uwDcI0nS+8AY8AfXP0GSpK8CXwVob19e3VLB7aejJkTEr2JYDhuSYZIRH15VRpUlNiRnL8dYSWpCHt694l7nPben+SbPFiyWzj/88S29vuePnl2ikdw51IS8bGuOcnIgxyOb6ld6OII1RkW3ePvyBNGAyr6OmhmPt9UEOTtSIORVqYv4ZtnCwmlNBKgJ+Tg3UqBQNVBl+O7RAdoSAT6yowlZQjRzC1aE1RBAfxn4meM4/1qSpP8R+BLwF9c+wXGcrwFfA9i/f7/wU77DiAU9/M5D66bVsa2Wsg3HcRjNa8SDnimZpHevpDEtZ+p2V93qC/IFgtko6xZBr8o9XTVTChgCwXx5+/IEx/uzANSFfXTUhqY9vq05RsjrKmWEfUsTXrTVBHl+XysODqos8ZP3Roj4VU4P5fmHT2wkFvDcfCMCwW1gNQTQEpCevJ0CRCHTXcpSN4HYtsORvgyW7XDgGsvtfNXgaG+G1kTgpg1ML58b53h/lohf5Tfu68SrytSHfKQmzVjqw0uTZREIlgOfKnMlVeTSWInndjetyBjODOcZL2js60gQWqIgS7A8hP3u9yVL0qy9H0f7MrxybhyvKvOlezsWFdzatsNYQSMR8kxJzMVDXgIeBd20Kesmb1xMEfOrvD9UT7pkYFg2T25pIOIXwbRg+VgNs9ffAN+QJOnXAQP43AqPR7DKMC2bk4M5on51QR37p4fzvH7Btdz2qjJ72xMAvHh6lN6JMsf7s3zlQT/RG0y6V12uClWTimHhVWWqlkXY507swolQsJYYL2oc6c1Q0S1+dnqM331kw7LuP1XUeOHUCOD+pp7duTJBvGBx7O9IUBf2Efap1M9SojGWdwW0dNMmVzYWFUD/4swop4fy1IS8fOneDhRZIhbw8MV7OjjWl+HcSIGqYeFTZV46Mz51EXZyIMcDC1BZOj9aoKSZ7GiJCUtvwaJY8QDacZws8MxKj0Owenn7cppDPe4ixWcPqLTEA/N63bXOVIFZbnsUGc9NmhQf2ZTknSsTtCaCUycDVZYJ+9zbS9FlLhAsF47jUNYtTMsmX1l+8xKP4vY2mLZDwCuClrWGJEl01YXmfPy+dbUYlk086KGtZn7z9PWMTRr8ZMo6umkT8LrzdU3Iy6aGCImQl1jAQ03Iy8Mb63hvKI9pOTTP87wA0J8u8+OTwwBUDIv7188/8BYIrrLiAbRAcDOurexYSLi6IRnm03tbsRxn2qT/5NYGOutCJCczKLph8YszYwxlKzzaXT+tIaUx5ucTu6cbTjy2OYlmWkiSxCPdohFLsHaoCXrpbowwkKnwwIbaZd9/LODhM/tbGc1X2dESX/b9C24vsaCHj+26tcbqR7uTHO5Ns64uPBU8gysf2poI8N89toFXzo0xlKtSNmx+6/5ObFh0zbW0oLOKQPABIoAWrHru6aoh5FOJ+NU5swy6aXN+tEAy4iMZ9U/9vb02OOO5HkVmS1OUM8N5fvZ+LxJuKYZHkTnWl71pR7ffo/DcntZbek8CwUpg2A7bmmO0JYK0JBaXIbwVqobFC6dGyJYNJCThBrfCOI7DudECQY8661y5ErTVBGmrmT6Wn78/wmsXUrQmAvy9R9YjyRIeRebMcJ771tUSCy6sVKStJsjHdjVT0ky2t4i2K8HiEAG0YNWjKjK7b3KifensKGeGC3gUid96oGtezUk9qRKOA5btEPKpGJbN5iYhhyS4cwl5VbY1R+mdKLOrLbHs+8+UdbJlt3TkSqokAugV5khvhtcm+0Se399Ka2J1BNHX886VNOdHC5wfLfDQpjo2N0YZL4zTEg8Q8S8ujFmNEqmCtYUIoAV3BFeb+SwbTHt+Sod7OxKkyzrxgJdntjUgSdK8a5odx92HsI8VrCVkWeJTe1sxLXtFGqcaIn62NkcZK2js71z+AF4wHf2aJmjDWh0KsbPZcm9vjnHp/8/ef0fJkZ15evATkd5nZVVleQtX8K7QDXSjfdOT0zM0Tc5wOeRwOJxZr7PSamdXnz5pdY6k2ZWOdj9ppTMzK612dwzJGXpvu5vdZBt0wwMNXyjv0vvIDPf9EVnZVSiDKqAscJ9z+rCYJuIWKuLGe9/7vr/fdJ6GgAtNNznaVcehjrDoQRFsKCKAFjwQPL+7iXP+NM0hNyGPg4pm8MZAArsscby3fsGJtino5rOPdq34XPF8mW+cHkWS4BNH2qkXUnaCLYJpmnz3/DiD8SIndzRwtGt9g1hZlmgOupElSUiObQKO9Vjynl6nfcnmwPXi2mSOn1yepDHg4hNH2nHarUXeC4daKWs66ZJKZ7W8QwTPgo1GBNDrjKLqyJJUmxi2Ijen82QVlQN3yP+8M5gkXVQ5sa1+3fVdfS77HAmj86NpzgylAKtxaTXr3AZiBYoVHYDBREEE0IItQ76scX4kRaqg4nPZ1j2Ans4pvHR1GrDmwvttOANqi2VZgse2NYjAagU4bDKP9q5/M+liXJ3MohsmkxmFeL5c63mJ5ctMZCx1jtdvJfjw/oXlD0sVnUvjGVrDnjlqTaeHkqQKKse31a+awct6UShreBw2ZHFdbzq21pW0xRmMF/ju+XEcNpnPHOugzufc6CGtmPF0ie+dHwesG/uJHZYKxUiyWKulM4H37WnaqCEC1OriJIl7rpFbjB1RP++OZ5Blie2NomZasHWQgdNDaZKFCtIGPJA9DhtOu0xFMwiukoPchTsWywfaw6tyXMH6s78txGRGoTHgqqkkAXicNhw2CVU3l9Tt/+m7kwzECthliS+etHphxtIlXr1uPZs0w+SD+5rX/PdYLV6/Geet20maQ25e7O8Qi8NNhgigVwHDMLkwlkECDrSHFq2LHUoW0Q0T3dAZz5S2ZAA9m9nyPz6XvabvGlwiYH3p6hQ3p/Oc6G1gf/vadT/3NQfxu+zYZZnmkPvuX1gBdT4nX3i8Z1WPKRCsByXNwCZL+Fx2NH39TYC8Tjt1XgcjySLtq6QCMhOISxJLBleCzU9vo58/fGp+c1/Q7eCzj3aRLql0L1MtZOYx7HPaas+m2cYuFc3gu+fHyZRUPrSveUU60iuhWNE4P5KhOeRecZnMQLwAwGRGoVjRRNnTJkME0KvApfEML1e3JW2ytGi5wIG2EBPpEm6HjW2NW7MDuDXs4TcOtZJTNPa1BgFrKzZXUumIeGmrc3Ose/6WYKGsMZVVODecRpIkTg8l1zSABjZtR7lAsFH4XXaag24msgrd9etf8zqdU5jKlnHabVwczazKPLizKYD/mB1ZkmgOudF0A80w5xgpzWCaJmeGU+TLOo/2RBb8jGBpprIKHqdt3RcrdT7nokkn0zQZzyic3N5Ae52HiNeJy27j6mSW8XSJjx1sRZKo1U8DjKaKjCSLgOViuFYB9EtXp7kxlUeWJL7wWPeKJPeO99bz+q04XfU+ETxvQkQAvQrM3lax2xbfYqnzOfnMI53rMaQ1ZfZD7/RQkl9ei3FlMkdfc4CprELY46Q55K7d8KWKzl+8OUSpojGZVRhJluht9HFpLM2elpCo7RII1glJgr1tIXY0BehuWP8FZr3PhWEaDMaLPNu3OiZEsVyZ718YR5YkPrSvmR9dmqRQ1vnw/uZ5mu6DiWJtOx/gqZ3CCGklnBtJ8/LVaRw2ic8+2rVpdlFfuRbj3Egav8tOf3cd3zk/jtMmU6zo2GSJTEnlYwda+frpUSYzimWmVe8j7HWQKlQA07IevyO4zRRVYnlrsXmvqjX26vNNkuAuxrfz2B71C7m9TYwIoFeBva0h7LKMLHFXE46tjqLqnBlOEfE56WsOcmu6gCRJVDSDsqozlVUoVnQCbjtP7Wzkz169RSxbJuRx0NPox2GTaQm5ePV6jIlMiS8+3sPJah31aKpIqaKzPeoX8nACwRrgtMlkixXevJ3g7zZvW/fzx/JlzgylUXWDl6/FVkWL+lYsT6FsNfWeGU6TUzTA2v6+cz72Om1IEpgm+F3zs8+pQoX/8YfvUijr/OPndtDXErzv8T1IxHNlwJK8S5fUdQmg08UKP7k8ictu44P7mnE7bCiqzjfOjJIpqXx0fytTWavpMF9W+U+vpxlNKfQ0+Kj3O9FNieFkkXMjaUZTJQAuj2fZ3RLkC49189W3h7kykWM4WeRLJ3trCR1F1fmrU0OUVYM9rUE+sPfeaqef7WuiJeQhGnSJLPIDhgigV4ldzQ924DzDr27EuTiWAaDO6+RYT4S3X76BYZq0ht00hzxkSirFis6l8SyjqRKmCQGs1fS+tiD/84+uki9rTGcVxjLWhDaeLvH106OYJjyxo4H+7sgG/pYCwYPJSKrI194ZRTcM/tefXueD++9fBeNuxHJlkoUK26N+CoqKZlg6vzOB7v2yI+rn8ngWmwQnttVjmCZZRePwAiYtTUE3v/1IJ4WyRu8C5SNv3EowkrTmpJ+8OykC6Dt4tDdCRTcIuO0L1iIPxgv84OIEYa+DTxxpX5USmQujGcbTlgLHzek8+9pCjKVLTGfLlDWdf/fSDQoVnWJFw2mXmcgoZEsqLSE3f/BEL18/PUq+rPHajThNQRfpksr+apmlJFnZ6ViujE12M1sJu6wZNZ3s/H1cq067LAyDHlBEAP0AMpEpcTteYE9LkLB3eRmCM8Mpzg2n6W308eSOxkXLKhxV+T1ZkrDLEi0hN2XNpKIZvHI9zv/nI3u4HS/Q2+hDAl6/6SWrqHziSBvP9DVxdTLL8Z4IF0YzRAMu3l9V6yhrBlVvEhR1/ZubBIKHAYcsoepWYFBZhybCnKLytbeHUXWTA+0hntvdxOdOdHE7VuDFY+2rco56v4vfP/leU+8Lh9qW/HxTcPGm4oMdIYLn7CiqwfGezSPvNhtFtbLtG1G/HXA7FpWQA7gykaWiGUxny0xmFLpXQVu6M+Ll3Egah02u1Sm3ha2M7vXJHF6Xnayi4nPZ8btsqJqBrbqD+fZgio6Ih2uTeRw2iWf7ogzEC3id1r9dWdPJK1bwHfLY55RjhjwOPrC3mbFUSZj+CBZEBNAPGJpu8M0zY1Q0g4FYgb9zfHlGIW8OJLg6keOnlyeZzip8qr+jVkaRyJe5MJqhu8HHye0NNPidhL3Omv5xc8hNPF8m7HGgqPocCbvPP9bN5fEM0epDa0c0wPN7mujvjvBsX7QW4Pc0+HimL0qxrG367LOmG7w5kESS4NGeyIY4ugkE94LDbiPktpNRrAzdWqPqZs3hbkY7vbfBj99lx+fafNvZbXVe/s/fOYphLtyEuNGMJIt8++wYsizxqf52ooG5f8OcovKLK9M47TLP725ad7+Bva0hhpJFwh4HLeF7u74yJZVfXJnC67Tx3O4muht8HO0Kc7uqSAHW4uGzj3aRU1S+fnqU8XQJTTfY3VLHc7u9vHo9RtBt58pElk8f66Az4iMadPHKtRhjqRKn5RR/8GQvhmnisMl01fvwOOeHQ7tbguxeo10IRdU5dTtJyOMQGeotigigHwAujmY4N5pmb2uQg+3v2Zva78gip4sVxlIltkX98x4O2xv9vHkrQcTnZChZ5M9fHSCnaDy/p4nL4xmms2UujmX4w6d62ds6Vz3jHz+3g19em+bN20l+9u4UZU3naJcVBH/l1DATmRIvX43xwqFWjvfW82zfewH2L65McW44zYGOMM/vjq6o9llRdcqqsaKu5tXgwliGtweTgKVqICY/wVbBMAxihQqqbs4JSNaKiM/Jh/Y3M5Utc7Srjni+zH98/TaFssZ0rsxzfVEGE0V2NPnXTdVB1Q30RVQ6AFLFCoqq07UBKiV3YzRVQjNMMEzG08q8APrCaKb2d+2MeFfVQGo5eJw26rwOQh4n9pV2zFU5M5xiKGGpY3Q3+Ah7nPxfr9xC002GEyV+41ArbofM9miAgNtBT4OXr709TNjj5KUr0zy3p4m+Zj8/vzLNjqifBr+zlrmeeSbKsoQkgddh56MHWxhOFhcs+TFNk8FEEZ/LNu/feoZrkzlevR6jI+LlA3ublv0M+/XNOBdGrXLIer9TqEZtQUQAvYUYS5cIuO3zHjSv3ohR0Qx+dSPOkc46PnW0nZFUiR2zuneT+TL/9OsXKFZ0ntzZwN99evucY7x/bzPNITfnRzPEspZbmCSBxyHTWtVrddnl2tbYbHwuO/vawlybygOQyFfeO2+hQrqoklNKXJ3MUdGN2hbrpbEMf/nmEMWKTr6scbw3suwmi0xJ5a/fGq5lvNfzQTFb59q/yiYtAsFaMhjLo1Uzwpmiui7n7GsO0lftv5rOWCo8hmlyczpPslChVNG5Opnls48ub7csU1IplLV7kh3LKipfPTVMqWLwkQMt8xQOJjIlvvb2CKYJz/RFObTJFsf72oKMporYbRJ9C/TdtIQsm3SbDNHg+juknh5KMp5WGE8r9DUH7qmEoz3s4Xy1ZCMacJNTVGaKkycyJX727hQAHz9iZY7/9JUB4rkyQ4kC3fU+vn9+nM56L16njXcnsnzv/ASfOGqVC31oXwvXpnK0ht247NYCalujf1E5xdNDKV67EUeWJH770Y55QbSi6lbSSNW5MpHleG9k2WWTnmoZiSxJm3K3Q3B3xNN/i/DWQILXbyVw2mU+d6JrThDd0+Dj2mSOrmpTR73fNc9eejRdoljRMExrG/Crp4YZiBf45JE2HHYra3CgPcyB9jDfvzDOlckcIwkrk/HBvc0MJYuMp0r8zTujPNITmffg6Yh4ON5bT6ZU4cS292oH37+niQujGWIFq3u7btbkki9r1PtdFJNFIj4nvgW20BYjWajUagHH0qV1DaC3RwO8eMyOBGumHSoQrAVtER82GTRj9R06l0M05OZAR5BEXuWx3nrencwCYJh3+WKVTFHlL98aoqIZc5qNx9Olmg70UkxmlJpix1CiMG8eK5S1Wi/GvTSOKarOTy5Pohsm79/bvOq20QG3g0/1dyz6fm+jny+e7MYmS3hXMJ+uFu11Xq5O5vA6bTQE7i2A39EU4IshNw5ZxuO0EfE5+YMnexmIFegIe7g0MfeakWXLYdBpk3E7bPjddpqDHs6Ppgl7nQwni6i6gcMmcyuWI5Yr09ccYKLawN4SWnwOz5U18mWVm9N5XA6Z33u8uxZ4G4bJV04NM5wskFM0numLrkhl40RvPY1+F0GPgwb/6i52MkWV8UyJngafCM7XkIcmgL45neOt20m2N/p5tPfem0NShQqyJBEvlPnRxQnqfE4+ebS9dlOtFYlChUJFQ9Vlcoo2J4D+0L5mntjRsORkvbMpwDN9UUaSJZ7e1cj//doAhml1Te9uCeK0y/zuiS4CbgfP9TUxGC9SrGi8eiNO0GP9jl97e4SKqnNhNM0njrZzrPrwKms6P7o4SbGi84G9TXMmkRcOtdES8pAuVth2h6blkc46KpqBTYYTvQ0r0oPuinjZ3xYiU1J5ZANqpttE4CzYosiABOteHwtgkySUikG2qCLL8Mkj7dyOF+hrXl6daVZRa8oI8epO1/WpHD+4MAHAbx1uWzLr2RrykCxUyCoqHzkwvxluW6Ofx7c3UFJ1jvWsvHHs2mSOgZiVeLgwmuaxbQ3zPjOaKmKa0BFZmy37jZRK29cWoqvei8tuW/D6yioqb9xKUO9zLtnrcucu69O7ojy9C3TDpD7owjBM3rgV56/eHKIj4qWiGUgS9DUFObmjgWd2RTk/mubyeJZdzUFU3eDccIp/+4sbaLrJ6aFk7Zn9wqHWBRVZwApyzwyliAbclCo6I8lS7RmmGSbZkkZLyENfs50Xl1jYLIQkSWsiezuVLfHPv3kRVTd5fncTn3+se8776aJ139yZKZ/KKrx8dZqIz8nzu5uEP8MyeKAD6B9fmuT6VI7jvfVcHs+QLqpMZ8sc7Ajf06rsdrzA194eRlENuht8qLrJdLbMVKZM5zLtRe8Vr9PGeKpEyOucU0Jgmia3YgWCHntt4hxKFBiIFdjXFqKxmgUYiOW5MpHD77LTHfHiddrJl7XaJFfRDEqqTsDtwOO0sbc1yK9vxpGAsXSRwUSeoYTl3NQScvOnr9ziB5EJDrSHaPC7anV3F0YzPNMXrY1vOlfmjYEEYNWdzZ4wnHaZJ+/RyECWJZ6f1awoEAjuTixbolIV35iuavquJ7fjBa5O5gB46WqMJ3dGaw3GM1way5AoVDjWXTcvi9peZ+10pYsVHttuJUKypfdKUbLK0mUp4xmrfMRllxmMF9h5RwBTrOhcHEtTLOvsiPpXvMPUEnLjtMvohkl7eP4z4VYsz3fPjQPwkQMt887/ILBUAP/rG/Ha37817Fnxv69pmpimZejy9mCSdFElGnThd9m5NpkjXVRxOWw8tSvKsZ56jvXUU6xo/IdfDfLS1SlGkkVawx4SeSsRdmM6R1kz+Gcf3DWvdrmiGZweSrGzKYDDJuN32ec03jrtMu/f28TN6TxHutZepWOmHjvgti+Zsb45XaBU0TFMGKvqXs8wnCjyrbNjgLXYnB23nLqdZCKjMJFR2N0SXPYC79TtJG8OJNjZFOCD++5NK3ur8sAG0BXN4Ep1q+fCqCXPli5maAm5cd1j5mU0WeTiaAbNsCbgOp+TiNdJsir03tPgmxPUDcTyOGzyqmQaCmW9FnzeiuVrEkHJfIXXbyUoVXS+9GQPjX4X3z03jmaYjKSK/O6JbiYzCv/upZsMJYr43XYujWc4sa2em9N5fvNwGzlFozHgYjpb5gcXJtjZFOCJHQ2cHkrx9mCSW9N5vnJqhG2NPnwuG7pukipWGIwXmMwqbG+0Oph1w6yVkczgtMvYZAndMGs1Xw8CZnWfVxi+CLYS6cJ7Aaa2AWqRbWE3bXUeciWVA+0hrkxkuT6V41BHmK56H1NZpVbjWqro8x7IkiTNKREDONgRplDRsUnSvAbnO9ENk6FEEc0wyJTmB9uXxjK8dGXaynQGnPzOI8ury54hGnTzwqFWNN1cMKlSKL9XFrJaOtjryUSmxI8uThL0OPjYwZYV77zONHw7bBK+eyhveWcoZWl1p4rYZAlZAr3aEJuvaOimVSNf0Y1akixb0rgVy5EpVgi6HbTXefh0fzv/z68HKZQ1XroyBabJJ462z0nwfOXUMD+/MkVjwMXnT3QRy5U5P5rmRG99bd5fS5WOqaxCpqSyvdGPLEu8OWAFqjZZ4nPH33OBPDOc4p3BJLtbgjyxo5E9LUH6uyMkCxU+88jcrHgsr2BUn12xvDLnGu2q93JzOk/Abafev3yDnAujaXTD5MpElmf7ohuys7VRPLABtNMus7c1yPWpHAc7whzrjnC0K4LfZb/noKevJUDY60SSIOKzNCK7G3z8xRuD5MsaF8cyHN9Wj99l59JYpvYg+PD+ZrKKRsTnXLRZ4U4Mw+TnV6aYzpV5pi/KY9vq0QyDep+Li6MZJrMKVydy7GgKcHUyS07R+OaZUb74eA8uh4xW1vFUJ5BXrk3jdtrIKtZqvd7vYiBepCnoZjRV4jcOtvLtc2P84Pw43Y0+0kWV/u46nHaZlpCbqZzlJNga8vDUzkaagm5+fTPOqcEkDX4XHqedzz/WhV2W52X2Iz4nnz7WUZsIHgRiuTLfODOKBHzyaPu8enOBYLOi6hsbtIW8Tv74Q30kCxV66n386S8HMEyTWK7Ml57otRqVqwtu7zIX3A6bvGxL7qDHweGOMIZpLqh64LDJOOwykm7ivoeyvJFkkW+csQyhFsow720Nka/WWR9sX1+FjBlU3ag2Gq78OXhxNEOmpJIpqXPKGZbLid56Ouq8BNx2Qp6Vl5rYZIlkocJEusTuliB/cLKHr58Zw+O04detDPGnj3XUSkAqqs6p2wkG40WQJCI+J931Xl67mcDvshH0WFbemZLKqcHknAD6VixPRTMYjBd4dyzHZM4yc4kGXGyPzv27VjSDH12aoFTRef/eZiL36dCYLFT46qkRDNOkv7uOJ3Y0Ws2UWIvAQkWrBdDvDCYplHXeGUzx2LYG6nxO/sv371rwuLubg7x1O4nTJs9bbB5oD9PT4MNltxHLl4nnKsvaWT/YEeatagb6YQqe4QEOoMFSlnj/LPvNe7lhZ1Pvc3GgPcTZkTQ3pvIUK2M82xdlV3OQ+M04nREv3moAWao2uAH8+maCTElFkuCzj3bVyiqWYiqncHncyqC/fTvJbx5u46mdjeiGyctXp7g0niXgsXOgPYhhmJhY5RN/+ssBdMMkU1Jp8DupaAaNARdNQTe7mgPsbgnS3eBjMFHkykSWRKHML69P805Vli1VVPnC4904bTK7mgMUyxphr5OmoJundzXSUt1y29EU4NPHOrk6maWtzoN/CU3XpqB7SfOCrcbtuLVFBjCYKIgAWrBlMFlmt94aEg24iQbcmKZJxO8knivX5sSQx0F3vZfRdIndLQuXN9yK5UkXK+xvC+O0y5Q1ndeuxwFLpaLB71pUm70t7OHjR9splLUFM4f72kJ84kg7JVXn2VmlaMslU1JrTYipQmXe+zZZWrAuejWZyirYZWnBeen0YIr/3y+u43Ha+O8/trc2ny+XHU0Brk3m8LnstN6DzrMkSfe1I3u0s47TgykkrFIRt8NGslAhka8Q9jr4rz/QV6utjufL/MdfD3JmOIWqG2RLKo1+F6mCylAqQ9jj4A+f3Mbbg0lcdrmW4Dk/kmYkVaSvOcAbt+IoqsHbQ0maQ5Zyx0IlKrfjhVrt+7mR1Byp1nuhohm1TPHMs+bx7Q3YbRJh71zJu13NQc5US03utii6OJahrBqUVYPxdGle7XfA7eD6ZI5//ZOrKKrBFx/v4dndS98Hx7ojtX6oh40HOoBeKYqqM5VVaAl5FlxJzVhUN/qdjKcV2uqsLbnHtjdwpDM8Z9I+3BFG000cNolMqcKFUWv1uNxFf53XSdjrIF1U6W7wcXY4xU8vT/LuZA5NMwh77KRLGu8MpSxb02o9o99l59Z0nt5GP/F8hVi+zLN9UWu7C0sy51aswGcf7eSv3xpmKlvipSvTFMo6sgQHOkKc6I1waTxDyOPgD57sJVWs8L3zE3ztnRHet7sJzTDZFvXjslsNjdcmc0S8zofGUGRnk58rE1lkCbY3Png1jIIHl8wGuHwWKxrfvzCBppt8eH9zrXlJkiRe7G8nka/UFtjjGYVb1UDkrdtJPnpgrtX4VFap1RBnFY1ndkW5MJrh4liGm9M5fnbFyjB/5pHORcfTs0STodMusz3qr/WD3A3dMPnVzTiqZnByRwN9zQHi+TK6YXKoMzzv85miyrfOjmKY8JuH2+47U3knVyez/OjiJLJkGa3cWWP861txyppBuVrf+9EVBtA9DT7+3jPbkaWNKV+TZYkP72/mL94cwu2wcWowyUiyiE2WkSWJr58e41a8wI3JHNP5MkGXA4/DxliqWMvYJosVprNlCmWNYkXjjz/UR1mzSj4yJZWXrk6j6gbnR9KMp62Sh8vjGT5zrJPeqG/B+uPmoBuP00ZZNVZFP7w55OZ9e5pIFSv0Vz0VfC77goH5UzsbeXxb/bKev2VNJ1NSCbrtyIv8/YaqqiIAlycydw2gH2ZEAD2Lvz09SjxXpr3Os6BUUMjjoDPiRZasTMZ4RmEiYzkg2W0ypmmiqAYepw27TebEtno03UDVDRr8biK+99z7pnMKhsE82aWb0zluThc41BHmc8e7qOgGXqed718YR9EMlIpOc9BNQdXIKxqnbqdIFStoVZmey+MZWkMeJrMKB9pDRAMuJElid0uA00Mp3HaZXU0BJEniYEeYl69W6Ih4q1amTp7c0cBfnxrh9FCK7Y1+djYHatuQpmny9dOjBD0OLo1n6GsOcnooBVgr182mmbpWhL3OeZ3NAsFWYMcGmDXcnM7Xmpkuj2d5fPt7GViHLON322uJhZDHamIuVfQFnRIlyfrPNE1mHv8Rn1VWlympuOw2RlPF2py8EIWySlk1iCwQCA3GC/z40iRgZQGP30Wx6epkljPVOdDnsnNiWz1P71o84LgZy5Oq6m/fmMrdlyLUQiSrWW/DtPpU7gygn98d5dJ4Bq/DxvFt88+dL2u8ej2Gz2Xnie0LKyPdS+nHapIqqniddkoVjVhOs2QZdZ1MyUQ3DP7T64NUNAOf04bHaePR3ggRn4Orkzk66r3sbgpUA2MoawbSLB3mYkVDN0wmMiVi+TK6YWACLoeMx2XjncEke1tD87LoIa+DLz7eM6fXZyRZxO+y1wL3lbKUNGuqUOEHFydw2mU+ur8FE0sVZClxhFJF59JYlrKm0xxaXKP75LYG3hhIkCtpfGDvw9UUuFIe2ADaNM3aqnIhFFXnzYEEAbedo10RTNMkXZ180kWVdLHCuZE0nREvvY1+TNPklevTVHSDTx5t59xIhpKqWw+HdInOiJdvnBljJFnkcGeYp3dFmc4pfP30KDlF41BHuHbBDsYLfPvcGKYJHz3Qwo6mADlF5Xvnx3n52jTbowGmsgqff6y79hA42lXH2aEU9X4n2xp9vHk7QSxfxiGDDbBVNTDrvU68ThtHuyN85pFOHDYZTTf43vkJZEmio95bC9r3tYXY1xbiD57sYTRVwmmT+LNXbzOYKKDpJoqmY5MlDnaEyCkqEvDuRBZVN9F0k5DnvcsnKAxFBIJNT3ydzFNm017nxeO0oenGvCbjvz09wvWpPI901/GBfS34XXZObm9gPF2aU6M5ExgG3Q4wTeL5ci3A3tbo57OPdqEbBlcmckQ056JB3miqyH/7ncuUVZ0vnezh2d1zM3qzs3KLZehmE/Y6kSUJwzRr2eRrkzk0w2BPS3Belra3uptomNYu3mpzpLOOQlnHaZcXlAbc0xrizz/Xv+j33x5Mcq2qktEWds+r9d0MFMoaZU3HZbdxYlsDhYrOoY460kUVp12mNeRmLK2QL2tkFY0fXpgk5HUQdDt4akcDWUVDN03qPA4qmlUe8c5gkliuzLXJHIZpsq8thF2WKKs6fpedLz/Ry6vXLcOy4WSRLz+5bd64nHaZ12/FuTaZw+u0M54uYZcl/s6shr8ZciWVa1M5/G577e9kGGZtwaIbJqXquQFevxVnMF7keG+E3kY/v7oZ560Byzl4JFnk/EiaiM/JHz29bVFJyGJFo6wZRANuPM7Fs9Uel53/70f3WotUSWIoUeB2vMD+ttCqlysahjmn4XOr8UBGPYZh8renRxhPKxzvrZ/XtQ3wxkCCc8MpQKLe56K7wceH9rdwbTLHgfYQP708xVCiwA8vTvLc7kYqmsH3L0zgtMk4bBL72kL88OIE+bLGO4MpmoJuRpKW/eiF0TRDiSLTOQXTMHl7MMXlsQxDiQKHOur41tlRUoUKu5oDpKud4Fcnc0xmFMqqQTxXZtcdzSdXJrJcm8yRKFS4HcuTLKhkihWcdpneRi91Xhfj6RKXJ7IYJlR0g7FUM9uifjTDJF/t/k4v8AB1O+yMpxW+c24MRdNp9LvYHvVzrDvCntYgLruN56oPmj2tIW7F8vQ1B6j3u/j0MTuStLQYvUAg2BzE8sV1P2fE5+RLJ3swsZr0ZtB0g794Y4hUscLViSwf2NdCLFfm51emME2rROB9e5oYShRq0lvHuutQNAOX3catWIFd1WChMeAi7HWxt9VqQjRMsC0Q/16dyFGszoXnRtLzAujOei8fO9iKoursWYa6QlvYw9853olmmDQF3dyYyvHDixPV38/k4B27cnU+J196one5/3Qrxu2w8b77kPds9LswTBO7LC/bUW89ySkq50bTJAsVjvfW8/zuKI/2Rrgxlcdll/nTX95kIlPmmb5GprNlbk3nGU5autsTGYWvvT2CbpqEvQ5MIOBx8osrU/z5qwOUNYMGv7X48jhCfPHxnqrZkER/T4RU0Wrqn61RfTteoFDW6GsO8PMr0/zVW0N0RryoukFLyINmmOQUbU4AfXM6x79/bYDRpGUA9uIxmbFUiTPDKfqagzy3O8pXTg2TyFc4uaOBPS1B3hqwepR+fTNOb6OfW9M54vmKtcsQ8lDWDBKFCt86M0ZOGeRgR5gXDrUhSxIXx9LUeZ30Nvp5elcjkxllWTsfkiRR0YyqqpfBWLq0bLfQ5aDpBn97epTJjMLJHQ1bso76gQygCxWN8bTVMXszll8wgL4xmePNgSQtITdel7X62T7L6OPsSJqBeIHprMJgPE/E72QireBx2pAlib7mILuaA2SKFd4aiDOSLBDPV2ivsyxEk4UKhmFilyWrsQSTX16Lceq21bDgsMn0tQQ52B4GoDPixeWwcbizjpPbG+bVzxkGxAtlRlMlJKwMsGaYuIB4XmU0VQbMqkySxJWJHD+8NME/fHYHboeND+xtZjBeWFSv8tJ4hnqfkxvTeZ7f3cALh9sWNGZpDrnnlJ0IJz6BYOtwfiSzqsfTDZPvXxhnPK1UG6oXzlguVE6h6VajlMMmo1Vt5WyyhISEiTV3gmWYMtOYp6gGF0YzZEvqvC3uD+y1XE93NvkXzUCf2FbPazdiZEsaHzvYuuBnVqosMTsrN9tRUTfXpmFzrJrZXIvGbJ/LTkUzcLrkTamoEM9XKKtWcOp1WopaQbeDo111/PjiBGeH05imyfmRDLubA8QLZZpDbpwOGbNkMpwsYrfJPLc7yrZGHx/c28y3q4szZ3XF5bDJFCs6t+NFhhIl8mWNvzk1wtN9Ub55eoyCR6NY1vjKqWG+c36c7Y0+PnyglSsTWcuvIV3iU8c6sEkSYY+DjsjcZ+RIsoSmm0xkFEqqzhM7G3h3IotpWiVBRzvDJKomQbfjBY501hHyOEgXK7TVebkwmgZJ4khnmLDPyc6on++cHyfgsvPOYJLJrMLbQynCHgcOu8y3z46RKFT4vce6eX7PykoyZMmKpy6MZmgOuvn44fZVk6PNlzUmM9U4bTr/8AbQkiT970u9b5rmP1qN8yyXgNvBoc4wg/ECj/Ys/Eep6Aa7mgN4HbZ5/vZg2VdPZkoMxgsMxAsE3Q48UTttdR6e2GFJJh3pDPMffj3IVLbEm7eTtIY9vHColaagm//4+iABt50vPt4DksRERiFdrOBx2jg/kuZIZx1HOy2puFxJ5f965RaZYoXfe7yLgx0RzgyniOfKtUn48W311PucDCWKqLqJbphW7ZcJYY+DssMgo6iYgCSZuB3ynGaGu+lVHuoIc3Y4zRce71m2JJRAINhatPlXN+hKFio19YHzo+lFA+iFcDvtfPpYB6dup2p6zxGfk+PbIgwnrO1qsJQ1EnmrSdrjtExKfC47N6fzc47XXuddUJpuNj6XnX/5wr5lj/FuqLrBq9djqLrBUzuj7Gzyo+pN6IbJ/iVqWO+Va5NWhluSLCOMe2lYS+TLOOzyPLc/sLwL3A4bmmEykVYINm+cq+FCdEa87G0NkimpHOt+LxmULlQ4PZRG1S2dmaDbTsjrZF9riImMQp3Hid9p7VrsCHspVQzODmfIliwL7mxJRZJhT0uQN24lkCWJAx0hvnFmFJ/LjiRLDCeLuJ0yZ0fSTFb1ynOKSrGs8cG9LbTVebg5lSUcdNEW8szbfTBNk19ejzGaKtYSUV31XjJFjaNddZweSrGnJUhDwEV3vWWJfrgjzBu3EqSKFTBhOFHgP78+iKLqPL2rkd9+pBO/y85Tu6Ioqs7f/avTTGYVXDa5Wr5pMpW17p1L49kVB9B2m8zOpgDZkkad18FYeuXShYsR8jg40B5iOFncksEzrF4G+o+AS8DfAOPAxnYZAM/sisLCUoiAVSt2bjRdywDfiWVt3c3l8SyJfJlMSeVIZx3RoKvWnb2zKcD+thAjySKFssZEWqHR7yaer+B32pGwnK1+7/EehpNWScdPLk2yry1ExOfkx5cneeFQG7++EedK1Snxv/n2ZT64t5nRVIlMUSVRLJMrqfzN2x7CXicuu4wkGRiGBFiGLj63HVc1m4NpZYWiATd7VyDw/ti2hjWXVxIIBBvMKjeA1XktY4qJjLKskgewajFzikZT0M3nH+vh84/11N5L5Mu8cSuBacLrtxI8t7sJl91Wk9sKe+x0RLyUKtqCKhfrzbXJHBdGrax+0OPgsW0NSzZ/3S8zToumeW9GLDMqHXZZ4tOPdMxLHu1vDzGeLuF12uluWP+G07thk6U50rRgmbt89dQIl8YzPNITwe2w8eUnezg7nGYkVWAyK5ErqQynilQ0g4F4nt6on2uTWUZSRW5OF/hUfzv93REMw+RCVev65nSe/+L5nVyZzHKkM4zLbuM7Z8eYyCiMJIvYZUtLe1vUz962IN87P0GqpNEYcHNmKMXBjvAcw62xdImzw2lShQqNARfv39NETtHY1exnezTAse5IrXdrPKOg6gY/vDRB0O0gW1K5OpnD67SRKJRrDp2zd4ndDhv/6hMHeOVajNaQh+O9EUys7G4sV+aRRZKJd+PR3noS+QpBj532utXbcZYkqVYaulVZrQC6BfgU8GlAA74GfMM0zdQqHX/VeWx7A49tnxswxvNl3hxIsK81SFkzGU+XONJVx9nhFDlFo1DW+MLjPZimtRUU9jp5/94mpjIK8UKZpoCblrCbsXSp1gxQUnVaw55ag8mj3RG+c36Mb5weYyhRxDDBbZcZiBfIllRaQh6+eWYURTWw2SQyxQrFisFUtsyzfY2c6K1nKFkk7HWQKaqkSyqqZtIccuN22ClU8vjddsbSJf7fX9/mM490rumE/jCiqDq/uDKNJMGzfdEt2wAhePgIuFb3WrXbZD7V31FrOLobxYrGf35jiFJF53hvPSVV48pEjkd6LC3Z2UUPMxUQl8Yy/N+vDQDwpSd6+a/ev4tMSWXHGjThrZQ6r4PxjLUlvx6KBQfbwxQrOnZZuicHvOlqNlIzTJKFyrwAOhpw87kT3asx1HVjptxhe9RPY8DFi/0dNIfc7GwK0uh38W+mrhPLV6xnqizhtFkBdbqoEc9XcNhkXrsRZ2dzAJskUazoOGwyt2N5coqKp2qo87fvjHA7XqBYsZrrn9zRQFudl08f66iWY1gGOW/eTqJj8qev3OSlq9N4nDY+fayDJ3dGKWs616Zy5MoqhzrCfLK/Hd0w+cs3B0nmKyBJPLGjgVLFMmYrVXR2NPlpCLhoDXtoCrro1S0pvY8cmF+CFA24efEOBbG/98z2efdnpmQJJXRGvHe9b9vCHv7gybWr29/KrEoAbZpmAvhT4E8lSWoDfhu4LEnSPzNN8y9W4xyrQbGicXk8S2vYQ9sdtbumafJvf3adG9N5nHaZPS1B3A4b6VKlJmhe1g1+/u4U705kuTGVI6uo/MGTvfyLj+7m0mgGuyxzZSKL0y5xtLMOn9tOb4MP0zRrD4PhZImAy4HPZSdf1phIl7DbpFpHuaJq6Aa0hFykiyq6YZVr5BSNrKLzLz68G6/Txl+9NcxPLk3gcdgsW1SnA1mS+Bcf6uNPfznAVFbhpavTbIv65wTQ01mFn1yexO+285H9rQvWuZUqOhdG09UtpvvXtHzQuDiW4fqU1aneFHRzdJG6coFgsxEvra4ToWma/OTyFBOZEk/vii6psQxW1nTGGGIyU2IwYTU1nhtOc6w7Qr3PSVPAzUiqWAsQ353IMlGtlXx3IlsLkDYDmZJGxOvEMM2aU9xa4rQv33VxIY521ZFTNNwOyzikWNF47UYcr9PG49sWlq3b7OxqDjBRzdg+syuKx2mrOfmeG0mzsynAZFahqWIFzG1hDyVNRzMsydmI12HJJzpsOGwyx3vruR0vkCup/OWbw7gdModiYXKKimGaBNx2ehv9/N1ntjOaKvHGQILDHWGmcxViOQWfy8ZEWmEwXuDaVA7TtEp9DnfW8VuH2zEMk1vxAudHrRKSN28nSOTKlDWDjx1sZSBW4CMHWrk4ZtVFK6rBh/a2oBkmmmHwSHek1lMQy5W5Hc9b8YSicWk8y56W4Ly+r9lBcqGs8VdvDVFWjZpi2FLkFJV/87PrlCo6f/jUtkXl78DSOb82laO7wTtvcbaUtORWZVWbCCVJOoIVPL8P+BFwejWPf7/89PIUt+MF7LLE7z/RU9sGmeE998D3/Lq8Tju/dbiRW7E8eUXjVzfjnLqdYDqr4Hc7eONmgpPbGympOq/dmOLGdI5DHWFObm/kaFcdmaLK354eoawZ9Db6uDqRI5G3rLGdNon2sIcfX54gp2i0hNz4nDZGkkVuJywNSc0wsckSDrvESCLP//vrAYYSRYZTJVw2meaQi94GP5fGM9gkietTeQIuG2PVwDtVnOuGdX40QzxfIZ6vMJwsLChT9PMrU9ycziNLEl94vPu+HRwfNJoCbmRJQpKgKShcCAVbh3g6f/cPreR4+QpXJqqOqYPJuwbQTUE3x3vrGUpYmbx43ipR+0C1BnosXWIyq+CwyZwZTtFW5+FIZ7jmlHqkM8x0TiFb0tjW6NsQM4/ZBNx2PE4bpgn+LSDlabdJBNx23A4bNlni7Vsp3q063jYH3XOsrLcKDps8T3lkLF3izFCK86NpcmWNvS0hdMPkoweC5CsaP75oaX3bJHjhUCvHtzUwECvws3cniQbdHOkM8+9evslUVsFplznYDtem8nidNnY1B/ntRzoplDV+fGmS61M5Xr46XXPcHU0VUVSDUkVD1Swd6cF4gW+dGeNYdwRFM5CAlqCLdycyXBzJoBoGEZ8Tr9POwY4Q26MB/u5T2/jW2VGaQ24Cbjsuu42OiKd2zRuG5ctwfiRNRbeOubc1yFu3EzzaE1l0MVRSdcpVQ6VMaeFF3+14gamswsH2MC9dma65Iv/48gR/9NT2Rf8W370wTjxX5vSQjT98src2htNDSV69Hqct7OETR9s3XEt8tVitJsJ/CXwUuAJ8FfjnpmkuO9UhSdLvAp/HkjT+rGmaY6sxrvnnee9/pTvKtCVJ4h89t4MfXJhgd0uAgx11xPNleht82G0yjQEXF0fTXJ3MUqzouBw2vE4bubLG//7z66RL1upUq2okz5xrIJ63GhQkibGUZboyEC/QFHBRUg2+fW6sqs3ooqfBy8vX4mRKKjbJ6lJ12GR8Dgmf20GubEnpmabV7R3y2vm9Q92cHUozlLDcg6ZzZdrq3DT4XUR8TnY1zd3m62301bqFmxeRnpu5uCVp1UsmHwg667184fFuJIkFG3EEgs1KQVtdZYiw10FjwEU8X152ScWJbfXkFJWLYxkGYgV2RH01J9WIz4nPZaNQ1mv1ltujAf7L91sNLQ6bzF++OYRumDzaE5lXhgdWD4hmWFJ3a01HxNrC13Tzviyq14t3BlM186s6r4P6ammhTZYIeR+MuSynqLwxEOfqZA7dMOmp9zGRseq6E4UKn3mkg3SxwqWxDH6Xne3RAC67jZevTXNlIkcsp3BjKsdUVqFQ1ihUIJErE8+XqfM60Q2TU4NJ8orGcLKAXpVeqfc58bvtOO2WEofDJqGbJg1+F931PsqawZnhFHVeJx6HjcFE0VLFkSwlmpPbG/ijp9/Tlz6+rZ6DHWHyZZW/eWeUWK7M7pYAL/Z3IEkSJlaqb6anIOKzdkK2NwaW3Elo8Lt4ti/KREapNerOJlNU+U7VpyKRr9DT6Ku5LN6tMXbmrHeua69NWgv3sXSJvKI9MNfaai2Z/1tgADhY/e9/qq6SJMA0TfPAYl+slnw8ZZrmc/dyYtM0ieXKBD2Ou9aivn9PM+9OZGgNexaUYumqt2xKZ7jTZnVb1M+hjjCxcJmKbtDkdzORLXFtIovPZWdHU4DfPdFFe52XfW0h3hpI8O9fHWAsU+JQRxi77MEmy/Q2WlmaZLHIZKZk1WHZLemc1rCbQlnDbrNC/GjARTToxjDNWvY8p2jIsoSqmQxMF7DJ4HHYyJc1Sqollv7RAy2EvU4+vH9uXd62Rj9/9NQ2bNUGiIV4bneUlpC1ml6One3DiMjKC7Yijf7V1fZ12GRS+TLvjmd59i5bwbNpCXm4NJbB7ZDxOu21Ziiv087vnuhGUfU5OsQzkm1j6VItYClU9HnHzZc1vnpqmEJZ58P7m9clo7qVNPBn/p0lieozy0OD34XLLt+zY95m48xwmrGUQneDD1W3nAYLFY1U0dJNjgbc/PGHdnN1Mss7t1P8zTujPNJTx0S6RKpYwSbD7hYPHoeNgNuBbphM5RScNpnBRIFYvozLIdMc9PD0riiDiQLTmTI2m8TvPdbNf/jVIFOZEsWKjtMmU+dxEPTYOdpVR8Tn5OunRxlKFBiI5bHJ1j20Ixrg08c6eP1mHIdd5mhnHbIs4XHayCoqN6ZyXJ3MMZ4qsqMpYBnmVDR+61Abk+kSr99KAPDBfc3sawsv+e8zI3rw2Pb6BRNAkmyZCOmmtft9oD3Mv/7EASRJojGw9I7rbxxq5fpkjojPSW5WoNzfXcer12N0RLwEPZt/p2a5rNZv0nP3jyzKBwCbJEm/AN4F/gvTNOfPjIvw6o04Z4ZSBD0OPne8a1HtStM0ySoqxYrOrekCjX7XsutxhhIFy0TFLtMedjOcKBLxO6kYhuVaqKhsbwqwty3ER6p6kH/7zgg3pvPkyhpBt4OxVInLY1ncDpnPnejC47DxtVMjxHJlKoYlPVesaLjsMi67TNhjZ19riIJqcDteQJaho86Dy2EnnisznVOQJavx8bcOt9MS8vCtc+NIpklHnZftTX6e2hldcIvzbvqeLrulRy0QCB4sXLbVzcpeGEnx1XdGAPiTH1/hr//gxLK+t789RFudB706h85kb03T5Nc348TyZZ7ti86ro2wLe3i2L0qqWOHRnvn6/lNZpaZOMRAvbMmShLXkYEeYsNeBy26r1ZFvlnry1aIl5EaSoMHv5JP97aiayTfOjDKRLvGp/o7a86+r3sfP350GrJKFrnofYa+Trnovz+9por+7ju+cGefsSJKhZIFMSUOp6EimyXha4VhXhOf3NHF5PMup20lSBZVEoULAY2d3a5CJjIJumMQLZVwOy2L+yZ2NXJ/KVRNnZUCit8HL//Kpg0xkFN66bSnQ+F32Wg9AWdMZTxfJFCtM2WXSxQr/7qUbXJvMcaSrjsaAVeIRL5T567eG+ecf9s1LfJ0bsdQ/DrSH+PbZMTTDZDRV4sVjcxsOwdpV/eTR9mrG2xpDdJma40G3g6agm2+esYoIfutwG531XjwOG4c7w+xtDa1b2VW6WMHtsK1pk/9qNREOLfS6JEk24DPAgu9XaQKcpmk+J0nSvwJeAL55x3G+DHwZoLOzc86Xp6rNJdmSSrGi4bQvvIr+29Oj/PzdKSqawYH2EB6nbdnNX1cnc1Q0g7PDKdJFlcmsQlvIQ3vEQ393He11XlpCHnY1+/nLN4f4+ZUpequr3446D4YJk9kSsbyCbsCp20ncDhtXp7JUS5GoVN21Qh47WUUjXzEYyyg8tr2BRL7MREYh6Hbwkd1Rzo+mMcdBlkwqmtUI8PiOBroavPz7V2+jqDrZkiqypAKBYA7JYnlVjxfxuZAlq/G4bhnOdYZh8uPLk0xnFZ7ta6Kz3kvjrCD5drzAX745RKk6hy1kmXynvu5sOiNeeht9ZBWNw0t8biMplDVMWNCoaj140BvDdzYFiAZcVvlj9d94X2sIRdU5U9VadlZ1sPe2BrkVswzGuut9TGQUvA4bl8cyvHU7Sb7a1J8qaNhkMABZlult8HF8Wz1hr5NtjX7Oj6axSxLbG33cjvuI+JzsiOooqs61yRxT2TJ/+soA6aLK4c4wyWKFgMuByyHTEvaSVVRsMrw9mKKs6qSLKvFCmRO99bw5kGAwXqRimHidNoYSBd4YSHA7XuDcSJrPn+imJeTB7bQR8lheEbOFA8bSJV6+ai0Uiqq1e41h4rAvHsi2hj3zTNImMwrxfJm+5sCSycdYvlwTXpjOKYQ8Dr55ZgyjWi3wwX0t9/qnXTbnRtK8XFVA+TvHu9bsXlutGugg8PeBNuC7wM+AfwD8V8A54K+W+HoG+GX155eA/js/YJrmnwN/DtDf3z+niO+JnQ28cStBe52XiYxiiY9XNRtrJyip/OjiBIlCBaWis7ctOOcfNFmoIAGDiQKlik5/d2ROlnZPS5DBeIGA285kRsE0TfxuG5870Y3fZa81s1ydzBLLlfE4bMTzFZ7a2cgnjrYD8Ln/500U1ag1CY6kikxkFMv4BAh47BztDHN+NEOyUKGiG5RUnXRJJeJ1IEtWRuXHlyYxDCiVLXvQqVyZ71+c4MX+DhIFlTqfk1RRpd4nmtvWikS+zDfPjCFJ8Ikj7Q/M1qfgwcexyskfr9OGTZbRDJ3AMrZmp3IKr92IUShruBw2OuvnJkR0w+ohMU0oa8aKx+OwybxwqG3F31svxtMlvnF6FBMrO7cV6qa3InfakCcLFVx2G5mSSqFsJdqyispAvMC1ySzDyQL9XRHKmsZX3hphPKNYOtimJSig6jo+l5MdTX7qPC6uT+X467eGeX53EwYmXREPQ4kiP7w0xcGOEHtbQ5imyanbSeL5MjdjBXwuGy9dneLk9gYKZR1JluiIeHnfniamsgo/vTzJeKqEyyHz+kCcep+LX16PUSjrNARcZEoqAbeDCyMZimUdTTdxOW3ciuX5vcd7OD+axmWX56lkeKsNo7phUudx0tDt4nxV9eZuTGcV3p3I0hxy89PLU1Y5S1bhud1NKKrOmwMJAm47R7veO9be1iDTWQXThH1toVrD4nKYzircmM6zsylw13KRpRhPlwBrYZ8qVDZ3AA38BZAC3gC+BPxTwAm8YJrmubt893XgD6o/HwJur+TELSEPHz/Szli6xN+8bW0lWi4979Xj6YZJZ70XmyzR2+DjM8c6axPXYLzA10+PcnYkhWnAgY4QJvD4rOaUjoiXP3xqG6/eiPG1U8PU+528b08zB9tDvHojzoXRNE/ubKSjzkvE52R/W4indzXidzn4s1/esso8iipBtx27TabB7+bcSBqQkCUTWbLKJl65HkNRDWQJ7LJMqaKRKkrYJYmQxwlKhWuTOSq6gdsuY0rQ3x2pyUId6agjV1KJBt01Zy/B6nMrViBfntkmznPUtzVdlAQPH4nisqvjlsWtWB5VN/C5bAxMF+/6ecOAibRlYZy+QyEIoLvBx0cPtjCVLfMbi1htb2Ums0rNtnwio2xIAB3LlXHa5AemkWs5nNzRwK9uxmkPe2oJj0S+Qqmik8hbAda3z44xkiqQLqpUdJNcSSPoseN322mRvBzvrkMzrZTXdDXL+qNLE9yYzqNpBrpp0t8dYSJj7a589/w4F0YzxPIV6rwOSqpOS8jDDy6OI0sQcNlRKjpv3IqTLKggmWTLKg5VJuRxUNF1drdEONAW4te3EhzpCHO+2vgY8TnpafCSKFRoCrnZ2RTg2CyjlExR5eVr0wTcdp7ZFeV3Hu0kW1JpDrr596/dxjBNXrsR58P7WvjRpQkcNpmPHGiZV+7w3fPj5BSt5nwMEpXqwvbNgQRnh9MA1PtctcDdZbfNyTK7HTY+fqSN6ZzC3talmxC/dXaMYkXnykSWLz1x79rTj/ZYcVGdz7Gq5i93sloBdK9pmvsBJEn6v4E40GmaZu5uXzRN85wkSSVJkl6pfu/f3MsAHLIlK2aaVhZiNhGfk88+0sk7Qyn2toXmTFqxfJlYvkyhrKFqJtO58qI1M00Bd0327XhvPeMZhTNDKXTD5OZ0nuO99Xz20c7a9sZ/en2Ql69NU64Gxa11Xp7Y3kBZ02kJuZnIKES8TqiOezpnrdp0Exp8Diq6QdDjpDfqwzDh8pglOaPpJpoNXjjUxvaov1aKsr89xP52YZqy1myP+rk0lkGSrKZMgWCr0L7KDW9HuyI8vr2BgVie3z/ZfdfPBzx2jnaFUTRjQSMQh03m+d1NZEoqnQ9gdnZPS5CxVAnDNNnXtnIjlPvlykSWH1+axCZLfOZYx7JrW7c6rWHPPIORzojV7G9iZSpjOQXNMCipBj6XxHO7o9T7XUxmFa5OZHlzMIXXJdMe8vIbh1poCXm4MpHFJkHZtI4X8Tp5tBrI+l1W5jfgttEeDtHXEsTnlPn+xUmGq06GZU0nV9aIBlxIkkRXxMtIqoTTLnOks66mPvO+qklPQ9DFlYkcfrcdv9tBX0uQzz7She8OCcVTg0neHkximtBV72V7NECD34WqG3icMoWyTsBt5+JYpqaxfmMqPy9+8DhtNYWPJ3Y0MJ0rc7jqADqT1ZUlCe8Cogyz6Yh4l7VYtGInfV4Mt1Lq/a7a7v9asloBdE1M0DRNXZKk28sJnmd9579a6QkNwyRZrBD2OLDbZKJBN5840k5WUelrnj8xlVTLzW8qO43XYas1l+xvCzGUKFDRrBq+Z/uiHLnDIjZVqPDytWkKZY2eBi8HO8J0N/golDW81S2U6VyZ61M5SqrOB/Y288vr01ydzGKaJnabRE9DgE8e7eBoV4R/8jdniecrmMCB9jCj6SKZoorLLqMZ0B5082efO4phmlwazxL1u3jzdpLOiJe3BpIYpknE5+QfPLMdl3DBW3ciPidfPHk/fbMCwcawp70O3lo9lVBZlvjXnzy47M8H3Q4+e7ybZKFC7wKa0Zmiyl+/NYxmmBzrjnByx3yZurvx9mCSbEnlxLb6eVr/G43bYeNjG5hZj1XlAvXq8/NhCaAXwiZLvG9PE+/b04Rpmrx6I85Iskhz0MWBjjDRgJuKZjCRKfG9c+N8/+I4E+kyEa+Lnno/PY0+3riVoFDWqQ84eWx7PR/c18KF0Qy/uDJFf1cdp24nOdBeR75qsvPOcAqPw0ZPg9XoNxQvUNFNjnZHePFoO988O8qPL03hddpwzipDfe1GjDNDKZ7dHeX3T/bwn14fxDBNbkzluTye4VhPZE5zXlnTuTmdxyZLxLIVtlc35B02md9+pJPpXJmuiFX2enY4hSxL3JzOcWM6R3+1MdHjtPFbh9sYjBfpiHgIuB1zmnKPdtVR73fhc9pW7Tr65NF2hhKFJc1aNhOrNbsclCQpW/1ZAjzV/z8jY7fqS+0fVQXMW0JuPvOIVUe31ApnpqgdQJ/1s9th45NHO3jhUBuGaS6oHfr2YJKrE1nOjaTpawnitNvoafDjsMk81xdlR9TPn71qWc1eGc/SGfHyp6/cQtUN2us8eBx2In4nl8ez7GwKoGomhmHgtsmMZ0pkSxqaadIc8mCTJbY3+pmoNhBuiwaYzim8M5TC57Lzxce7GU2XeHx7gwieBQLBiihqq++Wp+oGxYq+7KbliM85TyJ0hpKq10oc7sXZbyhR4Fc34rX//9zupiU+/fCxq9nPS1en8LnsdD/gzYTL5c2BBMOJIsd76+e5PDrtMl31PppDbstRUDMIeRxEg25uxwqkiiq5skaurPHWQAoJmVsxS/NYN0y8Tntth7ox4GZbox+bZPlKFMoaTUE39V4Hnz/RTZ3PyZee2EY06CaZr/DpY53ohkksp/CVt4ZJFCzTon/7mcM8saOBv3lnhGJF5xdXp6nzOecEt9saLcldmyzhcc2NEwJuR02loyPi5ctP9TIYL/DDi5PEcgq/uDLNntYgv/NIJ3U+J3taFw7fJEm6q3HSSvE6bXRFfFvGX2G1VDjWPZKbKRKfzCrV+pylu2MOtoeRJAm7LLFrAWmjpbYM6v0uLo1nmcyW6arXscsSl8cz/PDCBLIk0RRyc3J7A4OJAr++GeON2wlS+QplzUBCorPey/mRNA6bTGfE2kL1OO2ARHudl4aA5Qx0tKsOwzQtK+9ZHbDRgJsvPN6Nppv33LB2czrPYLzAoc4wDX7RYCh48On+4x/c1/cH/+QjqzSSzUNX/erKulU0gz/75S3GMyU+ur+Vx1eYMT4/kubU7STP7Y7S2+inOeTmmb4oyUKZRxaQqbsbPpe91jAVFCpE87g6mbf6abAUTxYqo3mYyCoqb1Q1lF+7GeOz9V0Lfm5Pa4hHe+uxyxKHu+rYHvVbtvM340ykHZQ1A6ddpiXs4tpklmSxQr+zjqOddVybyvHZRzuZyCi47DINARfHe+o5M5yiXA3IZ9RC3A4bL/ZbCcHpnML/8L13kSUoVqyeG6/Ljqob9Db62REN8PqtBDemcxztCs8JoPuaA3zsYCu6Yc4zPzEMk8vjWew2id0tQUvSMOjB5ZBrimMOm2QZx6ww3njp6hRDiSJP7GhgW6OfV67FiOXLPL2z8a5Z6opm8NdvDZEqqhzvrZ9nR74Z2Vz7Wyvgmb5Gzgyl2dUcWJYtpCxLbI/6kSXuqkM4lbUu9JlO3ga/1Ri4I+qnJeShq97LDy9Ocm4kXZOP+f2TPfzL711mPFPGaZNoCVtC7Dub/CQKFRL5MmNphcF4gUd6IrSEPdR5nRzssGqy4/kKT+9sxOeyo5vmvBXYbF3HkWSRb50dZSpb5lh3hN842Lqk85Ci6vzgwgSGaQnCf/bRhScJgUDwYJMrL9sgdllMZEq8fiuOYcJP3p1cVgD9+s0407kyj3RH+N9+dh1F1Tk/mubf/c4RAA7dh/xcg9/F7zxq2Sw/6HJt90Jb2M3ZYSthFL0PlYMHBa/DRr3fSSJfob1u8R3sHU1+jvdEODeSIV/SSBUq1Pmc/NMP9jGSLJJVVBr9lunZG7eSuOw2LoxmUHUD07QWdk/tbOTrp0cZTZUwDANFNVFUHcMw+M9vDPK+PU1zrtlvnB7l6mQWmyzx/j1N1Ptd7G4J1mKBcLUJ1O2wcW4kw/v3vte4J0nSHCm72ZwfTfPKtRgAdlliR1OAkNfBZx/pYjqjMJFRcNhkuut9jKaKNYvxu5EpqZazIvDW7SQep51zI2nKqpV0/PiRpWuS82WNVNHadRpJFkUAvZZsjwZqDX3LYShR4Ntnx7HJ8Kn+jpqz1Z1cHM3w8ytT2GSJ336kk8aAi7awhz2tQdJFlfftaULVjeoY/NT7nXxwXzNOu0xrnYc6rwNVN/jYgRba6ryMpUsc64lwZjiFBKiGyc7mQNVEwJLbebZvZduMr1yb5vxIhnxZI+xxWFJ3S6wU7bJUaxzYKO1RgUCw8TR43wua7q9NxyLsddIUcpMracvazp3KKrx1OwlYZXUzyQ+HvBqjsWjwu8Qu2yJsjwb44kk3Dlle0I33YcNerQmeaZRbDIdNZn97mGtTeSazCm8OJPjQfitgnV06apqWLXfI46BU0WvXd0Uz8DhtyJKEYZrYZZnrU2lU3eDaZIGDHWHOjaTnBNB1Pif1ficVzeDpXdF5dcHHeyP85HLAykivQilFyOvg+T3NXJvK8Uh3hF9ej3Gxqvrx+ce672rA5nfZa+II2xv9RLxO0qUKVydyKKrBB/c1LxmIR3xOjnbVMZYubYngGbZwAL1SxtMKhmli6JZ80GIBdKLwXpNFplShMWA5Ft6pLfr+vU3ohsm+1hCyLJEqVGjwuehr9tMa9vJMX5TmWR3vLrvMf