@@ -3399,10 +3399,10 @@ bool llama_model::load_tensors(llama_model_loader & ml) {
3399
3399
// output
3400
3400
{
3401
3401
output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
3402
- output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, llama_model_loader:: TENSOR_NOT_REQUIRED);
3402
+ output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
3403
3403
// if output is NULL, init from the input tok embed, duplicated to allow offloading
3404
3404
if (output == NULL) {
3405
- output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, llama_model_loader:: TENSOR_DUPLICATED);
3405
+ output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
3406
3406
}
3407
3407
}
3408
3408
@@ -3415,10 +3415,10 @@ bool llama_model::load_tensors(llama_model_loader & ml) {
3415
3415
if (hparams.is_recurrent(i)) {
3416
3416
// ssm layers
3417
3417
layer.ssm_in = create_tensor(tn(LLM_TENSOR_SSM_IN, "weight", i), {n_embd, d_in_proj}, 0);
3418
- layer.ssm_in_b = create_tensor(tn(LLM_TENSOR_SSM_IN, "bias", i), {n_embd, d_in_proj}, llama_model_loader:: TENSOR_NOT_REQUIRED);
3418
+ layer.ssm_in_b = create_tensor(tn(LLM_TENSOR_SSM_IN, "bias", i), {n_embd, d_in_proj}, TENSOR_NOT_REQUIRED);
3419
3419
3420
3420
layer.ssm_conv1d = create_tensor(tn(LLM_TENSOR_SSM_CONV1D, "weight", i), {d_conv, d_inner + 2*n_group*d_state}, 0);
3421
- layer.ssm_conv1d_b = create_tensor(tn(LLM_TENSOR_SSM_CONV1D, "bias", i), {d_inner + 2*n_group*d_state}, llama_model_loader:: TENSOR_NOT_REQUIRED);
3421
+ layer.ssm_conv1d_b = create_tensor(tn(LLM_TENSOR_SSM_CONV1D, "bias", i), {d_inner + 2*n_group*d_state}, TENSOR_NOT_REQUIRED);
3422
3422
3423
3423
layer.ssm_dt_b = create_tensor(tn(LLM_TENSOR_SSM_DT, "bias", i), {n_ssm_head}, 0);
3424
3424
@@ -3439,17 +3439,17 @@ bool llama_model::load_tensors(llama_model_loader & ml) {
3439
3439
layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa_i}, 0);
3440
3440
layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa_i}, 0);
3441
3441
layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * n_head_i, n_embd}, 0);
3442
- layer.bq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd}, llama_model_loader:: TENSOR_NOT_REQUIRED);
3443
- layer.bk = create_tensor(tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_k_gqa_i}, llama_model_loader:: TENSOR_NOT_REQUIRED);
3444
- layer.bv = create_tensor(tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_v_gqa_i}, llama_model_loader:: TENSOR_NOT_REQUIRED);
3445
- layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, llama_model_loader:: TENSOR_NOT_REQUIRED);
3442
+ layer.bq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
3443
+ layer.bk = create_tensor(tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_k_gqa_i}, TENSOR_NOT_REQUIRED);
3444
+ layer.bv = create_tensor(tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_v_gqa_i}, TENSOR_NOT_REQUIRED);
3445
+ layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
3446
3446
}
3447
3447
3448
3448
// feed forward (w/ optional biases)
3449
3449
if (n_expert > 0) {
3450
3450
// MoE FFN
3451
3451
layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
3452
- layer.rope_freqs = create_tensor(tn(LLM_TENSOR_ROPE_FREQS, "weight", i), {n_rot/2}, llama_model_loader:: TENSOR_NOT_REQUIRED | (i != 0 ? llama_model_loader:: TENSOR_DUPLICATED : 0));
3452
+ layer.rope_freqs = create_tensor(tn(LLM_TENSOR_ROPE_FREQS, "weight", i), {n_rot/2}, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0));
3453
3453
layer.ffn_gate_inp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert}, 0);
3454
3454
layer.ffn_gate_exps = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {n_embd, n_ff, n_expert}, TENSOR_NOT_REQUIRED);
3455
3455
layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), { n_ff, n_embd, n_expert}, 0);
@@ -3463,13 +3463,13 @@ bool llama_model::load_tensors(llama_model_loader & ml) {
3463
3463
}
3464
3464
} else {
3465
3465
layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
3466
- layer.rope_freqs = create_tensor(tn(LLM_TENSOR_ROPE_FREQS, "weight", i), {n_rot/2}, llama_model_loader:: TENSOR_NOT_REQUIRED | (i != 0 ? llama_model_loader:: TENSOR_DUPLICATED : 0));
3466
+ layer.rope_freqs = create_tensor(tn(LLM_TENSOR_ROPE_FREQS, "weight", i), {n_rot/2}, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0));
3467
3467
layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
3468
3468
layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
3469
3469
layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
3470
- layer.ffn_gate_b = create_tensor(tn(LLM_TENSOR_FFN_GATE, "bias", i), {n_ff}, llama_model_loader:: TENSOR_NOT_REQUIRED);
3471
- layer.ffn_down_b = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, llama_model_loader:: TENSOR_NOT_REQUIRED);
3472
- layer.ffn_up_b = create_tensor(tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}, llama_model_loader:: TENSOR_NOT_REQUIRED);
3470
+ layer.ffn_gate_b = create_tensor(tn(LLM_TENSOR_FFN_GATE, "bias", i), {n_ff}, TENSOR_NOT_REQUIRED);
3471
+ layer.ffn_down_b = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
3472
+ layer.ffn_up_b = create_tensor(tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}, TENSOR_NOT_REQUIRED);
3473
3473
}
3474
3474
}
3475
3475
} break;
0 commit comments