/jVIHU+B791uA2n3cZUVpnXaX5tMsfN6TyHOsO0hRfumG8KuokGXZhZK4gP32Wr0m6T+cwjnUxlFJGVEQgeYtrrPThkUI3VcaALeRz8o2d3MJlRljQ4mSHgtuN12ihWdFrDHv75h/o4PZTiyTtqTwVrx1apL10vHDZ5yeB5hrDXgdthQ1H1OeUIWUXl9Ztx6rxOHu2t5zcPt3JjKk9fS4DprKXwdbizDqdd5rcf7SCvaHTXeylUdK5P5djZHECWJHY1z00I/sbBVnY1BeiIeOctCKdzCqduJ/l0fwchr3NFijUH28PYZRm7TZrn1HlyR0OtcffK21ZbW76soWj6XQNomyzRHHKTKFRw2q0F2oH2MG675QaYLqp3zWRvtXngoQmgD7SHmMoq2G0Sfc2LZ66PdUfIKRpZRaVhATOSKxNZXr0eI1mo0Br2sKs5gEu28dLVad6dyDKSUmjwu7kykZsTQD++vZHjvQ1zSkj8VQm0M8MpTg0kUXWDZKFC0OMgllP4wuMLKz28b09TzZI1W9L4+ulRwl4Hz+9uWrSUI+h2iIlTIHjIKVcsmUyAQnl1Ggp7G/30LlPO0eu087snusmV1ZpNt7DbFmwFAm4Hn3+si0JZn2Py8frNBFcmLNGx1rCHjojlTAxQ53Xyxq0Ebw4keGxbPdGAm5mN8w/vb+HD1Sz2Qn1cXqedw50LuyX/zdsj/PpmAlmS+J8/se+uwS1YCiwTmRI2SaK7wTvP7vtOnu5r5NRtSwrv9ZsJDneGF008gtVMPKML/b3z4yQLFQ53hNENk0a/i5YlFuw3pnK8PZhiV7N/jinLZuehCaDH0yUaAy4Od4aX9Eb3ueyUNYPpbJm/PT3KF0/21C7srKLyk8uTvDtuydPNrKqagjaCHgcBtx2fy47bYWN7dP4DZaFa7cmMwk8uTfLzK1OYhuV69NSuRlx2mb96a4i9raF5NYGSJNUu5HcGpxlLlxhLl9jVHBAZZoFAsCg34xmqIhdklNU1VVkuHqdNlA8IthSlis5P351EN0w+sHeuSdlM9nrGHnw2F8cynB5KAdbuy2IB8XL6uGZT0c1qKYjEZEahMzL3uT8YLzCSKnKgLUzI6yBTUvnqqWHOjaTxu+0caA/z+4tIsU5nFUbTJfqaA7xvTxN/+spA1YZb4XMnuhcdk8Mmsz1q2ZonCxUujGZQVGOe/vZCvHojTrakMpVV2N8WXtaCYDPwUATQyUKFH1ycwDStQveZVd8MiXyZtweTtIW97G8PUap2vA4ni/zw4gSP9kSIBt04bTJOm0xr2IOi6uxtDdYaMZ7ti7Kt0UfE5yTgdiz7hvA4bbWAXtEsRy/TtGqmprNl4rkYB9tDizY+dkS8XJ3M4XPZqBd1fwKBYAl8TrELJRCslCuTWQZiBQAujWV4tPe9Gt1HeiK0ht0EXI557o6zpR1XogpjGCbSEoIHX3isC6dNIux1znP3K1V0vnt+HN0wmcgovNjfQUUz0AwTVTdQdaPavGjO27Euazp/e3qUimZwO1bgNw+34XNZZioz45/IlDg3nKa30T+v7ORjB1tpCbn5z28MklVUAu7lhZgddR4ul1Raw24ctpUtJjaShyKAtskSNklCM02cC8jVvXR1mtFUiSsTOTojXj64r4XTg0neup3k5nSenKLxqf52vnlmjFxZ48S2ep7ri9YcB2fOsdxtzNmEPA5+7/FuHu2J8N3z4zhkiXq/i7awm+FkiY6IZ0nVkH1tITrrvbjs8oIa1gKBQDBDY8CFLIFhQsAl5guBYDm0hjw4bBKmCW0LWEMvpuCxrdHPZx7pQEJads/BRKbEt86O4ZBlXuzvWNByPeJz8Q+e3bHg92UZ7DZLytFVzeQ2Bly8f28TvY0+nDaZfW2hBcs9TdNqhATLL2NGTGEq+57t/M/enSKRr3B9Kk9Pg29OtljTDV6/laA55MFpkzi5fXmylu/b08QjPRECbsddVdI2Ew9FAB3yOHjxWAfxfHlBDeg6r5PRVAmP04bLIRPyOnhuTxOj6RI5RaPO6yCRrzCVVXDaZAplbU7wvBJGkkVcdnlOE0LY6+Sx7Q0c7qzj4liG5qCbjoiHbElb1gpO1DYLBILlEPA4iAZc5BVtXvZIIBAsTHPIze+f7MXEXLG7ZUtoYTGAxbg1XaCsGpQxGE4W2e9dWI5uMVx2G5/u72Aio7Cj6b2k3t7W0Lxs9Z24HTY+fqSdkWSxZqDic9nnJAdDHise8rvt2O8Iwi3rcss8pqfBt2CQPpEpYZjMEUmQJKkmG7yVeCgCaLCUKxYrgH+2L8qOJj8Rn7NWTjFjeRnLlWsrr95GH9PZ8rK6zUeSRc4Mp9ge9dcu2hmJPEmCF/s7aL1DZcPjtPFIz3sF9AutPAUCgeBeqfM62R71M5gocLR74XpMgUAwn/Wq2+9rCXBzOofDLtPbeG89TfV+F5Ik8dPLU0QDrjklJ3ejNeyZF5vM5iP7WxhNlYgGXfMCZEmS+MwxK2O9UKb+drzAt8+OAfDRAy1bvoH4oQigM0WVG9M5uht8C+qDyrK0YPOdz2WvOQQB86TsluIXV6ZIFVVuxwvsiAZw2mWyVWta04ScsrqGBgKBQHA3copGsaITdDsYS5U2ejgCgeAOGvyuRRW4VsJrN2IMxArcnM7T3eBbUkFjJdht8jxN6tl4nLZF388p7yn/ZJW5KkADsTyZksq+ttCSztCbiYcigP7O+TES+Qqnh1J8+cneWo1NPF8mXVTpXWSrYTmYprlgzU5DwEWqqFLndda2OY521VHRDdx2GzsWUOkQCASCtcRtlzFMk4Ki4bE/FNO/QPBQ0uh3MRAr4HbY1tRAbSJToqIZy1IA29MSJKdo6IbJgfZw7fXJjMJ3zo0D1iJ/NfWgF4vRVoMHdgY1DJM3bydQdRPNMOa9ny5W+Mpbw2iGybHuSE08fCWMJIt89/w4PqeNjx5s4eWrMTTD5MP7Wnh2V5T9bSGagu5acO522HhmV/S+fzfBxmNUtcDudeElEGwEmmEyniqRVTRuJ/IbPRyBYEUspJe8WRhJFnnp6jTRgItn+6IgsaGN/Y9tb6Cn0UfA7Zizk76ajKaKfP30KKYJz+9uYn/70jXWdpvM43dpLDTvcs7pnMK54TQ9Db67loC8fjPOqcEkfc0BPrivZcnP3gsPbAB9dTLHWwOWZeyBthDBNgc9Db7aSkRRLVkXsJx27oVrkzkqmk62pPLrGwlGq1uiP7syyXhawWW3HACX0p1eLr+6EefqZJb+7sg8XWjB+jKdU/jG6TEkCT55tF3YBgu2DCOpAvFCBcOEK5O5jR6OQLBszg6n+OX1GK1hD5840r7pAunTQymShQoT6RIXxzK4HTY+drC1ZnFvGCY/ujTJVFbh2b751txrwUobGFdKoaxTFe0gdx/GTNGAi6d2NWKYJgdnZaYX4qeXp4jlylyZyPGHEe+S8dXl8SymCVcmcjy/u+mexR8WY2sUmtwDAbedmax9c9jNse7InECnOeTmud1RDnWE2dsaJFmozPn+ZEbhu+fHOT+SnnfsqazC10+PUihrjKUUbk7nmcyWcDtsNakb3TApVnQmMvdfZ6jpBm8PJskpGm/fTt738QT3x2C8iKLqlCo6Q4nCRg9HIFg2pmHWHniaNn9nTiDYrFydzGGaMJYqkS2tjovmarKt0W9pN8sSkmTFAIOzng/TuTLXp3JkSipnR1IbONLVY2eTn8e3N9DfXUf/PToIXh7P8N999zLfOzfOWKpUq38uazqjqSK6MTcnPaNH7XXa5qmA3MnhzjAuu4wkwXer7oiryQObge6IePntRzqpaEZNReNODrSHuR0v8I0zo0hIfPxIW+2zL12dZiqrcGs6z7aof04N0eu34owki4ClCdlW56GkGvzhk73YZJmcovLjy5P4nPba6vN+sNtktkX93JrOz5GlEWwMu5oCXJvMIkkS26Nbu4tY8HDhttuRsLZJXVvE7UsgADjSWcer12O013kIb0KFqv3tIXY0+TFNkx9fnqRUMeZkUyM+Jw0BF4l8mR0PyHNDkqQ5ymErpaIZ/OzdKW5O53DabTRUjelM0+Rrb4+QyFfYFvXzGwdba9/50L5mhhJFmoKuu2aU+7sjNAXdfP30KEOJIm8NJPjQ/tUr5XhgA2hgWV2niXzZEg/HJJ5/T7Kuwe9kKqsQ9DjmPWhaQh4G40UCbjvHe+u5NJZhZ3MAT1Ufst7v4rOPdq3q7/IbB1upaMaWsbh8kAl5HUtamgoEm5WGoIuWsJt8WehAC7YWu5oDm/6anSkn+K3D7fPec9pl/s6jnWiGuWVUJtYauyxR53XS3eBDAp7eZTUP6oZJqmDtMsRz5TnfmbEMXy5hrwOP00apotOyhDzfvfBAB9DLYX97iGShgixJc0TGn9/dxN62EPU+57yL/XhvPTuifnwuO26HjX1tKxM6v1dE8CwQCO6HOp+L//VTBzkznOaFg6vfVCMQCBZHkqQtZVW91siyxKePdZAoVGgOumt17XabzPv3NnF9KseRzvvTqw+4HXzhsW5KFZ063+qatTz0AbTLbuP9e5vnvS7L0hynnDupF41jAoFgC3JiWwMntq1cdUggEAhWG7fDtmCstbslyO6W4KqdYzXEHO7koQ+gAVTd4JVrMTTd4Jm+6Jr8Q89QKGtkSiotIfeW8nwXPHx0//EPNnoIgjXg1O0El8azvG9306L9IQKBQLDaZEoqr16PEfQ4eGJ7w5rLwCqqTjxfpiXkWRPVFhFAA1cmslwaywAQ9jo5sW35tpcroVTR+Ys3hyhV9HvWnhYIBIJ7JVOs8O9euklZM7g5ned/+q39Gz0kgUDwkHDqdpKb05b+fGfEuyoiC4uhGyZfOTVMuqjS1xxY1ebBGR7YolpF1THNu0lyWzT4Xdiq0jPR4NqVZuTLGqWKDlguiAKBQLCeSJJVh2mYJptMRlcgEDzgRKsqG067TN0aK6moukGmKne43HhLN0wUVV/2OR7IDPQbtxK8OZCgNezmU0c77rpN0Br28PkT3eimSWSVi8xn0xhwcXJHA5MZhcfWKMstEAgEi+F3OdjT4ufKRJ5Huu+vOUcgEAhWwsGOMK1hDx7n2tqLg1X3/PzuJgbiBY523X2uK1Y0vnJqhLyi8YF9TfQ1373++oEMoG/GrC2C8bRCoaIRcN99pRNaJ13JY933rpkoEAgE90NR1XHa7RzsCJNRlp9pEQgEgtWgMbB+Agz72kLLVkmL5co1g57bscKyAugHsoTjeE+EOq+DQ53hecGzqhtUhAOXQCB4CPG77BzsCOFz2nj0PgwQBAKBYC0xTbNW8roetIU9bI/6afA7ObxM6bwHMgO9oynAjqb5guvTOYW/fWcUgI8faVtzn3iBQCDYTBiGSSxXplDRiefK7FxgnhQIBIKN5vsXJrg5nWdPa5APLCA1vNrYbTIfm+V4uBweyAz0YowkS1Q0KwM9nChu9HAEAoFgXSmqOuNpBYBb8cIGj0YgEAjmY5omt6qluAOxzTtPPVQBdF9zgLY6D61hN7tbV0egWyAQCLYKfpedI1111HkdHBclHAKBYBMiSRKPb2+gzutYM1nh1eCBLOFYDJ/Lzov9HRs9DIFAINgwntrZyFM7Gzd6GAKBQLAox7ojm1504aHKQK8EwzA5O5zi7HAKw1ienrRAIBBsdkaSRV6/GSerqBs9FIFAsAmZzim8fjPOdE7Z6KFsah6qDPRKeHciyyvXYgDYZIkD7eGNHZBAIBDcJ4qq8+2zY2iGyWi6JHbkBALBPL5zdpx8WePyeJY/eLJ3o4ezadk0GWhJkv6JJEm/2uhxzGC3vWe+Ypc3zT+TQCAQ3DOSRM1YymETVoQCgWA+M/GPXcwRS7IpMtCSJLmAgxs9jtn0NQexSdbFs5AknkAgEGw1XHYbL/Z3MJ4usatZzGsCgWA+Hz/SzmC8QHeDb6OHsqnZFAE08CXgPwH/w0YPZDYicBYIBA8ajQHXurqBCQSCrUXI4+BgR3ijh7Hp2fAAWpIkB/CUaZr/pyRJCwbQkiR9GfgyQGdn53oOb1NT1nScNhlJEtssgvl0//EPNnoIW5r7/fcb/JOPrNJIVhfTNKnoBi67baOHIhA88BiGiWaYOO2iFPRBY8MDaOBzwF8v9QHTNP8c+HOA/v5+IYkBnB5K8ur1OM0hN5862o7dJm5OgUCwNIZh8vUzo4ylShzvrd/UGqsCwVZHUXW+emqYdEnlfXua2Nsa2ughCVaRzRBA7wIOSZL0R8BeSZL+oWma/8dGD2qzc2PKcumZzCjkFI06n3ODRyQQCGZzPxnstcpeF1WdsVQJgJvTORFACwRrSDxfJlW05CJvxQoigH7A2PAA2jTNfzbzsyRJvxLB8/Lo747w2o0Y7XVewl7HRg9HIBBsAfwuO4c6wtyOF3ikRwTPAsFa0hLysKPJTzxX5khneKOHI1hlNjyAno1pmic3egxbhe1RP9uj/o0ehkAg2GI80xflmY0ehEDwEGCTJT56oHWjhyFYI0ThrEAgEAgEAoFAsAI2VQZasH4YhtWJ73aITnyBYLOxlgogpmlS1sS9L3g40Q0TzRAqNIL7RwTQDyEVzeBr74yQyJd5eleUQ0LvUSB4KDAMk6+fHmUsLVQ4BA8fOUXlq6dGKKk6HznQwrZGUQYpuHdECcdDSLpUIZ4rY5pwazq/0cMRCATrRFHVGUtXVThi4t4XPFxMZhTyZQ3dMLkdK2z0cARbHJGBfghp9LvY3RJkMlOiv7tuo4fzwCKMTASbDb/LzqHOMIPxAo/2RDZ6OALButJV76OnwUeurHGgQ0jKCe4PEUA/hEiSxAf3NW/0MAQCwQbwzK6opb4vEDxkOO0yv3m4baOHIXhAkExzbYz9JElqBb4P7AH8pmlqkiT9U+AFYAj4gmmaqiRJnwX+PpAEfsc0zexSx21oaDC7u7vXZMwCwf0wODiIuDYFmxFxbQo2M+L6FGxWTp8+bZqmuWC581pmoJPAc8C3ACRJagSeMU3zpCRJ/wz4TUmSvg38EfAk8AngD4H/ZamDdnd3884776zhsAVLMZoq8tPLU0R8Tj5yoAWHsBCv0d/fL67NTcjL16a5NZ3neG89+9oezm1bcW0KNjMrvT7Fc0iwXkiSdGax99bsqjNNUzFNMzXrpUeAV6o//xw4DuwELpqmqc16TbCJOT+SIVNSuR0vMJFWNno4AsGSKKrOueE0OUXj7cHkRg9HIBCsAuI5JNgMrOeyLQzMlGdkgLpFXpuHJElfliTpHUmS3onFYms8TMFS7GjyI0sSdV4H0aBro4cjECyJyy7T3eAFYFdTYINHIxAIVgPxHBJsBtaziTANzFTvB6v/P139efZr8zBN88+BPwfo7+9fm6JtwbLY2RSgt8GHTZaQJGmjhyMQLIkkSfzW4XZU3RDbvALBA4J4Dgk2A+sZQL8N/D3gXwPPA28C14F9kiTZZr0m2OTYRSAi2GKI4Hkua+l0KBCsB+I5JNho1iyAliTJAfwIOAj8BPgXwKuSJP0KGAb+bVWF498DrwEp4HfWajyCtePSWIYb0zmOdkborPfOee/6VI7L4xn2t4XYHt16W+iTGYU3BxJ0RLwc7bIqjBRV55VrMSQJnt7VKCxhtyBv3EownVN4fHsDDX4XhmHyyxsx8orG07saCbgdq3IeTTd45VqMim7w9K5GvE5ryh1JFnlnKMn2xgD72x/OxkaBYDlY8+00siTx9K4oDpvEqzfiZEoqj2+r58eXJ7k+leOFg20c6RK+BoL1Y80CaNM0Vays8mzeAv7VHZ/7C+Av1mocgrWlrOn8/MoUpgnposrvPd4z5/2fXp5E1U3G08qWDKB/eX2a8bTC7XiB7VE/IY+DS2MZrkxYpfuNARdHOsWkvZWYylqLohleONTGQLzAueE0AD6XjWf7mlblXNemclwcywAQ8jh4fHsDAL+4MkWqqDKUKLKz2S8WYQLBIpwbSXNlIgdAU9BNyOPgzJClTzCdVfjl9RgVzSCvDHOwI4xNFiUdgvVB7IEI7guHLBPxOQFrcruTaMC96HtbgZnxB9x2PA4ryGkMuJAlCVmSaPSLBpatRsBtx+u0/pYzf9+Iz4nDJs15bTVo8LuqdZoQDbx3rUSDs84ri2lYIFiMaMCFJIEsSTQEXNR5nTjt1j3T0+Aj4LLygG11bhE8C9aVNTNSWSv6+/tNoWe6uShrOslChaaAG/mOCUzVDeL5Mo1+15asWTNNk6lsmbDXgdvxXpYwVaggSRD2OmuvCa3drUOxopFTtDkLu5yioqgGjYHVXRRlSiqablA/a7FlGCZTOYWIz7ku2ec7r01RAy3YTNxt7kwWKtgkiZDXKq3KlzVKFZ3GgItUocJktsS2xkAtsBYIVgtJkk6bptm/0HvCyltw37jsNlpCngXfc9jkRd/bCkiSRHNofkayzudc4NOCrYLXaa/VI88QcDtYxeRzjZBnfj21LEtb+r4QCNaTyB3zrd9lx1/NPNf5nGI+FmwIYrkmWJSprMJrN2JM5+5fqP7mdI5f34xTKGurMLKNxTBMTg8lOT2UwjC21g7Ow0K+rPGrG3FuxfL39P10scJrN2KMJIurNqark1levxlHUfVVO6ZA8LBwbTLH6zfjlCpz75+b03l+9u4kP3t3ioF7vN8FgntBZKAFi/Lts2MUKzrXJnN86Yneez5OqlDh+xcmao2GHznQsoqjXH8ujGV49XocsIw6HlZ76M3ML65MMRArIEsSX3i8e8Es8FL86NIkkxmFc8NpvvxU732XWUxnFX50cRKwgvv3722+r+MJBA8TsVyZH16cACCraHxwn3X/ZEoq378wzpXxLJIEu1tCfPFk96qp6AgESyEy0IJFmaknu9+6MptNwlYVu38QatRcs36HB+H3eRCZ+RvZZLDfQ2PRzPftNhl5FYwaZh9HXDMCwcpw2KRag+Ds+dcmS9hl6z2bLGGf9TmBYK0RGWjBonziaDvDiSJdd2g7r5Sg28GLxzqI5crsat56UnZ3srsliMMmI0mwrdG/0cMRLMCzfU2013mJBl34XCuf5j68v4Wb03law55VMWGJ+Jy8eKydVEF9IO4BgWA9CXudvNjfQaJQZlfTe/eP32XnxWMdjKVKSBK0hb3zehsEgrVCXGmCRQm6HatWntAUdG9ZKbuF2B4VgfNmxnmfpTVuh23VS3NaQh7ROCgQ3CPNIfeCDd3RgHtVpScFguUi9hK3KKpucHUyS7JQmfN6uljhykSWimZs0MgEgrVjMqNwYyrHjPzmdE7h2mQOXTRzCgSCWQwnityOF2rPykS+vNFDEjxgiAz0FuXn705xdTKH0y7zxcd78DhtlDWdr5waQVF1tkX9/MbB1o0epkCwasRyZb729giGaXK8t549LUG+emoE3TA53Bnm6V3RjR6iQCDYBNyK5fnuuXHAMk7KKRpOu8zvPd4tSjwEq4bIQG9RSlUpLFU30Awr22wY1DLPpcrWl4sTCGajqDpGNfNcUjXKul7LPN8pbSUQCB5eZs8HOcV6Fqq6gaqLnSrB6iGWYluU53Y3cXY4RXudB7/LzsvXponnyjy+vZ5cWeNwR3ijh7iujKdL/OpmnNaQh5M7GjZ6OIL74MxwihtTOY52RebUmndEvDy3O0qmpHKsO4LbYeP9e5uI5ysc667bsPEOJ4q8OZCgq97Lo731GzYOgeBBpVTR+dmVKQDet7sJj3NpWck9LUFKqo6mm/Q1+zk/mqEt7KnJWV6bzHFuJMXuliAH2sNrPXzBA4oIoLcoIY+jtmU9ni5xbjgNgMtheyhLN359M85YqsRYqsTulsAc22TB1qGiGfzyWgyAfDk2r1nzzofd3taN1+B+9UaMWK7MWLrEntag0KAVCFaZdycy3Jq2TFJaQ276uyNLfl6WJY7N+syd5V0vX5umVNGZzJTZ3xZCWgWpSsHDhyjh2ADKmk4s915Dg2GYTOcUVH3xxj9VN5jOKfOc7wplDQmqtqYmfpd9RQ2EsVyZsrb1t7/b6yypvZDHgd8t1oUbTbGizWlwzZRUcop61+9lSxXq/ZYtb3udpVhx5/2yFLem8yTXuVloZpz1ficex/0ZrggEgvk0hzw1reeFlDhi2TKD8cK817OKSqakYpomsVy59mycuWdbw24qukEsV641Ji+GourERSOiYBYi0lhnVN3gr98aJl1UOdJVx1M7G/nx5UmuTeaIBl38ziOdC66Gv356lMmMws6mQM3JL54v89VTw2iGyfO7mxiI5zk/kmYkWeSzj3Ziv4t+7Ws3YrwzmCLocfC5411b2uDhxLZ6+poD+Fz2Lf17PAhkSip/9dYQZdXgud1Rgm4H3zk3jizBJ/vbF5Vye2cwyWs34ngcMi/2t9Ma9ix4vyzGX781zHfOjeF12viTjx+gaYEH7Vrw9K4oB9rDBNz2u95zAoFg5bSFPXzxZA8wkyx6j1vTOf77771LRTP43ce6+ch+6/k4ni7x9dOjmCY0B12MZxTqvA7+zvEuPryvhfQ2FZ/TxlfeGiZVVDnUGeaZRRqRSxWdv3hzkEJZ5/HtDTzSs3QGXPBwIGb7daZY0UkXrUzcRLpk/W9GAaxssLaAHJemG0xllepnS7XX4/kyqm5impAoVMiWrGaJZKGCsows9ETaOma2pFIob/2mwzqfUwTPm4BUoUJZta6/iYzCZFbBME00w2Q6u3gGZ7x6H5RUA1mWkCSJYnn+/bIYN6dzgHWPjaTmZ6PWkojPuSqGKwKBYGH8Lvu84BngdrxYyyxfn8zVXp/KKuiGiWGa3IhZ5R+pokpJ1ZFliYjPSUU3SNXmF2XRc2cVlULZ2qmd/QwWPNyIDPQ6E/I4eGxbPSOpEie2WQ1Hz+xq5PRQil3NgQUfwnabzHN9TVydzHKk671mqe2Nfva2Ws0SRzrD9Db4eOt2ku5674ITzZ2c3NHA67cStNd5qPM5V++XFDzUdEa8HOoIky5VeKQ7gsshE8uVcdgk+loWd+E70VuPphs0+F00V013Qt7598tifOaRTv7T64O0hNwc7hQZIoHgYeCJHQ2cHUmRU1Q+1d9ee31Pa5DJjIJumuxqCnB+NEN3vXdOj0LA7eDkjgaGEkUeXSKr3BR0c6w7wlRWues8JHh4kO5W97PZ6O/vN995552NHoZAMI/+/n7EtSnYjNx5bXb/8Q/u63iDf/KR+x2SQFBDzJ2CzYokSadN0+xf6L113XOUJOmDkiS9Uv1vQpKk35QkKTPrNZE22qSYpnnXJoulvisQrDX3cp2Ja1Mg2Hys5L4U97Bgo1jXEg7TNH8M/BhAkqS3gJ8DF03TfHo9xyFYGdNZhW+eHcMmSXzyaPuKyj1+cWWKi2MZDraHeaZPOMUJ1obTQ1YDYle9lxcOtiHLd5elujKR5WfvTtEYcPHJo+2ihlkg2ASMpop859w4HoeNT/W3LykL+bN3p7g8nuFQh3AiFaw/G/LEkCSpF5gyTTMP7JYk6TVJkv5EWkSMUZKkL0uS9I4kSe/EYrH1HayAW7ECpYpOvqwxmFhZc9bl8SymCZfHM2s0OoEA3q1eZ4PxIoVlunBencyiGyaTGYVEvnL3LwgEgjXnxlSeimaQKamMphZv2DNNs3bfvzuRXccRCgQWG5Vy+TjwrerPO4AngTrgYwt92DTNPzdNs980zf7GxsVlrARrw67mAHVeBw0BF9vuMLa4G/1ddXictjnNjwLBanO407rOdrcEl9VAC5Ypi89lo6fBR2NAGO8IBJuBPa1Bgh4HzSE33fW+RT8nSRJHq8+Xo53i+SJYfzZKheNjWEE0pmkmASRJ+jZwGPjuBo1JsAgRn5MvPN5zT999bHsDj20X1tqCtWVfW4h9bStzJdzW6Gdb48oWhAKBYG1pCrr5/ZPLe96c3NHAyR3i+SLYGNY9Ay1JUjNQMU0zIUmST5KkGeuux4Fb6z0egUAgEAgEAoFgJWxEBvoF4DvVn3cA/0GSpAIwAPx3GzCeLcXl8QxnhlLsag6uuhvS1cksb99Osj0aEFqXgk1Foazxo0uTAHxwX/OyyzSWwjRNfnFlmsmswlM7G+mIeO/7mAKBYP359c04v7gyhc9p48MHWtndEtzoIQkeAtY9gDZN889m/XwOOLLeY9jKvH4zQb6sEb8Z50hneFWtg399M0G2pBLPJzjSFcZlt939SwLBOnBlIstIslj7+Vj3/S8eY7kyF8es5ta3B5MigBYItiDFisYbtxJcHs/icdgI+1wigBasC0K3aYvR3WA1VXTVe1c1eAborR67vc6DU0h6CTYR7XVenHYZh02ivc6zKscMeR3UeS2JrJn7SiAQbC3cdhttdR6Cbjthr4OeBrEQFqwPwsp7i/G+PU2c2FaP17H62eFn+qIc64ngddhYRFFQINgQmkNuvvRED6YJ7lW69l12G5870Y2i6vhWoSREIBCsP7Is8en+Dj6yvwVZllalvEsgWA7iStuCrOUEISYfwWZlLUqKbLIkgmeBYIsjyxJBz+KGKwLBWiD26QUCgUAgEAgEghUgAmiBQCAQCAQCgWAFiABaIBAIBAKBQCBYASKAFggEAoFAIBAIVoAIoAUCgUAgEAgEghUgAugNQlF13hlMMpQorMrxBuMFTg8lKWv6qhzvTkzT5PJ4houjGUzTXJNzCB58DMPk/EiaKxPZVT3uzekcZ4ZTaLox53XdMDk3kubaZG5VzycQCDYXpYrO24NJBmJ5Tg8lGYzf/dl6czrP6aEU6h3zhkCwHIR+0wbxyrVprkzkkCWJzz/WRdjrvOdjJfJlvn1uDNOEZEHlfXuaVnGkFtemcvz08hQAhmlysCO86ucQPPicGU7x2o04AE67zLZG/30fczxd4nvnJwDL8vuJHY21904Ppfj1zffO1yMMUwSCB5KfvjvJQKzA7XjBMgOzy/zuiW4ivoWfrROZEt87Pw5Avqzx1M7GBT8nECyGyEBvGNKsn+7PtGS26cla2Z/MHqMsTFYE98jsS2ctrqI7r821Pp9AINgczDwHZ+7zuz1X5z7T1mpUggcZkYHeIJ7payQadNHodxHy3p8AfMTn5OOH24kXyuxrDa3SCOeyqzmAYZrohsne1uCanEPw4HO4ow6nzYbLIdO7CtlngNawhxcOtZJVNPbdcW0e7azDZZfxOGzCrlsgeIB5/54mLoc9fPxIG4lChQafa9HsM1jupr95uI1MSZ03bwgEy0EE0BuEy27jSGfdqh2vs95LZ7131Y63ELtbxCQjuD9kWWJ/++ov8hYLxmVZ4kB7eNXPJxAINhduh42jXdYztat+eYtlUdIluB9ECccWwTRNhhIFUoXKvPcUVWcglkdR16aBcIZCWWMglhcNF4INJ6uo3I4X0I35Da2GYXI7XiBTVOe8nsiXGU4U12uIAoFgHVjq2bgQCz3HxNwguBdEBnqL8MatBG/dTuKwSXzuePecso9vnx1jIqPQEHDxueNda3J+TTf4yqlhcorGtqif3zjYuibnEQjuhqLq/NWbwyiqzr620Lym2V9ej3FuJI3LIfOFx7rxOu0k8mX+6q1hdMPk5I4GjnVHNmj0AoFgNZnzbDzRTcizeEmkYZh89e0RsiWVngYfv3m4jXi+zF9X54YndjTQL+YGwTIRGegtQqZkZdNU3aSoagu+ly2p8763WmiGSaGsr/l5BIK7UVaN2m7LQtdiVlFrnytVrM8VynotWy2uX4HgwWHOs7GiLflZ6zmmzfleoazV5oaMmBsEK2DJDLQkSb+71Pumaf7n1R2OYDFO7migohsMJYpcn8oT8Tp59UYc3TB4ri/KzViBvuYA0zmFN24laA17VjXL5nbY+ND+ZgZiBY50hlftuALBQmQVlVevxwi4HZzoifCrW3EU1eDpXY2EvA7et6eJsXSJY90RYrkyr9+K0xLy8EhPhKd2NuJx2GgOuan3uwCrR+DkjgYyRZXjvfUb/NsJBILV4uSOBuw2mYjPSUvIs+RnnXaZ1pCbK5M5uiJevnNujEd7Ijy+vYFsSeXEtvfmhlJF55fXp7HLMk/tasRhE/lGwVzuVsJxbIHXJOBjQBuwogBakqRu4C3gClAxTfP9kiT9U+AFYAj4gmmaYgm4AAG3A5/Tjm6YnBlKUSxrXK2aQ9R5nXxwXzMAXz89ykiyyECswLZG/5JdyCtlZ1OAnU2BVTueQLAYpwaS3JjKA1DRdC6NWcYrAbedJ3Y0sq8txL42qxnxm2dGGUpY13xvo48Gv4v3722ed0xRtiEQPHgE3I5lex9MZEqMpErYZYmfXZliZ1OAsmbwYn/HvM+eG0lzZcJ6xjYF3WvS/CzY2iy5pDJN8x/O/Af8I6zg9yngTeDIPZ7zZ6ZpPl0NnhuBZ0zTPAlcAH7zHo/5UBANWtk0h02iq8GHLElIEjQEXO99pvqz32XH67RtyDgFgvtl5lp32mW6Ij7sVaHWaMA9/7PV13wuG36XaOsQCAQLE3A7cDts2G0SDdXdqeis5+dsGgMuJAlsskS9f/USUYIHh7s+bSRJsgNfAP5LrAD6k6ZpXruPcz4jSdJrwDeB68Ar1dd/DvwO8Lf3cewHmgPtYZpDbjwOGwG3g9aQG8NkTpb5iR0N7GwKEPJYE4VAsBW581pvCrlRdaP20JvNyR0NbI/6CXrs4poXCASL4nfZ+d0TXeTLGkG3g0xJpSm4cAC9Pernc8e7sMvyfXs1CB5M7lYD/feBfwz8AvigaZpD93m+CWAnUAa+AwSBqep7GWBBYWRJkr4MfBmgs7PzPoewtZmdgVvI/luSJJpD87N0AsFWY/a1vlRnPSCueYFAsCx8Lju+6k6V5y67tPULLNgFghnuloH+P4Bp4CTwvVmW0RJgmqZ5YCUnM02zjBU8I0nS94EsVi01WMF0epHv/Tnw5wD9/f3zhV8FAoFAIBAIBIJ14m4B9N8DfgwsFLR+eqUnkyQpYJpmrvp/H8cK0H8H+NfA81i11QKBQCAQCAQCwablbros/yfwHwDNNM2h2f8Bn7mH8z0hSdJpSZJeB8ZN03wLeFWSpF8Bh4Bv38MxBQKBQCAQCASCdeNuGegLwFeANyVJ+iemac5u8JMW+c6imKb5Q+CHd7z2r4B/tdJjCdaWn787xbWpHDuifoaTRVwOGx8/3IbPZUfVDb59doxEocIH9jbT0+Bb9Div3YhxYTTDoY4wj29vAGAoUeDHlyaxyxKaYeJ12vitI+1CQUFwT7x8bZp3x7P0d9XxaFXjOauofPP0KBfHsrSE3Hxgb3NNhur1m3HOjqTZ3xbiyZ2Nc471H399m5euTnOkq45//NwOZpWtCQSCDWA6q/Dd8+NznkGz+dWNGH/x5hBuh42uei9jqRKtYQ8f2tfCntYgYLmXfuvsGDlF5cP7W2iv827EryJ4wLhbBto0TfPfA88B/7UkSf+vJEkzV56oRX5AqWgGF8cyVDSDl65Ok1M04rkyQ4kiAJMZhdFUiVJF5+JYZsljnR1OU9EMzg6naq9dGstSrOhcGs8ykSkRz1e4HSus6e8keDAxDJNz1Wvs3Ei69vpArMBkVmE0VWQ8U+Lc6HvvnR2Z//mZY716I0ZZM3hnMEW2tLSrmUAgWHuuTuZqz6Db8fnPiVdvxEgXVW5M5bgynmU0VWIio3Bh1j0/mioymVEolHXeHc+u4+gFDzLLstYxTfM6cAJLMeOsJEmPrumoBBuK0y6zuyWALEk8saMBt8NG2Ougs95aOzUF3TQF3ThsEntagksea39bCFmSaqYXALtbAjjtMjub/DT4XQQ9DroaREZAsHJkWWJva3DeNdZT76Pe56Qp6KbB72Rf63vX6b7aNRmcd6zjPfXIksSB9hABt9gREQg2mh1NftwOGyGPg676+c+Jx3ob8Lqs7PP2aICmoIsGv5O9re/NB21hL/V+J067TF/z0s8sgWC5SKa5eCJZkqSzpmkevuO1p7HqohtN01x3W7r+/n7znXfeWe/TPpSYprnkFvbd3l/qc8v97laiv78fcW1uDEtdTyu9/gzDQJYfLNveO6/N7j/+wX0db/BPPnK/QxIIatzv3Hnn/fwgPl8EG4MkSadN0+xf6L27pVj+5Z0vmKb5iiRJR4E/XI3BCTYvd5uAljtBLfQ5MbkJVpOlrqeVXn8PWvAsEDzo3Hk/i+eLYD1YMoA2TfPbi7yeAv5kLQYkuDvFisbPr0wjS/D87qZlua+pusHP352irBk8tztKwD3fmCJf1vjFlSkcNpnndkdx2Zc+7lCiwFsDSTrrvVwYTTMQK/DJo+30d0fu+XcTCJaDYZj8P78a4MZ0nhf7Oxa85gbjBU7dThJw28mVNdrDHh7tra/W9as82xdd0Ixo5vgvXZ0mU1J5pi86x+1TIBBsDFlF5RdXpvA4bOxrC/HGrQTRoJsndzTMC5ovjWX43356DYdd5o8/1EdPgx+AC6Nprk7kONQZZmfTum+iCx4gRJHfFuTSWJZb03kAWsMejnQuaOA4h+tTOa5OWhLcZ4fT89QHAC6MWEEwQEedt6ZasBiv3ogTz5U5P5ri+mQeWZb46tsjIoAWrDmDiQI/vzINwFdODS94zb16I0YiX+HyeIZdTQHGUiXcDhuXqo2vbw+meN+epgWPP5Qs1hpk3x5M8oG9zWv0mwgEguVydjjNYNxqZh+IFShrBqOpEruaAvPcSP/zG4Ncm7KeeX/zzij/7IN9GIbJy1djGKZJqlgRAbTgvhB7lVuQlpAbmyxhlyWag8uzMG4KunHaZSTJCroXPG7YgyxJOGwSTcG7W5i2ha1zd9RZDRpgNXwIBGtNY8BVywrviC58zbVVr/P2iBebLBHyOOiMeHE5Zu6Dxe+der+ztrPTtsj9IhAI1pfWkBtJotqEbgW/AbedsHf+juruliB2WcZlt7G7+lySZYmWaqDdVifua8H9sWQT4WZENBFa5BQVSZJWpJ1crGhohklwgfKNGbKKik2S5mltLoRpmiQLFYIeB2XVIJ5X6Iz4kOWHs/5MNBGuL3lFZTpXprt+4Wtu9vWZUzT8LjtOu0ypolPRDEILPHRno6g6ZfXun9sKiCZCwWZmJXNnpqTisEl4nXZShQpel23BckPTNBmIWTujM+UbALphki5WqPM6H9pnlWD53E8ToWCTslAN893wOu/+514quL4TSZKo91uZaodNxu8W2WfB+uF3O/Avcb3Ovj5n1zB7nDY8zrv3DbgdtmX1FwgEgvUj5Hnvnq9bojdBkiS2ReeXaNjk9+YFgeB+ECUc68BQosAvrkwxnVUWfH86p/CLK1MMJbaemUimqPLy1WmuVeurBYIZRlNFfnFlivF0acnPDcar90du4ftjI7gVy/PS1SkS+fJGD0UgEKyAfFnj5WvTtV6Hpbg5neOlq1OkCpVVO//Z4RS/vB5DUfVVO6ZgcyIy0GuMbph899w4mmEykizyhcd75n3mRxcnSRYqvDue5e8+vQ27bf66plTROT2UIuJz1uxJV8JQosBgosiBttCSq/aV8ourUwwlipwfTdMccs/JDggebr53fgJF1bkVy/PlJ7ct+BlVN/jeeev+GEuX+N0T3cs+fiJf5tJ4lt4GHw6bzLWpHH3NAZqW2RewGIqq84MLE+iGyWSmzO882nlfxxMIBOvHq9djtYRONOgiGlh4PihWNH5wYRLDNInlynz6WCcXRzPkFJWj3XXIksQ7gyncDpnDy2jUBxhOFHnlWgywlHye6Yuuzi8l2JSIAHqNkSVryzinaHgXqSv2Om0kC9bn5EX0K1+9EatZkNb7nSsKEhRV5zvnxtENk/F0id9+5L2AoFTRefnaNIWyxrN90RVvbc3USjtsMoPxAoqqc6gzvKgEXqmic24kTTToYlujKPl4kPG5bCiqvmTpkE2S3rs/llFiNJsfXpoknitzcTSNLElMZhV+enmS/+Yju+cdayxdYiheYE9r8P/P3n8HSZZe95nwc296n+W97Wrv7bgehwEGAwy8JUASBEkJlCjFJ2m1DHF3Y7WK2NCuKMWuVpQ+agnpE0mRIAiAIDwwsONde++7y7us9P7a9/vjVuVUdVV1V3dX+/eJ6OiqzGvezLrm3POe8/stK11XG5OqUKgYpMs6nfMajeYs6aMBDxuv48ApkUjuDsHZ8iy3qtTuQxemC6RLOrGAh0xZZ1tHjDOTeVIljXjAQ8jnZiRV5hdnp8lVdI6PZlnbGubkmHPPjfg9DCzTrDwfv1dFVRRsIVbURyS5v5F/4duMoih8fm8XE9nqkjakAB/d3s5wqkx73L9sU8NcLaaqKHiXyFBfC5eq1Jqn/J6F675yPsHX3hnGtAWJfJV/9L61N7Tt5zY009cYwrYFPzk1BUBZt5Z98n75vFPuoSjwW4/1rmo2XHJv8ZndnYymK3TXL2/TrqrvnR+9N2jn7nM7x7LXrWJYNuenCgS9Ln55NsFHt7fXljMsm+8cGcOwBIOpEr/+SM81t5stG7hcTmA/PxB/+0qKI8MZwOn876yT9vMSyb3GU2ub6KwLEA96iQU8TOer/OiEMxs2mavS1xji6EgG3RQEPC7Wt0Z4fnMr6ZKOadmcmypQqJpUTAsF5348d625Hs0RP1/Y10VBM+lvDN3Ojym5B5AB9B0g4vewvnX50gb/7El8LfYPNNIS9VEX9N5w0OlxqXx+TxcTucqirK/HpaKqCooQeK5jnLIUbpcjJ5QoVFEUEMLZ5rLLzz4gqIoiO6AfcIJe93WPa7j++bEcH9vezuWZIp3xIBXDZCpXJez34HFd5UoGuFQVw7KueWzO4VYVAh43Prerls0C8Mwer4py7WNcIpHcPVRVYWBe86BLVVAU57x1u+YCYhe6aeL3uFjTHMbjUmmJ+vnUrk7KhkXE52Ztc5iNbVF8bhdd10gCXE1z1I8s3Hg4kAH0PcblmSKmJVjXEl7grCSEIFs2GMtUCHhdRP0eUkWNwWSJK8kivQ0h9vU1LLvdutDSgffT65sIed2UdJNH+m/eAKU54ufTuzrJVYxrTm8/u6GZtliAxohX1ktLFpAsakxkK6xriSypfpEu6ZydyON2KWxqj5ItGwCE/W5iQQ8f3tpGpmTwvg0LzVHcLpXP7+1iOFVCIBhOlehpWD47VBfy8pk9nWRKOhvmPQA82t9ALOgh6vfccp21RCJZfdIlndF0mbUt4drsUcTvZkt7FI9bZaAp4pRyBD2cHMvS3xRiQ+t796s1zWH+4TNrmMpVl70OzaGZFgcH0xiW4JH++tr+LiUK2AJp0vIQIAPoe4jLM0W+f2wCgKrRzPaueO291y8l+fM3h9AMi/NTeX7vqTV889AYr1+cYSpXpTnq4199dDMbbrA20+NSeWxg+cD7RuiqD9K1gv1dz+FQ8vChmzbfPDSKZthcShT51K7OBe+bls03Do7y1uUkPrfKzq44hi0QwlGCiQY8vHMlDcBAS3jRzas+5OXCdIG3L6cA+PzermUNhcAxT7naQEVVFTa3y2NXIrkXsWzBNw+NUtEtzk8V+Nxe5270y7NO2aDHpbCnp55IwM2fvzmEZQvcLpWNbQvP6eaIf9nGw/m8dHKKbx4axRYwnqnwG4/1cH6qwI9PTgJgbLbl9eIBR85D3kOYlmNqI4RgKFlaIHtnWgLbFgicYGM4VSZd0rBsGyGcQEK3bMAxWTk/VZAyOpL7BlsIrNnjf+48GEyWODqSYShZQgCmbWMLgW3DdEEjV3Ey0LplY9rvGUIZs+fB1cxt9+qfJRLJ/Y8QAmv2OqDPuwZM56rkKgaWDZZw7qP2rIGcYTn3z8szxWVlZq/ex6WE8PUeWAAAoQlJREFUs6xh24jZ13TLqm1vDkNeYx54ZAb6HmJdSxjNbObYaIbLM0WGUmV+/dFuGsM+nlzbiGXb5CoG3fUhvj8r/fWRbe3kKyYDzWG2dcaxbcE3Do5SqJp01Qf5zO7O6+9YIrnL+D0uPrGzg9F0mc0dMY6PZvnO0XHOTubZ1B7lUzs7+dSuTvobQ0zlq0zlqpQ0i97OII+vacStOp3vqqKwaZlZmEf66/G6VUI+F93LNPRKJJL7E7dL5RM7O2pqO+DM6iYKGvmKwZNrG2tGYR/d3s50vsqOrjgHBtO8dTmFqih88ZFumiLLK1G9O5jm7dllP7GzHa9LxZonV7e5PYo5G6Bv65DZ5wedOxpAK4ryCPDvAQs4JIT4Z4qi5ICjs4t8SgiRvpNjupdQFIVtnXFmChqpooEtBBXdebL1e1y8sKUNgMOzSgBRv4cdXXULSiLmr1PSzDv8CSSSm6erPlhr1inpZi2bY1g2Jd1kazxGRzzA4eE0r1WSBL1u1jZH8M52yO+6jlarx6Wyr+/m6/wlEsm9zdWlV2XNwutW6aoPLpCvXNMUrjXUl2fvl/Pvncsxd0+de1j/2I6OBe8risKOeaWXkgebO52BHgbeJ4SoKoryNUVRtgInhRDP3OFx3FZMy2a6oNEU9tVu7kuRKxtolkVzxE9ZN8mWDdpifiej5lKJBTwLun8NyyZR0NjUFmEmX0Wdbaaae70p7MPjUtjRHWc4WeK5TS3L7lsiuRPMnQuNYe8CbfCiZpIqarhdKq1RP655iiymZdMeC/C+DU2sb43Q2xCkLeqcI0Gvm+2dcQpVk6Jmsn5erXPVsEiVdNqi78lBTuYqRP0eqckqkTyEbGqPUtJNbFvQXRfg8HCGre1RZko6ti2I+j08tqYBVVWI+t21mSnbFkzmq1i2TczvJRZ0Mtdz9+ao370iZY65a9LV17iiZlKoGrTFlu/DkNz73NG7ihBiat6vJk4meqOiKK8DbwL/kxDivi8c+t6xCUbSZVqi/mVdzBL5Kn9zcBTLFjyzvomDQ2lKmsXunjqeWtfE0+uaFq3znSPjjGcrNd1bBYWNrVHeHUwzmi7TFvPTGvPz528NYVqCoM+9qBlLIrmT/PDEJIPJEo0RH7/5qKO/XNJM/vLtIQ4MpqkPeXl6fTMfm6fb/KOTk1yZKdEY9vKbj/bwyoUZ/u7oOGGfmy893oNHdUx7MmUDVZnmw1vbMC2brx8YIVs22NgW4YUtbbx5KcmBwTQBr4svPdZzw0YtEonk/salKjza30BZM/kn3zhGvmIQC3hoDPuYyFbY2R3nC/u6F91vf3ZmmtcuzDCWKbOru44vPtJNc9RPwOta8t68FHPllOmSztqWMB/Z5lzjnOvfMFXD4pH+eh5f07jqn1tyZ7grTYSKomwDGoUQZ4C1wFNAHfDRZZb/iqIohxRFOTQzM3MHR3pzJIsa4FgNL/c8kC7rtYaH8UyFkuZMHc0UtGW3OzO73bFMGSGcaaRUSa+tkyxqJAoaFd3CsGwmspVV+0wSyc0wdy6ki+8d74WqSVm3qOgWZd1adMzP/Z4uGVi2qP1e1EwquoVu2WRnGwjn3jMsUWsqnCnqC/Zd0S2KspxJInloKWom+dnrw2SuQlk3qRgWhiVIl/VFyyeLGmXdRDNtdMtecpnrYdqCzOx6869xRc2sNfhf634vufe54ykZRVHqgf8EfA5gruZZUZTvAjuB71+9jhDiq8BXAfbs2XPPZ6if39zKibEsG9uiC7ScddNGMy0ifg/9jWHWtYRRFYWn1zfRGvMzkavyWH8Dti0oVE2iAfeC9T+4uZXTEzk+uLmVsUy51jAV9bs5OZ6jqz6AZQkema3z/Pi8+qxcxSDkdeFeoQFEvmoQ8LjuO8OI5b47yZ2hNDs12To7Nfn+jS0cH8uyvjVSm8Jsjfl5YqCRkM9NxO/myYH3MjqFqsH71jdzciLHQFOYkm7xzLom3hlM0xEP1OoYt3fGmM5V2T5b9xzwunhuQwtXkkX29NZj2YJtnXFURaEluliWKl81CHpWfj7cSeQxLJEsz0Smgo1YkRNormIQ9rlpjvr5yLY2LkwXeHJtE9mKTrZssLYlwtrmxXrNT69rwrYFuarBumZnmaJm4nEpC0rRlmL++fuBTS1cShQX9Ge0RP08vqaBREHjiYFbyz7La8Xd5U43EbqBvwL+QAgxpShKCKgKISzgCeDknRzP7aKvMUTfVTaeJc3kr98doaSbvG9DM6cn8kzlnC7goNfNnt73mpu+c2SMC9NFNrdH+ci8qe2B5jADzU7jw1yXMUB/UxjbFvzzbx1nIluZdVTqqJk9vHUpybuDaRrDXr6wr/u6QcOBwTRvXkpSF/TwxUd6rlnHfa/x/eMTDCZLC6bMJHeGqVyFf/m90xSqBp/Y2cHn93bT2xiidwlL20f7G3i0f6H++NGRDL88O03E7+E3Hunhu8fH+dmZaXZ2xxeUeHzz0Ah/e2iMfNXkyWSJp9c1s39tI1s7Y2ztjCGEM3U6mauyvSu2qHHwnSsp3r6coj7knA/32vE9dwyva4nw4ra2uz0cieSe4Wenp/jXPzqLQPA/f2gjL2xd/vx4+XyCYyPZ2QdoH8mizub2GB/Y1HLNYNOyBa9dnGEoVSJZ0EAIAl4XR0YyBDwuvvBId03NYym+d3ycoWSZ9a0RPry1bUkt6Ef6V8d74W+PjDGeqbC5Pcrzm1tXZZuSlXOn7xyfBfYCf6QoyivANuDgbA10F/C3d3g8d4x0SaeomQgBlxMlpnKO5uRwqrRgOSEEPz8zzeHhND87M4VmWkuWgVz9+oVEkVzFqE1JTeWrpEvO9NBwugxAsqjXSkWuxdyYMmWDRKG65P6uxdXL2rZAM6za65ppYdsC3Vxar/dWGJn9rMOpMqZlYy6jCTw3Ft20se3rf66rP1NVN6nqsixgPldmSmTLOraAM5P5JZexbIEx+3e5+m9zfCzL4eEMr16Y4fREjkRew7IFQ1edI6fG81hCUKga5MoGw+mF72umzWTt/CojhKCim7XjbSRdxhaCZFEjWVys/WpZNoWqUfv96mN17hi+mqXOkbnPu1KEEAynnGP4ykyxtr2VnH83ui+J5H6irJm8fTmFaduYluDdwVTtPc200E0L3bRr58BIqoxp20zlKlxOFjFtm/FMmULVuW5XDQvLstFNe4FnQtWwSOQ1LkwXOD6W5dhojlNjWYRwEmHXKo0UQjCSct4fTpUXnLdLncMrvf8shWHZjGecfc3d9yR3ljvdRPh14OtXvbzrTo7hbtERD7C5PUqmrPPE2gba434uz5SWlNUK+VxcTOgkizr/+w/OsKunjk/u7Kg9Nb91Ocm7V9J01Qf59C7n9f1rG3n5XD3npgr0NQbJVUy+dWiMj2xv5/E1Dbx5KUV3fbDWTXwtHlvTwOsXk4xlynzr0CiqomAL6K4P8qldHdd8en/94gyHhjL0NAT55M4ONNPmr94Z5q3LKdpiPpoifnTT0bNuifr58Na2WlZ9NXh6XROnJnJ0xAP86WtXUBWFz+3ppCH8nrbn4eEMr12Yq6UXxAJefm1f17JNZifGsvzqXIKGsI/P7+niwnSBP3rpHIoCf/ihDWxqk3qfyaLG4eEMLpdKfdC7ZPNqpqTzzUOjTpCNI8P46V2dtMacmZKWiJ+g103Q60JVFdrjAX52ZooNRKgaVs1W9zO7OilWTbrqgmztjPPEVU04fo+LJwYauZgosKs7zp+9OcSrF2ZojwX47f29bGyN8MuzCTJlnbJusn+gqabjWqwa/OHfnSRZ0Pjs3i4+vKWNrx8YoVA1+dDWVgaawnz7yBhjmcqCBqBjo1leOZ+gMezj83u78LhUMiWdbxwaxbRsPrGzY0VTzspsSdcPjk9Q1k3+9vAYA01hXr04s2Dby323xg3sSyK5X/jpqUm+fmAUAUQDHoqaidelki7pDCZLfO/YOCOpMqoCmzuifG5PN9GAh1cvzDDQHGZdLMBbl1JUdAtVHaQ97mcoWWYyV0FRFMI+N3t66/j4jg5CPjeP9NdzdjKH26UylCrxyZ3tZMsmJ8azvHTS0UKYbwE+x9z5e3oiR8jr4j+/cpmGsI+BpjDvXEnRFvPz2T1duFSFi9MFfnxyirDfzReucf9ZDo9L5al1jZybKrCnR8pz3g1kW/odQlWVBVMszRH/ktM4cyfgTFEnVzZIl/XZJ1m7FkBcnC4CMJouUzEsgl43Ub+Hf/fZ7QBcmC7woxOTmLbgykyR5za20NOweBp9OTrrgnxhXzd//MuLWLbgxFiOLR0xRtJlqoZNwLt8Ddjc2ObGnMhrs6YXJjMFhZmCTmvMz1imQmPYx+WZ4qoG0Nu74mzvivPW5eSCjOP8APpSouCMNVGYDTQMEnmN3salT4dLiSJCQLKgkSnrHB7O1LZ9dCQrA2ic79i0Bft663lsTQPbO+OLlhnLVCjrjqyTYQn8bhdDqVItgN6/tpGCZjq1/e1RpvMaW2anPxN5rSYxta0rzv/9+R3XHM++vnr29dWTyFcZTpVm5aQ0LiWKtMX8rGsJc2AwTbZscDFRqAXQQ6lyrbHn8FCa3d11tebES4kiHfEAY7NZn0uJYi2AvjhdQAinKShbNmiK+BjNlGu6skPJ8oqD2h1dcU6OZUkWdcYyFXTLrm07U9aXtBme+25vdF8Syf3A8bEcldks8bPrm2sPkWOZMpcSBTJlnWRRw+tWyZQMLs8UqegWW2fNTLIVg+76ABemixSrJoeHM/g9LiZzVdyqgh70cmWmhGHZeFwqj69pREHhT1+7TEPIS0m3eGpdEzNFDYEzi7xUAA3O+bujK863D4/V7hvl2SbmyVyVQtUgHvRyeaaILQT5isFUrkp/043fB3f31LNbBs93DRlA34N8cHMblg1nJvL4PS5299TVgmdwgoO3L6fobwoR9LoZTZf5wYkJQl43n9ndSU9DkJ6GICXNXGCycqM82t/AyfEcH9raSr5isqY5vGTwrJkWp8ZzNIZ97Our593BNGubw/g9LtrjfrZ2xGqalx11AbJlg5aIn0jAfdtE5ze3xRhMlvCoKutaFjaJ7Omt59XzMzy9tomKYVEX8tJRt7we5+4eJ4hqjfppCvt4/6Zmjo1mUYD3rW++LeO/31jXEuHidAHLho3LOAEONIc5O5Un6ncaXvwe14JlI34Pn9vTVft9R3ecZFGjLuSlPb44aJwjW9b528NjWLbgU7s6FziJNYZ97O2rp6CZdMYD7OiKEwt4uDBdoKzHqA96eaSvgSszRTJlg42tYbZ1xhhNV/jI9nY66gL0N4XIlg12dscJ+dzs6I4zOFNi77y+hT299RS1BG2xAI1hb+3znpsqoJs2m9uX/k6WY29fPW9dStE3W0P+yvkEbTE/jaGlXdLmvtub2ZdEcq/z3MYWpvJVIj43L25t49hYFo+qMtAcJuRzM53TSBd1chUDRVHY2uGYLr1+MUl3fZCB5hBVw0JVFboaAvQ3NnFuqkDQ66JQMdEsm22dsQWzO4/211OoGoxlKuzuqac97mdNc5hMSWdHd/y6Y97dU0e+6tw31jSFeeOSM5ZYwJkF3tFVx3ReW+T3ILl/UO432eU9e/aIQ4cO3e1h3FP88uw0J8ZyAHx4axvrWxd3Fd9OfnZ6itMTeRQFvvRYL/Uh7/VXegDZs2cP8ti88xwZyfDqeack59H+Bh5bc2MNOol8lb8+MIIQTtD+7AP4UHT1sdn7hz+6pe0N/ZsXb3VIEkmNW7122rbgj391ESEcRZ5/8PSaFa1XNSz+6+tXMCxBT0NQ+iZIFqEoymEhxJ6l3ru32s8lN8XGtuisVI+P7rv4JKugIIV0JHeaNU1h6kNeYgEP61pWrxxIIpHcH6iqY6Htdas3PaspVeAkN4os4XgAaI8H+PtP9d+1/T+9vomGsI+msI+6hzT7LLl7xAIefuvx3ptevznq5+M7OsiU9VrNpEQiub94Zn0zz9zg7JHf4+LTuzsZz1QWSMNKJCtBBtCSW8bnduq0JZL7lb7GEH2svNFWIpE8GLTFArTFlu+BkUiWQ5ZwrBJTuSrT+YWasvmqwVCyhG0LqobFlZniAr1J27Z553KKwZniktscy5RJFjVsWzA4U+TUeI7srDXoZK6yaH8rZTRdJlWUFqKS1SdRqHJ2Ms/IrP7y1Qgh+OnpSd68nARANy3+7sgYZydytWVsWzCULNXUL+az1HkmkUgkN4tu2lyZVe2wbcFgskS+uvjas1LSJZ3RWV3mVFHj0FCaxAqvWctd33KV92KJ5Zj/OeZT0Z3Y43b4Lqw282Om+wGZgV4FLiWK/OD4BACf2NlBX6PT8fu1d0aoGo6UznShSiKv0Rrz84V93QD8+VvD/PT0FG5V4f/41NYFUnMnxrL88mwCVXG6ht+4kGQqX2VPbx3vW9/My+dnUBT4xI6OJZ3elmOu4cqlKnxhX/cCxQKJ5FYYy5T5q3eGOT6ao78pxEe3ty9yG/yTVy7x1++OoCoKf/ihDfzszDSHhtJ43Sp/8dv76G4I8eqFGY6NZvF5VL78eG9NH/VSosAPjk/e1HEvkUgkS/HDExMMp8rEgx464gFOT+QJeF18+fHeBepXKyFZ1Pjrd0ewbMHWzhivXZjh/FSB3sYQ//jZgWuqbSwVRwCUdZOvvTuMZtjXbHL+3rFxxjIV6kPeWkmbEIK/OThCtmzc802SV8dM79/UcreHdF1kBnoVmJ8pm/tZM95zN8pVDLJl5/W5/4Ga3qxpi9rPV2/HFoJETqNqWli2oKpbTM+6AwrBklm6a451dv+WLShq0klPsnrkKyaaYWMLZ8Zl/rE+x5xzli0EY5lKLTOjmzbTs+fAwnPovazJ3Os3c9xLJBLJUsxdpwpVszbDW9EtNOPGM7bFqok1mz1N5KuUZ51/q7p13WvWUnEEQNWwa2PJLXFNvXqdfMWoZXAtW9ScF+/1a+bVMdP9gMxArwLbOmMUNRMF2DLbiBALevjAphbGMhX29Tl6kmcn8wtMN778RC+qqtAW9bGnd6EY+t7eegzLMU/Z2BqhNeYnUaiyu6eObZ1xfG4XLlW5Yc3XR/rrsWxBxO+mt0FqT0pWj/WtEd6/qYW2mJ/O+iD71zYuWuafvn8dZd0i5HPzG4/28GhfA3/y6iU2tEZrusrPrG8i4HXRFvMvkETc1hmnUHWMVqTWsUQiWQ1e2NLKibEsA80R6kNeDgym6awLrMi192p6GoI8vqaBQtXksTX1dNcHOTSUYUtnbFl9/DmWiiMA6kNentvYzGSuyiNLOBfP/xynxnOsa4mgqo6kiNul8uGtbVxKFNi2hLnVvcTVMdP9gNSBlkhWCakDLblXudd0oO/2/iX3FvLaKblXkTrQEolEIpFIJBLJKiEDaIlEIpFIJBKJ5AaQAbREIpFIJBKJRHIDyABaIpFIJBKJRCK5AWQALZFIJBKJRCKR3AAygJZIJBKJRCKRSG4AGUBLJBKJRCKRSCQ3wD1hpKIoyr8H9gBHhBD/5G6PRyKRSCT3LlJHWiKR3G3uegCtKMouICSEeFJRlP+sKMpeIcTB661XNSyGUiWaIz5mCjrNER+6ZVOomnTVBTg5nmMkVSLkd/NIbwMvX5jmJyenaAh6eHZjC08MNPKTU1M0hLy4FIW3r6SI+l0UNZMtnXEqusXRkQz1IR+P9dfzs9MJyrrOsdEcQgiifjeWUPB7XIR8Kroh0C0Lj0ulNRog7FeYyOk0hHwYlsVMXqNsWNhC4HerpMsGXrdKc8THuckChmVTF1SZzBsEvW4664LEAx5SxSrFqkE44EVBoSHs5eR4HiEsVFQ66oLs7I5zaiJHU8hH0bBojfrIlQ2e3dDK81taCHrdpEs6f/HWIF6Xyu8+2c+bF2c4PJLh959ZCwr88uwUR4azPLWukeaIn5FMmapu8Uh/A5117zkW5so6L52eoiMe4ImBRkbTFRQFuuqDJPJV8lWDNU1hFEXBtgWXZ4rEg16aIr7aNiayFaqGRX9TGN20GUyWsG1BQTNoCPvobwwxnCrjUhW66oMIIbg8UyLsc9Ma89e2M52vUqiarGkKoSjKksfJaLqMLQQ9DaHaMdMRDxDxL3SZSpd0Zgoaa5pCuF3vTcwMp0qoijOO+Xz6T95EVeBb//CJJfc7lCzVxr8cV39fyx3j7fEA0avGq5kWg8kSbbEAsYDz3kxBI1vWWdMURrdsjo9l8bpUtnbEFnwmgGRR4xenpxAKWJYgUajic7t4al0Tfo+LsM9NsqhTNUzWt0XRDJvDwylKmkmupHNhpkiqqLO5Pca61gi9DSGOjmSZyJQ5MZZlS0cUAfzqbILuhhBCCIZTZWbyZcomRLwKllBQcIyc6kJeyoaNpptUTYFbhaDfjVd10RDyUqzq6LZCZ8zHxWSRqm7TFvfRUReiMezDsgV7euL87MwMlmXR3RAir5n4XSAUF30NQQSwvStOV12QX5ydZixTYU9PHS0xP5pps7E1wo9OThL0uPjA5lbiQe+CY2Y6X2UkXWZPbz3poo7bpSw4N+YfL9GAh8FkkdF0GVVReP+mFqqGzWSuQl9jCI+qcn4qT7ZisrEtQjz4nuPiSKrExUSRXd111IW8C47hlZCrGLX9+NyuFa1zo9xqAHu3kQH4vYllC85N5iloJhvborVr28XpAgcGU5i2oC0W4MRYlrJuEvV76W8Mkirp+D1uchWN05N5mkNeFFWlPRYgWzUYmilS0U1UVaG3IcKGtgiT2QoVw6S7IUhvY4So382r5xMUqiYBr4vuhhAvnRrn+Eierjo/FdMmkdPoawzywa1tFKsWpmVxbiqPZtqE/R7SZZ2WsJdtXXW8fmEGBaiaFoWqyd7eBja3R/i7o+N4XSrpkkayoNHTFMKtquzpraeiW/hcKtmKyXCqRDTopinsJ13SGEuV6WsOM9AcwbYsfnxyiojfw7auOFdminQ1BHl2QzODM2WqhsGlRIkNbREGmiOE/W6KVYuqYfKrM1OUdJsPbGrluU0tjKTLeFwKqqJwaChNtqyTKGgYluCZtY2kSjrvDqbobQzxxEAT3Q1BRtJl2mJ+Zgo6qaJGUTPZ21fPTL7KS6emCPlcdMaDbO6IcXoiR2vcz3imyu7uOOemCgS8Lnb31JMp6QwmS1R0k8vJEt31AVqifnoaQuQrJkdHMzzW10B8niPtUve+q7FtwZVkEd20GU6X6W8I4XIp9DeGay6NSzF3T77ecnPcdSdCRVH+ETAjhPimoiifBtqFEP9xueXnnAi/eXCU8WyF8WyZ9lgA0xa4VOcgMC2bt6+kuDxTpCHkoy3u5+BgGt1yPmtDyMOG1gjDqQqaaWHatnMy2AK3C1yqihA2uuXUuHhcKoZpY92Zr2TV8LtV/vnz6/nyE738vT8/yDtXUiiqwiN99RwfzWHZNutbozy9ron/99VLaKaNz+2iuz5IsqihqgpbOmL835/dQSzoQQjB//it47xzJYXP7eJLj/WQKTue9fvXNvLWpRS2EDzSX8/jaxp57cIMh4czuFSFLz3WQzzoZTxb4VuHRhHCsWwezVQ4PJTmzGQeBVjTFGZ3bx2j6QoAn9zZQaKg8ealJIoCX9zXTXPUz0xB46/fHcEWgsfWNPBof8Oiz395psj3j00A8KGtrZwYzTGerRDxu/nd/X21oLWsm/zZm0Pops2m9igf3NwKwNnJPC+dmgLg4zva6W8KA/D0v/sVwylnfANNQX7xz58F3nPTOjOR56ennfU+sbODvsbFgU+qqPFX7zjjf6SvnscHFtte/+3hMUbTZcI+Z7zzT+jvHB1jKFkm6HXxu/v7KGkW//3tIUxbsKunjuFUkZ+cmsatKvzGoz21zwSQrxr8y++e4tULM2iGiWkJTAEel0JjyMczG5rJVQzKmolm2uzurSNfMfjFmWnSZR3DFBi2cy4pQEPYS9jrIlnSKWr35lmiMPv5wl4ifg+DyRKmLfB7VBrDPtpiAQpVk8lcBSEEH93ezv/y4iZ+cHyCsYxznbicKJKvmrTH/XTVBVEUhU/u7KB39u87d7xYtnAeYEazXEwUiPg8fGJnOyGfm5Jm0dsYpCHk428OjJAu6+zrref3nx3A73Exka3wf/z4LDMFjYHmMF/c183PzkwD8OGtbaxvjVzzc5qWzX97c7C2n0/u7ARW34nwYed+D6DvtQeIuePz5fMJ/ubACPmKwaP9Dfz+swOkSzr/+GtHOD9dwLRtbNs5zk0BLhVcioJHVTCFQDcFcxHN3OXSXiLE8bpACAVbCLwulYGWEJmSQbKooVsCl6IAAsNeerwK4FbBtGE1IyjV2S3L7BZwrmOGtXivChAPelAUyJUNBOBWFXoagkT9HmwBl2cKFKoWAogHPPzGo924VJWSZjKSLnNsNEOubGDYAlWBkM+Nbtpopo1LUXh8oJ51LdFaUk5V4PWLSWIBD1s6IhwYzDCWqWBYNq1RP/VhLy5VYTpXpSXqR1EUFMX5m/2Dp9dwajLHu5fTXEwU0Awbl0vhqbVN7OyO8/rFJLmKQWddkP/rc9trn/O7R8cZTJYIel38zv4+PK7FlchvXEzy7mCKl05NEfCo6Jbg+U0tPNLfwBNL3GvBSaL91TvDWPbCe/K1nAjvegYaiAOXZ3/OAZuvXkBRlK8AXwHo7u4GoKSbzv+aczBUDAufW8XndpGrGBimc6LZQpCrGAtOIssWZCsGAoFpCwxLIIRz4gnhPL0IAQjn5DBte1VPkjuFZQuKmok1m90VAEKQKWnYsw9OhapBQTOxbOezW7agajjrAFR1C820AA9CQL5i1LadLusoOFepXFmvbbOiO0FUefZ/yxZopj37nsncM1tFtyhrJoYl0E3beVCxnL/XHCXdrP2thXD+zuBkZ+f2V559/2rK84K5kmbVlnPWBdfsBdYwBYZlL9rWwp/f21ah8t7rufJ7Y11qvZK29Niqpj1v/EsHnfPHawmBijLvPWcdzbSxhJh9EJz7/k0KFQvbFphCLBqDbtqUNBMhBJb93g1GCNAsC8OyqRqWM0bbWb+kOd+ZZQvEvLNB4GSwNcvCvtZV/y4zezpjWDZl3ap9AtsG3XR+K1YN5/wX1M6bue+5WDXRZ4+RfMXEjjvHT2mJY0TMfueaYS24BrlU50Jf0iwCHmv2uuMc03N/u7Juoc+dK4ZFYd7frrTMcT4fSwiqxtyxfG8+zEjuf25XAF7RnfPCFs7xa9mCku48yNtCIGznvblLjRBgI7CEMntteg8hYLkconMqO8vbONeAqmm/FwMgaveppZhbb7XjgpXkM+1lFpq7vrlUhdmPhy2ce+vctcucFwiZlk2qpNMc8WPagoruJFNs4XzHCs69Yi4WsISgotvkqyZBr5uSbuJzq1jCWadQNdEMu7a+JZzrZ9jnRrdsbAFV3STkcyMUSJd1NMPGnE042AhsC3TLoqiZ7117tYX32AX3PlvgWWKSraw79zfDsvG4FPTZv+21rolVw6p91tIKr533QgCdBaKzP0dnf1+AEOKrwFfByUADvLi1jVMTOZ7f1EKioNFRF6CsW+QrBmubw/zq7DQnxvM0hr18cHMLf/H2EG9cTBKYnZ799O4O/vLtYeJ+D6qq8OblJG5FAQUGmiLotsWpsRyxoJdd3fW8cWmGdEknka8iBHhVQFVQVRWvW8GybQxD4Hap1IV8eN2CXNki6FExbShpBrrtHGhOllygKBBwK+Q15+BSAQvn/4AX/B43Fc3EsMHjApfqwqUI8lUbG+cAD3lV2mNORtbndSEEBDwqFgqP9Nbza/u68Htc/G8f2cS/eek8XpfKv/rYFr72zhCnJ/P8wQfX0xTxky3rnJ3I88iaOtY0Rbkw7UxLvbC5leaoUzahqgp/8MJ6/uzNIdrjAX7niT5OjOVQFNjbW+9sp2Kwr7cegCfXNtYyfC2z21jTFOapdY1UdJs9vfVsaIvSFPGxr6+ebNmgpzHAvl4nQ+52qWxsjbKmyXn6jfjdtWnsrnpnuipfMdjXV7/kgbW5PUpZN7GEYHtnjK66AKcmcgw0RXDNy+bGgh4+tKWNiVyFXd11tde3d8ZrT96b2qK117/7+/t54T+8iqIofPsf7l+03x1dcXTLxq2qC9abT0c8wHMbm8mU3/u+ruZDW9o4OZ5lTVN40VP2Bze3cnIsR+/sNH1z1MUHNrWQLGrs7a1nV3cdkYCLgMfN+ze1LFi3MezjHz87wF+8PYxpWeiWzUxBI+hz84FNLXTEg4S8bqdERjPZP9BIUTOpC3pJlzRyFYMLUwUqhkF3Q5jtXXHWtUR453KKy4k8I5kqbTE/trAZnCkT9DnHZVGzWCJxck1UwK2APnt++FwKldmNuICw30XY78GlQl99iJMTOQzLpj7kRTctFEXF41JpifrwulX29TawtiXMNw+NMZWrsqM7Rn9jCIHC1o4Yf/3uCH6Pyt97cg0hn5sPbW3l1HiO3oYQFxNFLiUKvH9DC6mSXjs+59jeGUMzLVyKU2p1bCTDifEcfreTKakYNkPJEls7YwQ8Lkzb+d6fXNtI2Odcitc0hfj1R3o4OZ7lmfXNbJw9foSAbR2x635fPreLj25vZyhZYlvn9ZeX3Bx3O4P7oM4gPLWuCdO2SZd0nlrrlJP1N4b5vaf7+dnpqdq5fX6qQL5iEA966WoIUqyauFSFdFFjNF3F71Pxu1Uaw16KVYuJXBnNFCiKoDUaYH1LlMlcBc2y6akPsbM7jselOLNsJZ2A1013fYBfnJ0mVTLwuUCgops2YZ/Kzu46FFUlV9aZyJYxLIFbVTBtiPpddNUHuTBVxBA2likwhGBNY5iuhgDvXknXHrINC0I+FZ9bZaA54mTVFciXdZIlA79HJR7wkK0Y5Csm9SEva5sj5Ks6pydyqIpCd12AdNmgIeLjQ1taGU6WSeQrTOQ0+ppC7OtrIB7wUtAMEvkqPz8zRcWweX5jC//wmQHOTRfwulV0s4Wfn5kikdcYz5ZxKSpPrmskUdA4NpKlJebj83u62NQe4/JMkQ9vbWU6X6WnIYhpCV7Y0sqZiRzfPTaBCqxvizr38rEc8YCbTNngkf46Tozl8XtcfGx7O4NJpzwuVWzkQqJAZ12ArR0xtnfF2dVdx1uXkzy/qXXBMfLBzS2cGMvR0xDEv1T0jDMj7vM4f4fJbJWu+gCNEf+y91qA9hXck6/mXijh2AX8nhDi9xRF+RPgz4UQB5Zbfq6EQyK517h6mlwiuVeQJRySe4mrHyDktVNyr3KtEo67HkADKIryH4BdwHEhxD++1rKNjY2it7f3uts0baeOaZneMolk1RkaGmIlx+btQsxOm7lX0PwgebiYf2zK40Ryr3G3r50SyXIcPnxYCCGWlHy+F0o4uBHput7e3us+qb58LsGx0SwNYS9f3Ne9SIFAIrkd3M0sSlk3+at3hilpFk+ta2J3T931V5I8NMwdm5Yt+Nq7w6SKOtu7YrxvQ8v1V5ZIbjMyAy25V1EU5chy7z2QkeV41lFISBV1quY93NkkkawSmbJBabZpcmL2+JdIrqZqWKSKOgAT2epdHo1EIpHcv9wTGejV5ul1Tbx9JUVfY6jWnCORPMi0x/zs7I6TLOpLSvpJJODIUu1f28hgssSjffI4kUgkkpvlgYwuu+qD1zSwkEgeNBRF4Zn1zXd7GJL7gL299exdYZe5RCKRSJbmgQygJRKJRCKRPJzcbZlBycPBA1kDLZFIJBKJRCKR3C5kAH0TpEs6PzwxwaGh9N0eikRyU5iWzcvnEvzs9BRVQzrWPUycGs/xg+MTTOVkE6FEIpHcLLKE4yZ4/eIMV2ZKnJnIM5qu0FEXYG9vHcoKRKevzBRJFDS2d8YJeJd20ZFIbpVMSefsVJ41TeGaC+R8zk4WODaaBSAa8NARD3BmMs+mtqjsH3iAKesm/7/XrzCVr3IlWeSfPLfubg9JIpFI7ksemgx0vmpwYDC9KlmX+pAXgERB42KiwJuXkgwmS9ddL1vW+f7xCd6+nOLl84lbHodEshzfPz7Bu1fSfPvIGLa92CypLuRBnX3gawh5+eGJSc5M5Pnhick7Mr5kUePAYJp0Sb8j+5M4lKomB4bSXEwUeeNi8m4PRyKRSO5bHpoM9I9PTDKZq3LQrfKVp/rx3IK5yv6BRvqbwgwmSxwcTKMqCmH/9b9KRVFQFQVLCFzSBUxyG5k7vtzq0m6cnXVBfvOxHkzbpjni58BQmqphEQ3cmUvC3x0Zo6RZnBrP8Tv7++7IPiWgquB2qZiWwCsNpiSSJZFNiJKV8NAE0Ktp6a0oCh3xAB3xAN11QQJeF00R33XXiwU8fGZ3JzMFjY1t0dUbkERyFR/f0c6lRJHehtCypUVzMykAn97VyVimQmdd4I6Mby77LZ8j7ywhn4f3b2xmMlvliYHGuz0ciUQiuW95aALoF7e1c34qT1dd8Jayz1fT3XBj9aLt8QDt8TsTpEgeXiJ+Dzu7V27n7fe4GGgO38YRLeRTuzoZTBZZ03Tn9ilx/s5feWoNY5kyG1rlQ7xEIpHcLA9NAB32udndI80DJJJ7gfqQl/qQPB/vBi1R/5KNpRKJRCJZObIITiKRSCQSiUQiuQEe2ABaCMHJsRyHh9NYS6gQSCQSB9OyOTSU5uRY7m4PRXIHGE2XeetSknzVuNtDkUgkkvuWB7aE42KiyC/OTgMgBOzpldPFEslSHBnJ8uYlR9Is4L2ztdCSO0vVsPju0XFMWzCWrfC5PV13e0gSiURyX/LAZqDd89r73VKuSSJZlvmSim4pi/FAoyigzv6NPS75t5ZIJJKb5YHNQPc3hfnYjnYMy2Z9S+RuD0ciuWfZ1R0n6HXhc6v0Nobu9nAktxGf28Xn9nQxka2wvlVeFyWS24HUkX44eGADaGCRRJYQgmOjWWwBO7viqKqCbQtOjudQFYUtHdEV2XFLJHebXNng1ESOnoYgnXU3br09mCwxU9DY1hnD73FJXfKHiOFUieOjWRojPjqkpKZEIpHcFHc0gFYUZQvwVcACLgG/A/yPwMeBYeDLQojb1tlyZjLPK+dnAGfaekdXnFMTOX51zrHVVlXY3B67XbuXSFaNH5+aZCpX5ehIhq88tQave+VlSpmSzveOjSMEpEsaL2xpu40jldxL5Mo6//7nFzBtwfnpAv/2M9vv9pAkEonkvuROFwefF0I8LoR4cvb3PcCzQoj9wAngE7ey8WOjWV67MEPVsJZ8f76Bylytpzov47za9tpjmTKHh9PLjkciuVnmjl+Xqt6wy6aqKCg4K92OGZfBZIkjIxkMy17wumHZvHUpyYHBNLZUxrkrqKpC1bTIlnVM277+CitAXuckEsnDyB3NQF+VXdaAdcArs7//Avgi8K2b2fZouszLs5lk07Z534aW2nuXEkVOjGXZ0Brlo9vbsYVg3Wxd9Ob2KC5VQVWUm6oJNCybsUyF1qifgNdVe72omfzdkXEsWzCRrfLR7e0387GuixCCyzNFon4PzdIc4aHhI9vauZgo0BEP3LCzZizo4dO7O0jkNSJ+N0XNJOxzLgXJosYbF5M0RXzXtHou6yYj6TLd9UGC3vcuI4lCtZbdzlUMnl3fXHvv6EiWdwfTgGNstKldlo3cadyqStjnZiav0Rzx3fL2ClWjdp2bymm8uE3OZkgkkoeDOy5PoSjKxxRFOQU04wTw+dm3csCS3sOKonxFUZRDiqIcmpmZWXK7fo+rlk2ef0MH+NW5aYZTZX5+Zpr+xlAteJ7dNhvboouC50xJ5+VzCS4litf8PD84PsF3j47zNwdHEOLOZ9XevpziB8cn+ZuDo6SK2h3fv+TuEPC62NYZpyF8c0FQS9TPaxdn+NNXr/C1d4bQTScb+ealJIPJEgcG00zlqsuu/+0j4/zk5BR/e3hs+Z1cdToE5z1ghnwuJHeeTFnj6EiWmaLGz04nVnXb4uo/uEQikTzA3PEmQiHE94HvK4ryHwETmEtDRYHsMut8Fad2mj179ix5lW6K+Pi1fV0UqiZrmkL88uw0Q6kyTww00BL1c2WmRHPUV5Nwuh4/PzPNeLbCibEcf/+pvkVB+RzZspNUL1RNLFvgnpWGCvvcfGpXB1O5Kls6bl9ddUl3pk0tW1A1V2dKVvLgc3w0y6nxHIWqidejols2XrdK6+y5EvS6iAaWvzyUNdP5X184bd8c8fOx7e1kKwZbrzrut3TECPvcuF3KTTU+zjGYLPHyuQRtMT8f3Ny64nNa4syYmZaNYdmrUnIR8Xv45M4OpvO39zonkUgk9xp3uonQJ4SYS5PmARfwNPBvgfcD79zK9luiflqizrTiiVlXtYNDGb64r5tkUaM+5F3xtubKMbxu9Zq10S9saeXEWJaB5sgivenOuptTSLgR9g804nWr1AU9sqNesmICXhd9jSEmshXet765VsLxSH8DfU0hIj7PgpKkq/no9nbOTeVZ37q4DKO/aXkjltWQyTs8nCFXMchVDHb31tEckaVLKyXq99JVHyRbNtiySiU0XfVBuupv73VOIpFI7jXudAb6BUVR/ofZny8C/yvQpijKG8AI8P+sxk5CXjcddQHGMxXWNYdxqQot16gPtmzBu1dSmLbg0f4GvG6VF7a0cmWmREvUh8+9fCDRHg/QvsLAtaiZvHwugd/j4tn1Tati8BLwunh6XdMtb0fy4HFqPMdkrsq+3npiQc+C9za3xwh5l84GzwWkw6kSh4YyDDSH2d4VX7DMjRz3q83a5jBjmTKNYR91wZU/FEsgFvCwpT3KqYk8+9cuX+MukUgkkmtzp5sIvwd876qX/2j236qhqgqf3d2JYYkVyXudnczXmpv8Hhf7+urxuNRrNhUm8lUi/mtn6a7myHCmVlPdWReQ2ruS20a2rPPzM46VfVEz+OTOzkXLXC8b/PK5BJmywWimzPrWCH7P7a9b1k2bdEmnKeJbduZne1ecjW1RPC5F6rbfIOmSzmimQsDr4vBIhi893ne3hySRSCT3JQ+skYqiKHjdK7u5Rv0eFAWEgIh/+a/k6EiGty6nMG0b23YaoX7z0d4VB9GtMT+K4kiQNYRl5kxy+/C6VXweFc2wifg8119hCVpjfjJlg4aQF+8qzJbMZ6ag8b1j43jdKp/c2UHE74zxW4dHSeQ11jSH+dg1lGtuRPda8h5eF4xlKhQ1E/81ZtYkEolEcm0e2AD6amYKGt85OoZLVfnMrs4FU9rdDUF+bW83pm1fs2b5+GgW3bQ5N5VnTVOYkgYFzVgQQA+nSpybKrClI7aoJnldS4SmsA+3S6kFDBLJ7SDodfPr+3pIljT6Gm6u7vj5Ta3s6q4jHvRes1Gvolv87eFRCprJ/jWNTOWr9DSErjmDc36qQKHqNCIOJkts64xj2YJkQQecGR7J6lPWbUcdRYBpyaZjiUQiuVkeiDROsqihmdfuKL+YKFDSLPIVgyvJxdJ0rTH/dRv+tnTE0E2bTW1R+huDPNrfsKCBSQjBD09McmYiz49PTC65jbqQVwbPkjtCLOhhTVP4plUqVFWhOepfMtubKmpcShSxbcFYpkyyqKMZNt86PMbpiTw/OTVJWTeX3fbaljABrwu/R63VMbtUhec2NtPTEOR9G5qXXVdy8ygqCAVsBEJWv0gkEslNc98H0K9dmOEv3x7ma++M1LRsl2JdS4Swz4UCtF2VGR5Nl/n6gRFeu7C0xvQcWzpiRPxubAFhv4fH1jQseF9RFHxuFc20FpWCVHRLZnwk9y22Lfj5mWm+cXCEyzNFvn5ghB8cn+Dl8wkifg9NER9Br4u1LWFMy8bvVnGry19eWqJ+PrWzA9MSfPvIWK03YEtHjOc2tNRUQSSri9/toqKbaIaFJp0DJRKJ5Ka57+9Sc2YPuYpBWTfxupeuLW4M++hrDHNyPMcPj0/wpcd6a5m1ty4nmcpVmcpV2doRo24ZuTvDstFng+CitvjmkynpFDWTsm4t0EQ9NZ7jF2enifg9fHFf9w01Hkok9wLj2Qqnxh1pyHevpDAsgW7a/PDEJCfGcjyzvomd3XUcHXEaZcM+N/Z1jIUSBQ1z1tJ7Ol9loDlMolDlbw6MYtmC5ze3sLldaguvJlO5KoWqiS2cxIFEci/S+4c/uttDkEiuy32fgd6/tpGu+iCPrWkgfpWkVUkzuTxTrGWmUyVHgrpQNanOK/norndqROtDXsLXaCKM+D28sKWVbZ0xnltiijlR0BAC6oJeZua5Ag4mSwgB+YpBUroFSu5DGsLeWlZ4a0ec5zY209cUpDXmlDCNZysAjKTL1AW9VGfVNK7F+tYIG9uirGkOs2NWJi9bNrBmg+pk8drrr4RC1eDKTFHO/szicimz2vYQlFl+iUQiuWnu+ytoezzAZ3YvluiybcHfHBwlXzHoaQjyqV2dPLO+mQODabrqg/jdLr5+YIR0SeeFLa38zv4+Ql7XdbWZN7RG2bCEeQTAmqYQG9silDSLXV3vuZLv6a0jUagSC0izE8m9Saak8+0jYwgBn9zVQeNVFuFBr5vferx3tjzJqeHf2hHj5fMJkkWdfX31AOzprSdfNWkK+2hdQnu9UDWwbac+2+Ny9NbnM9AUZldPHRXdZE9P3aL1bwTdtPn6gRFKmsX61ggf3tp2S9t7EOiuD9IS8TFd0NjZGb/bw5FIJJL7lvs+gF4OSwhKs3bD+Ypjt90S9fPRWWms0XS5Vv5xZiJfe/1WcLtUXtiy+Cbtd7uoGjb5SoWzU3k5LS2557iSLNVUMS4niosCaHCk4+Y3FCqKwvs2tCxYpiMe4Dcf7VlyH4l8lW8cHMUSgo9sa2egebFjoaoqq2YMZNp2zWo8N3sNeNhJFjWEolAf8pIsy+9EIpFIbpb7voRjOTwulQ9vbWNTe3TJoLYl6qejLoDf41pQrzyfoyMZvnN0rDY9fbOkSlqtjGQuaJdI7iUGmsLEgx6iAQ9rWxbLzwkheONiku8dGydzndKM5ZireRbCqXm+3QS9bl7Y0sqm9ijv39hy/RUeAqJ+D/GgB8sWdNbJ2TCJRCK5WR7YDDTAQHO4luWqGhZFzaxl1rxulc/t6Vp23ZJm8sr5mdmfLX5jmazaSuhrDLOtM0ZRM9nTW3/T25FIbhexoIfffmJ5V7rxbIWDQ45b59zD6Y2yvjXCeLZCSTPvWPB2rZKrhxFFURhoChMLeOhruLZsp0QikUiW54HNQM+nolv897eH+Mu3h3n3SgoAzbQYSpaW1Y/2uVXis2YrLfNqOUdSZcYyTvnHW5eS122Ugjl92xY+vqODWEBqQEvuP2IBDz6Pc7loiS4u71gJHpfK0+uaSJd0/u7IOG9eSi65XLKg8a1Do5yeVf1Y8F5RYzJ3azNCDzMuBcYzFQYTJbKyhEMikUhumgc6Az1HvmpQmpWdm5qdOv67I+NM5aq0RP188ZFuAK7MFCnrFpvaopwcz5Ep6TSEvbxvvVOTeXYyz0unphBCUDYsQl43FxNFfuvx3psem27afPvIGKmixgtbWhloXt69TSK5W0T8Hn7rsV5Kukld0Ms3D44yna/ygc0tN5ThPTGWZTBZojHsY3KJcibbFvzRS+cYSZeJBTz8609upSniBOwT2QrfOjSGLQT1IS/ZssGO7viq1Uw/DCQKFQ4PpTEEfPfoGP/rRzff7SFJJBLJfclDEUC3RP3s66tnOl+tmZ9kyk7mOFtx/h9Nl/nesQnKusl3jo6TLes0hb0k8holwyLqUmvOaori3OgB3K5bs/NKFKrvNTNOFmQALVlAoWoQ8rpv2k1wNQn53IR8bqbz1VpfwJmJPOtbIvzszDQT2QpPr2uiv2lxcyA4D6BvXkpRNSzcLoX9A42LlrGEqGlDG5bANe9zZ8tGTVv65HiOjniAU+M5GUDfAImCjjkrz11YQsteIpFIJCvjhgNoRVG6hRAjt2MwN4pu2kvaDC/FE1fdrF/c2sbpiTyb2pzs2XxDB49LxbRsDgxl6IgHKFYNon4PW9qi/JfXBpnMVdjUHiXkc/PM+luzHG6J+umsC5Aq6WxoCXNmIk9z1LekCoLk4eJX56Y5Ppqjoy7AZ3d3oih3P4jOVQymc1XaYn4yZYNtnTFSJZ0zE3kADg1nagG0Ydm4VaU27jl95866IM+sa65pSM9xZCTDW5eSbO2IsqU9yt6+eurnmRqtb42QLulopsW2zhjnpgrsnNWPBjg/lefP3hxCVeAfPL2G7obQ7fwq7ks64u995/4VXjslEolEspibyUB/F9i1yuO4YV45n+DoSJY1zWE+tgIJOqfmuUxb3E/U76GnIUTPvBtsX2OID25u5cpMkcuJIumyTls8gM/tYjRT4fxUkQvTeRKFKpYtODqS5YObW7mUKN6StrPHpfLZ2WbGl05NcnaygNet8ttP9BL0PhQTBJJlGEw6TnHjmQqGJfC6724AbduCbx4cpaiZdMQD/MNn1gBOoNwc9ZHIa/Q2BHnp1CRXkiVKmklzxM/n93bh97jY3B7FsgUC2NKxuOzjxGgWwxLkKib/4Ok1ixw7XarC/rXvPQg/d5WyxmsXkgwmSwD88lyi1hSpmzaDyRKtUT+x4MPdgzCWqTDnD6mZ0lxGIpFIbpabidDufhoMuDBdABzNWtOyr2uA8uOTkwwly4R8Ln53f/+CqeE5NrVH2dQeRTdtqobFz89MIwDNsPhvbwzidjnNhS5FoTHqQ1UUulZRTaBqODc0w7IxrGvbIEsefJ4YaODgYJq1LZEVz7TcTgTUmm7nO3l6XCpf3NeNbtlcnC7y5qUU56cKGJbNsdEsthD81mO9qKrC9nkZ46vZ2hnjrUsp1jSH8Xtu/PPu6Irz5uUkblVh47y67JdOT3E5USTgdfE7T/TdE9/l3SLkdaHg/C3vgQkNiUQiuW+5mQC6Q1GUP17uTSHE/+cWxrNi9vU1cGgozca26HWDZ6DWRFg1bEzbxqW+l90SQnB6Io9pC7Z1xGqGEZ+edTj87tFxbARlXfClx3r44OZWLCGwbLGqWeLnNjZzdCRLe9wv1Tok95wEm0tV+PiODi7PFBeZASmKgs/tojnqw+NSaIv7GU6WiPg8pIs6yaLGWLaC3+1iU/vSn2l3Tz27e25e5nFvXz3/b8cuDFvU3BIByrOGSpph18pIHlbqwn5iATdl3VowAyeRSO4dev/wRze97tC/eXEVRyK5FjcT/VWAw6s9kBtlR1ecHdfIZl3NC1taOTGWpa8xjM+9cGr4wnSRn5+ZBsAWgl3dCy2Ed3TFGUqV8LtdvG9DC26Xelu6LyN+D0/JhijJPUxXfZCu+uX1g5sjfn77iT5MWzCaLvPLswna434uJ4q8M+joSPs96rKNhreK3+vmagPx5ze3cmw0Q3d9aFFZyMNGPOBhS0eMqVyVJ2YbqiUSiURy49xMHJgSQvzFqo/kNtMY9i2yHZ5jrpqjolu8dmGGbFnnmXXNNeWD3sYQ/+S5tSiKQr5qYGmCsG/xVzeaLnMlWWJLe5SGFTYBWrYgU9apC3qXLCuRSO4nTo7lyFcN9vTWsaUjxub2KIqicGjWhEU37ZqaDTh11emyTjzgWTCTdHAozWCyxKN9DXTfouFHfci77Ln/sKGqCmGfG5cK0YDssZBIJJKb5WauoEs6hyiK8gTwRSHEP7q1Id151rZEeHEb/PjEJGOZMhXdYk1TeMEUp6IoHBvJ8O9/cRGXqvCHH9rAunmWx4Zl892j45i2YCRd5jfnOReOZcr8/Mw0DWEfH97SuiBQ+MHxCQaTJWJBD+0xPz0NITa23TvT9hLJ1ZQ0k7cup4j63TzS/14WczRd5hdnnZkc3bJ5dn1zTYFjV3cdVcPiV+cS/OJsAp/bxdqWCD85NcWF6QJtMT+/tq+7tv03LjomK6+aM/xmw7VdQC9OFyjpFls7Yhwfy3JkOMPm9hiPrWngwnShlgX/yLb2h/4hNV3Q+OXZBIYtSJVG+acf2HC3hySRSCT3JTccQAshHp37WVGUHcAXgc8Bg8DfrdrIbhNVw6mF9nsWTuWubQ6TreiMpiuMZ6u0nkuwtSO2wHr78Ei2tv7RkcyCAFpVFLxuFVO3FslDHR3Jki0bZMsGk7nqginwOT3dty8l2dTuSHP1NASlAofknuVnp6f40cnJ2ZpnP32NzoOmz62iKCAE+K8qk1JVhYawj4jfgxAwkavS0xBiaFY1YyrvqNu4VAW/x0VD2EuqqC+QXVuKkVSZH56YBJxz++jsOfruYIpH++s5MZajalhcmSmRKmk0R669vQed89MFjNk68MwKXFQlEolEsjQ3owO9Dvg14AtACvgGoAghnl3Buo8A/x6wgENCiH+mKMofAB8HhoEvCyFum7/sdL7K3x4ew7YFn9rduUh+ri3myNYNJh2b29cvJmmN+mmM+PB7XLx/YzMnRrO4XQrPztN/Ni2bt6+k6G0I0Rbzs651oRnKQHOYKzMl4kFPzVVtjuc2NnNiLEfQ66KsO+6GnhU0RUokd4uJXJVC1aSkWOTKOuAE0M1RP5/b00WharKuZXGN80BzmI1tUaqGxUBziD97c5DpQpXGsI9n1jfVssMuVeEL+7rJVQwa5ulAG5bNO1dSFCom+9c2El2i0XZdS5gTYznWNkdQFIWNbREmshVaY37qg95Fyz9sDDSGcClgCQj7V+ch/dR4jslclb29dcTldyyRSB4SbuYKeg54HfioEOISgKIo/2yF6w4D7xNCVBVF+ZqiKE8Czwoh9iuK8i+ATwDfuokxrWznqRJVw0JVFMbS5QUBtKIofGZ3J4PJEuOZCleSJYqayTcPjRLxe/jNx3roaQjxH76wc9F2T4znODSUAaA15sfvcZEp6ZyeyNPbGGRjW5SB5vACU4k55pQWTMtmLFOhKeKTAbTkrpOvGpwcy9FZF1ik1vDM+iaSRY2o38Oa5oWBcvsSmuiaaeFRVTwulRe2tAJwKVGkrFvUBb1saI2wrTO+YB2PS11kJnRiLMcPjk8wnCrz9pUUf/DCerobgnxkWxtl3WJLR6ymFT3XKLy5Pcamtug9YUJzLxDwe2iJ+slV9JqJ1K2QLeu1BuyiZvDJnZ23vE2JRCK5H7iZAPrTOBnolxVFeQn4G1aoDS2EmJr3qwlsA16Z/f0XOOUgtyWA/uXZab57bBzdsHl8oIHNHbFFyzSEfTSEfezuEeQqBj8/M81YpkJRMylp5oKyD8sWnJnM8c7lFNMFDcO0iQe9tazOj09NkshrHBvN8HtPr7luUOx2qfQ23jlZqWOjWaZyFR7pa6AuJLNGkoX89NQUY5kKh4cV/v6T/TX1iqlclfFMhU/u7GB9a2SRos3VnBjL8qtzCSxb4HO7aIv5+fiOdnobgqxvjVCoGuzqqbvmNuaI+t01OUpFgVzZcQhd27JwxmepMb1yLsFIuszT65seavk2y7bJlDWqhmBitnzsVvC6VXweFc2wifik9KZEInl4uJka6O8A31EUJYSTMf5nQIuiKP8Z+I4Q4mfX24aiKNuARiCLU84BkAOWvJMqivIV4CsA3d3dNzpkZgoaPzrhBLT1IS/bOuNLqmjM2x/xoJen1zXx5uUkCKdWuWJYBL1u6kNe3ryU5OVzCc5O5tnaGaOvKczzm1pqGbi5gNntUnnrUpKLiSJ7e+uvaSRxp0gVNV4+lwAcXexP7Oy4yyOS3GvMmY24VGWB4cZLpybJlA3OTRVWlMG8lCgihGN81FkXxLBsZooabbEAH97adkNjWtsS4bN7OvmTX10iVdRpiqzswe/YaJavvn4FyxaMZyv8Tx/eeEP7fZAYSZWpGE4N9GoE0EGvm1/f10OypNH7ED+YSCSSh48brhVQFOXPAYQQJSHE14QQHwE6gWPAH65g/XrgPwG/ixNAz92Fo7O/L0II8VUhxB4hxJ6mphvXSQ54XXTUBQj53E6N8lUZq+VojvrZ21vPYLLEf37lMv/6R2f5y7eHmc5X0UybkM9N0OdGVWD/QMOC6euPbmvn/Rtb+NTODo6MZClUTQ7M6uDeTdIlnZ+cmmIoVcK2xUNvbSxZmg9ubuX9G1tqNtxzzNUdh3xu1BWURezuqSMe9LC3t56Y3zn/5kozDMvm9ESORL66YJ3xbIWvHxjhlfMJhFhofHLgSpqJfJVjoxm+9u7Iij6LZtq1zxB8yHWgQz5XbbrQpa5OqdjR0QwHBtNM5m49IJdIJJL7hZsp4dh29QtCiDTwp7P/lkVRFDfwV8AfCCGmFEU5CPw+8G+B9wPv3MR4rkvY5+Z39/eRLun0NoRq+s4rQQgYy1YYnFUL6IgHyJYNnlzbSNDr4sNb2+io83N4OMs3DoyiqAof3trGjq448aCHbxwcJVms0hhe3Fx4K5iWzZuXU1i2zRMDjdedSp/jyHCGmYJGW8zPnr46nlorjVski/F7XGztXFzm9JFt7Yyky7TF/Cs6j3oaQvz2E32A4/g5vxb55XMJTk/kmcxV8LlVNrXHeHFrG3/59hCFqslUrsrm9tiCxtt4yANC4JrVlh5LV/jc3q5F0o9l3eT4aI62mJ/dPXV8+fFeSprJsxse7uM95vegqsqsi+qtB9DJosbRkSwAb19O8dk9t6bZLZFIJPcLNxNABxVF2ckydc9CiCPXWPezwF7gj2ZvpP8T8JqiKG8AI8D/cxPjWRHxoPemOsS76oPs7I6DEGTKBiGfi+76AH6Piy0dMQaTJb57dILXL85wbrJQs+He0RXnm4dGa1nnF7e2sbkjxp+8comw18261gjDqRJ7e+tvypXt7GSBI8NO42LY52Ff38oskLvqg5yayBEPetnRVSebqyQ3hNetMtC8/PF6eDjD0ZEMbTE/m9tjpEpOs1rA66oda7YtOD9dYCpfnc1C5/G7VUbTFVJFjeOjWRIFjRc2ty4y+/jtJ/rwuVSm8lUODqdJlwy+cXCUf/WxzQuW+8XZBJcTRVRF4bf390qHz1mGUsWanXm2bF5n6esT9XuoC3rIlA26r+FQuRzHRrOcn8qzq7tuUS27RCKR3MvcTADdAfxfLB1AC+B9y60ohPg68PWrXn4b+KObGMctUTUsDg1lCPvd17UE/9yeLlqifl49P4MQ8G9fOk9RMxlMlmiJ+hx1DZwMW9W02dTm3AjmpqoDHhcBr5tvHx7n1fMz2LagbThAX2OIbxwcpbshyJb2WK0+2rBskkWNprBvgekKOFJ8J8dyhH2umuZu/AbKMNa3RuioC+BxKSvOWkskV5OvGnz/2ATDqRLPb2phb18DVcPi5XMJjoxkUBXHmn5dS4QrM0WaIj6iAQ+7uut4+3KKrx8cIVPWaYv6aY/5yVVNIn43mmljC6gLeFi3RJOix6XyW0/0cWYiz9tXUhR0nalchRNj2QVKHu7Z7LiqsKJSk4cFZV7Vnr0K2/O6VX790R7KukVsCVnBa2Fa9myZDhSqMzKAlkgk9xU3E0BfEkIsGyTfL7w7mK5lcOuCnmt25vvcLvb11nN2osBkrsLZyTwl3aJQMagaFu1xP7pl09sYYmNbhF09Tjb4S4/10NcYIuBR2d4Z5/KMUwbidim0RH3YwnEt9LlVUkW9FkD/3ZExJrJVehqCfGrXQlmoH5+cJFs28LgUvrC3G4EjnXcjXKuBUiJZCafH87x9OUWyqJGvmHTVh2iO+GiO+hBCEAl4a5nO89MFxjJOfWxT2MeFRIHJbIWRdJmxdJmd3XV8alenM9ODQr5i4HGpbJmnlJMt63zj4Chul8qXHuvhnSsptnXGOTKcob8xzKvnZxYE0M9tbKYjHqAl6pfH+zxGM6VV36bHpRIL3Hg5iNul0hbzM5GtLtLkl0gkknudh/bOEphtKlKUxa6ESxEPevnEzna+dWgUl+rkcZoiPhQgVTQwLBu/RyXs9+B1qYxnynjc6oKp44/vaKc+5CHs87CrO85fvDWEEIIL00U+tNXRxxVCkMhrACQKWu210XSFeMhDyOcmWzYIeN00R32yBENyV+iqDxDwuHCpCnVBD36PiqoqfHFfN7u64+QqBvGgl0LFRDMtjoxkURWFC9MFpnJOE27Q68LndlHWTepDXlRVoTni5198aAOmLYj6nYymbtp8/d0RfnU+gaooNIQ8BLwu6oJe1raE8bgVuhsWlg/43C4qhsWrFxI81t+46P2Hla6bKLO4nXx6Vyf5qkmdbGaWSCT3GTcTQP+L+b8oiuIBtgDjQojEqozqDrC3t466oIew301L9PoZXCEER0YynBrP0xLx81h/kE/u7ORbh8d47eIMubJBY8TL0+saOTOZ4z/+6hKaYfOPnl3D/rVNmJZNpqzz9LpmRtJlhpIlDgymGM9W6a4P8uIWR9JLURSe39zKmckcWzviALx6YYajI1n8Hhef39tJsqjTHg/I4Fly1+isC/K/f3wzg6kyzVFfrb/A7VLZ0hEnVzb409cuczFR5AMbm/n4jnbCfjfvXEnj9zgzOmemcmiGjW7afPvIGJYt2NQW5SPb2xeck987Ns6piTzjmQqddQGCHje7e6J889Aoj/Y38NzGlkUug4WqwduXUwC8fmmGX2/ouXNfzj3M/GTBatk1vX5xhslslf1rG5c00rkWbpdKvdShl0gk9yE3E0B/SlGUcSHEaUVRYjg1zBZQryjK/zhb53zPoyjKDdXcJQoaV2ZKzBSqVE2baMBDW8zPM+ubGcuUGc9WaI74eOX8DKqiUNZMFEXh9ESe/Wub+O6xCa7MFBlJl2t1mePZCmXdRjNtJnLVWpZsfWuE9fMUO7Jlx928algIwYpl+CSS20nA52ZT+0L1CyEEZ6fyXJgqcH4qT1GzeOtyiuc2ttAQ9vH4mgZMy+Z7R8cZTVfQDBu1QSVfLeJSFQIeF29cTPLp3Z1kSjol3SRbNhBCEAt46KoLsq+/noNDGVRFYSJbJVvWF7kWBjwuGsJeUkWdzrpbz7pqpsUr52cQQvDM+uYVzVrdi4wm3yvhWI0a6GRRq7mwvnkpyWf3dK3CViUSieTe52YC6CeFEP9g9uffBi4IIT6hKEor8BMWNwne9xweznB8NEPFsGiNBfB7VCZyFf7k1Uu8f2MrX368j6+9O4zXrXBmMk8s4KUu5KWomXhdKpppMZWrMJmrMJwqoSoKummjmxZ+t0pvY5D68PJZmKfXNeH3qLTGAjRcFShIJPcKVcPiP79ymXevpOhpDBLyubFsxwAlMluO0Rj28aldnXz78Bgel4oQsLE9DCgIIagPeWmL+0kVNf7y7WHOTRWoD3lwuRR2dsdpjvpRFIVYwI1lC6IBN81XzSDlyga/ODtNfcjLh7a00hS5sR6BpTgzkefMRB5wHEv39q5M9eZeoym2urXGEb+bWMBDrmKsyoOKRCKR3C/cTACtz/v5A8xab8/qOq/KoO413ryUxLBsxtJl1jSHUFHIV00uTpcYzwwRD3rpqg+SLGjkygb5isn6lggbWr1kKwbnpwo8t7EFgIDbRaKo4Xe7KGoGQa+LrR2OM+JgsoQCiyy960JeXpgt8Tg8nCFd0nm0v74WlEgktxPDsvnO0XGSRY0Pbm5lzTKyizMFjWxZRwD5ismXH+9lY3sUv0vl3cEU45kKe3rrGU6VyJR0NNPmxW1t/P4zA0T9bkxbUNRMGsM+hpIlkkWNTFknXdJmHzAVnt/cwqVEgTcvpfB7VD67p6tWKz3HkZEMI+ky4MzWrEYA3Rj2oSoKAkHTffwQW67eunTdfHxuF7/xaA9l3bwpmVCJRCK5X7mZADqrKMpHgHHgCRxHwTmTlPuuldqwbN66nEJV4LH+hkWycQD9TSGOjmRRVYWAx3FTU4BvHBqlIeQlWzbY3hXH61bpbwojBGzrjDGereJSoTXqpznqZ2NblFRRYzRd5m+PjJEsaWzpiDOZq/D6xRneuZLCrap8ZFvbgvKSZFHj7cspPC6Fs5MFACzbrgXVEsntZDpfZXxWRePUeG7ZALot5mdXTx0Bj4udPXXs6a3HpSq8cTHJf3ntCvmKwS/PTRPwuMhUdDwulaDHxduXU/Q0BNnSEauVRvQ0BHlqXSPpkkZRt2gK+6kPeemqC/LqhRkADEtQ0kzqrgrcOuoCHB/L4nWrqxbsdtUH+fLjvdhCUHcf1+wqt6Hy5OR4lolslUf7GxaY3kgkEsmDzM0E0L8H/DHQCvxTIcTU7OvPAT9arYHdKU6MZWtydlG/pyYlZ9mCimER9rl5cWsbTw408tLpKWYKGju767Bsm+NjWWaKOjt7YvTUh+hrbMbjUinrJju64lRNG1WBoPe9r7momfzlO8O4VIXehhCNYS+6ZfPDE5NM56tsbY/y5uUklxJFnlrXRMjn5vWLMwwly1QNC1VV8LrUmqWyRHK7aY74aY/7SRZ1Nl9V8zwft0vl4zs6+PiOjgWvVwwLv8fFlWSJimFR0S1sWxAOehjLVlAUhYuJAn2NIUKzknO2gMFkmd7GMPGgh5aon676IBG/h+66IG9cTLK2Jbyk/Nm6lgitMT9el7qqtcoPgu19Y+i9bLx7FboI0yWd1y4kAUct5dO7O6+zhkQikTwY3HAALYS4ALywxOs/VRRl46qM6g4yJ/6vKNSCUsOy+fqBEVJFnScGGtnXV08s6OXze7sBZ4r4JycnmcxV2dwe5cm1TezqrsO2BW9dTlHWTXTLJuxzky5qfPPgKMmihtelMpgqYwubk+MFdnTFeWpdI//1jSFCXhdNYR89DSFG0mUyJQO/18Wz65uJBzy1+tCPbm/HsOybcv26Fa62YZY8PHjdau3YXw7bFrx0eoqJbIVn1jcx0PzeDMqTaxtREPz5W0NMZCsoCgS8bnZ0xeioC1A1bMdiWoE//sUFjoxkqRomI+kK9SEvH9zSuiAoPz6eoyXqJ18xqRjWggfUOa4u61iOh+24FuK91kFrFboIg14XIZ+LkmbReAPZ54fte5dIJA8eq60D/T9wG+24bwcDzRF+bZ8bVVGoD3mZzldntZ2dUu+hVGmRTfZQskTQ62ZdS4TnN7fWDBwuzxQ5OORYd/s8LoJeF3/x1hDDqRJel4pp2+imoDnqozXqpyXi58/eHMajKswUND62vZ3vH59gLFthb089TWEfB4fSHBvNEva5+bV93bUgP5Gv8s5gms66ALu66wA4PZFjMltlb2/9qmbLDg6leetSijXNIV7c2iZvfJJFZMo6r1+cIVMysCzBQHOEi9MFXjk/Q0ddgPFMmURBwxKwqT3K1vY4H9vRzn96+RLpks5Ht7XyB397gqMjWSzbpmpYRHweDNtmx+z5ZVg2BwfTFKsGJc3ArTpNiDfLT09PcW6ywN7eOh4faFydL+IeZyRdrP18C19dDb/HqYHOlg3aVmDoZFg23z48xkxB4/nNrQvUhiQSieR+YrUD6Psysmqb7Uz/xsERJrJV+hqD7OiKM56t8Ghfw6Ll9/XVU9YtWqN+ts5zS4sFPbhUhaFkiVRJw7ZhcKbIUKqMoghMG6I+N/1NIfqbwjUTCkVR6G0McXQ0y1CqhEdV6G8KsaUjxtfeHQYUZooa3z82QUd9gGfWNfHLswnevJzEFoJ/+ZHN+D0qPzs9DUBBM/jkztWbSj09nsMWgovTRaobbALe+1PCS3L78LtVZgoahapJquw8fB4dyVLUTM5N5jkwlKaomeimzWS2yrZO+O9vD/HGxRncLpV/+9M8IZ+bim7idqnUBb1YQtAZD9DX5DTVHhvN8u5sAH1qIkdLxM8vzk4vKhlZCZYtaqoapyZyD00APZ2rrvo2g173krMAS5EsakzOjuHsZH5RAK2bNt85OkaqpF+zYVUikUjuNqsdQK9GUuOuIIRgetYBcDqv8YlrBKCddUF+49HFxgzNET+/+WgPX339Ml6Xi8lchZLu1H+ato3PreDzOA5qlmXTEg3wse0dXEoUGcuU+e7RMYaSJVRVYTBZYjJXYW9vPa9fTDKRrTCWmaF1JsDa5jBl3WSmoOF1q1xMFNjdU4fXraKbNmHf4uzzpUSBwWSZHV3xG2702dFdx1uXk6xpCsvg+QEjVzF461KS+pCXR/oXPyyulIDXzf6BRi4miqiKEyitb40wkaugAJPZKkXNxK0qeN0qr16Yob8hjEtVyZV1GsJeDMumOepnS3uUoNeN36NycjzH194ZprshREW3MCyb8WwFzbSZLmg3HRC6VIUdXXHOTuXZ0VV305/7fiNyl3snnDK1IImCtsCqfY7pfJWJrPM3PT2RlwG0RCK5Z7nhAFpRlAJLB8oK96EKxxyKovD+jS2cnczXGglvBNt2vpK6kJf9A00cGc7wgU0tdMQDXJkpYVg2Yb+b/sYQPo+LbNlgpqBj2YLLM0VeOz9DrmLSEPJiAxPZCn/97jC/9/QAX368l//lOydJlwx0SxAPenlhSytj2TKWLWiN+gl63XxiRzuHhjJsbFuY1akaFj86MYUtBIlClV9/5MZc2XZ0xdlxE9+J5N7nzUtJzk85yi5d9cEbdpKbQ1UVPrmzgz/+1SW8Lmc25IuPdOP3qPzdkTHqQx4ifjdhvwvdEChCoFsWz6xvIlPW6YgHCXhV8lWDgMeN16Xidql01Qcp6xZvX07R1xiiqz7A9q4Yb19OUTFsXtx+80o0z25o5tkNzdddzrIFLvW+nFxbxEozxbcLt0utNYsupZDSEl1Zw6pEIpHcbW6mifCBLVrb1B5d5Ky2EhKFKt8+PI6iwGd2d/LEQCNPzE4JP7amkZmCRlddwHEgVFVOjed45XyCuqCXl05N8lfvjDhNhm6FeMCLaducnshRNSxeOZegsy5Ad32AaMDDQFOYsM9NsWqQLOq4FIWLiSJrWyK8cyXNSLrMaKbM33uyv6ZA4FYVgl4XRc1csXZ0qqgR9rvxuWXG+XYghODNSykyZZ2n1jbdNYWHORtlr1sl7F/55eD8VIFEocqu7rqackbQ56Yl6qOkmUT8btIlnR+fnKSgmXhcKh11fp5Y08BfHxhhOqtRNWx6GgJ014fY01vH02ub+ONfXeSdKym2d8b5xM4OGkIebAGjmTld5yi7e+rY3VNPwOOq7ft28cbFJAeH0gw0h/no9vbbuq87we2oOb4yU2QyV2FHV911/x6JQpVXzjsyhLppL/pOvW5HyaWiW/e1XKBEInnwubvpiPscyxb89PQUh4fTCAERv4fhVGmBrXDY5ybsc/Orc9OcGMuxvSvOs+ubiQU8/LuXznElWSJRqGLbAp/HTVvcDyiMzTZd/elrl9FNG49L5UuPdfPkugYuTud541KKxGzJyUiqfM1xul0qv7avi+m8Rk/D9dU73rqc5N0raSJ+N7/xaM99a1t8LzOWqdQaTj0ulRe2tN6VcTza3zArD+desXJFuqTzk1OTCOGUgHxkmxMElXULw7QpaRY7u+K4VIVLCccQZUNblP/1I5v4yl8eIl3SqegmhYrKcEownqlycbrA6Ykc49kKLlXh52en+cXZabxulS8/0cvv7u+npJl0zarPNIZ9CCHIlHSiAc9tyxCfm3LqpC8lihiWcx7ezxwbza3q9tJFjf/zJ+coVA2eXNvEP3p24JrLB71uJnMVchWDgebF5RklzeSv3hmmrFs8ta6J3T0PT3mNRCK5v5AB9C0wka1wfqqAW1XJlHX6m8KsbYlQ1k1eu5Ak5HPxxJpGFAWOjWTRTZu3LiXZ2Brlv7x+hQuJIj6XQkPES6ZkEPK5yVYM1jRGiAfcHBnJki0bNUm8H5+c4rvHJilqJmGfm+76AIYleH6z43L4wpZWzk7m6agLLAp6I37PirPPczWIhapJUTNlAH0biAY8tZr1u2k+YdmCy4kiFcPiqbVNK6px97gUXIqCKQT+eTMUw6kS2YoBwFCqzP61jXTVB4gG3MQDHs5O5nGrCiGfm7ZYgBe3tfLLswkGZ4okClVGMxUms1U8LhWPCwqaiVtV+cnJKb6wr6eWLZ/j52emOT2Rpy3m5/N7u26LOszunjoODqVZ1xK574NngOAqn8v5qkmhYmAJwVT++vXoxapjfBPwuGpqK4m8Rlvcj8flXEfLugXAZK4C3HgAbdsC0xZ4V0PoWiKRSJZBBtC3QFPERyzgQVHgYzt66WsMYQs4OJTh7KSTuWqN+jkzmefyTImhVIn1LRF+eXaaWMDDmqYQEb+bz+zu5OsHRjk3lSdV1KgPefn0zg5SJYOSnse0bQaanW3nKgbpkk6mqNEe8/PPn19fy8qFfG729NZfa8grYv9AI69fnKEjHliQTZesHrGAhy891kNFt2iO3rrV9M1yMVHg8HAGyxbYQvChFbhbRvwePr+vi1RRZ+28LKLXrXJppoRl2Ty/uZWfnJykpJl43Sof2NRKc9THlvY4vQ0hPrO7k/WtURQFvnXQoKSZTGYr6JaN26UQ8LoxLQGKQjTgYTRd5vJMkS0dMRrDPgzL5rWLM1R1CyEEhiXwulc/gN7ZXcfO7gcnC+r2rm5Q2Rbz0xT1MZIqr6hPIhpwUx/yOipGsQDfODhKuqTT2xjkkzs76YgH2NkdJ1XUeXSJplbNtPj24XEyZZ0Xt7bR2xha8H5JM/n6gRHKusWHt7Yu0COXSCSS1UQG0LeA3+Pitx7vxbBs8hWD//bGIJYNHXE/x0ez+Dwqn9jZxpWZEs0RH/mKQVd9kGjATSQQobchSHPUzztXMoykyyTyGkXNxLbhUmcJEFQNi56GIF/Y101j2M9Lp6c4OJTGpSjUhbwkClotgF4tWmN+Pruna1W3KVnMjcwK3C7qgl4EghNjWdIljbqgd8nA5WqaI36aIwsDf9202TZPWeFiokg86MXvcbG103n9hS0t/PJsgnNTBdY0hWkM+1nbEsawbC7PFGtKOI1hH5YNG9siVAyTf/fT83TVBxhJlxloCvPS6SlSBQ3dEjy6prGWbdRNm5fPJzAsm/dtaL7rTXP3Gq2h1X1Yy1dN+hvD9DeGsezrizAFvW6+9FgvRc2kPuTlwKBTxpQuOTMXiqLwzPrlGzsns1WmZzPdZybziwLoqXyVQtUE4PJMSQbQEonktiHvLreIS1VwqS4uTBcwLOcGkihodNQFMCybimGzr6+ec1MF1raEqQ95eWxNA786l2AkXeHAYAbNtBhLl7GFwLYFyaKGZlq4VZWg10VZt/F53Oztq2dvXz3fODDML88laAr7bpsRweHhNOeniuzprWNdi7wJPai0RP18fHsHZc0i5HMzlqmseN2pXJWXTk0S8Xv46PZ2NrVFSZccZZntXTHevZLirUtJ9q91GmqrhsXfHBhlOl+lpJvs7Kpja0eMl05NAfC5Pd1M5SpcTBQpaSbxoBdFUVAEZEo6fo9KV12QdwfTGJZNQTPZ3VPP3t73MsTnpwo1fef6kJfH1yyt73xwKM3F6SL7+uoeqiBrOH3tfokbpTHsZWNblMlchT0rrFcOeF21UqEPbWnlwnSRbZ2LJe2Woi3upy3mJ1M2llTp6KoL0tcYIl81pHKQRCK5rcgAepVY3xphJF3GsGw66wK8+fMkqqIwnCrzoS1tNVUOgAODaX52epqOeABFgVRJZ3NHjIlMBVVx1C8URWFda4TJvNNUdTlR4PWLM5wcz5EqajQEvQylyoRugy6zYdm8diEJwGsXZmQA/YCzpjnMU+uamMxVeGzNyrWgT4xlyZQNMmXDyQw3hxdkD4+NZijpFi+fS/D39vfzrSNjHBpOU9ItWmN+mqM+JrKVmtZvc8SHZQuGUmXyFYPHBxr40NY23riYQrds+htDlHSTwWQRUPjI1jaeXN9MxzzpvaaID7eqYAlBy1WlMWOZMj84PonPrZIsanhcKq9fTD5UAbS6ypcLRVFuqQF2bUuEtTd4fZnMVUkUqlSNxV7kXrfKJ3beuLGORCKR3CgygF4lfG5XTY0gUaiyq6cOBbCvusbnqwZvXkricSlM5qr8w2fWkK8aHBnO0BbzM5quUNRMBprCPLexhZDHTcU0OTKS5cpMkWzZoKA5jTuoCq+cn2H/2kaOj2Y5P1XA41LZv7bxpvV8wZG964gHGM9W6F7l8hDJvclT65pueJ01zWHOTRVmmwIXBqu2LfB73JQ1E0/Qw6GRDLmyQcjrBgHbO2O4VYX2eIDWmJ/cbPPhhekC2bI++3qAvb0NDDRFODKa5quvDjKRreBxqzy3oZlnN7YsCpJbY36+/EQvlu3opc/n3GSBqmFRNUx8bhVbOBnLhwm/5/5urDsxmuOdKykAvntsnH/xwoa7PCKJRPKwIgPo20BzxM/zm1qZKVbZO9vUZ1g2J8ZyBL0qYZ8jGeZxq7RE/WzpiPH4mkauzBR59cIMUb8bl6pwaCiNoghG0k4gO52vkq+ahH0uPKpCb12A6XyVA4NpXjmf4MRYjo1tERSFW6phVhSFT+/upFg1iQbkISJZmjVNYX7/mTWoioKqKqSKGgKnfllVFb7yZD9/9tYgsYAHv8vFBze3UjEszk7kefn8DCG/h2fXN9PbEKRQNTk9kcftUmgI++iIB+hrCPGz01MkClXeuZJmIltxSptcKl63SmwZV73l6so3tke5PFMk5HPziR0dWLZ46I7v1sh7NcOuu+QNU9RM8hVjxQ/5hmXzxiVnRqyv0ZFcrOgWa66qf5ZIJJI7yR29eyiK0g78ENgEhIUQpqIofwB8HBgGviyEMO7kmFaLZFFDARpmVSucpqn36vreuZLi0FAGgO56P984mCbsc/F//vgMDWE/E9kyv/dUP9s643z78BjDqRKJgkZ/Ywi3S+Hty0miAQ8f397G+akCFxJFDg1n2dgRRcWZuvS5VQxLoCpgWjbuW5DdcqnKXTP3kNy7CCE4OZ5DVRQ2t0drx9housy3j4wB8NHt7bTF/BR1k8/s7uAXZ2f4i3eGeGJNAx/Z1sbx0SyTuSqHh9McG8nwk5OT2MBAUwjLhp6GIE+ta8Kybf7DLy+iGRaGLYgF3JR1hU1tET69swO3qvDT01MUqybPbWxekHGeKWhM56usa4nUGgw74gF+7+k1d/w7u5ewrPemxKzr9/ytOiXN5C/fHqZqWDzSV8+WzhjjmQp9jaFl5TJPjuc4NpIFHPWa/+2jm8mWjUWOq5LrUzUcV0+/x8UjffWoD4jDpuQ9ev/wR7e0/tC/eXGVRvLgc6fTL2ngOeA7AIqiNAHPCiH2K4ryL4BPAN+6w2O6ZQaTJb53bByAT+3spHsJsxIF50KlmRbHRnPolkWuajOYLPHqhSSWbZMsamxsi/LahQSJgobXrVLRLTrq/CiKgmEJNrZHuZAoggBLCBJ5nU/siBAJeHhxaxs/PzPNxUSR//bGIF96vHfBTUkIgWba+D0u3r2SYipf5bE1DTU1BdsW8oIquSYnx3P88mwCcB6yNrY5jVypko6YDcjSJZ3zUwXOTxUYz5Y5OZajqJmUNRPTFigKRPxursyUOD6SpaCZxAJuUkVHT1g3bcJ+D5PZCjMFDVVR6K4P0h7343e7qA/7uJIsY0OtYfDwcIbnNrYghKCsm3zj4AiGJRhJl/nw1rbZZdKMpis82t9APOh5KPXN37g8c1f3X9RMqoaj85wsanzz4CiFqklHPMDn9i49axaflQqd+7mrPkjXrat1PpQcGspwbDQLQEPYK/tbJJJb4I4G0EKIKlCdZ3iwD3hl9udfAF/kPgyg0yWtFjykStqSAfSj/fVE/G78HqdxaV+vRbqkM5Qqk6voeF1OTWZZsxA4wUnI66Yh7OWDm1o4M1WkqpucHs8xmq7gdjlT2GtbwkxkK5wYz9Ea9TtByVgG3XTUPP7nFzfVxvD94xNcmSnR1xji4nQBzbSxbMGndnXyyvkER0eybG6P8vzmm28KGkmVOTySZqApUpMue9CwbcGRkQyKAju76h6qh465B0GA+b4lm9ujpIoatoBtnTHeuOhMuXtdKo0RH4YlCPpcvHwugUtRqGgmQ6kKFcPCsBwzGcN25CDLs8F2UTPprg/SFPbx+88O4HO7+Mt3hjg9kSMScGzDfR6Vsmbx1qUZ/ubAMEXNoq8xTNCrYtpweiLH1o4YUb+n1hh7ZDhDXcjL+tZILbieQwjBW5dTJIsaT65tWmTecr9TH7q7s0otUT+xgIfhdImGUB1HRtLkKxa+eRreI6kyqZLG5vYYXrdKf1OYL+7rBrimZnq+anBxukBPQ+iO6tefnshhWIJtHbF7/lowV/Y09xArkUhunrt9BsWB/OzPOZaxnVIU5SvAVwC6u7vvyMBuhC0dMTIlA0WBze1LB41ul8r2WVmlrvog6ZLOT09NUahOUdZNgl43T69tZGtnjPPTeQJulfa6AGubo+SqFlvaowynyrx6IUnAoxIPevi9p9bw7IZm/vk3j1GoGuQqBrppM5KuoCpOk83fe6qf5ogfyxZcmSkBjmPc2ak8Jc2queCdmTV+OTtZ4AObWm7a1e1X56bJlA2GU2XWtYbxuR+8LN+J8Ryv1wJE1wP7oLAUWzqiqKrzgLeh9T0ZMY9L5bmNLbXfn17XRGvMTzzg4fx0gUReo7MuwJ+/NcR0vopu2vg8KhVDYXd7HWuaw5wez1HQLOqDKpO5CpO5KnUhL5/Y2cGGtiiFqkHE78GtKrx5MUmpavHFR7r43tEJ/ubgCMWqicetYtqCNU1hBpMlVAVcisKXHusl4ndTqJqUDJM6vFxKFBd9volctaZN7FZVXtx2fWOZ+4l0Ub+r+5/OV8lVDKq6xX9/e5ipQpWAx0VXnVMPnSpq/H9fuUhZs/jg5lY+st1pzF6J2dD3j00wU9AIeDN85cn+OxLMXpwu8LPT04Dj6nmvW49v7YwRD3rwedRFOu4SieTGuNsBdBaY0xyKzv6+CCHEV4GvAuzZs+cuVO5dG5/bxfs3tVx/wVmCXjdBr5tnNzRzejJPS8xPQ8iLYcPbV9L4PC4CHhcBj5vRTAnDEvQ3hgj5XNSHvBSqJn2NIfb01jGcKqGbNpO5KkXNxKOqeFwKiuJksH0uJ4B1qQr7+uq5MO0YWGimjTZrI31izLEMN22b962/+eAZnBtdpmzQEPLiUe/vjv/lcCnOQwiA+251Yt0lFEVZ9iFxPm6XWluuY1bpoqiZGK9fYabgmKV01wdZ0xTmw9vaqGgW5yYLuBTnWNVNgd/joins42KiSKKg8fS6JpoiPo6PWji5cMdKfCpfRVUULNvGLRTcqkJXXYBC1SRZ1DBsgdul8BuP9pAtG0xkyxwfy7GlY/HniAWc0o6qYdEcffBcOHd3x1d9m8mixkxBY21z+Lp9FxG/e1bb3iLoVcmVDQjA0Kw+9XS+ylDS+fn0RL4WQF+Lkmbyi7PTHB/L0hTy4ruDSiPzr5X3ePK5xmobb0keLGQN9cq52wH0QeD3gX8LvB945+4O587S3xTm//7cDiq6xZ+9NUi6qDu2tg0hjo1mmSnqaKZNX2OIgNfNvj7H1OTCdBEFyJYNmiI+2mJ+JnMVOuIR4kEvz25oolA1+dzeLmJBD0IIvndsgqFUicfXNLKvrx6fW3VqoPsb+PqBUSdg93prphc3ywubW9nVXUddyHPPT2feLLoliM5OhWrmYi1aydIcGkpzfrJAQTNQFJXehiAf3dHBk2ubOD2e49R4FgDTFrxvo+MiGA94ODKSoaxbHBnJ8v5NzYykSuSrJppp81/fGCQScLOzK8ZwqszGtijbuuJ8aEsbLZdm0Ayb/Wsbaw2GrTEXrTE/u3qWLqIN+9x86bEeSpp5Vy3WbxeR0HvKF75VsD4vaSbfODjqzHy1R/ngdcq/gl43v/lYD1O5Kmcn86AoeF1qTQu6oy7Ilo4YharBI/0rK3Q+NZ7jykyJimZyrqDx/s0td+zaM9Ac5sVtbeimvaSxi0QieXC50yocHuAnwHbgp8D/DLymKMobwAjw/9zJ8dwtNNMiVzFoCvtQFIWA18VndnXy1deu0Bj2MpgsUx/yMpou1xqdwj4XpyfyaIaNqjiWtacmcry4tY140Msj/Q0UKia//mgPm666kFcMi8GkkzE9O5lnX189j8yza+6oCzCaLtMRC5DIV4kHvTXlgpWSLGqEfW78HidAuR6JfJWCZtLfGLqljPfdIBbwUDcbkEVlHeGSlHWTim7VVGlMy+ZHJyZBAcuG9riP921oYf9AI5mSzs/PThP0uXGrjrqHAD6xs4OybnJpplirh1ZR8HtcXEwUOTme5dH+BsI+D//qY1v44YlJiprJxrYoLVEfT61rIhbwrKiMaP54ddMmWzGoD3lvScnmXsS2bBTAmca79fPOtIRTt647detLUTUsClWzVi5W0S0sW/ChLW3s7atnKFlm/WwAHQt4+MfPDpCrGPTM9pLYtuD4WBaA7Z3xRcFxezyAS1UoVE0GWiJM57RbViG6EeY34ummzSvnE5i24Nn1zTXHxXuJTEnH43bkVCUSyc1zp5sIDZxM83zeBf7oTo7jbmJYNl97Z4R0Sach5OX5La343SonxnIoQMDrZk1TCLdLJeBxsaUjxqa2KN86NEqqpNfkh1yqwsXpImca8wS9LoqayY7u+KLgGZysz5aOGOen8kva235yZwe5isHbl5N87d0RmiI+fv2R7hUHtgcG07x5KUnQ6+I3H+sh6F3+sJopaJwaz3F4OINLVXh8TcOCYP5+YKA5zK/t60JBWdHDwsNGrmLwtXeH0Qyb921oZntXHIHzoNYZ96Mo0N8c4vGBRhRFYTpfZTRdpi7gpbcxRDzorWkET+WqhH1uNrdHa7XmbfEAPz8zDQqcnyryu/v7aIsH+K3HeynrjgX4L89Oc2gog0uFv7e/j3ho+XKMfNXga++MUDUsHutv4MhoBs2w2dgW5YUtrYykymQrOpvaovd9QN1eF8CtgmFDS/jWGyQ9bgXdsilUTdQlrhcV3eIv3xmipFk82t/A5o4of/rqZXJVk/dvbOYDm1oX1eLWhbzUzWvePD2R55XzjnqIW1UX9Rx01Qf5nf197O6p49R4Dp9b5cBgmt29dXe8B+PcVJ7Ts8owdUHvks6eF6YL2EKwviVyx5MHF6YL/PjkJG5V4fN7u2sPNRKJ5MaRj6B3mLLuZJ+HUiXOTuYpaCZ+j0pJs0CBvb31bO2IMpmv8oVHuqkLevjTV69QNWxSJQ2vy0WyqFGomKQKWc5OZgl53EQCXrrqAli2wLXE9GVTxMepcSeTs7EtWsswZ8s6b19O0Rz1MZ13alOTRQ3DEnhXOMU7mavUPlu+Yi4bQBuWzbcOj5LIa4xnKmxqj1LSl85azSdXNvjV+WkiPg/Pbmhe8vPdaUqayWpk8B5EMiUdbdZmeSpfZTtOk+Hn9nQxnqkgFIVCxeTyTJGtHTF+cXaautlZj3/5/CZOjOc4PZ6jPuThr98ZpagZ/OKszfGxLJ/a2cn61jCNESdT/NS6JjZ3OA+NFd2qBSRjmQonx7OMZyqcny7ywc0tBDxudnbHFxl4ZEtGTVptPFdBny3LKesmiUKVvzs6hhBOydRKHRsPD2e4PFNkX289vTdh+FE1LC5OF2mP+2tZ/NWgalqoilM/bti33k6imzaxgIeo38NSWytUDefahlPf3BTxcWg4g27aRPxuPrBpccnH8dEsqZLGvr4Gwj73gj4Dt0txst26VVPa0EyLd6+kUFWFD25u4TtHJ3h3MI1m2Tw7z1r+dlDWTX54YhLDsvnwljYawz5cqoItxJI19OennAD2/9/eeUfHdd13/nPf9ME09F5YwN5JiRLViy3JkqzITcVWZDverB3vOtV7fPasc/Zs6p6N4+PEdhLHjuWS2IqLYiWW5djqXSJFiqTYCYJEBwaD6f29u3+8wRBlQAIkAQzI+zmHh1MeZn7zZt59v3fv7/f9gjl7X6oOfz4ZjKSREnK6ZDSRocZjNtO67BZarjBXToXiYlEJ9ALjd9m4vrOGcDKLxWsOtDaLBpiKGLtWVKNpAn+hREA3JDUeO5tbA1Q4LFiE4J3eCHndoD+cQpcSmyawWS30hZOk8gY3dtYSS+fwu2zFhOJkQXFgNJ4lnDRrq4djZsPOmVCSI4Mxdi6v4teHhmircs8pSd21ogZDSmo9znPOyEppLsf6XTbcdgvb2ivZuez8dY5vdYeKjUXLaitYUeuZdWzzwaH+KL98dxCA921sZHXDZC1VKSXv9kcn6SRfSbRVudnSFiCayk36fpsCLu7Z1MhP3+6jwmHB6zR/nzaLRoXDSnOlC6fNwrde7iKczPGjPb3UeOyEkzkyeYNYOsdgJMMX717L5+9YzTOHhninJ0wokeHa5dU8dXCAsUSOB3a0IJGksjouu4VsXufpg4Osb/ITjGd4dFfHpHgrK2xsaPaRyOjctKqW4ViGvnCS7W1VpHJ6UaJSn2XCmcrqvHjMnDF9MTdyQQn0Lw4O0B1M4rBpfOr65XMuqZqJoUiaTMFBJZS8eEWOgNvOHesbGIyk2VZCgaLO52TnsioGo2l2rawmmdHJ65KsbiBLtA8MhFP80yunSGV1RmIZHriqjbWNPqyF8aje7+SxV7vJ5AxuXl3L1rZK9vdG2N8bMV9AmhJtUoKjxD4blymMZ/Jcv7KGiossYzg+FOPt02PohqS10s11K2tYVe8hp8uSNvF5Y4KRzSW4gJkr29orCadyuGwWVtZ6ePvMGC8eCxbda5tn6Q6pUMzEldSEqBLoRcCcZfbzTk+40ATo4uRInNZKd7G+byCSIpLKsarOywNXtRFN5xiOpvnyr49htwhSWYNUTjcVC3IGFQj29oS5c32af3jhBNF0nm1tlUVN56s6qkhk89T7nNitGj94swdDSsarITUhyOQMvE4bY8kczx8d5rWTo0TTOR7e2T6t9COd00lldSor7NR6Hdy/teW8n9tu1biqo4p/f2eADS0+rl9ZM6tEvTHg5EBfBLtVo7oMdHlzE9zcJt4e553eCM8dOWs2cqWZFWiamHHm7/rOWjxOGw6rxso680Logata6R1LsaLWgyElFiGIpnKkcjqZnIXqCht9kQyJjE53MMHju3uo8zo5NhQjmDCTwCp3jO5gEt2QfP+N02xqqWR1gxerReCyWTk8EOGpAwPsaK+cZBh0fCjGzw8MYLdqPHx1GwG3Ha/TyuGBKD/a08N71zVwz6ZGwqkcm1sCs/r8DqtGjcdOMJ6l0X9hCUkubx6Xui4Lx+mlweM4qwMtL9Hrrm30nfNCcdfKs43JQdLmRVEqR2vV9H0TTuc4HUyQyhtFpRug2GR4ZjRZXN0YiqYBCpMKYTRhNjGv2tFKLG2OnVPpCiaKMoV2q1byd5rM5snpckar+IlkdUnPWBLDMFelDg9EOTwQA6DOOzatPG1dow/dkBgSNi7w7DOYTbLvn6Bski7sSykprsIoFIrZoRLoRcJps0waXCcu5ZkOXb0YUjK6LMt1K2s42Bfh68+fwG2z0F5TQV8oyUgsjUTQFnAwEDXlur73+mnsFo1wKseJ4TibWwPFGbFQMktVhZ3UhIFyVb2X4YLtcXeh0VATgt6xFAf7I0gJvzgwMCmBPhWM8+/vDKAbkptW17KtzZx5OtgXIZLKsb29ckaXt75wimqPnYFwmpFYZlY1xOub/DQHXNit2jnrqxeKjc3+oqPeuvPMMF/C3OeywKIJtrdX8kbXKN96+RRbWv1sLyhivHh8hNOjCXYur6LJ7yKSzvFuf5SRWJZENkdUCCrdNp58p59EJk8mr2PTNNraXXxoewvPHB6iZyxJS6WL3jGzbrm1soITw3EGoxncdgtjqSwj8Qz1BYWN3rEUUkImZzAcM41gBsKpYtPtvt5wMeFI53RePRHE67SdU/tb0wQPXt1GJJW74Au+OzY0cLAvQluV+5I6JoYS6eLt7CLkS+m8QVY3yOkGiYzO7u4Qhwdj7GivZG2jDw3T1TKTN4imp5d3tVa5WNNgjlk7l5njZzqn47FbEcJMftc2+YDSFy4+pw2LJtANSZV7+nczGs/ww7d6yOkGd29sLCbuM1FdYWdbWyVSmiss/oJropRMspYfRwjBplleiM0HoUSWpw8O4rJrZhNnRxVCmH0y4yt7w7E0DqtlVhcQCsWVzOJnI4ppZPNGcdYpndPJ6wY/2t1L/1gKENy31U//WAqBwG41DVpCx4JoArpGEjhsGpm8QWulm4N9EYaiGY4Mxjg5EieV1fG7bHxgWzND0TTrm3x87bkTHBuKc3ggxu/e1kl7tZuhaIbXukZJZ/VJs0u7u0P8fP8AR4dibGrx0x9Osa2tkhPDcR5/qwef00omr3PrmtK62KsbvPSEUtR47XNyeSt1MlostEISOBObmv1YhMCiiWnlHQqT17tCGFLyeleI7e1V/HhPL7u7QySyOhua/Hz4qha++uxJbJpgLJcnntGxWzUsmiCUzJLK6hi6QVLqjCayHB+OU+11kMzpjBSMWlY3eHmja5QKh5VkVsfrtLK8xlNUUAHY2hYoKshYBHz3tW50Q2LVNBLZPBV2C1JKhBC81jXKvjNhAAJu2zn1dG0W7aLc8PwuG9etvDhJyVKMTEigF4O8LtGEwG03x4lxQ6KXjwdZ2+gjkzNo8JvGT67ChUMqq/Ofh8ySqWuWVdMVNLXvu4IJtlfYSeZ0QsksmhCkzyMrWet1cPvaOkYTmaKx1URG4pliDXxfOHXeBHp5rYf7tzaT0yWr6j0IIXj46jbyhpxWa18O7O8N0xNKmueK+gTrmnzsWnH2d3awL8KvDg1h1QQP7WxbUEdHhWKpoRLoMqQp4OI96+qLs7lWi0adz4EuQRPmzEnfWAoD07AiUGFnXaOXg/0R8rpOOq/jtlk4MhTD47Tisls4NhwlVrC6fc+6elqr3MUEoLPeyzu9EXxOK71jSba1V1LtcfCVB7aQyumTZiJGYhm8Tiu1HgdVFXZW13uLrorHh2JUOKznPPGvb/KzpsFXFo2As6VrJM4zh4ep9zu5e2PjeWPXNHFFuRNeCJ31Ho4OxugslHEYUuJx2Dg2FCdvSEKJLAJwO6zUCScGphpHdYUd3ZCkbQangnEyeYN3+yJsaPLTWuli35kwumEQcNlJZXXWN/kK5Rd+Pnn9Mmq9Dn5xcIBIoSGwo6aCezY1MRhNMxQ1G6w0IdjUapZY7e+N4HFY2bm8GmdB0UGI0vW188WJ4TjPHRmmMeDkfRsaL0rj2G1d3CG/3uekzutgIJJmY0uA3d0hDg1EuaEwZmxqDfDBbS30jCX52DXtgGmVPe6iatVEMcEdN+Rp9DvZUbigrT+PdveRgQi///g+snnJb12f5GPXdkx6fmWth7WNPtI5vWRNdymWT+nJKGf9cAHs6wljt2p8cPv0sruhSJqBSAqbRSOczKoEWqE4ByqBLlOmdmc/sKOFWCpHwG2nN5zEZtXwOW1cu7wKCWR1A4FA0wSiMAlT47HzTk+Y375xBVZNFF0Jk1PWbu9Y38ALR0cYjKY5FUyY7mCA323DMWX5+NoV1eQNyc7l1TT5nfzgzR56x5Km81yzD00IrplQmhJLm7beHTUVRd3R8RrDucxALyb7esLEM3niw3GCE5b/FRfO+zY2ctvauqLM2JoGH6dGEmxu9RNO5hiMpsjmJTuXV3F1RxXffqWbRCZPKmeQ1SXVHjuDUSsOqySazvHS8RGSWZ0bV9UwGMmwvNbNB7e3srreS1cwQXWFnWqPgxPDcY4PxTjQF+HN7hCPXtvOwf4o4WSOBp+DOq+DZFZnNJ7h6GCMpoCTeEHfeOeyKqoqzBrphUyS9p4ZI57Jc3woTnBZ5rwWzIYhzYvoEuVODb6zs6KLcQkbTmVprnTTGHARTWVxWLVpBiQPXt026X5jwFVsItzcGiDgtjOWzHJtYZxZ3+THaTMbrNur3bx6Ikg0neO6lTV4nZPLEN7qHit+n292h6Yl0KaDpplAe+dBJzmnG7x8PIghJdd31iy4zB5CsK09YPa8zDBbH0/nsVk1rJepk6xCcalQCfQS4WB/1LS/dRi4baaLW06XfOqG5fzfp48yEssULGytdFa68DhtbG71F5uGOuu8vH0mTC5vFA0KxnHaLPhcVkYTGidG4jz26ilAcP/WZtombNsfTpHM5omkcvSMJQkn3ZwaTRBN5aj22NnY7OeqZdWTZsh+sqfXtPb22PnNazsYiWV4/K0z5A3Je9c1EE6aNak3ddYSKNOEelW9WXZS6zVn3fO6wZvdIQSmPfpSmk0vJ8aTB8OQ7D0TpsbroC+cot7nxOOw4nfb+PiuDrxOG8tqPfSEkvx4dw+nQzlS2Tyr6jxkdMlg1KzX9zpsdFRX8ODVrdy+tr6o2ey0WsgXFA/qfQ7SOYOBcBpbtcaxoRixQq3t66dCZPMGmbxOOmfQ6HeSzcuilu/bZ8Z47eQonfWeBV2eX9voK+6XUnW7YDYEvtU9Rjav0zOWYjCSZnt75TTZvWTu/LKR80E8k0c3JNUVDvK6QV84zU2dtVgtGl0jCVado9SpOeDit25YBpjf5aH+KMmMTnZCA+94/W53MMEbhSZBq6Zx+7rJpWR3bWzgPw8NEc/keWhKog7QO5bka8+dIK9LPryj5ZJr1L/bH+Wl4yNIzDKdHR2zc1ucSCKTL9Ytz5UtrQGCsQwuu6XYxDuRCqe1WLYyUT5QoVBMRyXQS4C8btATMuvxeseSjCVMl63b1tWxvzdC3jAIJXP4nFbWNfqo8Ti4b0szdT5HUdvT47TSWukildWLM7953eDkSIJarwOH1YLDKhiJZaj3Oqhw2BiOpWmrdnN6NMFwLMNLx0YYiWfQhKDG40ACaxq8dAcTBdOJxmkNT6mcTtdInDe7M2iY5SK5gozWKyeC7Dkzxlgiyzs9Ya5dUU1Ol9y4qnZWLllSmt3s853Abmj2s7bxbNnJ3jNjvNFlnqQrHJZFbQq6HNA0QaPfSV84xa1r6rhjfQOnR5PU+xx4nTYSmTwD4RRvdI1yciTBWCKHpgkqHFb+6L2r+P4bp3nhWBCrprOs1s1VHVWFxCzOP79xmnd6InidVn7n5hVsbAlQ47GjCTgVTLC63suqBi+aMDXR3z4zhm6YDpPRVJ5V9d5iomIea5LDAzFuXl13SZv7zsXU318pjg7FeOVEkLxuMBTN0FzpomskPi2Bjk9YfVqo/tahaJp/fasHQ8KuFVX0jCWJpfMcGYrxsWvayeT1887Ejn8Hp0cTRaOS3d0h7trYOGk7n8uGzSLMFa4SRjE1Hiff/vhV5A1Z8vs7MRzn6KBpdLK/N3xBCXQ2byCRJT9TvNAYC3Bj59xr3LuDCf7xpS4smuCzt6yc82qY32WjudKFz2ktyKdO5uqOKjwOK+4ZdKHjmTwvHx/B67Sxa0X1knORVSguJSqBXgJYLRrXrqjm6GCMWNo0fQjGM9gtgv29EUZiGVor3bRWuqj22KmqcOB321g5Qcbp2FCMY0OmFvS+njA3dNby68NDHB6IYbdqbGj2c2I4js9pIxjPYtU0ntjbxw/ePIPDaiGZzTEQSWNIsxGntcrN5pYAd29s5JUTo4QSGSKp3LSTksOqcXggSiSV47HYad6/qZGNzX5SOZ0aj53Xu0YBszt875kwNouGy245rwFCMpvn8bd6iKXz3L2pcd61oScmL06bhdOjCYQQC78Ee5nygW3Npn22246mieLsWCav889vnObEsNkAW+t1EM/kkVIScNtZ2+jDYbUSKKgrPLmvnz2nw3xoezN/9/xJ+sNp8oZBVYWDrz9/ko0tft7sCnE6lMSiCV7tGsVq0Vjd4CFvmGVQNV4bK2oqAEEyq5PO6ThtFja3+nnt5Cgr6zyzTp5PDMfpGomzpTVwUWUf57tIrCgkmFaL2VRsSLP8ZSoNE2KYpU/SRTMczRRXAEwL9gjZvEFVhZ2PXdM+p2Oo2uOgwmEhmdVLNnFWVdh55JoOkrn8jBKCVovGTG9pt2gMRlPohiRnnLshsRTBeIZ/3d2DYUh+Y2vztCTU57KxqcWPlOBzzX3F7aXjQU4UNP1f7xrlvi3N07YZiWWwWUTJxuufvt3L42/1IAR84c41bGmbXOetaeKc5i7PHBri5wcGcFg16n3OabPYRwejfPOlU9R67fzu7avU+Ki4rFEJ9BLhmuXVXLPcTKK/+txx2qrcHOiL4HfZ2LWyBqsQ7OiopCngRtOmy6uN6z/ndKN4Yhmvhc7pBjetriWUyBJKZLBqmtnlPpIgnslh1QrqB4ksnfUe1jf5+fiuDpw2C9m8we7uEMeH47xwbIQ/vnd9selQNyTHhkyXq+FYBqdVI5HVi8uqUkosmsbJkTid9R5eOzFK3pDYLRrfebUbiya4b0vTtDpGMB21woVa7eND8Vkl0N3BBPt6wqyq906zPJfSNHeYOuDHM3m0KculyaxOwG1HoLRTLxXWGVQrMnlT7qzW4yCUzHJrRxWbW00VmhV1Xpw2KzUeO4EKO10jCbxOK05bhl++O0RelyAlNs383euGQTKjk9ENXDbNLDUqqN2MxLKkcgYOm4bDqrG81kMwnsXvshVn6ra3VxUl92YipxuIwufJ5g2eOmDKPQ5F0zwypd72yGCUF46O0F7t5o71DcXZvNOjCV7vMhP1873fOK1Vbj5yVSu5vHFO4xYBaIABOO0Lk9ysbjBXznKGZGWtm3qfk0Qmf0GmHR6HlUd3dZDJG/hKjAtg9m74Kf1cXjd45sgwiUye29bU43dP3i6eyVHndWJIiXEBh3bvWKqoU30mlJyWQK9v8hNP5zEkbL6ARuPOeg8Btw1NCJaX+J6PDcX4+f4BLJrgwztapl1EjBTcZqU0FUfmymA0TSSVQytotU/lib19nAmZ5lx7T4e5poSVuTnRoqnkWrHkUQn0EmN1g5eHr27n9a5RWitd1PucpHI6N3TW4rKPNwmaA/TEErYaj4NPXNdB3pDFE89ta+t5+8wYzQEXPqcpbXd0MEZbtZs93WMcG4pT73MgpcRmtdBa5SKezvPmqRCpbJ5P37wSl81CMpcnGM8QcNt4+8xYcfb4peMjphuczcId6+qp97u4f+tZEX8hzBriqwtudavqvWRyBseHYoQKBhknRxLTTFwAWirdtFW5iaRybDrHicgozHxpmuDXh4eIpfMcHYzRF07SVlXB6gYvOd3gX3ebFuMTda3PjCb57mvd9IVT3LeliTs3mMvFXoeVwagpI+hxqJPAfOJz2rh9bT09Y0mu6qii1msm2U0B0y1T08xyIt2QbGj2EYxnaat201rlIp3TWVXvIZLOMRLNEi8k4ndvbOBn+/qpsFt55Np2Gvwu6nym4+FYIovXYSOSynHv5kaaA7N35RyIpPjp231owkxe/E4bQ5EUx4fjhTr6BKFEjs56D267lbdPh0lmdQ4PxLh2eQ1+t41QIstfPHWEsWSWVfVeVtZ6pyV5MzGbhFRDMD6vmi9hAjQf2K1asdRCNyS7VtTQHUxwx/oGpJQks/qcHAHNcrMLO+5OBRMcGi8BOR3itrWTa6SvXVHDqydDJDJ53repsdRLnJPV9V5ODsfJGwbrm6aPSxZNTDKWmSs7l5klFjO5nAYLyiR6QclmagL94NVtZHQDj8PCrRdgc359Zw1D0TQep5UVJWqoWyrdPHN4GLfdQlsJo5x9PWGeOzJMhcPCR3e2X7QTpEKxmKhf7xLk2hXVbG+vLGnvu+d0iBePBanx2Hnw6rZJdW5Tm078LtukUgmv02xqOTEco2csyV0b6rluZQ0eh5WXTph2r/+2r49oOsv+3ghvdI1yYjhOR42HvC5NO+YJJ/FMYTaso8bNR3e2n3cJ2+e0gdOUNNvXG8aqCdpn0NqdSYbpxWMjHOiLsLU1wOoGLz/aYxrSfHBbC7VeB7F0nuFYmgO9Ed7tj9IYcJLNGwwXZmZODMWLCXR/xDTUiGfyPHd0pJjkHBqI0D2SRACHB2OsKOF4tpQYn0VfqJreubKxxT9JFvD4UIynDgzitlu4d7PpEri9vZJ0Tuezt6zgzVNj5HVTDtJls9DTNYrNqlHptvGJ65fRPZrAkNDod3HXBFm4h3e24bRpJLM6umE+75rDLO3p0WRRYu1MKEleN9jfZ5ZYBVx2vvrcSRp8poPih3e0sqbRy3AsTXPAhddpHpvDsTSRVJa+cIoKuwWnXWMwkkYiL9jVcCLB1Fkd6PFehIUklMiattdVZgPy3zx7nCMDMW7orOFP79847+/vdVo5OhglmTO4qkQDn9dp43+/f/0Fv77Lbik5Ll0qhDh3icXWtkqi6TwOq8bqEhrWfreNz93WecHvv77JT0vAjcOmlRwvajx2dq2oxmHVyJWwKu8dSwKQyOiEElmVQCuWNOrXu0QplTwDRb3UYDxLJJW7IB3PvWfCJDI6pzJJrusUuBxW3luYLTo8ECOTC9MScNM7liKZ1UlmdT5z80oMQ2KbENeNnWYzYLXHfs7kOZs3ePbIMDnd4La1ddT7nHz6xhUIwaybVILxDK93jfLy8SD1Pievd43yyskgx4fidNZ5OBVMcM+mJoaiad4+Pcbx4Tg2i+DUSIIaj511TT76wyl2dJytCdzY7GdlnYczoSQraiuKydTBvghdQbMO8d2+CPdsaioZ01JgIJLiJ3t6AfjAtpayNH+YyqlgAkNK4pk8oUQOh9WC12na1W9prWLP6TCGLhmJZWipdNNS6WZ5TQW3rK3DbtXYV/h9v9MTps7rYGubeTFa63Xw4NVt7O8N01LpnvHk/vLxIKeCca5ZXk1nvZfBSJrXu0ZJZfO47RYCbhur6728ciKIVTPlwDK6znA0zUjUVEAYjWc4FTRro29aVVv8nS+vqaDaY8dm0VjT6KM/nObf9vYBcO/mxkl9DRdCbcXZ73cxVBZsFsGRgSihZJZqt42DfRHANNZZCKLpPMtrPaaW+GVYfuWyW7hzQ8Ost09m87x4LIjbbuH6lTXn1RgfiWX41aEhfC4rd65vKCrdjNPgN90YnXYLlSVUlXYuqyaZ1amusNNSWf5jjUJxLlQCfZlx9bIq0rkRmgKuC7YRXls4cTf4HVROWD4WQvDJ65fRH07RVmW6HL58Ikh7tRu7VfAvb/SSzunctraOTS0BXHZLSVOVU8EETx0YoNJt54Pbmzk2GOfwgLmsWl1hZ9csBvKpvHB0hDOhJMmsTiZv1iiHk1nyhiQvJWsavFg0QVPARZ3XwepggpMjcZ49MowQ8NGd7dyxfvKJp8Jh5Qt3rWEknsHvshUvWgYj6aJT5GB0cZ3dLpa+sVRxJrI/nFoSCfTWtkqC8Sxep5XOeg/NARdDsTTLayqwWjQ+sqOV/kiaeDrH7tNjXN9Zw/s3NxWT1DWNXg4NRHnzVIiDfRFuXVvPb9+4HIA3T4U4PBDFIgTLStSYJjJ53uo2k73XukbprPfy7JFhXjkRJBjPsHNZFR+9pr1oKNQVTBBJZotNu+Gk2Sj53de6eb0rRFWFnZV1nmKtrN1q4f6tLRzsi7K1LTCpzjSSuhQSdBKLBoZB0RhmIRmOZQgmMuTyBqfHkmxrq+RAX+SCFCkuhOaAixqPg2TWVFiZSjyT58e7e0jlDO7b0rQkjoeL4a3useLY2+B3ltwnE9l7ZoyhaJqhKKxpSE5rIvQ6reR0A5/Fhr2Eyket18FHdrReug+gUCwiKoG+zGivruCRa2duIpoNG5r9rGv0lUxiPQ5rcZDd0VHFtrZKNE1wejRRnNHpD6fZdI5VzEP9UbJ5g6FomsFImjqfA6sm0KWk3n9hSgXVHjtnQknWN/l4dFcHwXiGJ97uY3t7JR/Z0TqpI91q0eis99JTWE6U0mz+KoUQYppxRXt1BU6bBQEsq57ZznkpsK7JV9wPUxsry5Var4OHd57V8PW7tUl1wnU+Z3HFY9eK6Rdjm1oCxNN5jg3F0A1JT8j8/IYhizOiB/oiJWtVXTYLjX4nA5F0McGu9pjuiOMXWHrhgqTCYeXTN60ATDvqQwNRfC4b65p8HB40k5ZoOle0rB7ntrX1xdrcvG4QTecwJOes9Z8tXqedgMtGKqsvSnLocVjwOGykNZ3qCgdfvGc9hiEvyl1xLlQ4rHzy+mUzvmdPKMlYoTn56FDssk+gxydZLJogMIta+46aCg4PxHDZNep901c3jw3GsFstxNJ5BiPpcza0KhSl6PjCzxf1/bv/8u5Zb6sSaEVJZntCG9+utdLNltYA4VSWncvO1hbGM3nOjCZprz67JL6h2ceZUJKqChsNficOq4WPX9eBYTDrhqmp3LSqls56LwGXDafN1DD9LzcuL9gul55p27WiBqfVQsBtn9OJ8tFdHfSFU2hC8PDOjguKt1xw263cv3X+ajYXm5l+x1vaAty8upbDA1Hu2thQ3HZzq5/DAzE2l2hcHd/mIztaSeb0olb5e9bWs6zaTc9YivbqiuJvWDcko4kMVW47LruFj+/qIKsbuO1W8obE67CypsFH9TnKrKwWjRs6a2d8fq40Blz83u2dvNYV4hO7Oi7Z686WpoCbL9y1hv5wqmhQs1DJ80Rmes+2Kjc1XgepbJ61DUvjgnIqJ0fi2C1aSZm/qWxo9hd8ALSSsndTWVXvpbXSjdUiSupIb2j20xdO4XfZLvuLD4VCJdCKS4KmCW5ZM72r+yd7egklstR47EUZr/bqCj5z84pJ25WSqpsLQohpKgTna4pz2iwX1BFvStsJhDCX9Gu8c68zVywubruVlXUeEhmdPd1jbGj243PauHVNPbeuqT/n3+YNye7uEDaLxjXLq7FoglUNPlZNSbiefKeP7mCS1io3H9reUtAfNpOOLa2Bkuoy801eNxiImGZIPWMprlq24CGwttFXUkGiHKhwWHnkmvbFDuOC2d8b5pnDwwB8cFvLJCfZmZirGcu5Gmtbq9x86oblc3o9hWKposzuFfNKqlDWkbqMGnZePTlKXzhF71iK106NLnY4igsklTXLdvKGJJefvaTbvp4we8+Ei/XSM9EfNuvjB8Kpiwv0EjKWzLLn9BgjsQwvHhtZ7HAUl5jUBKfJy2nMVSjKETUDrZhX3r+5iaNDMdY0LG2pt4lsbfXz6okgCNiibLyXLDetrsXjtFLndZyzjGIqPpc5bArBjGYeALevredAX4T1ZVRbHnDbWd3gYSCSYesUFzrF0mdbeyW6lDisGqvq59edVaG40lEJtGJeaQq4LrtauPXNAb547zoEgoYLbHpULD4eh5WbVs29vnhNgw+v04ZVE+dc/l7d4GV1mV042iwa/+POtQxH07TNokZWsbSwWTR2rVgYRROF4kpHSLnwYvoXgxBiBDh9iV+2Bghe4te8GMopnnKKBcornqmxbAPevsSveSVwJX5mWNjPPfW3We77XMV3cSy1+C7F2DnflPs+LcVSjBnKK+52KWXJmZYll0DPB0KI3VLKHYsdxzjlFE85xQLlFc98xFJOn2+huBI/Myzu5y73fa7iuzhUfJceFfPCsVTiVk2ECoVCoVAoFArFHFAJtEKhUCgUCoVCMQdUAm3yjcUOYArlFE85xQLlFc98xFJOn2+huBI/Myzu5y73fa7iuzhUfJceFfPCsSTiVjXQCoVCoVAoFArFHFAz0AqFQqFQKBQKxRxQCbRCoVAoFAqFQjEHVAKtUCgUCoVCoVDMAeVEqFCUEUKIz0opv7bYccwXQohGKeWAEEIA9wFrgVPAj6WU+cWNbv4QQtiAO4FRKeWrQoiPAX7gn6WU4QV4/+3ANUAlEAZel1Lunu/3VSgUisuVK7KJUAhhAX6DKScU4N8W+iSuYin/WOYrHiHES8D4ASgK/68HDkopb7yYeMsVIcSzUspbhRBfAVLAs8AWYIeU8iOLGtw8IoR4AngLCADbgacwnbYellLeMc/v/WXAAfwaiAA+4HZAl1J+bj7fezYIIQLjFxFCiHuADcBJzIuqRT9BldtYNJUlsP88wKcx91+As/vvH6SUscWL7NyU+/deChXzwnKlJtDfA/YDzzD5hLJZSvkxFYuKZSHiEUL8AbAJeExK+XzhsV9IKe+6JEGXIUKIX0spbx//f8Ljz0kpb1nM2OaTiZ9PCHFQSrlh6uPz+N4vlrogm+nxhWbCRdVfYCZYPwOuA1qklJ9Y1OAov7FoKktg/z0JfI/p++83pZT3LmZs56Lcv/dSqJgXliu1hKNDSvnIlMf2FmYEVSwqllJc8niklH8thLADnxJCfBr4l4uKcGnwHSHEN4EeIcT3gRcwLyIu93KChBDif2HOBA8IIf4QCAGZBXjv3UKIv8ecgY5inqBuA95egPeeC7uklDcVbj8thHhhUaM5S7mNRTNRrvuvGviJlNIo3B8TQvwE+L3FC2lWLJXvfSIq5gXkSk2gfyaE+A/gec6eUG4CnlyEWJ5cArH8exnE4gduXKRYSsVzSfaNlDILfF0I8Q3gEeCdi4yzrJFSfk8I8QxwB1CPOQZ9U0p5WX9u4MOYNdAngT8HHgWcwAPz/cZSyj8QQmwFrgVWYS6RfkNKuXe+33uWbBNCvAisGy9HEEJogGexAytQTuNiKbYVko21Zbr/vgY8L4TYz9mxfD3w9UWN6vyUU54wW8opn5gt5X58zcgVWcIBIISoAa7mbE3WW5hXQm8tQizXAxsLcUQKsSyXUr6xCLHswDzJWgAd0KSU31/oOAqxjH9Hfsx9s0NK+SeLEcuUeLYDJ4ATi/F7USguN4QQGzBrsg8X7ruBTVLK1xc3MpNyPvaFEPcBv5JSJic85gY6y+XCVAhhxTyvjI/lx8u9vhXKK0+YLeWUT8yWcso75sIVmUAXrs5L8Usp5XsWOJYvAXWYP5pq4JNSypHxurYFjuVbhZtZoBbox7wirJNS/vYCx1KqwW4d8O5i1G0KIZ6WUt4phPg9zPqs/8CsM+yTUn5hoeNRKC4XymkMLEW5H/tCiH7gNDAEPAE8KaUcW9yozrJUm8TKKU+YLeV+LJWinPKOuXKllnDEMQ/giQjMWsyFZsd43ZoQYhPwIyHE5xchDoCVE2I5IKX8UOH2c4sQyxOUV4OdvfD//cAthXq+vxdCvLxI8SgUlwvlNAaWotyP/aNSyluEEMuADwBPCCEywM+klOVQJvEYcAD4AZObxB4DyrlJrJzyhNlS7sdSKcop75gTV2oCfRi4X0oZmfigEOJXixCLVQhhl1JmpZT7hRD3A9/HrBFb8Fgm3P6fE26LqRvON2XYYLdOCPFdYAVmI1iq8Lhz8UJa+gghdMyTqxVTD/qRQg1nR+H+n0opv1jYtgYYwJS/+m+LFLLi0lNOY2AplsSxL6U8BXwJ+JIQoh5TZ70cWKpNYuWUJ8yWcj+WSlE2ecdcuVJLOBoxDQ2yUx63LvSSkhDiaqBbSjk84TEL8GEp5Q8XOJb1wBEppT7hMTtwp5Ry0ZoQCvVzjwCrF2vJVAjRPuFuv5QyJ0x90xuklL9YjJguB4QQcSmlp3D7O8AxKeWfFRLoZ4ColHJr4fnPAP8VeFkl0JcP5TQGlqLcj30hxB1Syl8udhwzIYT4I+BmpjeJvSil/H+LF9m5Kac8YbaU+7FUinLNO2bDFZlAKxSK8mBKAv1pzMax3ykk0P+BqQ/611LK3UKI54H/BJpUAq1QLB2WYjOeQnE+rtQSDoVCUUYUZkluA7415akfAg8KIQYxG2P6gaYFDk+hUFwghWa8EPD0lKf+BSjLZjyFYjaoBFqhUCwmLiHEPqAD2ANMrS98GvgTTIWBxxc0MoVCcSlYis14CsV5mUmmRbHEEEJIYVpijt+3CiFGCgLlCCE+Xri/b8K/dUKIDiFESgixVwhxWAjxphDi0cLf3CyEeG3K+1iFEEOF+jCF4mJJSSm3AO2Yagefnfhkof5wD/CHwE8WPDqFQnGxjDfj3Trh3y2UnxNm2SGEiJd4bLUQ4vnCOfywEOIbQog7JpzX40KIo4Xb3y38zf2FHGFN4f4bhefPTMkLOhb4Iy5p1Az05UMC2CCEcEkpU5hLY31Ttnl8au1o4YA5OaFRaznw08Ky23eAFiFEh5Syu/AntwMHpZQD8/dRFFcaUsqIEOJzmO5ffzfl6S8BL0gpR4Uo+8ZshUIxmXs4q1wykcWSJF3q/A3wZSnlzwCEEBullAeAXxbuPw/8kZRy94S/eQh4GXgQ+N9Syp2FbT+OKX2nekouADUDfXnxC+Duwu2HMHU354SUsgv4A+BzBb3THzHZbvjBC3ldheJ8FKyl38H8jU18/F0p5XcWJyqFQnExSCkHpipZFB4vSyWLJUAj0Dt+p5A8z0hBMeY64LeYMrYqLg6VQF9ejDdcOTHry6Zadz4wpYTDNcPrvA2sKdz+AYWDTgjhAN6HWkpXXCLGFTgm3L9XSvk9KWW3lHJDie0fU7MlCoXiCubLwLNCiF8IIX5fCBE4z/a/ATwtpTwGhIQQ2+Y7wCsFlUBfRkgp92M2Yz0EPFVik8ellFsm/Cu1rAYTBMwLMkMeIcRqzCW318vJJlahUCgUiisFKeW3gbWYq8M3A68XJrdm4iHMyTUK/z80rwFeQagE+vLjSeCvuLgyi62YjR/j/BBzFlqVbygUiiuCQuPVvin/DCHEZwoNWf99wrZfLdSTKhTzjpSyX0r5T1LK+4A8MG21DkAIUQ3cCnxTCNENfB5zJVo1k1wCVAJ9+fFPwP85X13UTBSaCv8K+NsJD/8A+BjmgVjWzkAKhUJxKZBSPjFxxQ74OvASZrPWMPC7Bcc0hWLBEELcKYSwFW43ANVMFwwY50PAd6WU7VLKDillK3AKuH5hor28USoclxlSyl7gKzM8/YAQYuKB8zuYxhQrhBB7AScQA/62sEw0/pqHhBBJYI+UMjFPoSsUCkVZIoRYBfwxsAtz4mkEeAV4FPjHRQxNcXnjFkL0Trj/10AL8BUhRLrw2OellIMz/P1DwF9OeewnwMOYF4OKi0BZeSsUCoVCMQOF2b7XgL+SUv5wgs38vZjKR+sxJy12SykfW6w4FQrFwqJKOBQKhUKhmJk/Ad6VUv5w4oNSylPAm5izeQqF4gpDlXAoFAqFQlECIcTNwAeBmaS//hz4MfDiAoWkUCjKBDUDrVAoFArFFIQQlcC3gd+UUsZKbSOlPAIcwnTbUygUVxBqBlqhUCgUiul8GqgD/m6K6tdUKc8/A/YuVFAKhaI8UE2ECoVCoVAoFArFHFAlHAqFQqFQKBQKxRxQCbRCoVAoFAqFQjEHVAKtUCgUCoVCoVDMAZVAKxQKhUKhUCgUc0Al0AqFQqFQKBQKxRxQCbRCoVAoFAqFQjEHVAKtUCgUCoVCoVDMAZVAKxQKhUKhUCgUc+D/AyqGJAswqCxFAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "from pandas.plotting import scatter_matrix\n", + "attributes=[\"MEDV\",\"RM\",\"ZN\",\"LSTAT\"]\n", + "scatter_matrix(housing[attributes],figsize =(12,8))" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 21, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX8AAAEGCAYAAACNaZVuAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/d3fzzAAAACXBIWXMAAAsTAAALEwEAmpwYAABDYElEQVR4nO29e5hcZZXv/1l7162rr+lOd0hCQ4CEyNXIRMaRERyRcbj8gMN4P+OBOTqZ8fgTHJmjcoYDDwzn0TMjPqNz4Rl+4oA6iIwymAODinhEYUAFjGASw53EJHR3upO+Vddl7/3+/ti1K9XdVV3V3XXrqvV5njzVddl7v3tXau31rrXe7xJjDIqiKEprYdV7AIqiKErtUeOvKIrSgqjxVxRFaUHU+CuKorQgavwVRVFakFC9B1AOq1evNhs2bKj3MBRFUVYUTz/99CFjTH+h91aE8d+wYQNPPfVUvYehKIqyohCR14q9p2EfRVGUFkSNv6IoSguixl9RFKUFUeOvKIrSgqjxVxRFaUGqavxF5FUReU5EdojIU9nXekXkYRF5Ifu4qppjUJbPeCLDC0OTjCcy9R5Kxaj0OdXyGunYj+5n32ii4P72jSb4wa7X2TeaqNjxC21byWtX699ZLUo9f88Ycyjv+WeAR4wxnxORz2Sff7oG41CWwKN7hrn5gV255zdccirnbR6o44iWT6XPqZbXSMd+dD/TKYfR6TSrO6LEI3Zuf3/3yPN86Ycv5j5/9Ts28vHzT17W8QttC1Ts2tXjd1aPsM9lwF3Zv+8CLq/DGJQyGE9kuPmBXdiWEI+EsC3h5gd2regZQKXPqZbXSMd+dD8AY9ltx6bTgG+Id+0fzxn+kOWbty/98EV27R9f8vELjf3G7Tu5cXtlrl29fmfVNv4G+L6IPC0i27KvrTHGHATIPha8vYnINhF5SkSeGhkZqfIwlUIMTyYBiIbs3KMxR19fiVT6nGp5jXTsRz9viYDxDbzJPjcGnnptDDhq+EOWNev1pRy/0Ngd1+B6XkWuXb1+Z9U2/ucYY84CLgQ+JiLnlruhMeZ2Y8xWY8zW/v6Cq5OVKjPQGQMg5bi5R5Gjr69EKn1OtbxGOvajn/eMAQHH85DscxHYenwv4L8ePOa/vpTjFxp7yBZsy6rItavX76yqxt8YcyD7OAz8G3A2MCQiawGyj8PVHIOydLrjYW645FRczzCdcnA9ww2XnEp3PFzvoS2ZSp9TLa+Rjv3ofgBWtfnbropHAD9Ofur6bq5+x0YAMq5/A7j6HRs5dX33ko9faOw3XXoaN11amWtXr9+ZVKuNo4i0A5YxZjL798PAzcD5wGhewrfXGPOphfa1detWo9o+9WM8kWF4MslAZ2xFG/58Kn1OtbxGOvaj+4mFbJKOO29/+0YT7BmaYPOaLgb74hU5fqFtxxMZXhqZAgwn9XdW5Jwq+T2IyNPGmK0F36ui8T8R39sHv6robmPM/xKRPuBe4DhgL/AeY8zYQvtS468oSjHq6Zw0ejXcQsa/aqWexpiXgTcWeH0U3/tXFEVZFtU2vgvdWPKrdKIhm5TjcvMDu7hvcNWKmCGvCElnRVGUuVTb+Ja6sRSq0plOOQxPJleE8Vd5B0VRViTVLJEsp/Z+pVfDqfFXFGVFUk3jW86NZaVXw2nYR1GUFUlgfAOpBxEqZnzzbyxBSKnQjeW8zQPcN7hqRVbDqfFXFGXFUi3ju5gbS3c8vKKMfoAaf0VRVjTVMr4r2asvBzX+iqI0LPVeYLhSvfpyUOOvKEpD0ugLqFY6Wu2jKErD0Yxy4o2GGn9FURqK8USGn786iuuZppITbzQ07KMoSsMQhHpcz7D/yAwDnR697dEVt4BqJaDGX1GUhmBuqKe/w2V4MkXYtrAtKVhqWe+E8EpGjb+iKA3B3FW1fR0xwrbN9Refwps39M0z7poQXh4a81cUpSEo1jGrkOHXhPDyUeOvKEpDsBitnFr3vR1PZHhhaLKpbi4a9lEUpWEod1Vtudo7laBZw0vq+SuK0lB0x8NsWrNwS8RaKWo2c3hJPX9FUVYktdDeWekNWxZCPX9FUZQirPSGLQuhnr+iKCuSWsTiq9kzoN6o8VcUpSZUckFWLZunN6u0sxp/RVGqTqW99FrH4ptR2llj/oqiVJVqVMw0cyy+VqjxVxSlqlRjQVYtm6c34wIv0LCPoihVploLsmoRi2/WBV6gnr+iKFWmXC99KR52OQvClkozL/AC9fwVRakBpbz0RvSwm3mBF6jnryhKjSjmpTeqh93sSWU1/oqi1JVaK3SWSy2TyvVAwz6K0kI0YuerWip0LpZmXeAFavwVpWVoxLg6NL6EQjMu8AI1/orSEtRSDmEpNLOH3aio8VeUFmAlVK40q4fdqGjCV1FagGavXFEWjxp/RWkBmr1yRVk8VQ/7iIgNPAXsN8ZcIiK9wDeBDcCrwHuNMYerPQ5FaXU0rq7kUwvP/xpgd97zzwCPGGM2AY9knyuKUgOqKYdQC5pVZK0eVNXzF5FjgYuB/wV8MvvyZcDbs3/fBfwI+HQ1x6EoysqnUUtVVyrV9vz/FvgU4OW9tsYYcxAg+1jw2xORbSLylIg8NTIyUuVhKorSyDSqBMRKpmrGX0QuAYaNMU8vZXtjzO3GmK3GmK39/f0VHp2iKCuJRpWAWMlUM+xzDnCpiFwExIAuEfk6MCQia40xB0VkLTBcxTEoitIENLIExEqlap6/MeY6Y8yxxpgNwPuBHxpj/gjYDlyZ/diVwHeqNQZFUZqDSpeqauK4Pit8PwfcKyIfBvYC76nDGBRFWWFUqlRVE8c+NTH+xpgf4Vf1YIwZBc6vxXEVRWkulisB0egaR7VEV/gqirIgzRQi0cTxUVTYTVGUojRbiEQTx0dRz19RlII0a239h3/3BNKOahyp568oLUqprl4rQQZ6McyexRg+8rYTufiMdSvyXCqBGn9FaTHGExkefO4At//4ZWxLgMLhnGYKkRRK9N7x2CtcfMa6eg+tbmjYR1FaiEf3DHPZPzzOjdt3sv/IDI5rioZzmkkGWhO981HPX1FahMD7NcZgie/xH5xIsrG/A8d1C4ZzmkUGuplmMZVCPX9FaRECL7c9mufzGZhOOwsawu54mIHOGMOTSfaNJlZk2WczzWIqhXr+itIiBMbd8TzWdsfYf2QGAIGihjA/P5ByPA5NpVgVDxMN2Vx34Ru46MyVEzNvlllMpVDjrygtQuD93vzALiwR1vfE2XbuCUUrXh7dM8yN23ex/0gCAGMMnoHhyTRhW7jmmzsA4aIz1wKlq4caAW0SfxQ1/orSQpTr/c7ND3jG4Hj+LAHIvfbZh3ZzzsbV7Nh3uKkWg7UCGvNXlBYjP4ZfLHY/Nz8QJIgN/g3AGP9zIvDSyFRTLgZrdtTzV5QWoxzJhkL5AUvAM77xz7getgUHx5P8Yu9hoHkWg7UK6vkrSpOxkBBbuZIN+dUxQX7glstP5+ZLT8WyhJAtWJZFf0eErz25F9czpBwXQMsoVwjq+StKE1HKqw/COSHLIplxCdsWacfh56+O8uYNfbM89bn5gYmZDP93zxBrOqPEoyHCtoVtCdMph4+87UTueOwVplN+2Wirl1GuBNT4K0qTUI5W/UBnjETaZe9YAksEx/VAhFse3I1tybybRVAd83ePPM+XfvgiGMh4ht54mPWr4jkv/+Iz1nHxGesavtpHOYqGfRSlSShXwsBks7XGgGv85wuFgPaNJnzDD4Rsi5AFY4kMRxLpWYuluuNhNq3pVMO/QlDPX1GahHIkDIYnk7RHQ/S2R5lKORw8MoNYQsb1iIULJ2r3DE0AfqgIIGzbgMefvO0ELttyrBr7FYp6/orSJJQjYZBfxdMRDYH4nn/Ytoomajev6cptYzB+qAj4vc1r1PCvYNTzV5QmotQirvxVvo7r0tceQURIZtyiidrBvjhXv2Mjf/vIi2QyvuFfFQ/z8qEpBvviNTs3pbJIEP9rZLZu3Wqeeuqpeg9DUZqGQIohFrIZmUoBhpP6i8frxxMZLvm7x3A8j65YGIPB9Qz3ffScBb3/lSD50MyIyNPGmK2F3lPPX1GakFJGtzseXpQkw/BkkkhI6IlEc69NJjMFS0QDmq3/b7Ohxl9RmoxyjG6pstD8mUHScYllK4iCZPLYdIrhyVTREtFyyk6V+qLGX1GaiHKN7kL9eYMZQSLtcmgqRV97hPZoiMu3rOP+HQeYTGYYmvClneOREI7nzTtGs/X/bUa02kdRGpCFJBoWotxa//yy0OBRBGIhOzdrGJtO+4/ZMdy/4wB3XnU2l21ZBxgmkg4vjUyRdrx5xyi2f5V8aBzU+CtKg/HonmGuuO1x/uzrT3PFbY/z6J7hktsEN4v88EzwWMjoFisLTWa3C1Q8Q5YFxn9uDIxMJfnOjgOISG5f+4/M4JnZx9DOWY2Phn0UpYFYSqw8iPG7nl+Bc+kb1/Hdna+X1NkpVBYazDS8bBWg43lIVrvft/eCbQnruts4OJH0NZ6Bbeee0LT9f5sVNf6K0kAsNlYe3CySGZdDU2k8Y7j9Jy/z2f90Om8cXFXS6M7tbJW/DmBVPMLodIpVbf77N1xyKif1d/jjClts7O/w+//ia/uUs3+lcVDjrygNRDkSDfkMTyZxPcOhKT8+H7IsHM/j899/nn/907cuyfDme+z+OoAkIJzU3zFvkVgoW+mz0PoA9fwbEzX+itJABMb1xu27mEmnsS2Lmy4tblwHOmO4nsEzxjf8rofjGQ5Npfjgl5/klstPX1JtfeCxFysbLSeco3X+jY0mfBWlITFzHgvTHQ9z3YWnAH58PuMZBBARIiGLG7fv5JnXDi+ppeJCjV9KKXiW2zRGqR9q/BWlgQiMZiRk0ROPEAlZJY3mRWeu5Yvv20J7xM8TePhyzRMzGfYfmeGae35RdtVQPuWWjVZ6W6U2qPFXlAZirtEMWRapjMdLI5MLbnfOxn662iKELIiGLCwLRqbSGGPojIUX9LyLrSlYTq2+1vk3Pmr8FaWByDeaEzMZXhieZGgyySfvfbao5z6e8DV2LIFjV/kqm4Fe40BnLFc2WsjzXmhNwXJq9bXOv/FRVU9FaTAe3TPMjdt3sv/IDADre9qIhKyCKpr5Nf77j8ww0Bmluy3CZDLDwfEkx/fFiUdCpBx33vbjiQxX3Pb4rDUFhY6xnIodrfapLwupelbN8xeRmIj8TER+KSI7ReSm7Ou9IvKwiLyQfVxVrTEoykrkvM0DfOG9WzimK8amgU46Y+GCnvt4IsON23fieH4bxv6OCMOTKRJph0jI4k/PPYG04zExkynoeZcbl19Oe0Zt7di4VLPUMwW8wxgzJSJh4DEReQi4AnjEGPM5EfkM8Bng01Uch6KsOPo7fOnklOPmPPe5MfMHnzvA/iMzCAICa7tirOtu4/qLTyHtGG59eA8iQspx+fg7Ns8rs4yFbNKOBzhFj6E0Lwt6/iKyZqk7Nj5T2afh7D8DXAbclX39LuDypR5DUerFUoXXyuHRPcNcdefPyLgee8cSjEym5nnu44kMt//4FQDEt/0cGJ9BxG+7eOvDe0hmXIYmkoxOp7nu357j3589kNv27p++xoe+8tMFj6E0N6U8/1+KyHPAN4BvG2PGF7NzEbGBp4GNwD8YY34qImuMMQcBjDEHRaTgqg8R2QZsAzjuuOMWc1hFqSrVXLwUhHIM0NsepT0aIu143HnV2bNaJg5PJrEtPx9wcDyZWw2w7dwTSWZj93NX/X72oV8D8Nffe579RxIArOtu47jeeMFjKM1NqZj/euDzwNuA50XkfhF5n4i0lbNzY4xrjNkCHAucLSKnlzswY8ztxpitxpit/f395W6mKFWlWouXgpnEvz69l/1HZjh4JMmLI1M4rt9cPVDbDAhCM7YlHLuqjTWdUdb3xLn4jHWzVv1aOVE2X4Xzsw/9GpN93RLh4ESSaMjGEmHP0IQuwmohFjT+WeP9PWPMHwODwD/jh2leEZF/KfcgxpgjwI+APwCGRGQtQPZxcStPFKWOVGPxUlBu+SdffYrPPbQHzzOzQjmeMQUlmS/fso69Ywn2jiV4fSLJH561LifLkL/q1wCr2/1Qjm0J7dG8CX9WpvnA+Ay3PLh7SYvBlJVJ2dU+xpg0sAvYDUwApy70eRHpF5Ge7N9twDuBXwPbgSuzH7sS+M6iR60odaJSi5cCT3/faCI3kwjbFiJgWb52fn4oJ5BbDrZ55rXDfPuZ/RzXG2dDXzvH9ca5f8eBnOcerPo9pivG2q4YbZEQ1114CrYlOJ7H2u4YnjF4xuPwdIaBziidMf8Gcf39v2LfaKIyF0xpWEpW+4jIccD7gA8A7cA9wGXGmN0lNl0L3JWN+1vAvcaYB0TkCeBeEfkwsBd4z3JOQFFqSb6qZSm9/GLk5wzSjkfG9ejPhmpEBGMMg71tOK7//G0b+7njJy/zlcdewfEMY4k03bEQ40mHdd1tdLX5P+O50s8XnbmOczb2z6qzb4/6nbosEdb3xLlsy1q+s+MAnbFwbm2AZ8yyROGUlcGCxl9E/gM/7v8tYJsxpuyVVsaYZ4E3FXh9FDh/keNUlIZhOU1K5jZrAYfXJ5K0R0PEIyFWt4cZmUrjeoaQLVy+ZR3v/qf/YGgildtHyIKJpIsxhgPjM7RHQ9mmK7NnIIUWWM0dO8ADzx4kkXZyhj8QhdOG681NKc//OuDHZiUsA1aUGrLUJiVzcwbxSIi+9mi2D65DWyTEF993KpvWdBIL2XzoKz9jdCqFcDQM5HgQsX1DPzKVYmImQzRszZqBLFSRNHfsN1xyKtff/6uc4V/bFSMeCWnD9SZnQeNvjHlURK4UkauBN2Rf3g18yRjz1aqPTlGajELNWtqjNndedTZJx53lpb8wNInreYBg5kg7GwxtEZv1PXG+8N4zOam/c9YagMW0gjxv8wB3f+QtfPDLTxIJWbrgq0UotcjrvwCfAP4CWIcfAvoUcE32vYammgtxFGUpFBM8G+yLz5NBGOiMISI43vyJd082zv+pd23OJWoDgtlFyLJIZlwEIe14vDQyNW8/AYN9cW653K/EViG21mBBYTcReRJ4vzHm1TmvbwDuMca8paqjy7IUYTftIqQ0MuUKnt3909f4n9/Zief5vr8l0Nse4XNXnEHa8bj14edznw3+j48nMvzBF3/MoakUxoDjGWxLGFzVxk2Xnrbg70CF2JqL5Qi7dc01/ADZ17qWP7TqoF2ElFqwnJlluYJnF5+xjsFVbRy7qo0TV7dzwup2utvCWQmH54v+Hw+cumDWIJiyfgcqxNY6lDL+M0t8r65oFyGl2iykg19JuuNhbrr0NCKhoz/VGy45Nbfit9D/8eFJv3pocFWcsCXEQhaWZWGJ6O9AyVGq2ucUEXm2wOsCnFiF8VSEQkk1TV4plWKxCdXlct7mAe5c3cGeoQk2r+lisC+e896D/+OJtEMq43LwSJITVrcDWcE3S3DzZB48Yzh4JMlkMjMrSay0HiWNf01GUWEqsRBHaWzqGZsuNLNcblnkQudTLH8V/B8fnkgyMpVCRPjwV3/O6o4oHzx7kPt3HGBVW5ixRJpV8QjTKYeU4/Hhr/4cgL72CP/7D8/UXFiLUsr4txljfg0gIlFjTG6liYi8BXitmoNbDstZiKM0NvVO5ld6ZrnQ+Sw0y9gyuIobLzmNT3/7l9iWL9QGcGgqxbefOcDX/qtfPhoL2YxMJfnEN3/J6HQ697nR6TQ3bt/Jdz6mC7lakVIx/7vz/n5iznv/WOGxVBxNXjUfjZDMr2R/2lLnUyx/9eBzB7jitsf5y/ufYyRb1RModYoIrueRdFw2relksC9OZyw8S83TEkEQHNdoDqBFKeX5S5G/Cz1XlKpTjZDLUqjUzLLU+RSaZXjGcPuPXyESEjpjYQ6Oz+B4BsvyEHxtINuyZs1E/EbuFl5eabfBl5DQXFhrUsrzN0X+LvRcUapOpVQ1K0ElZpalzqfQLGPbuSdiW/6Nwtfzj2MJeB54xrC6I8pNl86eifhVQ6eyuiOaS/z2tUe46dLTdGbcopRa5DWMr+Ip+Mqe9wRvAe81xiy5zeNiWMoiL6V5CWLkxpBL5tcjaTk3SbvUJHQ555O/b4Arbnt8Vh4g7RhuvuxUOqJhTurvKHr88UQmu9LXaLVPC7DQIq9Sxv/Kom8Cxpi7Fnq/UqjxV+ZSj2qf/GPu2HeYmx/YhesZXM/wrtPW8L2dQ9iWYFtS8oa02BvH3Pfn3jCuveBkNq3pXNb10NW9zceSjX+joMZfqQXlllu6HiQzDpbAoekMjuvhGbAFQrbF6o4IsXBhsbbxRIYHnzuQbb7u3ziuu/AULjpzbdGxBDeagHwZh+HJJC8MTXHrw3vmvb8Y6l1BpVSH5Xj+2xfasTHm0mWOrSzU+CvVJN8g29ks2Nxyy/wwy8RMhv1HZvxFVAJpJ5BQILcSt7stlIvJBwa+PWpz4/ad7D8yk5Vf8JOzIsKX3r+Fi85cB8y90RhSjkc8YucWagHc99FzcjOGuSEg1zO598s9/+XuQ2lMFjL+pap9fgfYB3wD+Cla4aM0GY/uGc4ZZID1PW3zGpn88jeHmU45dLdF/CYrluS0cyyxCGofAjfK9TzGpjP0dwpDExk843H1Pb+gtz1MWySEIGQ8c3QLY/jUt57lmO4Y/R2xWXX9E8kMw5MpbBGy5fmsikdy1UCVqH5qlAoqpbaUMv7HABfgt3D8IPAg8A1jzM5qD0xRqk1QY+/74L5xPTie5KT+DhzXZXgyyVefeIUvPvIijmd4fSKFBdi27/K7ngHjAX7ZnIdfbWOM7/mPTPoducAvqxyZTHPymuiscsuAqbTLx/7lGUK2heP5FTtpxyPjeLiewbLAtiwcz2N0OkUsa6grseBM5VBakwVLPY0xrjHmu8aYK4G3AC8CPxKRj9dkdIpSRQKPtz0Sys1pDeQkQTKOx5d++CL5Vc0e4HmGjojlN1oXP8GLQH9HhO5YiN6OCBNJJ6eoGWxtgMlkhohdeDwhyyISsjg0lWLv6BR7hiY5MO6P0fWM36oRoTceYWQqyQtDkwBLWnCWr0hayUVrysqhnAbuUeBifO9/A/Al4L7qDktpRWpdbRJ4to7nsbYrxoFxP/Qj4lfrHBifAeMnePPbKLoGxpN+Xf7a7hgR28IAt1x+Gjd8ZxeRkGAjvD6Zys4qwLb8/QxNpHCL5NmiYZu2iE3Mltz+AzxAXINYhpTj8sl7n83lJ6694GT+5t1nArJgmWdAseSuyqG0FqUauN8FnA48BNxkjPlVTUaltBz1qDbJFwC0LWF9Txvbzj2Ri89YR3c8zL7RBEFkvlCyS4DRqTQbBzpIZlzSjgcYjBE6YmGsqZRfBZQ10n7MvrDhF2Dv4QS98TCJjJd7LX8Lye5nMuXS1+H3/x2dSnLNN3ewvqet7BLThRRJ1ei3DqU8/w8B08DJwNUiuZ+AAMYY07ANXSqJ1j9Xl8VIJFfyuxhPZFjX08adV53NyFSSuZ7zYF+cq956PF9+7NWCJjuUDff4YSLh169P8JvDCTwD+c59d1uESMhieCKFZYHnHg0HCf5NIWQJnusxPJmis81mPOHOu+kc09VGNGSxdyyBlc05HJr2NYDCtoUIJaWlNbmrBJRq4F5K/qHp0frn6lOuQarkd5G/r0TaxRhDezSU2++WwVU8+NwBfrB7hP6OCGPTabrbQkwkHVbFw8TCIV6fSOJ5hpmMH6L54iMvYgwELXcF6O+MYItw8Rlr+PJjr+HOjuZgAFuEqC1MZm8K4wmXqA0p96jXbwkMT6XojYdB/MRyxvVyYm1h28K2pKQh1+SuEtDyxn0hGkFBshUoR68n+C6AnCTxUr+LfaMJrr/fj2BGQzaHplKMTqdzdfmfue85Lvm7n2RLQBO0RUKs62mjLRLic1ecQXs0zEzaxfMMXbEQY9MphKxipuWPLRLyjfGRRIZDU2m+/Fhx9XPHM0ymvdxzC9/wD3REsC1hVVuYkGXheR6HptJse9sJAMxkb1q98TC2JWUZck3uKgElE76tjE6Ra0M5zXeGJ5Mk0i5j0+nca/n17gvh69lMAsLr4zPc8uBuhidTiPj7kGxwJeN6hG2/2qavPZLbft9YgrBtYTA8/dphUo7H4ZkMliXEwhaTKeFwwgGOhmk8z8P1IGTnp4rnY4ufQM7HZF9/75sH2f7Lg7iex3TaRbJtGNevinPtBZv57EO76WuPcmg6jWegIxYqy5BrclcBNf4LolPk2lHKIMWyHjr4JZFz692L8eieYT797WcZnU6D8b1sK8/gDk8G+/RDJ9MpB8/A6FSKzFFnHJOVYvjGz39DyPIVNC1LODSVyb0/0BlleDKF7/wLlkV2LUDx8c01/CLk9HoGOqMcOOLLNUt2jCJw249exragLWLTE4/QEQuRdjzuvOpsBvvipS41gCZ3FQ37LIROkWvLQhLJScelrz2SbVTiSyL0xiO5RuaFGE9kuHH7zlndqwzzDa6VjaEn0o5f3ZO1vnk908m4JhfLB8FAdpUu9LT5PlTYtljfE+eWy09n+8fOoTtm4xm/TLNcgkTxlb+zgbueeC23b/BvXMd0xQg0gYIZaTwSImxbJB13Vv3+3GtR6HWldVHPvwQ6RW6MaqeBzhjt0RDt0dAsjZuFZmHDk8ls+WXQzJyClrgzFqKnLcL1F59Cb3uE//YvzzCWyGTDQf4GIYGshE9u8Zb/t0d7NMZNl54+S1VzPJHBsor7Vv4NZ/5rqzuifOpdm3njYA8PPneQ8aQfTgpCQUGnLjDzZqQvDE3xZ19/Ore/ICGuRQsrl2r+9tT4l0ErT5EbxXDk5wV8z39+XmAuLwxNMjyZxPF8zz1UxBaPzzh0xSJsXtPFyFSKWNhmXbfvtU+lMoxNZxCrQHAe6GkL848fPItwyJpl+H/+6ihtYZuwJbkZQj5zjX/Y8g38599zJueePMC+0YQfqoLcPtxsBOnmS08FmJUjufaCk7n14T3zymXvXN1Rdhmt0lhU+7enxl8pymLq72vBYmZh44kMtz78PAOdUYYmU7geOB7Ew1ZuEVU+61dFuerOnwFwZCbDRCJD4Lj3xMN0RkMcODIzy/77Ej/CR776NJGQkHE8zj15NU+8PIbrGQ6OJ2mP2ozPOLOOZc1ZMRYSsLItFjui/jklHZfVHVHGptMYgYhAVyzM377vjZx1fC/ArGtRrDhhz9BEwde1aKGxqcVvT42/UpRGrHYqdxYWjL2vI0ZPPEoy4zKTcbnhklP5f+9+Zp4T/9SrRzi+L07GNRzJxsUtyLU9TDlHbxghyzf6GdcwOp32F2rhB4i+8fPfYMlRz358xqE9bJF0DT1tYUK25KSf9x+e8Ruv21au/eJJ/R2AH86KR2zikbZZYa6T+jsXvBZzQ0Gb13QVfF2LFhqbWvz2NOGrFKWR+uUulvyx25YQsoV4xMYYQ3yOslp3WyhXonlwfCZnzEWEQ1NpxqbTWS8fumNWzvAHGGanEjzjzzKCH1fSNaztinHt75/M9z9xHt/7xHncceWb+bsPvInj+tpZ0xllfU+cz11xRu6HHYS5gJwyaBDmKpS8LVacMNgX16KFFUgtfnvayUtZkGr3y61mQmt+q8PN/NWDuzg0mZoVh7ezlv+Y7hgjk2nSrpf1zoWUYwgJHL+6nbHpFIcTTsFk7UKEbWFddxshW+Y1SFlq+8aAud9Hsf01QtJeWRyV+O1pG0dlWVTLcNQimZw/9pdGpnjf7U9gjMGZE/b3lTf98IqIZIs5fQ8+ZPlVNhnXr7fvjNnzVDcXQoDB3jZClsU/fei32LSms+Q2xc5FO261Fsv97S1k/DXso5Rkofr7pVJKOqNSdemzx+43Wplr+ME3/IEjZDzDqniU/s4YFn74R0Ry4Z3FGH7wV/keHE/imYWn7aXOuVAc2JijryvNRzV+ewFVS/iKyCDwVfxuYB5wuzHmiyLSC3wTvzfAq8B7jTGHqzUOpTEZnkz6Haqyi7byE1rFGpaXy1xvKXje3+EnUSeSzrxtHM8vBXWzsfqx6RR/fsEmvv7kXsYSGZxCd4wsxcJAgY6/P48wbDv3hKI/4nJmQbriXKkk1az2cYBrjTHPiEgn8LSIPAxcBTxijPmciHwG+Azw6SqOQ2lAXhiazPXNtUTobffFyzKOt6wSt7lG9PIt6/j2MwdwPY/JlFPQ8INv8AP77gEY+Mrjr9IVi9Abh5HJVFGZBgF64+FZ3buyu8ASi+54iPZIiIvPWFdw+0BoLhKyiEdCRc+5HA0kRSmXqhl/Y8xB4GD270kR2Q2sBy4D3p792F3Aj1Dj31IENfj9HREOTWdwPMPB8RT9HRH+610/xxgY6PK92cWUuM2tjU6kHf72kRf92KYwq0JnLnPfEWBiJsMfn3MCX/zBC4XWd+VY3RlldCo9y/AHeMZv5v7x39tYcPyP7hnm+vt/xesTSSwR1nbH6IyFi56zrjhXKkVN6vxFZAPwJuCnwJrsjQFjzEERKTifF5FtwDaA4447rhbDVGpEfg1+ZyzCy4emMPiLq7zsSlbLgtUdsUWFNl4amSLteHTGwrieIR00Pw/KeQog+AJt7XnhoCBcYwxMJNL0ZfX8YfYNxBI4dlUb3W0RZtLurFlFKJtDcLLTiJsf2MX4TIaPn39y7jPBzSoS8stHPeMvDLOzAm7FzrmVV5wrlaPqCV8R6QC+DXzCGDNR7nbGmNuNMVuNMVv7+/urN0Cl5uTHroPFSx6zxdOGJ1JMJjNl16U/umeYT967g9cnkjw/NMHzQ5McyIaVMq7ByTPa+bcCA3RGbfo7o7mST1v8EJBr4Cv/8RpDEykc189P5EtE2CJYIiTSDlNzwklO9iaWf7wv/fBF9o0mcp8JboLxSIi1XbGcaF3a8TSco1Sdqnr+IhLGN/z/YowJmr4PicjarNe/Fhiu5hiUxiM/du24JqdkGSjfB8byz9+5ibdvXlN2uCcSsjimK8a+wzOAIWwLboF4Ta4nblY++cjMUeNt5Qm4wdEFVgZIO96szloG2H9khtXtEcQSwvhGP/+IgRRzyLbIuB57hiZyssv5N8Gu7OrftONx90feUrY0s6Islap5/uJLD94B7DbGfCHvre3Aldm/rwS+U60xKI3LeZsHuO+j5/DlK7fyiXduyr0ehFwsSxjsbV+UlEM0ZBML20RsIWwJve2Ro9685S+26mqzc9o6+UtcHON7+gst3mqP+NtGQxZh28IS6O+IcvX5J/uSDpYQDVtEsi0VrexxQ7bffyBfbgHmr8oFuOXy09XwKzWhmp7/OfgN4J8TkR3Z1/4H8DngXhH5MLAXeE8Vx6A0MEHseqAzxteefI3RqVRWrphZOjeFyC/nzPegg9JR18DoZArX+DeUtV1tIH7rQ88srk4/YDodLLX3iNiWL7NsCb+7cTW97ZHc+E1Wp+fdZ63n9p+8Qsb1Df/V79g4z7AHCdyg09hC56wolaSa1T6PMTu8ms/51TqusvLojof56z88kxu378L1PGzL4qZLi8e8C9XEX3vBydywfSeHp9O5WHvgxAfhGQ8/vr9UghmDayDteoQs4boLT+HlQ1O5kJXjGj9hC5x9Qh/vf/PxPLN3jFXxKG8c7Cm43+Wua1CUpaDyDk3IStVxKWfchSQOJmYyREI2B7MtD4O8QdAAxe+q6FfQCELG9YqV7Oe2m0tn1GImY3LlnBbwlxefwrt/a5ArbnscgL1jCYzxE8ODvb6H7+vsP5/bT75hD3oLf/LeZ4mEVLJBqTwq79BCPLpnmCtue5w/+/rTXHHb4zy6pz759KXIM5SzlH2uxEHIshidTudi6nMNt5sVxfIrdSwQ6OuIUAgr2zf3A28+lpAlvhqoJXzoLYMkHb+BTCxsEbYEyxI2renkpZGp7LaCIIRtG7JVQK5n+OxDv85JWABcf/+v2DeayH1P19yzg/1HErmOY80k2aCtIxsb1fNvIhql+Uo1BdtiIZu045FxM4iAky3N6YyGGZlM5Tz3/JtAdzzMRNLF8TwsETqjYQ5Pp5nbW72nLUxbxOa/vX0T524aYO/YNG/b1E84ZPGD3SOM5W1jgL/8t+ewLSHleL5MtJA7hmf8PrvBdzExk+HgRBLjGd7//z2B6xm62sJ0xsK8PpFk/5EZNg2EcjexlS7Z0Cgd4JTiqOffRDSC8Fcpwbbl8OieYa6682eMTafYO5bgtdEE+8dnsslXv7l5YMzDtrCmM8Karigd0TCr2vyb36p4hETG8bX95+x/LJHhyEyG/+fvf8LV3/wFn3/4eT781ad4YWiSeMTm2FVtDK5q8xeGCXTGwkRCFsYYXI9ZxwC47sJTsC1/HcDBiaQfErL8WcHodJqQ5VcFretuAyhrXcNK8Kar+X9AqRzq+TcRjSD8Va0ORIFB8TxIpGeLrE2nXY4k0nREw/R3RHA8Q2csRNi2uOGSU9mSlUOIhWy+v+sgn33o17lt7Wxr3qA711Qyg+NBxJZsM5cUf/295/nUuzZz68N7crX+A9nQUTRkE48YPv+eM+mMhYmFbJKOm8tbtEdtrr//VxjPN/xru2O5m/JkMkNnzL8mx3S18cX3b+Gk/o5lib81Ao3YAU6Zj3r+TUSxbk61/MFVqwNRYFCKp2rhP//2cbRHQ3S3hTHGT7aet3kgV046MpXkjsdeQ8RfdCUc7ckelJjmP2b/JO26bFrTwX0fPYer3roBMIxMpXlxZIrRqSQifnvFTWs6GeyLz8pbnLd5gLs/8haO6Y5x7Crfww/kLPYfmWHP0CQHxmfIuC6TycyCHv9K8aZXcge4VkKNf5MRLJ76pw/9Fvd99Jyae4bVugEFhsPKtVmZjYVw53+8SiRk0RnzY/e3Pvw844lMLrn68bt/wdCE3zfXGAjbR//7G2NY2x3LJQFc1yOV8ci4huGJFC8MTQJw98/2sqYrhpWt5x+ZSnPtBScveH6DfXFuufx0XI+ckum67hiWgGA4cXUH7dFQLhlciEYI6ZVLIzghSmk07NOE1FP4azyRYV1PG3dedfas8MdyyZeE6GkLc2TmqMdrCRyaTtPbHqYnfjQcM51yeGlkkpsf2MVM2uHQVMb39LPlzSK+9MJ7fms9T7x8GEt8hc5EymE8T6vHM4a/enA3//BB33PvbY/S3RYh43pkXK+szlznbR7gC+8Ncc09O+iMhcm4Hpb41UdTqQyHptJ4xvDBLz/JLZefXlLLP5F2yLgesdDS1y1UE1UfbXzU+CtlUU4NfqGY9FJbFhYi36D8cPcQf/395xEMtmXR2x7m0FSaaMhGRLDEX30LfsnloWm/OihiW6RdD2MMA50xrr/4FC46c92s8/vlb47wx//8s+w+/JW8h6ZSTGUlGAID7Hj+MYqFM+Zes5P6O4mErFkVQRgYmUxj8NtHRkJWSS3/4YkkY4k0qzuiXHXnzxo29q/qo42NGn+lJOUkGmtVZppvUL7x832EbV9nx7aEiZlMVtTN54o3reOk/g5cz2CMf5PwMERsi9WdEf7+A2dx1vGrcvuFIIxytConkGsA6IjaZTdTKXbNbrjkVD797WcZnfY9fQFc/JvI2q4Y8UhoQS3/O1d38MEvP8lxvfEFG78oSinU+CsLUq5Rr3SFR6mZRuBtJzP+itiM6zGd9nILsDxj+D/PHuTP37mZ6y58A9d8c0fO4+7vjBAL2zkdnfFEhgefO8DtP34Z2xJczxdxm067fn4AQ197hJP6/URuKS2eha7ZlsFVxMIh1nXbtEdDJNIOvzmcYF13G52xcMnkaNJxcx2/KnGdldZFjb+yIOUa9UqWmZYz03j8xUOMTadnNWARfAVN8FfcBhLKF525DhA++9Bu7OzK3cBjf3TPMDdu38X+I36idV13G9GwRVskRGfMrxoK2cJNl56WO99SWjwLXTPwlT7jEX9fnbEwqztiZByPw9PpeceaSyOU8yrNgRp/ZUHKTTRWqr9s4DUDubj43JnGvz97gKvv2YHjmZwENAiOZ8i4LmHbniehfNGZazln4+p5jd1vfmBXTo8H4OBEko39HbSFbT7/njfSGQvNmn2UM75yDHT+e2CwbTsbXiredayS11lR1PgrC7KYRGMlKjyGJ5Mk0m6ubSL4K2aDmcZ4IpNbpBWYSdfLavXHjt6cAK566/EkHZfxRCaXKygUqmqP5v0MDEynHUKWFFxwVWp8+dfsxu07SaR8w//Rt5/ExEyGpONy7QX+grHplOPH/UWIha2ycyX51zlYVBacY71YqWKCrYwaf6Uki0k0LrfCIxayOTSVAnzRNsfzGJ1O5WYaw5N+j1tLBAeT0/LxjKG3PcJf/P7J/OOPXsLxPO564jUefO514hG7YOgo8MQdz2NtdyxXgy8c9abnGrVS45uNkMxkODLj8Dff28ON23fS1x6hPRri2gtOZtOaTiaTDv/9W79cdK6kOx5uGCnolbLyWJmNLvJSipKvI1Mo0ViNRUZJx6WvPZLrZysi9MYjJLOrRQc6Y9iWsLoj7DdJz27X2x7hU+96A3c98Rrt0RATSf/zgYd+8wO72DeamKWLk78YyRJhfU+cmy49je987Hc5b/PALIXUy/7hMe7+6WuMTCUXHF9w3fyEL0xkPf/DiQzGGMam/WPf+vDzDHTGcgnjxa6GbZQVv40yDmXxqOevFGSuN3ftBScDkEg7uVh3NRKNA50x2qMh2qOho7XwHD1OfhhqfY9NyvG4bMta/ui3N+QMsJXVdg5ZFm42nj+ZdPjgl58kku3AHninxUJV+UYtlfE4MD7Djdt3sjYrwja4qq3g+ODoDTEYR4DrgYNHIu3SFrZ5aWSSzlg4p/m/mBh+o+jnNMo4lMWjxl+ZR6FSxVsffp4/OO0Ybv/Jy7nPXf2OjRX/gecbd9+znm8MA4MdlGf+YPcwP9g9nLtBecbMkld2XMPodKpoyKpQqOqlkUnSjkc8EuLgRNKXcyBbVZT1+o34PX+3nXvCrG2DG0FwY8i4R5vACzAymaS3PcIn732WQGHi2gs2s2lNR9kx/FJJ5VrF4LX6aOWinbyUebwwNMmffPWpeQuoPGOIhKxZHm+lO04FRmuuOuZc9o0mcp58YNBdz+SSqVNJh7FEmr72KGHbL/vszzNI0ymHf/rQbxVcgZxf/unrAJlcCelJ/R0k0g5//s5NHJpK8bUn9wLgeobrLnxDtqz06MzpyHSa0UQGO3vN/H4yQk88TG97ZFb3rmDsAXNj53MNenAMk21YE3y+1jH4YuNQ6s9CnbzU+Cvz+PdnD3DNN3cAfuhidUcES/z6+ECCGBY2oEuhXKP16J5hrr//V7w+kUTEXxnb1RbOjWegMzbrBhIL2Vx1589mzWSKtUrMv6m4nmH/4RkyniFkwbGr4mRcj+HJFMd0xXh9Ikln1GYq7eVWAX/xfW/iojPXAkfbNF5zzy+xLD+Zncz4TWXCtjXrWgY317aIXXCMxa7N3BtCoTaXtWgLqdU+jYm2cVTKZjyR4daHn6e/w09qesYwPJnimvM3ZbtWVUemdzyR4cbtu3BcQzRkF00cBiGpYAZijOHgRJJE2smNJ2gHGcgrD/bFZ6lMph2PD//uCfP2e/dPX+N9tz/B6xNJfpOVidi0ppPVHREGOttwPcPQRJK+9jCxsI3nGcYSjj8zsPyf0mcf2j0roXzW8b3ccvlphCx/9hGyhb+86NR519IzR7t+weyEun9tduJ4869NIFcdfO6lkSnSjpcbT63UP8tpwak0FhrzV2YRGIm+jhg98SgZ1yPteLxxsGfZi4sW8g4ffO4A+48kcout1nb7sslzE4fB+OKREGu7YxwcT+J6hrTjccvlpwN+2GruMWbnCV7hjsf8fzdccioA//M7OzlwZIYgMu9hODie5NhVbXS3hfnoeSfx+e/vQRDGEg6Oa3K9ABzXAF5udjR3zIWSyu1RO3ctPQNXvXUDX3tyb8HYuX9tZhD8bvRru2K54+SXeybSLq7ncTiR4fWJJOt72oiELI3BKwVR46/MYm4Cz/F8eYOBzhib1nQueRHXQiGd8USG23/88qzP7z8yw/qe+DyjlT++zlgY2xLSjsfdH3kLLx+a4orbHi94jIA7HnuFSOhoSOTG7buYyTiMTqVwPd/0W/gx/uCmct2Fb+DWh5+nPRricMIPzxyazmABHv42jms4pjtSVOVzblJ5y+Aq/ubdb+QXew/ztSdf4+6f7SWZcUg5ghM+mugGuP3HrwDkmsscGJ9hfU8bsZCdS8yHLIu9Y75ExZrOGEOTydw1vOlSXQGszEfDPsosSjXiWMr0vlQteLBwa113G3ly+2w794R5xyk0vo++/SSAWRVKjme4cfvOWWGjQmWJaddldCqFnQ2TCL5B720Ps7Y7xt0feUsupxHMNgJsW+jviBC2JWeAy5kNBesHPnnvDj733V+TdlzikRBdbWGiIYvPv+eNuUY8/rWB9T1+iWmQodt27om50tZoyM72BxAEoS1is2mgkzWdMb7w3jM1+aoURD1/ZR6VbsRRqhY88JSjYYuN/R1Mpx0EuPiMdQuOLz+Ec9uPXiLjekRDNq9OJCCrxvngcwf44G8fDxQpS8zbr235+kAAI5MpPvHOTQz2xXM3kGC2cWyPsO9wgvU9vhJnV1s4N/voagsXDDsFBLkNv4LIP/qh6Qw98ah/03L9/sNzdYIiIYuT+juyITeZdW1SjkvYtnIVWGHbX3kcDVuc1F+5fgpKc6Gev1KQSibwSvV0zffmkxmXkLWwsmVAEMKJR0JEQhaHplIcGJ/J1uL7n7n9x68UXNEbzBr+8qJTWd0RxTMGN2v4LYHB3jj37ziQS6rmb2dZcM35G7EtYTrb4OWWy0/PhZ3+7OtPc8Vtj/PonuF5Yw5yG69PJNk35ieVjfElqQsl0eddG1tyYZy5763uiNLXHsnJXKvgm7IQ6vkrVWeuEqVnDNvOPXHWZxY725g7m4hHQvS0RTgyk8H4eVHW97RhCbMSsMWSr//jvucYmvRLRwNt/fzZSaHt/svvnJB7DswrsZyrfZSf2/CyK49d15eISDt+JVAhg73QtZn7XnBttORSKYUa/xqw0mqgqzHehaptgpj0YkThCoVwOmIh4tEQgq/U6XgermfmJWDnHue8zQPcs+135i0aK+SFFxOxe+a1w6QdL1e7X0jmYHgyScrx1wT4wqN+x7AP/+4G3nXa2oIqosWOvdB7K+H/mFJ/NOxTZfLFwYqFAhqJao83P1STn/jNF5Erh0IhnJsuPY2/uuw0QrYsOvQx2BfPlYoWSnQvxKN7hvnkvTt4fSLJC8OTTCYzBW8egSKoiBANWVjirwz+9+de579/65fs2He4rHNXlEqgnn8VqVVf20pR7fEWS/w++NwB7njsldznivUInjsbKRYOWWqyeimJ7vxFZ+u62zgwPlO0xDJQLB1LZPCMrwtkCcTCNiI09P8NpflQ419FVpriYbXHWyhU4xm4/ccvEwkVb2ay0BqBQuGQ5fQUWOy2+dcsGvL78k7MZPjCe8/krON7Z302X7E04xoOHElgWUf1kxr5/4bSfGjYp4qUqnJpNKo93kKhmm3nnlBU1gCqoxe/2BDTQgx0xkg7HoemUqQdb8ESy+D8wff4RYTV7eGc1ENwrSs5PkUphnr+VWRulUuj91utxXgLVafc8dgrRSWBKz0bqbTi5VefeIUDWYmJg+NJetpCfPH9byqrBeMLQ5PzdPwbpTuX0vyo8a8ylV4wtRiWUrVT6/GWuuFUUi9+32iC6+//1ayKnuXE2feNJvjSD1/EEgiHLVzXMJVyOXF1R8lzDtZRnLOxf1HloopSKdT414DlxKCXylI93GqXpRYbV7EbTqVmI4EM9MHxGUSEY7pi9MQjy5pF7BmaAMgpaIayfQP2DE0w2Bcvax/5/zdeGJoEVk6OSFnZVM34i8hXgEuAYWPM6dnXeoFvAhuAV4H3GmO0vq3CLLVqp9pNQEqNq5xQyVJuSsFxM66Hk62v/83hGTKuR3s0tOScxuY1XYDfMSxo5i5y9PXFol2xlFpSzYTvncAfzHntM8AjxphNwCPZ50qFKRQnL6XpvpjE6lITkksZV8By5CaGJ/2Y/FgiQ9gSBF8g7dBUmmsvOHnJXvVgX5yr37ERgIy/aour37GxbK9/LqVE9RSlklTN8zfG/FhENsx5+TLg7dm/7wJ+BHy6WmNoVZbiQZabWF3O7KBenu1AZ8zvuZttx2hZBs8Y1nbHlt2F7OPnn8zlW45lz9AEm9d0lTT8hTpv5T+vZ45IaS1qHfNfY4w5CGCMOSgiRa2GiGwDtgEcd9xxNRpec7CUOHk5hnm5i8DqVf3UHQ9z3YVv4Jpv7sg1dR/ojBK2rYrceAb74mV5+3NvnJdvWcf9Ow7kngc30nrkiJTWo2ETvsaY24Hbwe/hW+fhrDgW60GWY5grUXZZL8/Wb6wufPah3diWr79fy5DK3BtnIu3wpR++yHG98YpUHinKYqm18R8SkbVZr38t0NhCN3WkElU3i/UgSxnmSoVt6uXZXnTmWs7ZuLro+VWz0mnujdMSAUOubaVW9ii1ptbGfztwJfC57ON3anz8FUG1q24WopR65EpatFaIYue32Gu+2BvF3BunZwwIuQYsWtmj1BoxpjoRFRH5Bn5ydzUwBNwI3A/cCxwH7AXeY4wZK7WvrVu3mqeeeqoq42w0xhOZeQt9XM9w30fPaRgjWykPeTH7WcoxS20TvB8L2XzoKz/DGDNLCrrYNV/qzTnYzhi/2UwQ8w+eV+omv9IkxJXqISJPG2O2FnqvmtU+Hyjy1vnVOmYzsBLE4OZ6z0sxNosxoEsxtqW2yX9/PJHm8IxDyPJDMGu7Y1giBa/5cpLepRrCVOL7reesUVlZqLBbg7HSxOCWov+/2DUFixV2K7XNXAN+ZCbjl4Jm26PvPzKDZwpf8+WsVYD56xWWs35hseetKPmo8W8wVtJCn6Uam8UY0KUY21Lb5L+fcT0ssbAtMMb/B7Dt3BMKXvNGvjkv98aktBYNW+rZyjTqQp+54Z2lhqgWUzW0lAqjUtvkvx+2LQx+P90TV3eQdFwEuPiMdQX33chJ71jIJu14gFO0FaWiBKjxb1AabaFPoVjylsFVwOJLPxdjQJdibEttk/++4/rdtUR8UbZQGfX/lbo5VzIxG3w/Gdfj9Ykkfe1R2qN2w9yYlMajatU+laSVqn0WQ62qOhaqQAr055dSsdIo1T75vQNqNdOqZGJ27veTSDukHY+7P/KWJesMKc1BXap9lOpSy6qOhcI7y/GCFzO7WcpMqNQ2c9+v12rf5a7unfv9xCMhjHFIZvMSilIITfiuQGpd1VEqyVnJipVWoNKJ2UZOQiuNixr/FUitqzpWUgVSOdS7R26ljXWzfT9KbdCwzwqkHtLIjVqBtFgaYRFUNSqGmuX7UWqHJnxXKHOlAnQlZ2kaTTpDZRiUaqMJ3yZEPb3FU+66hFoZ5UYr51VaCzX+Kxg1HoujnHBZI4SFFKUWaMJXaRlKJUZVG0dpJdTzV5qGcsI1C4XLVoKiqqJUCjX+SlOwmHBNsXBZvRrMK0o90LCPsuKpVLhG6+WVVkI9f2XFU8lwjVZRKa2CGn9lxVPpcI1WUSmtgIZ9lBWPhmsUZfGo5680BRquUZTFocZfaRo0XKMo5aNhH0VRlBZEjb+iKEoLosZfURSlBVHjryiK0oKo8VcURWlBVkQzFxEZAV6r9zhKsBo4VO9B1AA9z+ajVc61Fc/zeGNMf6EPrQjjvxIQkaeKdcxpJvQ8m49WOVc9z9lo2EdRFKUFUeOvKIrSgqjxrxy313sANULPs/lolXPV88xDY/6KoigtiHr+iqIoLYgaf0VRlBZEjX8FEBFbRH4hIg/UeyzVREReFZHnRGSHiDxV7/FUCxHpEZFvicivRWS3iPxOvcdUaURkc/Z7DP5NiMgn6j2uaiAify4iO0XkVyLyDRFp2qbMInJN9jx3lvo+VdK5MlwD7Aa66j2QGvB7xphmXyjzReC7xph3i0gEiNd7QJXGGLMH2AK+8wLsB/6tnmOqBiKyHrgaONUYMyMi9wLvB+6s68CqgIicDvwJcDaQBr4rIg8aY14o9Hn1/JeJiBwLXAx8ud5jUZaPiHQB5wJ3ABhj0saYI3UdVPU5H3jJGNPoq+iXSghoE5EQ/o38QJ3HUy1OAZ40xiSMMQ7wKPCfin1Yjf/y+VvgU4BX53HUAgN8X0SeFpFt9R5MlTgRGAH+ORvK+7KItNd7UFXm/cA36j2IamCM2Q98HtgLHATGjTHfr++oqsavgHNFpE9E4sBFwGCxD6vxXwYicgkwbIx5ut5jqRHnGGPOAi4EPiYi59Z7QFUgBJwF3GaMeRMwDXymvkOqHtmw1qXAv9Z7LNVARFYBlwEnAOuAdhH5o/qOqjoYY3YD/xt4GPgu8EvAKfZ5Nf7L4xzgUhF5FbgHeIeIfL2+Q6oexpgD2cdh/Pjw2fUdUVX4DfAbY8xPs8+/hX8zaFYuBJ4xxgzVeyBV4p3AK8aYEWNMBrgPeGudx1Q1jDF3GGPOMsacC4wBBeP9oMZ/WRhjrjPGHGuM2YA/df6hMaYpvQoRaReRzuBv4Pfxp5lNhTHmdWCfiGzOvnQ+sKuOQ6o2H6BJQz5Z9gJvEZG4iAj+97m7zmOqGiIykH08DriCBb5brfZRymUN8G/+74cQcLcx5rv1HVLV+DjwL9mQyMvAH9d5PFUhGxe+APjTeo+lWhhjfioi3wKewQ+B/ILmlnn4toj0ARngY8aYw8U+qPIOiqIoLYiGfRRFUVoQNf6KoigtiBp/RVGUFkSNv6IoSguixl9RFKUFUeOvKGUgIm5W/fJXIvJ/RKQn+/oGETEi8ld5n10tIhkR+fu6DVhRSqDGX1HKY8YYs8UYczr+ysmP5b33MnBJ3vP3ADtrOThFWSxq/BVl8TwBrM97PgPsFpGt2efvA+6t+agUZRGo8VeURZDVvj8f2D7nrXuA92clvl2aVzZYaRLU+CtKebSJyA5gFOjFV07M57v4UgkfAL5Z26EpyuJR468o5TFjjNkCHA9EmB3zxxiTBp4GrgW+XfPRKcoiUeOvKIvAGDOO3xbwL0QkPOftW4FPG2NGaz8yRVkcavwVZZEYY36B3yjj/XNe32mMuas+o1KUxaGqnoqiKC2Iev6KoigtiBp/RVGUFkSNv6IoSguixl9RFKUFUeOvKIrSgqjxVxRFaUHU+CuKorQg/z9r+zDXtYJ/JwAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "housing.plot(kind=\"scatter\",x=\"RM\",y=\"MEDV\",alpha=0.8)" + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "metadata": {}, + "outputs": [], + "source": [ + "housing = strat_train_set.drop(\"MEDV\", axis=1)\n", + "housing_labels = strat_train_set[\"MEDV\"].copy()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Missing Attributes" + ] + }, + { + "cell_type": "raw", + "metadata": {}, + "source": [ + "To take care of missing attributes, you have 3 options\n", + " 1. get Rid of the missing data points\n", + " a=housing.dropna(subset=[\"RM\"])\n", + " a.shape\n", + " 2. Get rid of the whole attribute\n", + " housing.drop(\"RM\", axis=1)\n", + " 3. Set the value to some value(0,mean or medium)\n", + " #median=housing[\"RM\"].median()\n", + " #housing[\"RM\"].fillna(median)\n", + " #housing.shape" + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "(404, 13)" + ] + }, + "execution_count": 23, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "median=housing[\"RM\"].median()\n", + "housing[\"RM\"].fillna(median)\n", + "housing.shape" + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "SimpleImputer(strategy='median')" + ] + }, + "execution_count": 24, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "from sklearn.impute import SimpleImputer\n", + "imputer = SimpleImputer(strategy = \"median\")\n", + "imputer.fit(housing)" + ] + }, + { + "cell_type": "code", + "execution_count": 25, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([2.86735e-01, 0.00000e+00, 9.90000e+00, 0.00000e+00, 5.38000e-01,\n", + " 6.21000e+00, 7.82000e+01, 3.12220e+00, 5.00000e+00, 3.37000e+02,\n", + " 1.90000e+01, 3.90955e+02, 1.15700e+01])" + ] + }, + "execution_count": 25, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "imputer.statistics_.shape\n", + "imputer.statistics_" + ] + }, + { + "cell_type": "code", + "execution_count": 26, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
CRIMZNINDUSCHASNOXRMAGEDISRADTAXPTRATIOBLSTAT
count404.000000404.000000404.000000404.000000404.000000404.000000404.000000404.000000404.000000404.000000404.000000404.000000404.000000
mean3.60281410.83663411.3449500.0693070.5580646.27990869.0398513.7462109.735149412.34158418.473267353.39282212.791609
std8.09938322.1506366.8778170.2542900.1168750.71298328.2582482.0990578.731259168.6726232.12924396.0692357.235740
min0.0063200.0000000.7400000.0000000.3890003.5610002.9000001.1296001.000000187.00000013.0000000.3200001.730000
25%0.0869630.0000005.1900000.0000000.4530005.87875044.8500002.0359754.000000284.00000017.400000374.6175006.847500
50%0.2867350.0000009.9000000.0000000.5380006.21000078.2000003.1222005.000000337.00000019.000000390.95500011.570000
75%3.73192312.50000018.1000000.0000000.6310006.63025094.1000005.10040024.000000666.00000020.200000395.63000017.102500
max73.534100100.00000027.7400001.0000000.8710008.780000100.00000012.12650024.000000711.00000022.000000396.90000036.980000
\n", + "
" + ], + "text/plain": [ + " CRIM ZN INDUS CHAS NOX RM \\\n", + "count 404.000000 404.000000 404.000000 404.000000 404.000000 404.000000 \n", + "mean 3.602814 10.836634 11.344950 0.069307 0.558064 6.279908 \n", + "std 8.099383 22.150636 6.877817 0.254290 0.116875 0.712983 \n", + "min 0.006320 0.000000 0.740000 0.000000 0.389000 3.561000 \n", + "25% 0.086963 0.000000 5.190000 0.000000 0.453000 5.878750 \n", + "50% 0.286735 0.000000 9.900000 0.000000 0.538000 6.210000 \n", + "75% 3.731923 12.500000 18.100000 0.000000 0.631000 6.630250 \n", + "max 73.534100 100.000000 27.740000 1.000000 0.871000 8.780000 \n", + "\n", + " AGE DIS RAD TAX PTRATIO B \\\n", + "count 404.000000 404.000000 404.000000 404.000000 404.000000 404.000000 \n", + "mean 69.039851 3.746210 9.735149 412.341584 18.473267 353.392822 \n", + "std 28.258248 2.099057 8.731259 168.672623 2.129243 96.069235 \n", + "min 2.900000 1.129600 1.000000 187.000000 13.000000 0.320000 \n", + "25% 44.850000 2.035975 4.000000 284.000000 17.400000 374.617500 \n", + "50% 78.200000 3.122200 5.000000 337.000000 19.000000 390.955000 \n", + "75% 94.100000 5.100400 24.000000 666.000000 20.200000 395.630000 \n", + "max 100.000000 12.126500 24.000000 711.000000 22.000000 396.900000 \n", + "\n", + " LSTAT \n", + "count 404.000000 \n", + "mean 12.791609 \n", + "std 7.235740 \n", + "min 1.730000 \n", + "25% 6.847500 \n", + "50% 11.570000 \n", + "75% 17.102500 \n", + "max 36.980000 " + ] + }, + "execution_count": 26, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "X= imputer.transform(housing)\n", + "housing_tr =pd.DataFrame(X,columns = housing.columns)\n", + "housing_tr.describe()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Scikit-learn Design " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Basically, there are 3 types of objects:\n", + "1. Estimators - it estimates some parameter based on a dataset. Eg. imputer. It has a fit method and transform method.Fit method -Fits the dataset and calculates internal parameters\n", + "\n", + "2. Transformers - transform method takes input and returns output based on the learning from fit(). It also has a convenience function called fit_transform() which fits and then transforms.\n", + "\n", + "3. Predictors - LinearRegression model is an example of predictor. fit() and predict() are two common functions. It also gives score() function which will evaluate the predictions." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Feature Scaling" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Primarily, two types of features scaling methods:\n", + "1. Min-max scaling (Normalization)\n", + " 0 < (value-min)/(max-min) >1\n", + " Sklearn provides a class called MinMaxScaler for this\n", + " \n", + "2. Standardization\n", + " (value-mean)/std\n", + " Sklearn provides a class called StandardScaler for this" + ] + }, + { + "cell_type": "code", + "execution_count": 27, + "metadata": {}, + "outputs": [], + "source": [ + "from sklearn.pipeline import Pipeline\n", + "from sklearn.preprocessing import StandardScaler\n", + "my_pipeline= Pipeline([\n", + " ('imputer',SimpleImputer(strategy=\"median\")),\n", + " ('std_scaler',StandardScaler())\n", + "])" + ] + }, + { + "cell_type": "code", + "execution_count": 28, + "metadata": {}, + "outputs": [], + "source": [ + "housing_num_tr =my_pipeline.fit_transform(housing)" + ] + }, + { + "cell_type": "code", + "execution_count": 29, + "metadata": { + "scrolled": true + }, + "outputs": [ + { + "data": { + "text/plain": [ + "(404, 13)" + ] + }, + "execution_count": 29, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "housing_num_tr.shape" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Selecting a desired model" + ] + }, + { + "cell_type": "code", + "execution_count": 30, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "RandomForestRegressor()" + ] + }, + "execution_count": 30, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "from sklearn.linear_model import LinearRegression\n", + "from sklearn.tree import DecisionTreeRegressor\n", + "from sklearn.ensemble import RandomForestRegressor\n", + "#model = LinearRegression()\n", + "#model = DecisionTreeRegressor()\n", + "model = RandomForestRegressor()\n", + "model.fit(housing_num_tr, housing_labels)" + ] + }, + { + "cell_type": "code", + "execution_count": 31, + "metadata": {}, + "outputs": [], + "source": [ + "some_data = housing.iloc[:5]\n", + "some_labels = housing_labels.iloc[:5]" + ] + }, + { + "cell_type": "code", + "execution_count": 32, + "metadata": {}, + "outputs": [], + "source": [ + "prepared_data = my_pipeline.transform(some_data)" + ] + }, + { + "cell_type": "code", + "execution_count": 33, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([22.508, 25.587, 16.363, 23.376, 23.391])" + ] + }, + "execution_count": 33, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "model.predict(prepared_data)" + ] + }, + { + "cell_type": "code", + "execution_count": 34, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "[21.9, 24.5, 16.7, 23.1, 23.0]" + ] + }, + "execution_count": 34, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "list(some_labels)" + ] + }, + { + "cell_type": "code", + "execution_count": 35, + "metadata": {}, + "outputs": [], + "source": [ + "from sklearn.metrics import mean_squared_error\n", + "housing_predictions=model.predict(housing_num_tr)\n", + "lin_mse= mean_squared_error(housing_labels, housing_predictions)\n", + "lin_rmse=np.sqrt(lin_mse)" + ] + }, + { + "cell_type": "code", + "execution_count": 36, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "1.3529252128712854" + ] + }, + "execution_count": 36, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "lin_mse" + ] + }, + { + "cell_type": "code", + "execution_count": 37, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "1.1631531338870584" + ] + }, + "execution_count": 37, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "lin_rmse" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Cross Validation" + ] + }, + { + "cell_type": "code", + "execution_count": 38, + "metadata": {}, + "outputs": [], + "source": [ + "from sklearn.model_selection import cross_val_score\n", + "scores = cross_val_score(model, housing_num_tr, housing_labels,scoring=\"neg_mean_squared_error\",cv=10)\n", + "rmse_scores = np.sqrt(-scores)" + ] + }, + { + "cell_type": "code", + "execution_count": 39, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([2.79289168, 2.69441597, 4.40018895, 2.56972379, 3.33073436,\n", + " 2.62687167, 4.77007351, 3.27403209, 3.38378214, 3.16691711])" + ] + }, + "execution_count": 39, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "rmse_scores" + ] + }, + { + "cell_type": "code", + "execution_count": 40, + "metadata": {}, + "outputs": [], + "source": [ + "def print_scores(scores):\n", + " print(\"scores: \",scores)\n", + " print(\"Mean: \",scores.mean())\n", + " print(\"Standard deviation: \",scores.std()) " + ] + }, + { + "cell_type": "code", + "execution_count": 41, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "scores: [2.79289168 2.69441597 4.40018895 2.56972379 3.33073436 2.62687167\n", + " 4.77007351 3.27403209 3.38378214 3.16691711]\n", + "Mean: 3.3009631251857217\n", + "Standard deviation: 0.7076841067486248\n" + ] + } + ], + "source": [ + "print_scores(rmse_scores)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Saving Model " + ] + }, + { + "cell_type": "code", + "execution_count": 42, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "['HousingPricePredicter.joblib']" + ] + }, + "execution_count": 42, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "from joblib import dump, load\n", + "dump(model, 'HousingPricePredicter.joblib')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Testing the model on test data " + ] + }, + { + "cell_type": "code", + "execution_count": 43, + "metadata": {}, + "outputs": [], + "source": [ + "X_test = strat_test_set.drop(\"MEDV\" , axis=1)\n", + "Y_test = strat_test_set[\"MEDV\"].copy()\n", + "X_test_prepared = my_pipeline.transform(X_test)\n", + "final_predictions = model.predict(X_test_prepared)\n", + "final_mse = mean_squared_error(Y_test, final_predictions)\n", + "final_rmse = np.sqrt(final_mse)" + ] + }, + { + "cell_type": "code", + "execution_count": 44, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "2.948844070638726" + ] + }, + "execution_count": 44, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "final_rmse" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.8.2" + } + }, + "nbformat": 4, + "nbformat_minor": 4 +} diff --git a/Model Usage.ipynb b/Model Usage.ipynb new file mode 100644 index 00000000000..9a630b2068a --- /dev/null +++ b/Model Usage.ipynb @@ -0,0 +1,67 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "from joblib import dump, load\n", + "import numpy as np\n", + "model = load('HousingPricePredicter.joblib')" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "features = np.array([[-0.43942006, 3.12628155, -1.12165014, -0.27288841, -1.42262747,\n", + " -0.24141041, -1.31238772, 2.61111401, -1.0016859 , -0.5778192 ,\n", + " -0.97491834, 0.41164221, -0.86091034]])\n" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([22.508])" + ] + }, + "execution_count": 3, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "model.predict(features)" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.8.2" + } + }, + "nbformat": 4, + "nbformat_minor": 4 +} diff --git a/data.csv b/data.csv new file mode 100644 index 00000000000..73a9897589c --- /dev/null +++ b/data.csv @@ -0,0 +1,507 @@ +CRIM ,ZN,INDUS,CHAS,NOX,RM,AGE,DIS,RAD,TAX,PTRATIO,B,LSTAT,MEDV +0.00632,18,2.31,0,0.538,6.575,65.2,4.09,1,296,15.3,396.9,4.98,24 +0.02731,0,7.07,0,0.469,6.421,78.9,4.9671,2,242,17.8,396.9,9.14,21.6 +0.02729,0,7.07,0,0.469,7.185,61.1,4.9671,2,242,17.8,392.83,4.03,34.7 +0.03237,0,2.18,0,0.458,6.998,45.8,6.0622,3,222,18.7,394.63,2.94,33.4 +0.06905,0,2.18,0,0.458,7.147,54.2,6.0622,3,222,18.7,396.9,5.33,36.2 +0.02985,0,2.18,0,0.458,6.43,58.7,6.0622,3,222,18.7,394.12,5.21,28.7 +0.08829,12.5,7.87,0,0.524,6.012,66.6,5.5605,5,311,15.2,395.6,12.43,22.9 +0.14455,12.5,7.87,0,0.524,6.172,96.1,5.9505,5,311,15.2,396.9,19.15,27.1 +0.21124,12.5,7.87,0,0.524,5.631,100,6.0821,5,311,15.2,386.63,29.93,16.5 +0.17004,12.5,7.87,0,0.524,6.004,85.9,6.5921,5,311,15.2,386.71,17.1,18.9 +0.22489,12.5,7.87,0,0.524,6.377,94.3,6.3467,5,311,15.2,392.52,20.45,15 +0.11747,12.5,7.87,0,0.524,6.009,82.9,6.2267,5,311,15.2,396.9,13.27,18.9 +0.09378,12.5,7.87,0,0.524,5.889,39,5.4509,5,311,15.2,390.5,15.71,21.7 +0.62976,0,8.14,0,0.538,5.949,61.8,4.7075,4,307,21,396.9,8.26,20.4 +0.63796,0,8.14,0,0.538,6.096,84.5,4.4619,4,307,21,380.02,10.26,18.2 +0.62739,0,8.14,0,0.538,5.834,56.5,4.4986,4,307,21,395.62,8.47,19.9 +1.05393,0,8.14,0,0.538,5.935,29.3,4.4986,4,307,21,386.85,6.58,23.1 +0.7842,0,8.14,0,0.538,5.99,81.7,4.2579,4,307,21,386.75,14.67,17.5 +0.80271,0,8.14,0,0.538,5.456,36.6,3.7965,4,307,21,288.99,11.69,20.2 +0.7258,0,8.14,0,0.538,5.727,69.5,3.7965,4,307,21,390.95,11.28,18.2 +1.25179,0,8.14,0,0.538,5.57,98.1,3.7979,4,307,21,376.57,21.02,13.6 +0.85204,0,8.14,0,0.538,5.965,89.2,4.0123,4,307,21,392.53,13.83,19.6 +1.23247,0,8.14,0,0.538,6.142,91.7,3.9769,4,307,21,396.9,18.72,15.2 +0.98843,0,8.14,0,0.538,5.813,100,4.0952,4,307,21,394.54,19.88,14.5 +0.75026,0,8.14,0,0.538,5.924,94.1,4.3996,4,307,21,394.33,16.3,15.6 +0.84054,0,8.14,0,0.538,5.599,85.7,4.4546,4,307,21,303.42,16.51,13.9 +0.67191,0,8.14,0,0.538,5.813,90.3,4.682,4,307,21,376.88,14.81,16.6 +0.95577,0,8.14,0,0.538,6.047,88.8,4.4534,4,307,21,306.38,17.28,14.8 +0.77299,0,8.14,0,0.538,6.495,94.4,4.4547,4,307,21,387.94,12.8,18.4 +1.00245,0,8.14,0,0.538,6.674,87.3,4.239,4,307,21,380.23,11.98,21 +1.13081,0,8.14,0,0.538,5.713,94.1,4.233,4,307,21,360.17,22.6,12.7 +1.35472,0,8.14,0,0.538,6.072,100,4.175,4,307,21,376.73,13.04,14.5 +1.38799,0,8.14,0,0.538,5.95,82,3.99,4,307,21,232.6,27.71,13.2 +1.15172,0,8.14,0,0.538,5.701,95,3.7872,4,307,21,358.77,18.35,13.1 +1.61282,0,8.14,0,0.538,6.096,96.9,3.7598,4,307,21,248.31,20.34,13.5 +0.06417,0,5.96,0,0.499,5.933,68.2,3.3603,5,279,19.2,396.9,9.68,18.9 +0.09744,0,5.96,0,0.499,5.841,61.4,3.3779,5,279,19.2,377.56,11.41,20 +0.08014,0,5.96,0,0.499,5.85,41.5,3.9342,5,279,19.2,396.9,8.77,21 +0.17505,0,5.96,0,0.499,5.966,30.2,3.8473,5,279,19.2,393.43,10.13,24.7 +0.02763,75,2.95,0,0.428,6.595,21.8,5.4011,3,252,18.3,395.63,4.32,30.8 +0.03359,75,2.95,0,0.428,7.024,15.8,5.4011,3,252,18.3,395.62,1.98,34.9 +0.12744,0,6.91,0,0.448,6.77,2.9,5.7209,3,233,17.9,385.41,4.84,26.6 +0.1415,0,6.91,0,0.448,6.169,6.6,5.7209,3,233,17.9,383.37,5.81,25.3 +0.15936,0,6.91,0,0.448,6.211,6.5,5.7209,3,233,17.9,394.46,7.44,24.7 +0.12269,0,6.91,0,0.448,6.069,40,5.7209,3,233,17.9,389.39,9.55,21.2 +0.17142,0,6.91,0,0.448,5.682,33.8,5.1004,3,233,17.9,396.9,10.21,19.3 +0.18836,0,6.91,0,0.448,5.786,33.3,5.1004,3,233,17.9,396.9,14.15,20 +0.22927,0,6.91,0,0.448,6.03,85.5,5.6894,3,233,17.9,392.74,18.8,16.6 +0.25387,0,6.91,0,0.448,5.399,95.3,5.87,3,233,17.9,396.9,30.81,14.4 +0.21977,0,6.91,0,0.448,5.602,62,6.0877,3,233,17.9,396.9,16.2,19.4 +0.08873,21,5.64,0,0.439,5.963,45.7,6.8147,4,243,16.8,395.56,13.45,19.7 +0.04337,21,5.64,0,0.439,6.115,63,6.8147,4,243,16.8,393.97,9.43,20.5 +0.0536,21,5.64,0,0.439,6.511,21.1,6.8147,4,243,16.8,396.9,5.28,25 +0.04981,21,5.64,0,0.439,5.998,21.4,6.8147,4,243,16.8,396.9,8.43,23.4 +0.0136,75,4,0,0.41,5.888,47.6,7.3197,3,469,21.1,396.9,14.8,18.9 +0.01311,90,1.22,0,0.403,7.249,21.9,8.6966,5,226,17.9,395.93,4.81,35.4 +0.02055,85,0.74,0,0.41,6.383,35.7,9.1876,2,313,17.3,396.9,5.77,24.7 +0.01432,100,1.32,0,0.411,6.816,40.5,8.3248,5,256,15.1,392.9,3.95,31.6 +0.15445,25,5.13,0,0.453,6.145,29.2,7.8148,8,284,19.7,390.68,6.86,23.3 +0.10328,25,5.13,0,0.453,5.927,47.2,6.932,8,284,19.7,396.9,9.22,19.6 +0.14932,25,5.13,0,0.453,5.741,66.2,7.2254,8,284,19.7,395.11,13.15,18.7 +0.17171,25,5.13,0,0.453,5.966,93.4,6.8185,8,284,19.7,378.08,14.44,16 +0.11027,25,5.13,0,0.453,6.456,67.8,7.2255,8,284,19.7,396.9,6.73,22.2 +0.1265,25,5.13,0,0.453,6.762,43.4,7.9809,8,284,19.7,395.58,9.5,25 +0.01951,17.5,1.38,0,0.4161,7.104,59.5,9.2229,3,216,18.6,393.24,8.05,33 +0.03584,80,3.37,0,0.398,6.29,17.8,6.6115,4,337,16.1,396.9,4.67,23.5 +0.04379,80,3.37,0,0.398,5.787,31.1,6.6115,4,337,16.1,396.9,10.24,19.4 +0.05789,12.5,6.07,0,0.409,5.878,21.4,6.498,4,345,18.9,396.21,8.1,22 +0.13554,12.5,6.07,0,0.409,5.594,36.8,6.498,4,345,18.9,396.9,13.09,17.4 +0.12816,12.5,6.07,0,0.409,5.885,33,6.498,4,345,18.9,396.9,8.79,20.9 +0.08826,0,10.81,0,0.413,6.417,6.6,5.2873,4,305,19.2,383.73,6.72,24.2 +0.15876,0,10.81,0,0.413,5.961,17.5,5.2873,4,305,19.2,376.94,9.88,21.7 +0.09164,0,10.81,0,0.413,6.065,7.8,5.2873,4,305,19.2,390.91,5.52,22.8 +0.19539,0,10.81,0,0.413,6.245,6.2,5.2873,4,305,19.2,377.17,7.54,23.4 +0.07896,0,12.83,0,0.437,6.273,6,4.2515,5,398,18.7,394.92,6.78,24.1 +0.09512,0,12.83,0,0.437,6.286,45,4.5026,5,398,18.7,383.23,8.94,21.4 +0.10153,0,12.83,0,0.437,6.279,74.5,4.0522,5,398,18.7,373.66,11.97,20 +0.08707,0,12.83,0,0.437,6.14,45.8,4.0905,5,398,18.7,386.96,10.27,20.8 +0.05646,0,12.83,0,0.437,6.232,53.7,5.0141,5,398,18.7,386.4,12.34,21.2 +0.08387,0,12.83,0,0.437,5.874,36.6,4.5026,5,398,18.7,396.06,9.1,20.3 +0.04113,25,4.86,0,0.426,6.727,33.5,5.4007,4,281,19,396.9,5.29,28 +0.04462,25,4.86,0,0.426,6.619,70.4,5.4007,4,281,19,395.63,7.22,23.9 +0.03659,25,4.86,0,0.426,6.302,32.2,5.4007,4,281,19,396.9,6.72,24.8 +0.03551,25,4.86,0,0.426,6.167,46.7,5.4007,4,281,19,390.64,7.51,22.9 +0.05059,0,4.49,0,0.449,6.389,48,4.7794,3,247,18.5,396.9,9.62,23.9 +0.05735,0,4.49,0,0.449,6.63,56.1,4.4377,3,247,18.5,392.3,6.53,26.6 +0.05188,0,4.49,0,0.449,6.015,45.1,4.4272,3,247,18.5,395.99,12.86,22.5 +0.07151,0,4.49,0,0.449,6.121,56.8,3.7476,3,247,18.5,395.15,8.44,22.2 +0.0566,0,3.41,0,0.489,7.007,86.3,3.4217,2,270,17.8,396.9,5.5,23.6 +0.05302,0,3.41,0,0.489,7.079,63.1,3.4145,2,270,17.8,396.06,5.7,28.7 +0.04684,0,3.41,0,0.489,6.417,66.1,3.0923,2,270,17.8,392.18,8.81,22.6 +0.03932,0,3.41,0,0.489,6.405,73.9,3.0921,2,270,17.8,393.55,8.2,22 +0.04203,28,15.04,0,0.464,6.442,53.6,3.6659,4,270,18.2,395.01,8.16,22.9 +0.02875,28,15.04,0,0.464,6.211,28.9,3.6659,4,270,18.2,396.33,6.21,25 +0.04294,28,15.04,0,0.464,6.249,77.3,3.615,4,270,18.2,396.9,10.59,20.6 +0.12204,0,2.89,0,0.445,6.625,57.8,3.4952,2,276,18,357.98,6.65,28.4 +0.11504,0,2.89,0,0.445,6.163,69.6,3.4952,2,276,18,391.83,11.34,21.4 +0.12083,0,2.89,0,0.445,8.069,76,3.4952,2,276,18,396.9,4.21,38.7 +0.08187,0,2.89,0,0.445,7.82,36.9,3.4952,2,276,18,393.53,3.57,43.8 +0.0686,0,2.89,0,0.445,7.416,62.5,3.4952,2,276,18,396.9,6.19,33.2 +0.14866,0,8.56,0,0.52,6.727,79.9,2.7778,5,384,20.9,394.76,9.42,27.5 +0.11432,0,8.56,0,0.52,6.781,71.3,2.8561,5,384,20.9,395.58,7.67,26.5 +0.22876,0,8.56,0,0.52,6.405,85.4,2.7147,5,384,20.9,70.8,10.63,18.6 +0.21161,0,8.56,0,0.52,6.137,87.4,2.7147,5,384,20.9,394.47,13.44,19.3 +0.1396,0,8.56,0,0.52,6.167,90,2.421,5,384,20.9,392.69,12.33,20.1 +0.13262,0,8.56,0,0.52,5.851,96.7,2.1069,5,384,20.9,394.05,16.47,19.5 +0.1712,0,8.56,0,0.52,5.836,91.9,2.211,5,384,20.9,395.67,18.66,19.5 +0.13117,0,8.56,0,0.52,6.127,85.2,2.1224,5,384,20.9,387.69,14.09,20.4 +0.12802,0,8.56,0,0.52,6.474,97.1,2.4329,5,384,20.9,395.24,12.27,19.8 +0.26363,0,8.56,0,0.52,6.229,91.2,2.5451,5,384,20.9,391.23,15.55,19.4 +0.10793,0,8.56,0,0.52,6.195,54.4,2.7778,5,384,20.9,393.49,13,21.7 +0.10084,0,10.01,0,0.547,6.715,81.6,2.6775,6,432,17.8,395.59,10.16,22.8 +0.12329,0,10.01,0,0.547,5.913,92.9,2.3534,6,432,17.8,394.95,16.21,18.8 +0.22212,0,10.01,0,0.547,6.092,95.4,2.548,6,432,17.8,396.9,17.09,18.7 +0.14231,0,10.01,0,0.547,6.254,84.2,2.2565,6,432,17.8,388.74,10.45,18.5 +0.17134,0,10.01,0,0.547,5.928,88.2,2.4631,6,432,17.8,344.91,15.76,18.3 +0.13158,0,10.01,0,0.547,6.176,72.5,2.7301,6,432,17.8,393.3,12.04,21.2 +0.15098,0,10.01,0,0.547,6.021,82.6,2.7474,6,432,17.8,394.51,10.3,19.2 +0.13058,0,10.01,0,0.547,5.872,73.1,2.4775,6,432,17.8,338.63,15.37,20.4 +0.14476,0,10.01,0,0.547,5.731,65.2,2.7592,6,432,17.8,391.5,13.61,19.3 +0.06899,0,25.65,0,0.581,5.87,69.7,2.2577,2,188,19.1,389.15,14.37,22 +0.07165,0,25.65,0,0.581,6.004,84.1,2.1974,2,188,19.1,377.67,14.27,20.3 +0.09299,0,25.65,0,0.581,5.961,92.9,2.0869,2,188,19.1,378.09,17.93,20.5 +0.15038,0,25.65,0,0.581,5.856,97,1.9444,2,188,19.1,370.31,25.41,17.3 +0.09849,0,25.65,0,0.581,5.879,95.8,2.0063,2,188,19.1,379.38,17.58,18.8 +0.16902,0,25.65,0,0.581,5.986,88.4,1.9929,2,188,19.1,385.02,14.81,21.4 +0.38735,0,25.65,0,0.581,5.613,95.6,1.7572,2,188,19.1,359.29,27.26,15.7 +0.25915,0,21.89,0,0.624,5.693,96,1.7883,4,437,21.2,392.11,17.19,16.2 +0.32543,0,21.89,0,0.624,6.431,98.8,1.8125,4,437,21.2,396.9,15.39,18 +0.88125,0,21.89,0,0.624,5.637,94.7,1.9799,4,437,21.2,396.9,18.34,14.3 +0.34006,0,21.89,0,0.624,6.458,98.9,2.1185,4,437,21.2,395.04,12.6,19.2 +1.19294,0,21.89,0,0.624,6.326,97.7,2.271,4,437,21.2,396.9,12.26,19.6 +0.59005,0,21.89,0,0.624,6.372,97.9,2.3274,4,437,21.2,385.76,11.12,23 +0.32982,0,21.89,0,0.624,5.822,95.4,2.4699,4,437,21.2,388.69,15.03,18.4 +0.97617,0,21.89,0,0.624,5.757,98.4,2.346,4,437,21.2,262.76,17.31,15.6 +0.55778,0,21.89,0,0.624,6.335,98.2,2.1107,4,437,21.2,394.67,16.96,18.1 +0.32264,0,21.89,0,0.624,5.942,93.5,1.9669,4,437,21.2,378.25,16.9,17.4 +0.35233,0,21.89,0,0.624,6.454,98.4,1.8498,4,437,21.2,394.08,14.59,17.1 +0.2498,0,21.89,0,0.624,5.857,98.2,1.6686,4,437,21.2,392.04,21.32,13.3 +0.54452,0,21.89,0,0.624,6.151,97.9,1.6687,4,437,21.2,396.9,18.46,17.8 +0.2909,0,21.89,0,0.624,6.174,93.6,1.6119,4,437,21.2,388.08,24.16,14 +1.62864,0,21.89,0,0.624,5.019,100,1.4394,4,437,21.2,396.9,34.41,14.4 +3.32105,0,19.58,1,0.871,5.403,100,1.3216,5,403,14.7,396.9,26.82,13.4 +4.0974,0,19.58,0,0.871,5.468,100,1.4118,5,403,14.7,396.9,26.42,15.6 +2.77974,0,19.58,0,0.871,4.903,97.8,1.3459,5,403,14.7,396.9,29.29,11.8 +2.37934,0,19.58,0,0.871,6.13,100,1.4191,5,403,14.7,172.91,27.8,13.8 +2.15505,0,19.58,0,0.871,5.628,100,1.5166,5,403,14.7,169.27,16.65,15.6 +2.36862,0,19.58,0,0.871,4.926,95.7,1.4608,5,403,14.7,391.71,29.53,14.6 +2.33099,0,19.58,0,0.871,5.186,93.8,1.5296,5,403,14.7,356.99,28.32,17.8 +2.73397,0,19.58,0,0.871,5.597,94.9,1.5257,5,403,14.7,351.85,21.45,15.4 +1.6566,0,19.58,0,0.871,6.122,97.3,1.618,5,403,14.7,372.8,14.1,21.5 +1.49632,0,19.58,0,0.871,5.404,100,1.5916,5,403,14.7,341.6,13.28,19.6 +1.12658,0,19.58,1,0.871,5.012,88,1.6102,5,403,14.7,343.28,12.12,15.3 +2.14918,0,19.58,0,0.871,5.709,98.5,1.6232,5,403,14.7,261.95,15.79,19.4 +1.41385,0,19.58,1,0.871,6.129,96,1.7494,5,403,14.7,321.02,15.12,17 +3.53501,0,19.58,1,0.871,6.152,82.6,1.7455,5,403,14.7,88.01,15.02,15.6 +2.44668,0,19.58,0,0.871,5.272,94,1.7364,5,403,14.7,88.63,16.14,13.1 +1.22358,0,19.58,0,0.605,6.943,97.4,1.8773,5,403,14.7,363.43,4.59,41.3 +1.34284,0,19.58,0,0.605,6.066,100,1.7573,5,403,14.7,353.89,6.43,24.3 +1.42502,0,19.58,0,0.871,6.51,100,1.7659,5,403,14.7,364.31,7.39,23.3 +1.27346,0,19.58,1,0.605,6.25,92.6,1.7984,5,403,14.7,338.92,5.5,27 +1.46336,0,19.58,0,0.605,7.489,90.8,1.9709,5,403,14.7,374.43,1.73,50 +1.83377,0,19.58,1,0.605,7.802,98.2,2.0407,5,403,14.7,389.61,1.92,50 +1.51902,0,19.58,1,0.605,8.375,93.9,2.162,5,403,14.7,388.45,3.32,50 +2.24236,0,19.58,0,0.605,5.854,91.8,2.422,5,403,14.7,395.11,11.64,22.7 +2.924,0,19.58,0,0.605,6.101,93,2.2834,5,403,14.7,240.16,9.81,25 +2.01019,0,19.58,0,0.605,7.929,96.2,2.0459,5,403,14.7,369.3,3.7,50 +1.80028,0,19.58,0,0.605,5.877,79.2,2.4259,5,403,14.7,227.61,12.14,23.8 +2.3004,0,19.58,0,0.605,6.319,96.1,2.1,5,403,14.7,297.09,11.1,23.8 +2.44953,0,19.58,0,0.605,6.402,95.2,2.2625,5,403,14.7,330.04,11.32,22.3 +1.20742,0,19.58,0,0.605,5.875,94.6,2.4259,5,403,14.7,292.29,14.43,17.4 +2.3139,0,19.58,0,0.605,5.88,97.3,2.3887,5,403,14.7,348.13,12.03,19.1 +0.13914,0,4.05,0,0.51,5.572,88.5,2.5961,5,296,16.6,396.9,14.69,23.1 +0.09178,0,4.05,0,0.51,6.416,84.1,2.6463,5,296,16.6,395.5,9.04,23.6 +0.08447,0,4.05,0,0.51,5.859,68.7,2.7019,5,296,16.6,393.23,9.64,22.6 +0.06664,0,4.05,0,0.51,6.546,33.1,3.1323,5,296,16.6,390.96,5.33,29.4 +0.07022,0,4.05,0,0.51,6.02,47.2,3.5549,5,296,16.6,393.23,10.11,23.2 +0.05425,0,4.05,0,0.51,6.315,73.4,3.3175,5,296,16.6,395.6,6.29,24.6 +0.06642,0,4.05,0,0.51,6.86,74.4,2.9153,5,296,16.6,391.27,6.92,29.9 +0.0578,0,2.46,0,0.488,6.98,58.4,2.829,3,193,17.8,396.9,5.04,37.2 +0.06588,0,2.46,0,0.488,7.765,83.3,2.741,3,193,17.8,395.56,7.56,39.8 +0.06888,0,2.46,0,0.488,6.144,62.2,2.5979,3,193,17.8,396.9,9.45,36.2 +0.09103,0,2.46,0,0.488,7.155,92.2,2.7006,3,193,17.8,394.12,4.82,37.9 +0.10008,0,2.46,0,0.488,6.563,95.6,2.847,3,193,17.8,396.9,5.68,32.5 +0.08308,0,2.46,0,0.488,5.604,89.8,2.9879,3,193,17.8,391,13.98,26.4 +0.06047,0,2.46,0,0.488,6.153,68.8,3.2797,3,193,17.8,387.11,13.15,29.6 +0.05602,0,2.46,0,0.488,7.831,53.6,3.1992,3,193,17.8,392.63,4.45,50 +0.07875,45,3.44,0,0.437,6.782,41.1,3.7886,5,398,15.2,393.87,6.68,32 +0.12579,45,3.44,0,0.437,6.556,29.1,4.5667,5,398,15.2,382.84,4.56,29.8 +0.0837,45,3.44,0,0.437,7.185,38.9,4.5667,5,398,15.2,396.9,5.39,34.9 +0.09068,45,3.44,0,0.437,6.951,21.5,6.4798,5,398,15.2,377.68,5.1,37 +0.06911,45,3.44,0,0.437,6.739,30.8,6.4798,5,398,15.2,389.71,4.69,30.5 +0.08664,45,3.44,0,0.437,7.178,26.3,6.4798,5,398,15.2,390.49,2.87,36.4 +0.02187,60,2.93,0,0.401,6.8,9.9,6.2196,1,265,15.6,393.37,5.03,31.1 +0.01439,60,2.93,0,0.401,6.604,18.8,6.2196,1,265,15.6,376.7,4.38,29.1 +0.01381,80,0.46,0,0.422,7.875,32,5.6484,4,255,14.4,394.23,2.97,50 +0.04011,80,1.52,0,0.404,7.287,34.1,7.309,2,329,12.6,396.9,4.08,33.3 +0.04666,80,1.52,0,0.404,7.107,36.6,7.309,2,329,12.6,354.31,8.61,30.3 +0.03768,80,1.52,0,0.404,7.274,38.3,7.309,2,329,12.6,392.2,6.62,34.6 +0.0315,95,1.47,0,0.403,6.975,15.3,7.6534,3,402,17,396.9,4.56,34.9 +0.01778,95,1.47,0,0.403,7.135,13.9,7.6534,3,402,17,384.3,4.45,32.9 +0.03445,82.5,2.03,0,0.415,6.162,38.4,6.27,2,348,14.7,393.77,7.43,24.1 +0.02177,82.5,2.03,0,0.415,7.61,15.7,6.27,2,348,14.7,395.38,3.11,42.3 +0.0351,95,2.68,0,0.4161,7.853,33.2,5.118,4,224,14.7,392.78,3.81,48.5 +0.02009,95,2.68,0,0.4161,8.034,31.9,5.118,4,224,14.7,390.55,2.88,50 +0.13642,0,10.59,0,0.489,5.891,22.3,3.9454,4,277,18.6,396.9,10.87,22.6 +0.22969,0,10.59,0,0.489,6.326,52.5,4.3549,4,277,18.6,394.87,10.97,24.4 +0.25199,0,10.59,0,0.489,5.783,72.7,4.3549,4,277,18.6,389.43,18.06,22.5 +0.13587,0,10.59,1,0.489,6.064,59.1,4.2392,4,277,18.6,381.32,14.66,24.4 +0.43571,0,10.59,1,0.489,5.344,100,3.875,4,277,18.6,396.9,23.09,20 +0.17446,0,10.59,1,0.489,5.96,92.1,3.8771,4,277,18.6,393.25,17.27,21.7 +0.37578,0,10.59,1,0.489,5.404,88.6,3.665,4,277,18.6,395.24,23.98,19.3 +0.21719,0,10.59,1,0.489,5.807,53.8,3.6526,4,277,18.6,390.94,16.03,22.4 +0.14052,0,10.59,0,0.489,6.375,32.3,3.9454,4,277,18.6,385.81,9.38,28.1 +0.28955,0,10.59,0,0.489,5.412,9.8,3.5875,4,277,18.6,348.93,29.55,23.7 +0.19802,0,10.59,0,0.489,6.182,42.4,3.9454,4,277,18.6,393.63,9.47,25 +0.0456,0,13.89,1,0.55,5.888,56,3.1121,5,276,16.4,392.8,13.51,23.3 +0.07013,0,13.89,0,0.55,6.642,85.1,3.4211,5,276,16.4,392.78,9.69,28.7 +0.11069,0,13.89,1,0.55,5.951,93.8,2.8893,5,276,16.4,396.9,17.92,21.5 +0.11425,0,13.89,1,0.55,6.373,92.4,3.3633,5,276,16.4,393.74,10.5,23 +0.35809,0,6.2,1,0.507,6.951,88.5,2.8617,8,307,17.4,391.7,9.71,26.7 +0.40771,0,6.2,1,0.507,6.164,91.3,3.048,8,307,17.4,395.24,21.46,21.7 +0.62356,0,6.2,1,0.507,6.879,77.7,3.2721,8,307,17.4,390.39,9.93,27.5 +0.6147,0,6.2,0,0.507,6.618,80.8,3.2721,8,307,17.4,396.9,7.6,30.1 +0.31533,0,6.2,0,0.504,8.266,78.3,2.8944,8,307,17.4,385.05,4.14,44.8 +0.52693,0,6.2,0,0.504,8.725,83,2.8944,8,307,17.4,382,4.63,50 +0.38214,0,6.2,0,0.504,8.04,86.5,3.2157,8,307,17.4,387.38,3.13,37.6 +0.41238,0,6.2,0,0.504,7.163,79.9,3.2157,8,307,17.4,372.08,6.36,31.6 +0.29819,0,6.2,0,0.504,7.686,17,3.3751,8,307,17.4,377.51,3.92,46.7 +0.44178,0,6.2,0,0.504,6.552,21.4,3.3751,8,307,17.4,380.34,3.76,31.5 +0.537,0,6.2,0,0.504,5.981,68.1,3.6715,8,307,17.4,378.35,11.65,24.3 +0.46296,0,6.2,0,0.504,7.412,76.9,3.6715,8,307,17.4,376.14,5.25,31.7 +0.57529,0,6.2,0,0.507,8.337,73.3,3.8384,8,307,17.4,385.91,2.47,41.7 +0.33147,0,6.2,0,0.507,8.247,70.4,3.6519,8,307,17.4,378.95,3.95,48.3 +0.44791,0,6.2,1,0.507,6.726,66.5,3.6519,8,307,17.4,360.2,8.05,29 +0.33045,0,6.2,0,0.507,6.086,61.5,3.6519,8,307,17.4,376.75,10.88,24 +0.52058,0,6.2,1,0.507,6.631,76.5,4.148,8,307,17.4,388.45,9.54,25.1 +0.51183,0,6.2,0,0.507,7.358,71.6,4.148,8,307,17.4,390.07,4.73,31.5 +0.08244,30,4.93,0,0.428,6.481,18.5,6.1899,6,300,16.6,379.41,6.36,23.7 +0.09252,30,4.93,0,0.428,6.606,42.2,6.1899,6,300,16.6,383.78,7.37,23.3 +0.11329,30,4.93,0,0.428,6.897,54.3,6.3361,6,300,16.6,391.25,11.38,22 +0.10612,30,4.93,0,0.428,6.095,65.1,6.3361,6,300,16.6,394.62,12.4,20.1 +0.1029,30,4.93,0,0.428,6.358,52.9,7.0355,6,300,16.6,372.75,11.22,22.2 +0.12757,30,4.93,0,0.428,6.393,7.8,7.0355,6,300,16.6,374.71,5.19,23.7 +0.20608,22,5.86,0,0.431,5.593,76.5,7.9549,7,330,19.1,372.49,12.5,17.6 +0.19133,22,5.86,0,0.431,5.605,70.2,7.9549,7,330,19.1,389.13,18.46,18.5 +0.33983,22,5.86,0,0.431,6.108,34.9,8.0555,7,330,19.1,390.18,9.16,24.3 +0.19657,22,5.86,0,0.431,6.226,79.2,8.0555,7,330,19.1,376.14,10.15,20.5 +0.16439,22,5.86,0,0.431,6.433,49.1,7.8265,7,330,19.1,374.71,9.52,24.5 +0.19073,22,5.86,0,0.431,6.718,17.5,7.8265,7,330,19.1,393.74,6.56,26.2 +0.1403,22,5.86,0,0.431,6.487,13,7.3967,7,330,19.1,396.28,5.9,24.4 +0.21409,22,5.86,0,0.431,6.438,8.9,7.3967,7,330,19.1,377.07,3.59,24.8 +0.08221,22,5.86,0,0.431,6.957,6.8,8.9067,7,330,19.1,386.09,3.53,29.6 +0.36894,22,5.86,0,0.431,8.259,8.4,8.9067,7,330,19.1,396.9,3.54,42.8 +0.04819,80,3.64,0,0.392,6.108,32,9.2203,1,315,16.4,392.89,6.57,21.9 +0.03548,80,3.64,0,0.392,5.876,19.1,9.2203,1,315,16.4,395.18,9.25,20.9 +0.01538,90,3.75,0,0.394,7.454,34.2,6.3361,3,244,15.9,386.34,3.11,44 +0.61154,20,3.97,0,0.647,8.704,86.9,1.801,5,264,13,389.7,5.12,50 +0.66351,20,3.97,0,0.647,7.333,100,1.8946,5,264,13,383.29,7.79,36 +0.65665,20,3.97,0,0.647,6.842,100,2.0107,5,264,13,391.93,6.9,30.1 +0.54011,20,3.97,0,0.647,7.203,81.8,2.1121,5,264,13,392.8,9.59,33.8 +0.53412,20,3.97,0,0.647,7.52,89.4,2.1398,5,264,13,388.37,7.26,43.1 +0.52014,20,3.97,0,0.647,8.398,91.5,2.2885,5,264,13,386.86,5.91,48.8 +0.82526,20,3.97,0,0.647,7.327,94.5,2.0788,5,264,13,393.42,11.25,31 +0.55007,20,3.97,0,0.647,7.206,91.6,1.9301,5,264,13,387.89,8.1,36.5 +0.76162,20,3.97,0,0.647,5.56,62.8,1.9865,5,264,13,392.4,10.45,22.8 +0.7857,20,3.97,0,0.647,7.014,84.6,2.1329,5,264,13,384.07,14.79,30.7 +0.57834,20,3.97,0,0.575,8.297,67,2.4216,5,264,13,384.54,7.44,50 +0.5405,20,3.97,0,0.575,7.47,52.6,2.872,5,264,13,390.3,3.16,43.5 +0.09065,20,6.96,1,0.464,5.92,61.5,3.9175,3,223,18.6,391.34,13.65,20.7 +0.29916,20,6.96,0,0.464,5.856,42.1,4.429,3,223,18.6,388.65,13,21.1 +0.16211,20,6.96,0,0.464,6.24,16.3,4.429,3,223,18.6,396.9,6.59,25.2 +0.1146,20,6.96,0,0.464,6.538,58.7,3.9175,3,223,18.6,394.96,7.73,24.4 +0.22188,20,6.96,1,0.464,7.691,51.8,4.3665,3,223,18.6,390.77,6.58,35.2 +0.05644,40,6.41,1,0.447,6.758,32.9,4.0776,4,254,17.6,396.9,3.53,32.4 +0.09604,40,6.41,0,0.447,6.854,42.8,4.2673,4,254,17.6,396.9,2.98,32 +0.10469,40,6.41,1,0.447,7.267,49,4.7872,4,254,17.6,389.25,6.05,33.2 +0.06127,40,6.41,1,0.447,6.826,27.6,4.8628,4,254,17.6,393.45,4.16,33.1 +0.07978,40,6.41,0,0.447,6.482,32.1,4.1403,4,254,17.6,396.9,7.19,29.1 +0.21038,20,3.33,0,0.4429,6.812,32.2,4.1007,5,216,14.9,396.9,4.85,35.1 +0.03578,20,3.33,0,0.4429,7.82,64.5,4.6947,5,216,14.9,387.31,3.76,45.4 +0.03705,20,3.33,0,0.4429,6.968,37.2,5.2447,5,216,14.9,392.23,4.59,35.4 +0.06129,20,3.33,1,0.4429,7.645,49.7,5.2119,5,216,14.9,377.07,3.01,46 +0.01501,90,1.21,1,0.401,7.923,24.8,5.885,1,198,13.6,395.52,3.16,50 +0.00906,90,2.97,0,0.4,7.088,20.8,7.3073,1,285,15.3,394.72,7.85,32.2 +0.01096,55,2.25,0,0.389,6.453,31.9,7.3073,1,300,15.3,394.72,8.23,22 +0.01965,80,1.76,0,0.385,6.23,31.5,9.0892,1,241,18.2,341.6,12.93,20.1 +0.03871,52.5,5.32,0,0.405,6.209,31.3,7.3172,6,293,16.6,396.9,7.14,23.2 +0.0459,52.5,5.32,0,0.405,6.315,45.6,7.3172,6,293,16.6,396.9,7.6,22.3 +0.04297,52.5,5.32,0,0.405,6.565,22.9,7.3172,6,293,16.6,371.72,9.51,24.8 +0.03502,80,4.95,0,0.411,6.861,27.9,5.1167,4,245,19.2,396.9,3.33,28.5 +0.07886,80,4.95,0,0.411,7.148,27.7,5.1167,4,245,19.2,396.9,3.56,37.3 +0.03615,80,4.95,0,0.411,6.63,23.4,5.1167,4,245,19.2,396.9,4.7,27.9 +0.08265,0,13.92,0,0.437,6.127,18.4,5.5027,4,289,16,396.9,8.58,23.9 +0.08199,0,13.92,0,0.437,6.009,42.3,5.5027,4,289,16,396.9,10.4,21.7 +0.12932,0,13.92,0,0.437,6.678,31.1,5.9604,4,289,16,396.9,6.27,28.6 +0.05372,0,13.92,0,0.437,6.549,51,5.9604,4,289,16,392.85,7.39,27.1 +0.14103,0,13.92,0,0.437,5.79,58,6.32,4,289,16,396.9,15.84,20.3 +0.06466,70,2.24,0,0.4,6.345,20.1,7.8278,5,358,14.8,368.24,4.97,22.5 +0.05561,70,2.24,0,0.4,7.041,10,7.8278,5,358,14.8,371.58,4.74,29 +0.04417,70,2.24,0,0.4,6.871,47.4,7.8278,5,358,14.8,390.86,6.07,24.8 +0.03537,34,6.09,0,0.433,6.59,40.4,5.4917,7,329,16.1,395.75,9.5,22 +0.09266,34,6.09,0,0.433,6.495,18.4,5.4917,7,329,16.1,383.61,8.67,26.4 +0.1,34,6.09,0,0.433,6.982,17.7,5.4917,7,329,16.1,390.43,4.86,33.1 +0.05515,33,2.18,0,0.472,7.236,41.1,4.022,7,222,18.4,393.68,6.93,36.1 +0.05479,33,2.18,0,0.472,6.616,58.1,3.37,7,222,18.4,393.36,8.93,28.4 +0.07503,33,2.18,0,0.472,7.42,71.9,3.0992,7,222,18.4,396.9,6.47,33.4 +0.04932,33,2.18,0,0.472,6.849,70.3,3.1827,7,222,18.4,396.9,7.53,28.2 +0.49298,0,9.9,0,0.544,6.635,82.5,3.3175,4,304,18.4,396.9,4.54,22.8 +0.3494,0,9.9,0,0.544,5.972,76.7,3.1025,4,304,18.4,396.24,9.97,20.3 +2.63548,0,9.9,0,0.544,4.973,37.8,2.5194,4,304,18.4,350.45,12.64,16.1 +0.79041,0,9.9,0,0.544,6.122,52.8,2.6403,4,304,18.4,396.9,5.98,22.1 +0.26169,0,9.9,0,0.544,6.023,90.4,2.834,4,304,18.4,396.3,11.72,19.4 +0.26938,0,9.9,0,0.544,6.266,82.8,3.2628,4,304,18.4,393.39,7.9,21.6 +0.3692,0,9.9,0,0.544,6.567,87.3,3.6023,4,304,18.4,395.69,9.28,23.8 +0.25356,0,9.9,0,0.544,5.705,77.7,3.945,4,304,18.4,396.42,11.5,16.2 +0.31827,0,9.9,0,0.544,5.914,83.2,3.9986,4,304,18.4,390.7,18.33,17.8 +0.24522,0,9.9,0,0.544,5.782,71.7,4.0317,4,304,18.4,396.9,15.94,19.8 +0.40202,0,9.9,0,0.544,6.382,67.2,3.5325,4,304,18.4,395.21,10.36,23.1 +0.47547,0,9.9,0,0.544,6.113,58.8,4.0019,4,304,18.4,396.23,12.73,21 +0.1676,0,7.38,0,0.493,6.426,52.3,4.5404,5,287,19.6,396.9,7.2,23.8 +0.18159,0,7.38,0,0.493,6.376,54.3,4.5404,5,287,19.6,396.9,6.87,23.1 +0.35114,0,7.38,0,0.493,6.041,49.9,4.7211,5,287,19.6,396.9,7.7,20.4 +0.28392,0,7.38,0,0.493,5.708,74.3,4.7211,5,287,19.6,391.13,11.74,18.5 +0.34109,0,7.38,0,0.493,6.415,40.1,4.7211,5,287,19.6,396.9,6.12,25 +0.19186,0,7.38,0,0.493,6.431,14.7,5.4159,5,287,19.6,393.68,5.08,24.6 +0.30347,0,7.38,0,0.493,6.312,28.9,5.4159,5,287,19.6,396.9,6.15,23 +0.24103,0,7.38,0,0.493,6.083,43.7,5.4159,5,287,19.6,396.9,12.79,22.2 +0.06617,0,3.24,0,0.46,5.868,25.8,5.2146,4,430,16.9,382.44,9.97,19.3 +0.06724,0,3.24,0,0.46,6.333,17.2,5.2146,4,430,16.9,375.21,7.34,22.6 +0.04544,0,3.24,0,0.46,6.144,32.2,5.8736,4,430,16.9,368.57,9.09,19.8 +0.05023,35,6.06,0,0.4379,5.706,28.4,6.6407,1,304,16.9,394.02,12.43,17.1 +0.03466,35,6.06,0,0.4379,6.031,23.3,6.6407,1,304,16.9,362.25,7.83,19.4 +0.05083,0,5.19,0,0.515,6.316,38.1,6.4584,5,224,20.2,389.71,5.68,22.2 +0.03738,0,5.19,0,0.515,6.31,38.5,6.4584,5,224,20.2,389.4,6.75,20.7 +0.03961,0,5.19,0,0.515,6.037,34.5,5.9853,5,224,20.2,396.9,8.01,21.1 +0.03427,0,5.19,0,0.515,5.869,46.3,5.2311,5,224,20.2,396.9,9.8,19.5 +0.03041,0,5.19,0,0.515,5.895,59.6,5.615,5,224,20.2,394.81,10.56,18.5 +0.03306,0,5.19,0,0.515,6.059,37.3,4.8122,5,224,20.2,396.14,8.51,20.6 +0.05497,0,5.19,0,0.515,5.985,45.4,4.8122,5,224,20.2,396.9,9.74,19 +0.06151,0,5.19,0,0.515,5.968,58.5,4.8122,5,224,20.2,396.9,9.29,18.7 +0.01301,35,1.52,0,0.442,7.241,49.3,7.0379,1,284,15.5,394.74,5.49,32.7 +0.02498,0,1.89,0,0.518,6.54,59.7,6.2669,1,422,15.9,389.96,8.65,16.5 +0.02543,55,3.78,0,0.484,6.696,56.4,5.7321,5,370,17.6,396.9,7.18,23.9 +0.03049,55,3.78,0,0.484,6.874,28.1,6.4654,5,370,17.6,387.97,4.61,31.2 +0.03113,0,4.39,0,0.442,6.014,48.5,8.0136,3,352,18.8,385.64,10.53,17.5 +0.06162,0,4.39,0,0.442,5.898,52.3,8.0136,3,352,18.8,364.61,12.67,17.2 +0.0187,85,4.15,0,0.429,6.516,27.7,8.5353,4,351,17.9,392.43,6.36,23.1 +0.01501,80,2.01,0,0.435,6.635,29.7,8.344,4,280,17,390.94,5.99,24.5 +0.02899,40,1.25,0,0.429,6.939,34.5,8.7921,1,335,19.7,389.85,5.89,26.6 +0.06211,40,1.25,0,0.429,6.49,44.4,8.7921,1,335,19.7,396.9,5.98,22.9 +0.0795,60,1.69,0,0.411,6.579,35.9,10.7103,4,411,18.3,370.78,5.49,24.1 +0.07244,60,1.69,0,0.411,5.884,18.5,10.7103,4,411,18.3,392.33,7.79,18.6 +0.01709,90,2.02,0,0.41,6.728,36.1,12.1265,5,187,17,384.46,4.5,30.1 +0.04301,80,1.91,0,0.413,5.663,21.9,10.5857,4,334,22,382.8,8.05,18.2 +0.10659,80,1.91,0,0.413,5.936,19.5,10.5857,4,334,22,376.04,5.57,20.6 +8.98296,0,18.1,1,0.77,6.212,97.4,2.1222,24,666,20.2,377.73,17.6,17.8 +3.8497,0,18.1,1,0.77,6.395,91,2.5052,24,666,20.2,391.34,13.27,21.7 +5.20177,0,18.1,1,0.77,6.127,83.4,2.7227,24,666,20.2,395.43,11.48,22.7 +4.26131,0,18.1,0,0.77,6.112,81.3,2.5091,24,666,20.2,390.74,12.67,22.6 +4.54192,0,18.1,0,0.77,6.398,88,2.5182,24,666,20.2,374.56,7.79,25 +3.83684,0,18.1,0,0.77,6.251,91.1,2.2955,24,666,20.2,350.65,14.19,19.9 +3.67822,0,18.1,0,0.77,5.362,96.2,2.1036,24,666,20.2,380.79,10.19,20.8 +4.22239,0,18.1,1,0.77,5.803,89,1.9047,24,666,20.2,353.04,14.64,16.8 +3.47428,0,18.1,1,0.718,8.78,82.9,1.9047,24,666,20.2,354.55,5.29,21.9 +4.55587,0,18.1,0,0.718,3.561,87.9,1.6132,24,666,20.2,354.7,7.12,27.5 +3.69695,0,18.1,0,0.718,4.963,91.4,1.7523,24,666,20.2,316.03,14,21.9 +13.5222,0,18.1,0,0.631,3.863,100,1.5106,24,666,20.2,131.42,13.33,23.1 +4.89822,0,18.1,0,0.631,4.97,100,1.3325,24,666,20.2,375.52,3.26,50 +5.66998,0,18.1,1,0.631,6.683,96.8,1.3567,24,666,20.2,375.33,3.73,50 +6.53876,0,18.1,1,0.631,7.016,97.5,1.2024,24,666,20.2,392.05,2.96,50 +9.2323,0,18.1,0,0.631,6.216,100,1.1691,24,666,20.2,366.15,9.53,50 +8.26725,0,18.1,1,0.668,5.875,89.6,1.1296,24,666,20.2,347.88,8.88,50 +11.1081,0,18.1,0,0.668,4.906,100,1.1742,24,666,20.2,396.9,34.77,13.8 +18.4982,0,18.1,0,0.668,4.138,100,1.137,24,666,20.2,396.9,37.97,13.8 +19.6091,0,18.1,0,0.671,7.313,97.9,1.3163,24,666,20.2,396.9,13.44,15 +15.288,0,18.1,0,0.671,6.649,93.3,1.3449,24,666,20.2,363.02,23.24,13.9 +9.82349,0,18.1,0,0.671,6.794,98.8,1.358,24,666,20.2,396.9,21.24,13.3 +23.6482,0,18.1,0,0.671,6.38,96.2,1.3861,24,666,20.2,396.9,23.69,13.1 +17.8667,0,18.1,0,0.671,6.223,100,1.3861,24,666,20.2,393.74,21.78,10.2 +88.9762,0,18.1,0,0.671,6.968,91.9,1.4165,24,666,20.2,396.9,17.21,10.4 +15.8744,0,18.1,0,0.671,6.545,99.1,1.5192,24,666,20.2,396.9,21.08,10.9 +9.18702,0,18.1,0,0.7,5.536,100,1.5804,24,666,20.2,396.9,23.6,11.3 +7.99248,0,18.1,0,0.7,5.52,100,1.5331,24,666,20.2,396.9,24.56,12.3 +20.0849,0,18.1,0,0.7,4.368,91.2,1.4395,24,666,20.2,285.83,30.63,8.8 +16.8118,0,18.1,0,0.7,5.277,98.1,1.4261,24,666,20.2,396.9,30.81,7.2 +24.3938,0,18.1,0,0.7,4.652,100,1.4672,24,666,20.2,396.9,28.28,10.5 +22.5971,0,18.1,0,0.7,5,89.5,1.5184,24,666,20.2,396.9,31.99,7.4 +14.3337,0,18.1,0,0.7,4.88,100,1.5895,24,666,20.2,372.92,30.62,10.2 +8.15174,0,18.1,0,0.7,5.39,98.9,1.7281,24,666,20.2,396.9,20.85,11.5 +6.96215,0,18.1,0,0.7,5.713,97,1.9265,24,666,20.2,394.43,17.11,15.1 +5.29305,0,18.1,0,0.7,6.051,82.5,2.1678,24,666,20.2,378.38,18.76,23.2 +11.5779,0,18.1,0,0.7,5.036,97,1.77,24,666,20.2,396.9,25.68,9.7 +8.64476,0,18.1,0,0.693,6.193,92.6,1.7912,24,666,20.2,396.9,15.17,13.8 +13.3598,0,18.1,0,0.693,5.887,94.7,1.7821,24,666,20.2,396.9,16.35,12.7 +8.71675,0,18.1,0,0.693,6.471,98.8,1.7257,24,666,20.2,391.98,17.12,13.1 +5.87205,0,18.1,0,0.693,6.405,96,1.6768,24,666,20.2,396.9,19.37,12.5 +7.67202,0,18.1,0,0.693,5.747,98.9,1.6334,24,666,20.2,393.1,19.92,8.5 +38.3518,0,18.1,0,0.693,5.453,100,1.4896,24,666,20.2,396.9,30.59,5 +9.91655,0,18.1,0,0.693,5.852,77.8,1.5004,24,666,20.2,338.16,29.97,6.3 +25.0461,0,18.1,0,0.693,5.987,100,1.5888,24,666,20.2,396.9,26.77,5.6 +14.2362,0,18.1,0,0.693,6.343,100,1.5741,24,666,20.2,396.9,20.32,7.2 +9.59571,0,18.1,0,0.693,6.404,100,1.639,24,666,20.2,376.11,20.31,12.1 +24.8017,0,18.1,0,0.693,5.349,96,1.7028,24,666,20.2,396.9,19.77,8.3 +41.5292,0,18.1,0,0.693,5.531,85.4,1.6074,24,666,20.2,329.46,27.38,8.5 +67.9208,0,18.1,0,0.693,5.683,100,1.4254,24,666,20.2,384.97,22.98,5 +20.7162,0,18.1,0,0.659,4.138,100,1.1781,24,666,20.2,370.22,23.34,11.9 +11.9511,0,18.1,0,0.659,5.608,100,1.2852,24,666,20.2,332.09,12.13,27.9 +7.40389,0,18.1,0,0.597,5.617,97.9,1.4547,24,666,20.2,314.64,26.4,17.2 +14.4383,0,18.1,0,0.597,6.852,100,1.4655,24,666,20.2,179.36,19.78,27.5 +51.1358,0,18.1,0,0.597,5.757,100,1.413,24,666,20.2,2.6,10.11,15 +14.0507,0,18.1,0,0.597,6.657,100,1.5275,24,666,20.2,35.05,21.22,17.2 +18.811,0,18.1,0,0.597,4.628,100,1.5539,24,666,20.2,28.79,34.37,17.9 +28.6558,0,18.1,0,0.597,5.155,100,1.5894,24,666,20.2,210.97,20.08,16.3 +45.7461,0,18.1,0,0.693,4.519,100,1.6582,24,666,20.2,88.27,36.98,7 +18.0846,0,18.1,0,0.679,6.434,100,1.8347,24,666,20.2,27.25,29.05,7.2 +10.8342,0,18.1,0,0.679,6.782,90.8,1.8195,24,666,20.2,21.57,25.79,7.5 +25.9406,0,18.1,0,0.679,5.304,89.1,1.6475,24,666,20.2,127.36,26.64,10.4 +73.5341,0,18.1,0,0.679,5.957,100,1.8026,24,666,20.2,16.45,20.62,8.8 +11.8123,0,18.1,0,0.718,6.824,76.5,1.794,24,666,20.2,48.45,22.74,8.4 +11.0874,0,18.1,0,0.718,6.411,100,1.8589,24,666,20.2,318.75,15.02,16.7 +7.02259,0,18.1,0,0.718,6.006,95.3,1.8746,24,666,20.2,319.98,15.7,14.2 +12.0482,0,18.1,0,0.614,5.648,87.6,1.9512,24,666,20.2,291.55,14.1,20.8 +7.05042,0,18.1,0,0.614,6.103,85.1,2.0218,24,666,20.2,2.52,23.29,13.4 +8.79212,0,18.1,0,0.584,5.565,70.6,2.0635,24,666,20.2,3.65,17.16,11.7 +15.8603,0,18.1,0,0.679,5.896,95.4,1.9096,24,666,20.2,7.68,24.39,8.3 +12.2472,0,18.1,0,0.584,5.837,59.7,1.9976,24,666,20.2,24.65,15.69,10.2 +37.6619,0,18.1,0,0.679,6.202,78.7,1.8629,24,666,20.2,18.82,14.52,10.9 +7.36711,0,18.1,0,0.679,6.193,78.1,1.9356,24,666,20.2,96.73,21.52,11 +9.33889,0,18.1,0,0.679,6.38,95.6,1.9682,24,666,20.2,60.72,24.08,9.5 +8.49213,0,18.1,0,0.584,6.348,86.1,2.0527,24,666,20.2,83.45,17.64,14.5 +10.0623,0,18.1,0,0.584,6.833,94.3,2.0882,24,666,20.2,81.33,19.69,14.1 +6.44405,0,18.1,0,0.584,6.425,74.8,2.2004,24,666,20.2,97.95,12.03,16.1 +5.58107,0,18.1,0,0.713,6.436,87.9,2.3158,24,666,20.2,100.19,16.22,14.3 +13.9134,0,18.1,0,0.713,6.208,95,2.2222,24,666,20.2,100.63,15.17,11.7 +11.1604,0,18.1,0,0.74,6.629,94.6,2.1247,24,666,20.2,109.85,23.27,13.4 +14.4208,0,18.1,0,0.74,6.461,93.3,2.0026,24,666,20.2,27.49,18.05,9.6 +15.1772,0,18.1,0,0.74,6.152,100,1.9142,24,666,20.2,9.32,26.45,8.7 +13.6781,0,18.1,0,0.74,5.935,87.9,1.8206,24,666,20.2,68.95,34.02,8.4 +9.39063,0,18.1,0,0.74,5.627,93.9,1.8172,24,666,20.2,396.9,22.88,12.8 +22.0511,0,18.1,0,0.74,5.818,92.4,1.8662,24,666,20.2,391.45,22.11,10.5 +9.72418,0,18.1,0,0.74,6.406,97.2,2.0651,24,666,20.2,385.96,19.52,17.1 +5.66637,0,18.1,0,0.74,6.219,100,2.0048,24,666,20.2,395.69,16.59,18.4 +9.96654,0,18.1,0,0.74,6.485,100,1.9784,24,666,20.2,386.73,18.85,15.4 +12.8023,0,18.1,0,0.74,5.854,96.6,1.8956,24,666,20.2,240.52,23.79,10.8 +10.6718,0,18.1,0,0.74,6.459,94.8,1.9879,24,666,20.2,43.06,23.98,11.8 +6.28807,0,18.1,0,0.74,6.341,96.4,2.072,24,666,20.2,318.01,17.79,14.9 +9.92485,0,18.1,0,0.74,6.251,96.6,2.198,24,666,20.2,388.52,16.44,12.6 +9.32909,0,18.1,0,0.713,6.185,98.7,2.2616,24,666,20.2,396.9,18.13,14.1 +7.52601,0,18.1,0,0.713,6.417,98.3,2.185,24,666,20.2,304.21,19.31,13 +6.71772,0,18.1,0,0.713,6.749,92.6,2.3236,24,666,20.2,0.32,17.44,13.4 +5.44114,0,18.1,0,0.713,6.655,98.2,2.3552,24,666,20.2,355.29,17.73,15.2 +5.09017,0,18.1,0,0.713,6.297,91.8,2.3682,24,666,20.2,385.09,17.27,16.1 +8.24809,0,18.1,0,0.713,7.393,99.3,2.4527,24,666,20.2,375.87,16.74,17.8 +9.51363,0,18.1,0,0.713,6.728,94.1,2.4961,24,666,20.2,6.68,18.71,14.9 +4.75237,0,18.1,0,0.713,6.525,86.5,2.4358,24,666,20.2,50.92,18.13,14.1 +4.66883,0,18.1,0,0.713,5.976,87.9,2.5806,24,666,20.2,10.48,19.01,12.7 +8.20058,0,18.1,0,0.713,5.936,80.3,2.7792,24,666,20.2,3.5,16.94,13.5 +7.75223,0,18.1,0,0.713,6.301,83.7,2.7831,24,666,20.2,272.21,16.23,14.9 +6.80117,0,18.1,0,0.713,6.081,84.4,2.7175,24,666,20.2,396.9,14.7,20 +4.81213,0,18.1,0,0.713,6.701,90,2.5975,24,666,20.2,255.23,16.42,16.4 +3.69311,0,18.1,0,0.713,6.376,88.4,2.5671,24,666,20.2,391.43,14.65,17.7 +6.65492,0,18.1,0,0.713,6.317,83,2.7344,24,666,20.2,396.9,13.99,19.5 +5.82115,0,18.1,0,0.713,6.513,89.9,2.8016,24,666,20.2,393.82,10.29,20.2 +7.83932,0,18.1,0,0.655,6.209,65.4,2.9634,24,666,20.2,396.9,13.22,21.4 +3.1636,0,18.1,0,0.655,5.759,48.2,3.0665,24,666,20.2,334.4,14.13,19.9 +3.77498,0,18.1,0,0.655,5.952,84.7,2.8715,24,666,20.2,22.01,17.15,19 +4.42228,0,18.1,0,0.584,6.003,94.5,2.5403,24,666,20.2,331.29,21.32,19.1 +15.5757,0,18.1,0,0.58,5.926,71,2.9084,24,666,20.2,368.74,18.13,19.1 +13.0751,0,18.1,0,0.58,5.713,56.7,2.8237,24,666,20.2,396.9,14.76,20.1 +4.34879,0,18.1,0,0.58,6.167,84,3.0334,24,666,20.2,396.9,16.29,19.9 +4.03841,0,18.1,0,0.532,6.229,90.7,3.0993,24,666,20.2,395.33,12.87,19.6 +3.56868,0,18.1,0,0.58,6.437,75,2.8965,24,666,20.2,393.37,14.36,23.2 +4.64689,0,18.1,0,0.614,6.98,67.6,2.5329,24,666,20.2,374.68,11.66,29.8 +8.05579,0,18.1,0,0.584,5.427,95.4,2.4298,24,666,20.2,352.58,18.14,13.8 +6.39312,0,18.1,0,0.584,6.162,97.4,2.206,24,666,20.2,302.76,24.1,13.3 +4.87141,0,18.1,0,0.614,6.484,93.6,2.3053,24,666,20.2,396.21,18.68,16.7 +15.0234,0,18.1,0,0.614,5.304,97.3,2.1007,24,666,20.2,349.48,24.91,12 +10.233,0,18.1,0,0.614,6.185,96.7,2.1705,24,666,20.2,379.7,18.03,14.6 +14.3337,0,18.1,0,0.614,6.229,88,1.9512,24,666,20.2,383.32,13.11,21.4 +5.82401,0,18.1,0,0.532,6.242,64.7,3.4242,24,666,20.2,396.9,10.74,23 +5.70818,0,18.1,0,0.532,6.75,74.9,3.3317,24,666,20.2,393.07,7.74,23.7 +5.73116,0,18.1,0,0.532,7.061,77,3.4106,24,666,20.2,395.28,7.01,25 +2.81838,0,18.1,0,0.532,5.762,40.3,4.0983,24,666,20.2,392.92,10.42,21.8 +2.37857,0,18.1,0,0.583,5.871,41.9,3.724,24,666,20.2,370.73,13.34,20.6 +3.67367,0,18.1,0,0.583,6.312,51.9,3.9917,24,666,20.2,388.62,10.58,21.2 +5.69175,0,18.1,0,0.583,6.114,79.8,3.5459,24,666,20.2,392.68,14.98,19.1 +4.83567,0,18.1,0,0.583,5.905,53.2,3.1523,24,666,20.2,388.22,11.45,20.6 +0.15086,0,27.74,0,0.609,5.454,92.7,1.8209,4,711,20.1,395.09,18.06,15.2 +0.18337,0,27.74,0,0.609,5.414,98.3,1.7554,4,711,20.1,344.05,23.97,7 +0.20746,0,27.74,0,0.609,5.093,98,1.8226,4,711,20.1,318.43,29.68,8.1 +0.10574,0,27.74,0,0.609,5.983,98.8,1.8681,4,711,20.1,390.11,18.07,13.6 +0.11132,0,27.74,0,0.609,5.983,83.5,2.1099,4,711,20.1,396.9,13.35,20.1 +0.17331,0,9.69,0,0.585,5.707,54,2.3817,6,391,19.2,396.9,12.01,21.8 +0.27957,0,9.69,0,0.585,5.926,42.6,2.3817,6,391,19.2,396.9,13.59,24.5 +0.17899,0,9.69,0,0.585,5.67,28.8,2.7986,6,391,19.2,393.29,17.6,23.1 +0.2896,0,9.69,0,0.585,5.39,72.9,2.7986,6,391,19.2,396.9,21.14,19.7 +0.26838,0,9.69,0,0.585,5.794,70.6,2.8927,6,391,19.2,396.9,14.1,18.3 +0.23912,0,9.69,0,0.585,6.019,65.3,2.4091,6,391,19.2,396.9,12.92,21.2 +0.17783,0,9.69,0,0.585,5.569,73.5,2.3999,6,391,19.2,395.77,15.1,17.5 +0.22438,0,9.69,0,0.585,6.027,79.7,2.4982,6,391,19.2,396.9,14.33,16.8 +0.06263,0,11.93,0,0.573,6.593,69.1,2.4786,1,273,21,391.99,9.67,22.4 +0.04527,0,11.93,0,0.573,6.12,76.7,2.2875,1,273,21,396.9,9.08,20.6 +0.06076,0,11.93,0,0.573,6.976,91,2.1675,1,273,21,396.9,5.64,23.9 +0.10959,0,11.93,0,0.573,6.794,89.3,2.3889,1,273,21,393.45,6.48,22 +0.04741,0,11.93,0,0.573,6.03,80.8,2.505,1,273,21,396.9,7.88,11.9 diff --git a/different model output b/different model output new file mode 100644 index 00000000000..c45cf1dff2e --- /dev/null +++ b/different model output @@ -0,0 +1,13 @@ +Model Output + +Decision tree : + Mean: 4.207225187158817 + Standard deviation: 0.8745567547159991 + +linear Regression : + Mean: 5.030437102767307 + Standard deviation: 1.0607661158294834 + +Random forest regressor: + Mean: 3.3009631251857217 + Standard deviation: 0.7076841067486248 \ No newline at end of file diff --git a/housing.data b/housing.data new file mode 100644 index 00000000000..f83ac56475f --- /dev/null +++ b/housing.data @@ -0,0 +1,506 @@ + 0.00632 18.00 2.310 0 0.5380 6.5750 65.20 4.0900 1 296.0 15.30 396.90 4.98 24.00 + 0.02731 0.00 7.070 0 0.4690 6.4210 78.90 4.9671 2 242.0 17.80 396.90 9.14 21.60 + 0.02729 0.00 7.070 0 0.4690 7.1850 61.10 4.9671 2 242.0 17.80 392.83 4.03 34.70 + 0.03237 0.00 2.180 0 0.4580 6.9980 45.80 6.0622 3 222.0 18.70 394.63 2.94 33.40 + 0.06905 0.00 2.180 0 0.4580 7.1470 54.20 6.0622 3 222.0 18.70 396.90 5.33 36.20 + 0.02985 0.00 2.180 0 0.4580 6.4300 58.70 6.0622 3 222.0 18.70 394.12 5.21 28.70 + 0.08829 12.50 7.870 0 0.5240 6.0120 66.60 5.5605 5 311.0 15.20 395.60 12.43 22.90 + 0.14455 12.50 7.870 0 0.5240 6.1720 96.10 5.9505 5 311.0 15.20 396.90 19.15 27.10 + 0.21124 12.50 7.870 0 0.5240 5.6310 100.00 6.0821 5 311.0 15.20 386.63 29.93 16.50 + 0.17004 12.50 7.870 0 0.5240 6.0040 85.90 6.5921 5 311.0 15.20 386.71 17.10 18.90 + 0.22489 12.50 7.870 0 0.5240 6.3770 94.30 6.3467 5 311.0 15.20 392.52 20.45 15.00 + 0.11747 12.50 7.870 0 0.5240 6.0090 82.90 6.2267 5 311.0 15.20 396.90 13.27 18.90 + 0.09378 12.50 7.870 0 0.5240 5.8890 39.00 5.4509 5 311.0 15.20 390.50 15.71 21.70 + 0.62976 0.00 8.140 0 0.5380 5.9490 61.80 4.7075 4 307.0 21.00 396.90 8.26 20.40 + 0.63796 0.00 8.140 0 0.5380 6.0960 84.50 4.4619 4 307.0 21.00 380.02 10.26 18.20 + 0.62739 0.00 8.140 0 0.5380 5.8340 56.50 4.4986 4 307.0 21.00 395.62 8.47 19.90 + 1.05393 0.00 8.140 0 0.5380 5.9350 29.30 4.4986 4 307.0 21.00 386.85 6.58 23.10 + 0.78420 0.00 8.140 0 0.5380 5.9900 81.70 4.2579 4 307.0 21.00 386.75 14.67 17.50 + 0.80271 0.00 8.140 0 0.5380 5.4560 36.60 3.7965 4 307.0 21.00 288.99 11.69 20.20 + 0.72580 0.00 8.140 0 0.5380 5.7270 69.50 3.7965 4 307.0 21.00 390.95 11.28 18.20 + 1.25179 0.00 8.140 0 0.5380 5.5700 98.10 3.7979 4 307.0 21.00 376.57 21.02 13.60 + 0.85204 0.00 8.140 0 0.5380 5.9650 89.20 4.0123 4 307.0 21.00 392.53 13.83 19.60 + 1.23247 0.00 8.140 0 0.5380 6.1420 91.70 3.9769 4 307.0 21.00 396.90 18.72 15.20 + 0.98843 0.00 8.140 0 0.5380 5.8130 100.00 4.0952 4 307.0 21.00 394.54 19.88 14.50 + 0.75026 0.00 8.140 0 0.5380 5.9240 94.10 4.3996 4 307.0 21.00 394.33 16.30 15.60 + 0.84054 0.00 8.140 0 0.5380 5.5990 85.70 4.4546 4 307.0 21.00 303.42 16.51 13.90 + 0.67191 0.00 8.140 0 0.5380 5.8130 90.30 4.6820 4 307.0 21.00 376.88 14.81 16.60 + 0.95577 0.00 8.140 0 0.5380 6.0470 88.80 4.4534 4 307.0 21.00 306.38 17.28 14.80 + 0.77299 0.00 8.140 0 0.5380 6.4950 94.40 4.4547 4 307.0 21.00 387.94 12.80 18.40 + 1.00245 0.00 8.140 0 0.5380 6.6740 87.30 4.2390 4 307.0 21.00 380.23 11.98 21.00 + 1.13081 0.00 8.140 0 0.5380 5.7130 94.10 4.2330 4 307.0 21.00 360.17 22.60 12.70 + 1.35472 0.00 8.140 0 0.5380 6.0720 100.00 4.1750 4 307.0 21.00 376.73 13.04 14.50 + 1.38799 0.00 8.140 0 0.5380 5.9500 82.00 3.9900 4 307.0 21.00 232.60 27.71 13.20 + 1.15172 0.00 8.140 0 0.5380 5.7010 95.00 3.7872 4 307.0 21.00 358.77 18.35 13.10 + 1.61282 0.00 8.140 0 0.5380 6.0960 96.90 3.7598 4 307.0 21.00 248.31 20.34 13.50 + 0.06417 0.00 5.960 0 0.4990 5.9330 68.20 3.3603 5 279.0 19.20 396.90 9.68 18.90 + 0.09744 0.00 5.960 0 0.4990 5.8410 61.40 3.3779 5 279.0 19.20 377.56 11.41 20.00 + 0.08014 0.00 5.960 0 0.4990 5.8500 41.50 3.9342 5 279.0 19.20 396.90 8.77 21.00 + 0.17505 0.00 5.960 0 0.4990 5.9660 30.20 3.8473 5 279.0 19.20 393.43 10.13 24.70 + 0.02763 75.00 2.950 0 0.4280 6.5950 21.80 5.4011 3 252.0 18.30 395.63 4.32 30.80 + 0.03359 75.00 2.950 0 0.4280 7.0240 15.80 5.4011 3 252.0 18.30 395.62 1.98 34.90 + 0.12744 0.00 6.910 0 0.4480 6.7700 2.90 5.7209 3 233.0 17.90 385.41 4.84 26.60 + 0.14150 0.00 6.910 0 0.4480 6.1690 6.60 5.7209 3 233.0 17.90 383.37 5.81 25.30 + 0.15936 0.00 6.910 0 0.4480 6.2110 6.50 5.7209 3 233.0 17.90 394.46 7.44 24.70 + 0.12269 0.00 6.910 0 0.4480 6.0690 40.00 5.7209 3 233.0 17.90 389.39 9.55 21.20 + 0.17142 0.00 6.910 0 0.4480 5.6820 33.80 5.1004 3 233.0 17.90 396.90 10.21 19.30 + 0.18836 0.00 6.910 0 0.4480 5.7860 33.30 5.1004 3 233.0 17.90 396.90 14.15 20.00 + 0.22927 0.00 6.910 0 0.4480 6.0300 85.50 5.6894 3 233.0 17.90 392.74 18.80 16.60 + 0.25387 0.00 6.910 0 0.4480 5.3990 95.30 5.8700 3 233.0 17.90 396.90 30.81 14.40 + 0.21977 0.00 6.910 0 0.4480 5.6020 62.00 6.0877 3 233.0 17.90 396.90 16.20 19.40 + 0.08873 21.00 5.640 0 0.4390 5.9630 45.70 6.8147 4 243.0 16.80 395.56 13.45 19.70 + 0.04337 21.00 5.640 0 0.4390 6.1150 63.00 6.8147 4 243.0 16.80 393.97 9.43 20.50 + 0.05360 21.00 5.640 0 0.4390 6.5110 21.10 6.8147 4 243.0 16.80 396.90 5.28 25.00 + 0.04981 21.00 5.640 0 0.4390 5.9980 21.40 6.8147 4 243.0 16.80 396.90 8.43 23.40 + 0.01360 75.00 4.000 0 0.4100 5.8880 47.60 7.3197 3 469.0 21.10 396.90 14.80 18.90 + 0.01311 90.00 1.220 0 0.4030 7.2490 21.90 8.6966 5 226.0 17.90 395.93 4.81 35.40 + 0.02055 85.00 0.740 0 0.4100 6.3830 35.70 9.1876 2 313.0 17.30 396.90 5.77 24.70 + 0.01432 100.00 1.320 0 0.4110 6.8160 40.50 8.3248 5 256.0 15.10 392.90 3.95 31.60 + 0.15445 25.00 5.130 0 0.4530 6.1450 29.20 7.8148 8 284.0 19.70 390.68 6.86 23.30 + 0.10328 25.00 5.130 0 0.4530 5.9270 47.20 6.9320 8 284.0 19.70 396.90 9.22 19.60 + 0.14932 25.00 5.130 0 0.4530 5.7410 66.20 7.2254 8 284.0 19.70 395.11 13.15 18.70 + 0.17171 25.00 5.130 0 0.4530 5.9660 93.40 6.8185 8 284.0 19.70 378.08 14.44 16.00 + 0.11027 25.00 5.130 0 0.4530 6.4560 67.80 7.2255 8 284.0 19.70 396.90 6.73 22.20 + 0.12650 25.00 5.130 0 0.4530 6.7620 43.40 7.9809 8 284.0 19.70 395.58 9.50 25.00 + 0.01951 17.50 1.380 0 0.4161 7.1040 59.50 9.2229 3 216.0 18.60 393.24 8.05 33.00 + 0.03584 80.00 3.370 0 0.3980 6.2900 17.80 6.6115 4 337.0 16.10 396.90 4.67 23.50 + 0.04379 80.00 3.370 0 0.3980 5.7870 31.10 6.6115 4 337.0 16.10 396.90 10.24 19.40 + 0.05789 12.50 6.070 0 0.4090 5.8780 21.40 6.4980 4 345.0 18.90 396.21 8.10 22.00 + 0.13554 12.50 6.070 0 0.4090 5.5940 36.80 6.4980 4 345.0 18.90 396.90 13.09 17.40 + 0.12816 12.50 6.070 0 0.4090 5.8850 33.00 6.4980 4 345.0 18.90 396.90 8.79 20.90 + 0.08826 0.00 10.810 0 0.4130 6.4170 6.60 5.2873 4 305.0 19.20 383.73 6.72 24.20 + 0.15876 0.00 10.810 0 0.4130 5.9610 17.50 5.2873 4 305.0 19.20 376.94 9.88 21.70 + 0.09164 0.00 10.810 0 0.4130 6.0650 7.80 5.2873 4 305.0 19.20 390.91 5.52 22.80 + 0.19539 0.00 10.810 0 0.4130 6.2450 6.20 5.2873 4 305.0 19.20 377.17 7.54 23.40 + 0.07896 0.00 12.830 0 0.4370 6.2730 6.00 4.2515 5 398.0 18.70 394.92 6.78 24.10 + 0.09512 0.00 12.830 0 0.4370 6.2860 45.00 4.5026 5 398.0 18.70 383.23 8.94 21.40 + 0.10153 0.00 12.830 0 0.4370 6.2790 74.50 4.0522 5 398.0 18.70 373.66 11.97 20.00 + 0.08707 0.00 12.830 0 0.4370 6.1400 45.80 4.0905 5 398.0 18.70 386.96 10.27 20.80 + 0.05646 0.00 12.830 0 0.4370 6.2320 53.70 5.0141 5 398.0 18.70 386.40 12.34 21.20 + 0.08387 0.00 12.830 0 0.4370 5.8740 36.60 4.5026 5 398.0 18.70 396.06 9.10 20.30 + 0.04113 25.00 4.860 0 0.4260 6.7270 33.50 5.4007 4 281.0 19.00 396.90 5.29 28.00 + 0.04462 25.00 4.860 0 0.4260 6.6190 70.40 5.4007 4 281.0 19.00 395.63 7.22 23.90 + 0.03659 25.00 4.860 0 0.4260 6.3020 32.20 5.4007 4 281.0 19.00 396.90 6.72 24.80 + 0.03551 25.00 4.860 0 0.4260 6.1670 46.70 5.4007 4 281.0 19.00 390.64 7.51 22.90 + 0.05059 0.00 4.490 0 0.4490 6.3890 48.00 4.7794 3 247.0 18.50 396.90 9.62 23.90 + 0.05735 0.00 4.490 0 0.4490 6.6300 56.10 4.4377 3 247.0 18.50 392.30 6.53 26.60 + 0.05188 0.00 4.490 0 0.4490 6.0150 45.10 4.4272 3 247.0 18.50 395.99 12.86 22.50 + 0.07151 0.00 4.490 0 0.4490 6.1210 56.80 3.7476 3 247.0 18.50 395.15 8.44 22.20 + 0.05660 0.00 3.410 0 0.4890 7.0070 86.30 3.4217 2 270.0 17.80 396.90 5.50 23.60 + 0.05302 0.00 3.410 0 0.4890 7.0790 63.10 3.4145 2 270.0 17.80 396.06 5.70 28.70 + 0.04684 0.00 3.410 0 0.4890 6.4170 66.10 3.0923 2 270.0 17.80 392.18 8.81 22.60 + 0.03932 0.00 3.410 0 0.4890 6.4050 73.90 3.0921 2 270.0 17.80 393.55 8.20 22.00 + 0.04203 28.00 15.040 0 0.4640 6.4420 53.60 3.6659 4 270.0 18.20 395.01 8.16 22.90 + 0.02875 28.00 15.040 0 0.4640 6.2110 28.90 3.6659 4 270.0 18.20 396.33 6.21 25.00 + 0.04294 28.00 15.040 0 0.4640 6.2490 77.30 3.6150 4 270.0 18.20 396.90 10.59 20.60 + 0.12204 0.00 2.890 0 0.4450 6.6250 57.80 3.4952 2 276.0 18.00 357.98 6.65 28.40 + 0.11504 0.00 2.890 0 0.4450 6.1630 69.60 3.4952 2 276.0 18.00 391.83 11.34 21.40 + 0.12083 0.00 2.890 0 0.4450 8.0690 76.00 3.4952 2 276.0 18.00 396.90 4.21 38.70 + 0.08187 0.00 2.890 0 0.4450 7.8200 36.90 3.4952 2 276.0 18.00 393.53 3.57 43.80 + 0.06860 0.00 2.890 0 0.4450 7.4160 62.50 3.4952 2 276.0 18.00 396.90 6.19 33.20 + 0.14866 0.00 8.560 0 0.5200 6.7270 79.90 2.7778 5 384.0 20.90 394.76 9.42 27.50 + 0.11432 0.00 8.560 0 0.5200 6.7810 71.30 2.8561 5 384.0 20.90 395.58 7.67 26.50 + 0.22876 0.00 8.560 0 0.5200 6.4050 85.40 2.7147 5 384.0 20.90 70.80 10.63 18.60 + 0.21161 0.00 8.560 0 0.5200 6.1370 87.40 2.7147 5 384.0 20.90 394.47 13.44 19.30 + 0.13960 0.00 8.560 0 0.5200 6.1670 90.00 2.4210 5 384.0 20.90 392.69 12.33 20.10 + 0.13262 0.00 8.560 0 0.5200 5.8510 96.70 2.1069 5 384.0 20.90 394.05 16.47 19.50 + 0.17120 0.00 8.560 0 0.5200 5.8360 91.90 2.2110 5 384.0 20.90 395.67 18.66 19.50 + 0.13117 0.00 8.560 0 0.5200 6.1270 85.20 2.1224 5 384.0 20.90 387.69 14.09 20.40 + 0.12802 0.00 8.560 0 0.5200 6.4740 97.10 2.4329 5 384.0 20.90 395.24 12.27 19.80 + 0.26363 0.00 8.560 0 0.5200 6.2290 91.20 2.5451 5 384.0 20.90 391.23 15.55 19.40 + 0.10793 0.00 8.560 0 0.5200 6.1950 54.40 2.7778 5 384.0 20.90 393.49 13.00 21.70 + 0.10084 0.00 10.010 0 0.5470 6.7150 81.60 2.6775 6 432.0 17.80 395.59 10.16 22.80 + 0.12329 0.00 10.010 0 0.5470 5.9130 92.90 2.3534 6 432.0 17.80 394.95 16.21 18.80 + 0.22212 0.00 10.010 0 0.5470 6.0920 95.40 2.5480 6 432.0 17.80 396.90 17.09 18.70 + 0.14231 0.00 10.010 0 0.5470 6.2540 84.20 2.2565 6 432.0 17.80 388.74 10.45 18.50 + 0.17134 0.00 10.010 0 0.5470 5.9280 88.20 2.4631 6 432.0 17.80 344.91 15.76 18.30 + 0.13158 0.00 10.010 0 0.5470 6.1760 72.50 2.7301 6 432.0 17.80 393.30 12.04 21.20 + 0.15098 0.00 10.010 0 0.5470 6.0210 82.60 2.7474 6 432.0 17.80 394.51 10.30 19.20 + 0.13058 0.00 10.010 0 0.5470 5.8720 73.10 2.4775 6 432.0 17.80 338.63 15.37 20.40 + 0.14476 0.00 10.010 0 0.5470 5.7310 65.20 2.7592 6 432.0 17.80 391.50 13.61 19.30 + 0.06899 0.00 25.650 0 0.5810 5.8700 69.70 2.2577 2 188.0 19.10 389.15 14.37 22.00 + 0.07165 0.00 25.650 0 0.5810 6.0040 84.10 2.1974 2 188.0 19.10 377.67 14.27 20.30 + 0.09299 0.00 25.650 0 0.5810 5.9610 92.90 2.0869 2 188.0 19.10 378.09 17.93 20.50 + 0.15038 0.00 25.650 0 0.5810 5.8560 97.00 1.9444 2 188.0 19.10 370.31 25.41 17.30 + 0.09849 0.00 25.650 0 0.5810 5.8790 95.80 2.0063 2 188.0 19.10 379.38 17.58 18.80 + 0.16902 0.00 25.650 0 0.5810 5.9860 88.40 1.9929 2 188.0 19.10 385.02 14.81 21.40 + 0.38735 0.00 25.650 0 0.5810 5.6130 95.60 1.7572 2 188.0 19.10 359.29 27.26 15.70 + 0.25915 0.00 21.890 0 0.6240 5.6930 96.00 1.7883 4 437.0 21.20 392.11 17.19 16.20 + 0.32543 0.00 21.890 0 0.6240 6.4310 98.80 1.8125 4 437.0 21.20 396.90 15.39 18.00 + 0.88125 0.00 21.890 0 0.6240 5.6370 94.70 1.9799 4 437.0 21.20 396.90 18.34 14.30 + 0.34006 0.00 21.890 0 0.6240 6.4580 98.90 2.1185 4 437.0 21.20 395.04 12.60 19.20 + 1.19294 0.00 21.890 0 0.6240 6.3260 97.70 2.2710 4 437.0 21.20 396.90 12.26 19.60 + 0.59005 0.00 21.890 0 0.6240 6.3720 97.90 2.3274 4 437.0 21.20 385.76 11.12 23.00 + 0.32982 0.00 21.890 0 0.6240 5.8220 95.40 2.4699 4 437.0 21.20 388.69 15.03 18.40 + 0.97617 0.00 21.890 0 0.6240 5.7570 98.40 2.3460 4 437.0 21.20 262.76 17.31 15.60 + 0.55778 0.00 21.890 0 0.6240 6.3350 98.20 2.1107 4 437.0 21.20 394.67 16.96 18.10 + 0.32264 0.00 21.890 0 0.6240 5.9420 93.50 1.9669 4 437.0 21.20 378.25 16.90 17.40 + 0.35233 0.00 21.890 0 0.6240 6.4540 98.40 1.8498 4 437.0 21.20 394.08 14.59 17.10 + 0.24980 0.00 21.890 0 0.6240 5.8570 98.20 1.6686 4 437.0 21.20 392.04 21.32 13.30 + 0.54452 0.00 21.890 0 0.6240 6.1510 97.90 1.6687 4 437.0 21.20 396.90 18.46 17.80 + 0.29090 0.00 21.890 0 0.6240 6.1740 93.60 1.6119 4 437.0 21.20 388.08 24.16 14.00 + 1.62864 0.00 21.890 0 0.6240 5.0190 100.00 1.4394 4 437.0 21.20 396.90 34.41 14.40 + 3.32105 0.00 19.580 1 0.8710 5.4030 100.00 1.3216 5 403.0 14.70 396.90 26.82 13.40 + 4.09740 0.00 19.580 0 0.8710 5.4680 100.00 1.4118 5 403.0 14.70 396.90 26.42 15.60 + 2.77974 0.00 19.580 0 0.8710 4.9030 97.80 1.3459 5 403.0 14.70 396.90 29.29 11.80 + 2.37934 0.00 19.580 0 0.8710 6.1300 100.00 1.4191 5 403.0 14.70 172.91 27.80 13.80 + 2.15505 0.00 19.580 0 0.8710 5.6280 100.00 1.5166 5 403.0 14.70 169.27 16.65 15.60 + 2.36862 0.00 19.580 0 0.8710 4.9260 95.70 1.4608 5 403.0 14.70 391.71 29.53 14.60 + 2.33099 0.00 19.580 0 0.8710 5.1860 93.80 1.5296 5 403.0 14.70 356.99 28.32 17.80 + 2.73397 0.00 19.580 0 0.8710 5.5970 94.90 1.5257 5 403.0 14.70 351.85 21.45 15.40 + 1.65660 0.00 19.580 0 0.8710 6.1220 97.30 1.6180 5 403.0 14.70 372.80 14.10 21.50 + 1.49632 0.00 19.580 0 0.8710 5.4040 100.00 1.5916 5 403.0 14.70 341.60 13.28 19.60 + 1.12658 0.00 19.580 1 0.8710 5.0120 88.00 1.6102 5 403.0 14.70 343.28 12.12 15.30 + 2.14918 0.00 19.580 0 0.8710 5.7090 98.50 1.6232 5 403.0 14.70 261.95 15.79 19.40 + 1.41385 0.00 19.580 1 0.8710 6.1290 96.00 1.7494 5 403.0 14.70 321.02 15.12 17.00 + 3.53501 0.00 19.580 1 0.8710 6.1520 82.60 1.7455 5 403.0 14.70 88.01 15.02 15.60 + 2.44668 0.00 19.580 0 0.8710 5.2720 94.00 1.7364 5 403.0 14.70 88.63 16.14 13.10 + 1.22358 0.00 19.580 0 0.6050 6.9430 97.40 1.8773 5 403.0 14.70 363.43 4.59 41.30 + 1.34284 0.00 19.580 0 0.6050 6.0660 100.00 1.7573 5 403.0 14.70 353.89 6.43 24.30 + 1.42502 0.00 19.580 0 0.8710 6.5100 100.00 1.7659 5 403.0 14.70 364.31 7.39 23.30 + 1.27346 0.00 19.580 1 0.6050 6.2500 92.60 1.7984 5 403.0 14.70 338.92 5.50 27.00 + 1.46336 0.00 19.580 0 0.6050 7.4890 90.80 1.9709 5 403.0 14.70 374.43 1.73 50.00 + 1.83377 0.00 19.580 1 0.6050 7.8020 98.20 2.0407 5 403.0 14.70 389.61 1.92 50.00 + 1.51902 0.00 19.580 1 0.6050 8.3750 93.90 2.1620 5 403.0 14.70 388.45 3.32 50.00 + 2.24236 0.00 19.580 0 0.6050 5.8540 91.80 2.4220 5 403.0 14.70 395.11 11.64 22.70 + 2.92400 0.00 19.580 0 0.6050 6.1010 93.00 2.2834 5 403.0 14.70 240.16 9.81 25.00 + 2.01019 0.00 19.580 0 0.6050 7.9290 96.20 2.0459 5 403.0 14.70 369.30 3.70 50.00 + 1.80028 0.00 19.580 0 0.6050 5.8770 79.20 2.4259 5 403.0 14.70 227.61 12.14 23.80 + 2.30040 0.00 19.580 0 0.6050 6.3190 96.10 2.1000 5 403.0 14.70 297.09 11.10 23.80 + 2.44953 0.00 19.580 0 0.6050 6.4020 95.20 2.2625 5 403.0 14.70 330.04 11.32 22.30 + 1.20742 0.00 19.580 0 0.6050 5.8750 94.60 2.4259 5 403.0 14.70 292.29 14.43 17.40 + 2.31390 0.00 19.580 0 0.6050 5.8800 97.30 2.3887 5 403.0 14.70 348.13 12.03 19.10 + 0.13914 0.00 4.050 0 0.5100 5.5720 88.50 2.5961 5 296.0 16.60 396.90 14.69 23.10 + 0.09178 0.00 4.050 0 0.5100 6.4160 84.10 2.6463 5 296.0 16.60 395.50 9.04 23.60 + 0.08447 0.00 4.050 0 0.5100 5.8590 68.70 2.7019 5 296.0 16.60 393.23 9.64 22.60 + 0.06664 0.00 4.050 0 0.5100 6.5460 33.10 3.1323 5 296.0 16.60 390.96 5.33 29.40 + 0.07022 0.00 4.050 0 0.5100 6.0200 47.20 3.5549 5 296.0 16.60 393.23 10.11 23.20 + 0.05425 0.00 4.050 0 0.5100 6.3150 73.40 3.3175 5 296.0 16.60 395.60 6.29 24.60 + 0.06642 0.00 4.050 0 0.5100 6.8600 74.40 2.9153 5 296.0 16.60 391.27 6.92 29.90 + 0.05780 0.00 2.460 0 0.4880 6.9800 58.40 2.8290 3 193.0 17.80 396.90 5.04 37.20 + 0.06588 0.00 2.460 0 0.4880 7.7650 83.30 2.7410 3 193.0 17.80 395.56 7.56 39.80 + 0.06888 0.00 2.460 0 0.4880 6.1440 62.20 2.5979 3 193.0 17.80 396.90 9.45 36.20 + 0.09103 0.00 2.460 0 0.4880 7.1550 92.20 2.7006 3 193.0 17.80 394.12 4.82 37.90 + 0.10008 0.00 2.460 0 0.4880 6.5630 95.60 2.8470 3 193.0 17.80 396.90 5.68 32.50 + 0.08308 0.00 2.460 0 0.4880 5.6040 89.80 2.9879 3 193.0 17.80 391.00 13.98 26.40 + 0.06047 0.00 2.460 0 0.4880 6.1530 68.80 3.2797 3 193.0 17.80 387.11 13.15 29.60 + 0.05602 0.00 2.460 0 0.4880 7.8310 53.60 3.1992 3 193.0 17.80 392.63 4.45 50.00 + 0.07875 45.00 3.440 0 0.4370 6.7820 41.10 3.7886 5 398.0 15.20 393.87 6.68 32.00 + 0.12579 45.00 3.440 0 0.4370 6.5560 29.10 4.5667 5 398.0 15.20 382.84 4.56 29.80 + 0.08370 45.00 3.440 0 0.4370 7.1850 38.90 4.5667 5 398.0 15.20 396.90 5.39 34.90 + 0.09068 45.00 3.440 0 0.4370 6.9510 21.50 6.4798 5 398.0 15.20 377.68 5.10 37.00 + 0.06911 45.00 3.440 0 0.4370 6.7390 30.80 6.4798 5 398.0 15.20 389.71 4.69 30.50 + 0.08664 45.00 3.440 0 0.4370 7.1780 26.30 6.4798 5 398.0 15.20 390.49 2.87 36.40 + 0.02187 60.00 2.930 0 0.4010 6.8000 9.90 6.2196 1 265.0 15.60 393.37 5.03 31.10 + 0.01439 60.00 2.930 0 0.4010 6.6040 18.80 6.2196 1 265.0 15.60 376.70 4.38 29.10 + 0.01381 80.00 0.460 0 0.4220 7.8750 32.00 5.6484 4 255.0 14.40 394.23 2.97 50.00 + 0.04011 80.00 1.520 0 0.4040 7.2870 34.10 7.3090 2 329.0 12.60 396.90 4.08 33.30 + 0.04666 80.00 1.520 0 0.4040 7.1070 36.60 7.3090 2 329.0 12.60 354.31 8.61 30.30 + 0.03768 80.00 1.520 0 0.4040 7.2740 38.30 7.3090 2 329.0 12.60 392.20 6.62 34.60 + 0.03150 95.00 1.470 0 0.4030 6.9750 15.30 7.6534 3 402.0 17.00 396.90 4.56 34.90 + 0.01778 95.00 1.470 0 0.4030 7.1350 13.90 7.6534 3 402.0 17.00 384.30 4.45 32.90 + 0.03445 82.50 2.030 0 0.4150 6.1620 38.40 6.2700 2 348.0 14.70 393.77 7.43 24.10 + 0.02177 82.50 2.030 0 0.4150 7.6100 15.70 6.2700 2 348.0 14.70 395.38 3.11 42.30 + 0.03510 95.00 2.680 0 0.4161 7.8530 33.20 5.1180 4 224.0 14.70 392.78 3.81 48.50 + 0.02009 95.00 2.680 0 0.4161 8.0340 31.90 5.1180 4 224.0 14.70 390.55 2.88 50.00 + 0.13642 0.00 10.590 0 0.4890 5.8910 22.30 3.9454 4 277.0 18.60 396.90 10.87 22.60 + 0.22969 0.00 10.590 0 0.4890 6.3260 52.50 4.3549 4 277.0 18.60 394.87 10.97 24.40 + 0.25199 0.00 10.590 0 0.4890 5.7830 72.70 4.3549 4 277.0 18.60 389.43 18.06 22.50 + 0.13587 0.00 10.590 1 0.4890 6.0640 59.10 4.2392 4 277.0 18.60 381.32 14.66 24.40 + 0.43571 0.00 10.590 1 0.4890 5.3440 100.00 3.8750 4 277.0 18.60 396.90 23.09 20.00 + 0.17446 0.00 10.590 1 0.4890 5.9600 92.10 3.8771 4 277.0 18.60 393.25 17.27 21.70 + 0.37578 0.00 10.590 1 0.4890 5.4040 88.60 3.6650 4 277.0 18.60 395.24 23.98 19.30 + 0.21719 0.00 10.590 1 0.4890 5.8070 53.80 3.6526 4 277.0 18.60 390.94 16.03 22.40 + 0.14052 0.00 10.590 0 0.4890 6.3750 32.30 3.9454 4 277.0 18.60 385.81 9.38 28.10 + 0.28955 0.00 10.590 0 0.4890 5.4120 9.80 3.5875 4 277.0 18.60 348.93 29.55 23.70 + 0.19802 0.00 10.590 0 0.4890 6.1820 42.40 3.9454 4 277.0 18.60 393.63 9.47 25.00 + 0.04560 0.00 13.890 1 0.5500 5.8880 56.00 3.1121 5 276.0 16.40 392.80 13.51 23.30 + 0.07013 0.00 13.890 0 0.5500 6.6420 85.10 3.4211 5 276.0 16.40 392.78 9.69 28.70 + 0.11069 0.00 13.890 1 0.5500 5.9510 93.80 2.8893 5 276.0 16.40 396.90 17.92 21.50 + 0.11425 0.00 13.890 1 0.5500 6.3730 92.40 3.3633 5 276.0 16.40 393.74 10.50 23.00 + 0.35809 0.00 6.200 1 0.5070 6.9510 88.50 2.8617 8 307.0 17.40 391.70 9.71 26.70 + 0.40771 0.00 6.200 1 0.5070 6.1640 91.30 3.0480 8 307.0 17.40 395.24 21.46 21.70 + 0.62356 0.00 6.200 1 0.5070 6.8790 77.70 3.2721 8 307.0 17.40 390.39 9.93 27.50 + 0.61470 0.00 6.200 0 0.5070 6.6180 80.80 3.2721 8 307.0 17.40 396.90 7.60 30.10 + 0.31533 0.00 6.200 0 0.5040 8.2660 78.30 2.8944 8 307.0 17.40 385.05 4.14 44.80 + 0.52693 0.00 6.200 0 0.5040 8.7250 83.00 2.8944 8 307.0 17.40 382.00 4.63 50.00 + 0.38214 0.00 6.200 0 0.5040 8.0400 86.50 3.2157 8 307.0 17.40 387.38 3.13 37.60 + 0.41238 0.00 6.200 0 0.5040 7.1630 79.90 3.2157 8 307.0 17.40 372.08 6.36 31.60 + 0.29819 0.00 6.200 0 0.5040 7.6860 17.00 3.3751 8 307.0 17.40 377.51 3.92 46.70 + 0.44178 0.00 6.200 0 0.5040 6.5520 21.40 3.3751 8 307.0 17.40 380.34 3.76 31.50 + 0.53700 0.00 6.200 0 0.5040 5.9810 68.10 3.6715 8 307.0 17.40 378.35 11.65 24.30 + 0.46296 0.00 6.200 0 0.5040 7.4120 76.90 3.6715 8 307.0 17.40 376.14 5.25 31.70 + 0.57529 0.00 6.200 0 0.5070 8.3370 73.30 3.8384 8 307.0 17.40 385.91 2.47 41.70 + 0.33147 0.00 6.200 0 0.5070 8.2470 70.40 3.6519 8 307.0 17.40 378.95 3.95 48.30 + 0.44791 0.00 6.200 1 0.5070 6.7260 66.50 3.6519 8 307.0 17.40 360.20 8.05 29.00 + 0.33045 0.00 6.200 0 0.5070 6.0860 61.50 3.6519 8 307.0 17.40 376.75 10.88 24.00 + 0.52058 0.00 6.200 1 0.5070 6.6310 76.50 4.1480 8 307.0 17.40 388.45 9.54 25.10 + 0.51183 0.00 6.200 0 0.5070 7.3580 71.60 4.1480 8 307.0 17.40 390.07 4.73 31.50 + 0.08244 30.00 4.930 0 0.4280 6.4810 18.50 6.1899 6 300.0 16.60 379.41 6.36 23.70 + 0.09252 30.00 4.930 0 0.4280 6.6060 42.20 6.1899 6 300.0 16.60 383.78 7.37 23.30 + 0.11329 30.00 4.930 0 0.4280 6.8970 54.30 6.3361 6 300.0 16.60 391.25 11.38 22.00 + 0.10612 30.00 4.930 0 0.4280 6.0950 65.10 6.3361 6 300.0 16.60 394.62 12.40 20.10 + 0.10290 30.00 4.930 0 0.4280 6.3580 52.90 7.0355 6 300.0 16.60 372.75 11.22 22.20 + 0.12757 30.00 4.930 0 0.4280 6.3930 7.80 7.0355 6 300.0 16.60 374.71 5.19 23.70 + 0.20608 22.00 5.860 0 0.4310 5.5930 76.50 7.9549 7 330.0 19.10 372.49 12.50 17.60 + 0.19133 22.00 5.860 0 0.4310 5.6050 70.20 7.9549 7 330.0 19.10 389.13 18.46 18.50 + 0.33983 22.00 5.860 0 0.4310 6.1080 34.90 8.0555 7 330.0 19.10 390.18 9.16 24.30 + 0.19657 22.00 5.860 0 0.4310 6.2260 79.20 8.0555 7 330.0 19.10 376.14 10.15 20.50 + 0.16439 22.00 5.860 0 0.4310 6.4330 49.10 7.8265 7 330.0 19.10 374.71 9.52 24.50 + 0.19073 22.00 5.860 0 0.4310 6.7180 17.50 7.8265 7 330.0 19.10 393.74 6.56 26.20 + 0.14030 22.00 5.860 0 0.4310 6.4870 13.00 7.3967 7 330.0 19.10 396.28 5.90 24.40 + 0.21409 22.00 5.860 0 0.4310 6.4380 8.90 7.3967 7 330.0 19.10 377.07 3.59 24.80 + 0.08221 22.00 5.860 0 0.4310 6.9570 6.80 8.9067 7 330.0 19.10 386.09 3.53 29.60 + 0.36894 22.00 5.860 0 0.4310 8.2590 8.40 8.9067 7 330.0 19.10 396.90 3.54 42.80 + 0.04819 80.00 3.640 0 0.3920 6.1080 32.00 9.2203 1 315.0 16.40 392.89 6.57 21.90 + 0.03548 80.00 3.640 0 0.3920 5.8760 19.10 9.2203 1 315.0 16.40 395.18 9.25 20.90 + 0.01538 90.00 3.750 0 0.3940 7.4540 34.20 6.3361 3 244.0 15.90 386.34 3.11 44.00 + 0.61154 20.00 3.970 0 0.6470 8.7040 86.90 1.8010 5 264.0 13.00 389.70 5.12 50.00 + 0.66351 20.00 3.970 0 0.6470 7.3330 100.00 1.8946 5 264.0 13.00 383.29 7.79 36.00 + 0.65665 20.00 3.970 0 0.6470 6.8420 100.00 2.0107 5 264.0 13.00 391.93 6.90 30.10 + 0.54011 20.00 3.970 0 0.6470 7.2030 81.80 2.1121 5 264.0 13.00 392.80 9.59 33.80 + 0.53412 20.00 3.970 0 0.6470 7.5200 89.40 2.1398 5 264.0 13.00 388.37 7.26 43.10 + 0.52014 20.00 3.970 0 0.6470 8.3980 91.50 2.2885 5 264.0 13.00 386.86 5.91 48.80 + 0.82526 20.00 3.970 0 0.6470 7.3270 94.50 2.0788 5 264.0 13.00 393.42 11.25 31.00 + 0.55007 20.00 3.970 0 0.6470 7.2060 91.60 1.9301 5 264.0 13.00 387.89 8.10 36.50 + 0.76162 20.00 3.970 0 0.6470 5.5600 62.80 1.9865 5 264.0 13.00 392.40 10.45 22.80 + 0.78570 20.00 3.970 0 0.6470 7.0140 84.60 2.1329 5 264.0 13.00 384.07 14.79 30.70 + 0.57834 20.00 3.970 0 0.5750 8.2970 67.00 2.4216 5 264.0 13.00 384.54 7.44 50.00 + 0.54050 20.00 3.970 0 0.5750 7.4700 52.60 2.8720 5 264.0 13.00 390.30 3.16 43.50 + 0.09065 20.00 6.960 1 0.4640 5.9200 61.50 3.9175 3 223.0 18.60 391.34 13.65 20.70 + 0.29916 20.00 6.960 0 0.4640 5.8560 42.10 4.4290 3 223.0 18.60 388.65 13.00 21.10 + 0.16211 20.00 6.960 0 0.4640 6.2400 16.30 4.4290 3 223.0 18.60 396.90 6.59 25.20 + 0.11460 20.00 6.960 0 0.4640 6.5380 58.70 3.9175 3 223.0 18.60 394.96 7.73 24.40 + 0.22188 20.00 6.960 1 0.4640 7.6910 51.80 4.3665 3 223.0 18.60 390.77 6.58 35.20 + 0.05644 40.00 6.410 1 0.4470 6.7580 32.90 4.0776 4 254.0 17.60 396.90 3.53 32.40 + 0.09604 40.00 6.410 0 0.4470 6.8540 42.80 4.2673 4 254.0 17.60 396.90 2.98 32.00 + 0.10469 40.00 6.410 1 0.4470 7.2670 49.00 4.7872 4 254.0 17.60 389.25 6.05 33.20 + 0.06127 40.00 6.410 1 0.4470 6.8260 27.60 4.8628 4 254.0 17.60 393.45 4.16 33.10 + 0.07978 40.00 6.410 0 0.4470 6.4820 32.10 4.1403 4 254.0 17.60 396.90 7.19 29.10 + 0.21038 20.00 3.330 0 0.4429 6.8120 32.20 4.1007 5 216.0 14.90 396.90 4.85 35.10 + 0.03578 20.00 3.330 0 0.4429 7.8200 64.50 4.6947 5 216.0 14.90 387.31 3.76 45.40 + 0.03705 20.00 3.330 0 0.4429 6.9680 37.20 5.2447 5 216.0 14.90 392.23 4.59 35.40 + 0.06129 20.00 3.330 1 0.4429 7.6450 49.70 5.2119 5 216.0 14.90 377.07 3.01 46.00 + 0.01501 90.00 1.210 1 0.4010 7.9230 24.80 5.8850 1 198.0 13.60 395.52 3.16 50.00 + 0.00906 90.00 2.970 0 0.4000 7.0880 20.80 7.3073 1 285.0 15.30 394.72 7.85 32.20 + 0.01096 55.00 2.250 0 0.3890 6.4530 31.90 7.3073 1 300.0 15.30 394.72 8.23 22.00 + 0.01965 80.00 1.760 0 0.3850 6.2300 31.50 9.0892 1 241.0 18.20 341.60 12.93 20.10 + 0.03871 52.50 5.320 0 0.4050 6.2090 31.30 7.3172 6 293.0 16.60 396.90 7.14 23.20 + 0.04590 52.50 5.320 0 0.4050 6.3150 45.60 7.3172 6 293.0 16.60 396.90 7.60 22.30 + 0.04297 52.50 5.320 0 0.4050 6.5650 22.90 7.3172 6 293.0 16.60 371.72 9.51 24.80 + 0.03502 80.00 4.950 0 0.4110 6.8610 27.90 5.1167 4 245.0 19.20 396.90 3.33 28.50 + 0.07886 80.00 4.950 0 0.4110 7.1480 27.70 5.1167 4 245.0 19.20 396.90 3.56 37.30 + 0.03615 80.00 4.950 0 0.4110 6.6300 23.40 5.1167 4 245.0 19.20 396.90 4.70 27.90 + 0.08265 0.00 13.920 0 0.4370 6.1270 18.40 5.5027 4 289.0 16.00 396.90 8.58 23.90 + 0.08199 0.00 13.920 0 0.4370 6.0090 42.30 5.5027 4 289.0 16.00 396.90 10.40 21.70 + 0.12932 0.00 13.920 0 0.4370 6.6780 31.10 5.9604 4 289.0 16.00 396.90 6.27 28.60 + 0.05372 0.00 13.920 0 0.4370 6.5490 51.00 5.9604 4 289.0 16.00 392.85 7.39 27.10 + 0.14103 0.00 13.920 0 0.4370 5.7900 58.00 6.3200 4 289.0 16.00 396.90 15.84 20.30 + 0.06466 70.00 2.240 0 0.4000 6.3450 20.10 7.8278 5 358.0 14.80 368.24 4.97 22.50 + 0.05561 70.00 2.240 0 0.4000 7.0410 10.00 7.8278 5 358.0 14.80 371.58 4.74 29.00 + 0.04417 70.00 2.240 0 0.4000 6.8710 47.40 7.8278 5 358.0 14.80 390.86 6.07 24.80 + 0.03537 34.00 6.090 0 0.4330 6.5900 40.40 5.4917 7 329.0 16.10 395.75 9.50 22.00 + 0.09266 34.00 6.090 0 0.4330 6.4950 18.40 5.4917 7 329.0 16.10 383.61 8.67 26.40 + 0.10000 34.00 6.090 0 0.4330 6.9820 17.70 5.4917 7 329.0 16.10 390.43 4.86 33.10 + 0.05515 33.00 2.180 0 0.4720 7.2360 41.10 4.0220 7 222.0 18.40 393.68 6.93 36.10 + 0.05479 33.00 2.180 0 0.4720 6.6160 58.10 3.3700 7 222.0 18.40 393.36 8.93 28.40 + 0.07503 33.00 2.180 0 0.4720 7.4200 71.90 3.0992 7 222.0 18.40 396.90 6.47 33.40 + 0.04932 33.00 2.180 0 0.4720 6.8490 70.30 3.1827 7 222.0 18.40 396.90 7.53 28.20 + 0.49298 0.00 9.900 0 0.5440 6.6350 82.50 3.3175 4 304.0 18.40 396.90 4.54 22.80 + 0.34940 0.00 9.900 0 0.5440 5.9720 76.70 3.1025 4 304.0 18.40 396.24 9.97 20.30 + 2.63548 0.00 9.900 0 0.5440 4.9730 37.80 2.5194 4 304.0 18.40 350.45 12.64 16.10 + 0.79041 0.00 9.900 0 0.5440 6.1220 52.80 2.6403 4 304.0 18.40 396.90 5.98 22.10 + 0.26169 0.00 9.900 0 0.5440 6.0230 90.40 2.8340 4 304.0 18.40 396.30 11.72 19.40 + 0.26938 0.00 9.900 0 0.5440 6.2660 82.80 3.2628 4 304.0 18.40 393.39 7.90 21.60 + 0.36920 0.00 9.900 0 0.5440 6.5670 87.30 3.6023 4 304.0 18.40 395.69 9.28 23.80 + 0.25356 0.00 9.900 0 0.5440 5.7050 77.70 3.9450 4 304.0 18.40 396.42 11.50 16.20 + 0.31827 0.00 9.900 0 0.5440 5.9140 83.20 3.9986 4 304.0 18.40 390.70 18.33 17.80 + 0.24522 0.00 9.900 0 0.5440 5.7820 71.70 4.0317 4 304.0 18.40 396.90 15.94 19.80 + 0.40202 0.00 9.900 0 0.5440 6.3820 67.20 3.5325 4 304.0 18.40 395.21 10.36 23.10 + 0.47547 0.00 9.900 0 0.5440 6.1130 58.80 4.0019 4 304.0 18.40 396.23 12.73 21.00 + 0.16760 0.00 7.380 0 0.4930 6.4260 52.30 4.5404 5 287.0 19.60 396.90 7.20 23.80 + 0.18159 0.00 7.380 0 0.4930 6.3760 54.30 4.5404 5 287.0 19.60 396.90 6.87 23.10 + 0.35114 0.00 7.380 0 0.4930 6.0410 49.90 4.7211 5 287.0 19.60 396.90 7.70 20.40 + 0.28392 0.00 7.380 0 0.4930 5.7080 74.30 4.7211 5 287.0 19.60 391.13 11.74 18.50 + 0.34109 0.00 7.380 0 0.4930 6.4150 40.10 4.7211 5 287.0 19.60 396.90 6.12 25.00 + 0.19186 0.00 7.380 0 0.4930 6.4310 14.70 5.4159 5 287.0 19.60 393.68 5.08 24.60 + 0.30347 0.00 7.380 0 0.4930 6.3120 28.90 5.4159 5 287.0 19.60 396.90 6.15 23.00 + 0.24103 0.00 7.380 0 0.4930 6.0830 43.70 5.4159 5 287.0 19.60 396.90 12.79 22.20 + 0.06617 0.00 3.240 0 0.4600 5.8680 25.80 5.2146 4 430.0 16.90 382.44 9.97 19.30 + 0.06724 0.00 3.240 0 0.4600 6.3330 17.20 5.2146 4 430.0 16.90 375.21 7.34 22.60 + 0.04544 0.00 3.240 0 0.4600 6.1440 32.20 5.8736 4 430.0 16.90 368.57 9.09 19.80 + 0.05023 35.00 6.060 0 0.4379 5.7060 28.40 6.6407 1 304.0 16.90 394.02 12.43 17.10 + 0.03466 35.00 6.060 0 0.4379 6.0310 23.30 6.6407 1 304.0 16.90 362.25 7.83 19.40 + 0.05083 0.00 5.190 0 0.5150 6.3160 38.10 6.4584 5 224.0 20.20 389.71 5.68 22.20 + 0.03738 0.00 5.190 0 0.5150 6.3100 38.50 6.4584 5 224.0 20.20 389.40 6.75 20.70 + 0.03961 0.00 5.190 0 0.5150 6.0370 34.50 5.9853 5 224.0 20.20 396.90 8.01 21.10 + 0.03427 0.00 5.190 0 0.5150 5.8690 46.30 5.2311 5 224.0 20.20 396.90 9.80 19.50 + 0.03041 0.00 5.190 0 0.5150 5.8950 59.60 5.6150 5 224.0 20.20 394.81 10.56 18.50 + 0.03306 0.00 5.190 0 0.5150 6.0590 37.30 4.8122 5 224.0 20.20 396.14 8.51 20.60 + 0.05497 0.00 5.190 0 0.5150 5.9850 45.40 4.8122 5 224.0 20.20 396.90 9.74 19.00 + 0.06151 0.00 5.190 0 0.5150 5.9680 58.50 4.8122 5 224.0 20.20 396.90 9.29 18.70 + 0.01301 35.00 1.520 0 0.4420 7.2410 49.30 7.0379 1 284.0 15.50 394.74 5.49 32.70 + 0.02498 0.00 1.890 0 0.5180 6.5400 59.70 6.2669 1 422.0 15.90 389.96 8.65 16.50 + 0.02543 55.00 3.780 0 0.4840 6.6960 56.40 5.7321 5 370.0 17.60 396.90 7.18 23.90 + 0.03049 55.00 3.780 0 0.4840 6.8740 28.10 6.4654 5 370.0 17.60 387.97 4.61 31.20 + 0.03113 0.00 4.390 0 0.4420 6.0140 48.50 8.0136 3 352.0 18.80 385.64 10.53 17.50 + 0.06162 0.00 4.390 0 0.4420 5.8980 52.30 8.0136 3 352.0 18.80 364.61 12.67 17.20 + 0.01870 85.00 4.150 0 0.4290 6.5160 27.70 8.5353 4 351.0 17.90 392.43 6.36 23.10 + 0.01501 80.00 2.010 0 0.4350 6.6350 29.70 8.3440 4 280.0 17.00 390.94 5.99 24.50 + 0.02899 40.00 1.250 0 0.4290 6.9390 34.50 8.7921 1 335.0 19.70 389.85 5.89 26.60 + 0.06211 40.00 1.250 0 0.4290 6.4900 44.40 8.7921 1 335.0 19.70 396.90 5.98 22.90 + 0.07950 60.00 1.690 0 0.4110 6.5790 35.90 10.7103 4 411.0 18.30 370.78 5.49 24.10 + 0.07244 60.00 1.690 0 0.4110 5.8840 18.50 10.7103 4 411.0 18.30 392.33 7.79 18.60 + 0.01709 90.00 2.020 0 0.4100 6.7280 36.10 12.1265 5 187.0 17.00 384.46 4.50 30.10 + 0.04301 80.00 1.910 0 0.4130 5.6630 21.90 10.5857 4 334.0 22.00 382.80 8.05 18.20 + 0.10659 80.00 1.910 0 0.4130 5.9360 19.50 10.5857 4 334.0 22.00 376.04 5.57 20.60 + 8.98296 0.00 18.100 1 0.7700 6.2120 97.40 2.1222 24 666.0 20.20 377.73 17.60 17.80 + 3.84970 0.00 18.100 1 0.7700 6.3950 91.00 2.5052 24 666.0 20.20 391.34 13.27 21.70 + 5.20177 0.00 18.100 1 0.7700 6.1270 83.40 2.7227 24 666.0 20.20 395.43 11.48 22.70 + 4.26131 0.00 18.100 0 0.7700 6.1120 81.30 2.5091 24 666.0 20.20 390.74 12.67 22.60 + 4.54192 0.00 18.100 0 0.7700 6.3980 88.00 2.5182 24 666.0 20.20 374.56 7.79 25.00 + 3.83684 0.00 18.100 0 0.7700 6.2510 91.10 2.2955 24 666.0 20.20 350.65 14.19 19.90 + 3.67822 0.00 18.100 0 0.7700 5.3620 96.20 2.1036 24 666.0 20.20 380.79 10.19 20.80 + 4.22239 0.00 18.100 1 0.7700 5.8030 89.00 1.9047 24 666.0 20.20 353.04 14.64 16.80 + 3.47428 0.00 18.100 1 0.7180 8.7800 82.90 1.9047 24 666.0 20.20 354.55 5.29 21.90 + 4.55587 0.00 18.100 0 0.7180 3.5610 87.90 1.6132 24 666.0 20.20 354.70 7.12 27.50 + 3.69695 0.00 18.100 0 0.7180 4.9630 91.40 1.7523 24 666.0 20.20 316.03 14.00 21.90 +13.52220 0.00 18.100 0 0.6310 3.8630 100.00 1.5106 24 666.0 20.20 131.42 13.33 23.10 + 4.89822 0.00 18.100 0 0.6310 4.9700 100.00 1.3325 24 666.0 20.20 375.52 3.26 50.00 + 5.66998 0.00 18.100 1 0.6310 6.6830 96.80 1.3567 24 666.0 20.20 375.33 3.73 50.00 + 6.53876 0.00 18.100 1 0.6310 7.0160 97.50 1.2024 24 666.0 20.20 392.05 2.96 50.00 + 9.23230 0.00 18.100 0 0.6310 6.2160 100.00 1.1691 24 666.0 20.20 366.15 9.53 50.00 + 8.26725 0.00 18.100 1 0.6680 5.8750 89.60 1.1296 24 666.0 20.20 347.88 8.88 50.00 +11.10810 0.00 18.100 0 0.6680 4.9060 100.00 1.1742 24 666.0 20.20 396.90 34.77 13.80 +18.49820 0.00 18.100 0 0.6680 4.1380 100.00 1.1370 24 666.0 20.20 396.90 37.97 13.80 +19.60910 0.00 18.100 0 0.6710 7.3130 97.90 1.3163 24 666.0 20.20 396.90 13.44 15.00 +15.28800 0.00 18.100 0 0.6710 6.6490 93.30 1.3449 24 666.0 20.20 363.02 23.24 13.90 + 9.82349 0.00 18.100 0 0.6710 6.7940 98.80 1.3580 24 666.0 20.20 396.90 21.24 13.30 +23.64820 0.00 18.100 0 0.6710 6.3800 96.20 1.3861 24 666.0 20.20 396.90 23.69 13.10 +17.86670 0.00 18.100 0 0.6710 6.2230 100.00 1.3861 24 666.0 20.20 393.74 21.78 10.20 +88.97620 0.00 18.100 0 0.6710 6.9680 91.90 1.4165 24 666.0 20.20 396.90 17.21 10.40 +15.87440 0.00 18.100 0 0.6710 6.5450 99.10 1.5192 24 666.0 20.20 396.90 21.08 10.90 + 9.18702 0.00 18.100 0 0.7000 5.5360 100.00 1.5804 24 666.0 20.20 396.90 23.60 11.30 + 7.99248 0.00 18.100 0 0.7000 5.5200 100.00 1.5331 24 666.0 20.20 396.90 24.56 12.30 +20.08490 0.00 18.100 0 0.7000 4.3680 91.20 1.4395 24 666.0 20.20 285.83 30.63 8.80 +16.81180 0.00 18.100 0 0.7000 5.2770 98.10 1.4261 24 666.0 20.20 396.90 30.81 7.20 +24.39380 0.00 18.100 0 0.7000 4.6520 100.00 1.4672 24 666.0 20.20 396.90 28.28 10.50 +22.59710 0.00 18.100 0 0.7000 5.0000 89.50 1.5184 24 666.0 20.20 396.90 31.99 7.40 +14.33370 0.00 18.100 0 0.7000 4.8800 100.00 1.5895 24 666.0 20.20 372.92 30.62 10.20 + 8.15174 0.00 18.100 0 0.7000 5.3900 98.90 1.7281 24 666.0 20.20 396.90 20.85 11.50 + 6.96215 0.00 18.100 0 0.7000 5.7130 97.00 1.9265 24 666.0 20.20 394.43 17.11 15.10 + 5.29305 0.00 18.100 0 0.7000 6.0510 82.50 2.1678 24 666.0 20.20 378.38 18.76 23.20 +11.57790 0.00 18.100 0 0.7000 5.0360 97.00 1.7700 24 666.0 20.20 396.90 25.68 9.70 + 8.64476 0.00 18.100 0 0.6930 6.1930 92.60 1.7912 24 666.0 20.20 396.90 15.17 13.80 +13.35980 0.00 18.100 0 0.6930 5.8870 94.70 1.7821 24 666.0 20.20 396.90 16.35 12.70 + 8.71675 0.00 18.100 0 0.6930 6.4710 98.80 1.7257 24 666.0 20.20 391.98 17.12 13.10 + 5.87205 0.00 18.100 0 0.6930 6.4050 96.00 1.6768 24 666.0 20.20 396.90 19.37 12.50 + 7.67202 0.00 18.100 0 0.6930 5.7470 98.90 1.6334 24 666.0 20.20 393.10 19.92 8.50 +38.35180 0.00 18.100 0 0.6930 5.4530 100.00 1.4896 24 666.0 20.20 396.90 30.59 5.00 + 9.91655 0.00 18.100 0 0.6930 5.8520 77.80 1.5004 24 666.0 20.20 338.16 29.97 6.30 +25.04610 0.00 18.100 0 0.6930 5.9870 100.00 1.5888 24 666.0 20.20 396.90 26.77 5.60 +14.23620 0.00 18.100 0 0.6930 6.3430 100.00 1.5741 24 666.0 20.20 396.90 20.32 7.20 + 9.59571 0.00 18.100 0 0.6930 6.4040 100.00 1.6390 24 666.0 20.20 376.11 20.31 12.10 +24.80170 0.00 18.100 0 0.6930 5.3490 96.00 1.7028 24 666.0 20.20 396.90 19.77 8.30 +41.52920 0.00 18.100 0 0.6930 5.5310 85.40 1.6074 24 666.0 20.20 329.46 27.38 8.50 +67.92080 0.00 18.100 0 0.6930 5.6830 100.00 1.4254 24 666.0 20.20 384.97 22.98 5.00 +20.71620 0.00 18.100 0 0.6590 4.1380 100.00 1.1781 24 666.0 20.20 370.22 23.34 11.90 +11.95110 0.00 18.100 0 0.6590 5.6080 100.00 1.2852 24 666.0 20.20 332.09 12.13 27.90 + 7.40389 0.00 18.100 0 0.5970 5.6170 97.90 1.4547 24 666.0 20.20 314.64 26.40 17.20 +14.43830 0.00 18.100 0 0.5970 6.8520 100.00 1.4655 24 666.0 20.20 179.36 19.78 27.50 +51.13580 0.00 18.100 0 0.5970 5.7570 100.00 1.4130 24 666.0 20.20 2.60 10.11 15.00 +14.05070 0.00 18.100 0 0.5970 6.6570 100.00 1.5275 24 666.0 20.20 35.05 21.22 17.20 +18.81100 0.00 18.100 0 0.5970 4.6280 100.00 1.5539 24 666.0 20.20 28.79 34.37 17.90 +28.65580 0.00 18.100 0 0.5970 5.1550 100.00 1.5894 24 666.0 20.20 210.97 20.08 16.30 +45.74610 0.00 18.100 0 0.6930 4.5190 100.00 1.6582 24 666.0 20.20 88.27 36.98 7.00 +18.08460 0.00 18.100 0 0.6790 6.4340 100.00 1.8347 24 666.0 20.20 27.25 29.05 7.20 +10.83420 0.00 18.100 0 0.6790 6.7820 90.80 1.8195 24 666.0 20.20 21.57 25.79 7.50 +25.94060 0.00 18.100 0 0.6790 5.3040 89.10 1.6475 24 666.0 20.20 127.36 26.64 10.40 +73.53410 0.00 18.100 0 0.6790 5.9570 100.00 1.8026 24 666.0 20.20 16.45 20.62 8.80 +11.81230 0.00 18.100 0 0.7180 6.8240 76.50 1.7940 24 666.0 20.20 48.45 22.74 8.40 +11.08740 0.00 18.100 0 0.7180 6.4110 100.00 1.8589 24 666.0 20.20 318.75 15.02 16.70 + 7.02259 0.00 18.100 0 0.7180 6.0060 95.30 1.8746 24 666.0 20.20 319.98 15.70 14.20 +12.04820 0.00 18.100 0 0.6140 5.6480 87.60 1.9512 24 666.0 20.20 291.55 14.10 20.80 + 7.05042 0.00 18.100 0 0.6140 6.1030 85.10 2.0218 24 666.0 20.20 2.52 23.29 13.40 + 8.79212 0.00 18.100 0 0.5840 5.5650 70.60 2.0635 24 666.0 20.20 3.65 17.16 11.70 +15.86030 0.00 18.100 0 0.6790 5.8960 95.40 1.9096 24 666.0 20.20 7.68 24.39 8.30 +12.24720 0.00 18.100 0 0.5840 5.8370 59.70 1.9976 24 666.0 20.20 24.65 15.69 10.20 +37.66190 0.00 18.100 0 0.6790 6.2020 78.70 1.8629 24 666.0 20.20 18.82 14.52 10.90 + 7.36711 0.00 18.100 0 0.6790 6.1930 78.10 1.9356 24 666.0 20.20 96.73 21.52 11.00 + 9.33889 0.00 18.100 0 0.6790 6.3800 95.60 1.9682 24 666.0 20.20 60.72 24.08 9.50 + 8.49213 0.00 18.100 0 0.5840 6.3480 86.10 2.0527 24 666.0 20.20 83.45 17.64 14.50 +10.06230 0.00 18.100 0 0.5840 6.8330 94.30 2.0882 24 666.0 20.20 81.33 19.69 14.10 + 6.44405 0.00 18.100 0 0.5840 6.4250 74.80 2.2004 24 666.0 20.20 97.95 12.03 16.10 + 5.58107 0.00 18.100 0 0.7130 6.4360 87.90 2.3158 24 666.0 20.20 100.19 16.22 14.30 +13.91340 0.00 18.100 0 0.7130 6.2080 95.00 2.2222 24 666.0 20.20 100.63 15.17 11.70 +11.16040 0.00 18.100 0 0.7400 6.6290 94.60 2.1247 24 666.0 20.20 109.85 23.27 13.40 +14.42080 0.00 18.100 0 0.7400 6.4610 93.30 2.0026 24 666.0 20.20 27.49 18.05 9.60 +15.17720 0.00 18.100 0 0.7400 6.1520 100.00 1.9142 24 666.0 20.20 9.32 26.45 8.70 +13.67810 0.00 18.100 0 0.7400 5.9350 87.90 1.8206 24 666.0 20.20 68.95 34.02 8.40 + 9.39063 0.00 18.100 0 0.7400 5.6270 93.90 1.8172 24 666.0 20.20 396.90 22.88 12.80 +22.05110 0.00 18.100 0 0.7400 5.8180 92.40 1.8662 24 666.0 20.20 391.45 22.11 10.50 + 9.72418 0.00 18.100 0 0.7400 6.4060 97.20 2.0651 24 666.0 20.20 385.96 19.52 17.10 + 5.66637 0.00 18.100 0 0.7400 6.2190 100.00 2.0048 24 666.0 20.20 395.69 16.59 18.40 + 9.96654 0.00 18.100 0 0.7400 6.4850 100.00 1.9784 24 666.0 20.20 386.73 18.85 15.40 +12.80230 0.00 18.100 0 0.7400 5.8540 96.60 1.8956 24 666.0 20.20 240.52 23.79 10.80 +10.67180 0.00 18.100 0 0.7400 6.4590 94.80 1.9879 24 666.0 20.20 43.06 23.98 11.80 + 6.28807 0.00 18.100 0 0.7400 6.3410 96.40 2.0720 24 666.0 20.20 318.01 17.79 14.90 + 9.92485 0.00 18.100 0 0.7400 6.2510 96.60 2.1980 24 666.0 20.20 388.52 16.44 12.60 + 9.32909 0.00 18.100 0 0.7130 6.1850 98.70 2.2616 24 666.0 20.20 396.90 18.13 14.10 + 7.52601 0.00 18.100 0 0.7130 6.4170 98.30 2.1850 24 666.0 20.20 304.21 19.31 13.00 + 6.71772 0.00 18.100 0 0.7130 6.7490 92.60 2.3236 24 666.0 20.20 0.32 17.44 13.40 + 5.44114 0.00 18.100 0 0.7130 6.6550 98.20 2.3552 24 666.0 20.20 355.29 17.73 15.20 + 5.09017 0.00 18.100 0 0.7130 6.2970 91.80 2.3682 24 666.0 20.20 385.09 17.27 16.10 + 8.24809 0.00 18.100 0 0.7130 7.3930 99.30 2.4527 24 666.0 20.20 375.87 16.74 17.80 + 9.51363 0.00 18.100 0 0.7130 6.7280 94.10 2.4961 24 666.0 20.20 6.68 18.71 14.90 + 4.75237 0.00 18.100 0 0.7130 6.5250 86.50 2.4358 24 666.0 20.20 50.92 18.13 14.10 + 4.66883 0.00 18.100 0 0.7130 5.9760 87.90 2.5806 24 666.0 20.20 10.48 19.01 12.70 + 8.20058 0.00 18.100 0 0.7130 5.9360 80.30 2.7792 24 666.0 20.20 3.50 16.94 13.50 + 7.75223 0.00 18.100 0 0.7130 6.3010 83.70 2.7831 24 666.0 20.20 272.21 16.23 14.90 + 6.80117 0.00 18.100 0 0.7130 6.0810 84.40 2.7175 24 666.0 20.20 396.90 14.70 20.00 + 4.81213 0.00 18.100 0 0.7130 6.7010 90.00 2.5975 24 666.0 20.20 255.23 16.42 16.40 + 3.69311 0.00 18.100 0 0.7130 6.3760 88.40 2.5671 24 666.0 20.20 391.43 14.65 17.70 + 6.65492 0.00 18.100 0 0.7130 6.3170 83.00 2.7344 24 666.0 20.20 396.90 13.99 19.50 + 5.82115 0.00 18.100 0 0.7130 6.5130 89.90 2.8016 24 666.0 20.20 393.82 10.29 20.20 + 7.83932 0.00 18.100 0 0.6550 6.2090 65.40 2.9634 24 666.0 20.20 396.90 13.22 21.40 + 3.16360 0.00 18.100 0 0.6550 5.7590 48.20 3.0665 24 666.0 20.20 334.40 14.13 19.90 + 3.77498 0.00 18.100 0 0.6550 5.9520 84.70 2.8715 24 666.0 20.20 22.01 17.15 19.00 + 4.42228 0.00 18.100 0 0.5840 6.0030 94.50 2.5403 24 666.0 20.20 331.29 21.32 19.10 +15.57570 0.00 18.100 0 0.5800 5.9260 71.00 2.9084 24 666.0 20.20 368.74 18.13 19.10 +13.07510 0.00 18.100 0 0.5800 5.7130 56.70 2.8237 24 666.0 20.20 396.90 14.76 20.10 + 4.34879 0.00 18.100 0 0.5800 6.1670 84.00 3.0334 24 666.0 20.20 396.90 16.29 19.90 + 4.03841 0.00 18.100 0 0.5320 6.2290 90.70 3.0993 24 666.0 20.20 395.33 12.87 19.60 + 3.56868 0.00 18.100 0 0.5800 6.4370 75.00 2.8965 24 666.0 20.20 393.37 14.36 23.20 + 4.64689 0.00 18.100 0 0.6140 6.9800 67.60 2.5329 24 666.0 20.20 374.68 11.66 29.80 + 8.05579 0.00 18.100 0 0.5840 5.4270 95.40 2.4298 24 666.0 20.20 352.58 18.14 13.80 + 6.39312 0.00 18.100 0 0.5840 6.1620 97.40 2.2060 24 666.0 20.20 302.76 24.10 13.30 + 4.87141 0.00 18.100 0 0.6140 6.4840 93.60 2.3053 24 666.0 20.20 396.21 18.68 16.70 +15.02340 0.00 18.100 0 0.6140 5.3040 97.30 2.1007 24 666.0 20.20 349.48 24.91 12.00 +10.23300 0.00 18.100 0 0.6140 6.1850 96.70 2.1705 24 666.0 20.20 379.70 18.03 14.60 +14.33370 0.00 18.100 0 0.6140 6.2290 88.00 1.9512 24 666.0 20.20 383.32 13.11 21.40 + 5.82401 0.00 18.100 0 0.5320 6.2420 64.70 3.4242 24 666.0 20.20 396.90 10.74 23.00 + 5.70818 0.00 18.100 0 0.5320 6.7500 74.90 3.3317 24 666.0 20.20 393.07 7.74 23.70 + 5.73116 0.00 18.100 0 0.5320 7.0610 77.00 3.4106 24 666.0 20.20 395.28 7.01 25.00 + 2.81838 0.00 18.100 0 0.5320 5.7620 40.30 4.0983 24 666.0 20.20 392.92 10.42 21.80 + 2.37857 0.00 18.100 0 0.5830 5.8710 41.90 3.7240 24 666.0 20.20 370.73 13.34 20.60 + 3.67367 0.00 18.100 0 0.5830 6.3120 51.90 3.9917 24 666.0 20.20 388.62 10.58 21.20 + 5.69175 0.00 18.100 0 0.5830 6.1140 79.80 3.5459 24 666.0 20.20 392.68 14.98 19.10 + 4.83567 0.00 18.100 0 0.5830 5.9050 53.20 3.1523 24 666.0 20.20 388.22 11.45 20.60 + 0.15086 0.00 27.740 0 0.6090 5.4540 92.70 1.8209 4 711.0 20.10 395.09 18.06 15.20 + 0.18337 0.00 27.740 0 0.6090 5.4140 98.30 1.7554 4 711.0 20.10 344.05 23.97 7.00 + 0.20746 0.00 27.740 0 0.6090 5.0930 98.00 1.8226 4 711.0 20.10 318.43 29.68 8.10 + 0.10574 0.00 27.740 0 0.6090 5.9830 98.80 1.8681 4 711.0 20.10 390.11 18.07 13.60 + 0.11132 0.00 27.740 0 0.6090 5.9830 83.50 2.1099 4 711.0 20.10 396.90 13.35 20.10 + 0.17331 0.00 9.690 0 0.5850 5.7070 54.00 2.3817 6 391.0 19.20 396.90 12.01 21.80 + 0.27957 0.00 9.690 0 0.5850 5.9260 42.60 2.3817 6 391.0 19.20 396.90 13.59 24.50 + 0.17899 0.00 9.690 0 0.5850 5.6700 28.80 2.7986 6 391.0 19.20 393.29 17.60 23.10 + 0.28960 0.00 9.690 0 0.5850 5.3900 72.90 2.7986 6 391.0 19.20 396.90 21.14 19.70 + 0.26838 0.00 9.690 0 0.5850 5.7940 70.60 2.8927 6 391.0 19.20 396.90 14.10 18.30 + 0.23912 0.00 9.690 0 0.5850 6.0190 65.30 2.4091 6 391.0 19.20 396.90 12.92 21.20 + 0.17783 0.00 9.690 0 0.5850 5.5690 73.50 2.3999 6 391.0 19.20 395.77 15.10 17.50 + 0.22438 0.00 9.690 0 0.5850 6.0270 79.70 2.4982 6 391.0 19.20 396.90 14.33 16.80 + 0.06263 0.00 11.930 0 0.5730 6.5930 69.10 2.4786 1 273.0 21.00 391.99 9.67 22.40 + 0.04527 0.00 11.930 0 0.5730 6.1200 76.70 2.2875 1 273.0 21.00 396.90 9.08 20.60 + 0.06076 0.00 11.930 0 0.5730 6.9760 91.00 2.1675 1 273.0 21.00 396.90 5.64 23.90 + 0.10959 0.00 11.930 0 0.5730 6.7940 89.30 2.3889 1 273.0 21.00 393.45 6.48 22.00 + 0.04741 0.00 11.930 0 0.5730 6.0300 80.80 2.5050 1 273.0 21.00 396.90 7.88 11.90 diff --git a/housing.names b/housing.names new file mode 100644 index 00000000000..16064561f77 --- /dev/null +++ b/housing.names @@ -0,0 +1,52 @@ +1. Title: Boston Housing Data + +2. Sources: + (a) Origin: This dataset was taken from the StatLib library which is + maintained at Carnegie Mellon University. + (b) Creator: Harrison, D. and Rubinfeld, D.L. 'Hedonic prices and the + demand for clean air', J. Environ. Economics & Management, + vol.5, 81-102, 1978. + (c) Date: July 7, 1993 + +3. Past Usage: + - Used in Belsley, Kuh & Welsch, 'Regression diagnostics ...', Wiley, + 1980. N.B. Various transformations are used in the table on + pages 244-261. + - Quinlan,R. (1993). Combining Instance-Based and Model-Based Learning. + In Proceedings on the Tenth International Conference of Machine + Learning, 236-243, University of Massachusetts, Amherst. Morgan + Kaufmann. + +4. Relevant Information: + + Concerns housing values in suburbs of Boston. + +5. Number of Instances: 506 + +6. Number of Attributes: 13 continuous attributes (including "class" + attribute "MEDV"), 1 binary-valued attribute. + +7. Attribute Information: + + 1. CRIM per capita crime rate by town + 2. ZN proportion of residential land zoned for lots over + 25,000 sq.ft. + 3. INDUS proportion of non-retail business acres per town + 4. CHAS Charles River dummy variable (= 1 if tract bounds + river; 0 otherwise) + 5. NOX nitric oxides concentration (parts per 10 million) + 6. RM average number of rooms per dwelling + 7. AGE proportion of owner-occupied units built prior to 1940 + 8. DIS weighted distances to five Boston employment centres + 9. RAD index of accessibility to radial highways + 10. TAX full-value property-tax rate per $10,000 + 11. PTRATIO pupil-teacher ratio by town + 12. B 1000(Bk - 0.63)^2 where Bk is the proportion of blacks + by town + 13. LSTAT % lower status of the population + 14. MEDV Median value of owner-occupied homes in $1000's + +8. Missing Attribute Values: None. + + +