Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Eval bug: Unexpected empty grammar stack after accepting piece: <|tool_calls_begin|> on DeepSeek-R1-Distill-Qwen-32B #11938

Open
chgjin opened this issue Feb 18, 2025 · 1 comment

Comments

@chgjin
Copy link

chgjin commented Feb 18, 2025

Name and Version

llama-server --version

ggml_cuda_init: GGML_CUDA_FORCE_MMQ:    no
ggml_cuda_init: GGML_CUDA_FORCE_CUBLAS: no
ggml_cuda_init: found 2 CUDA devices:
  Device 0: NVIDIA GeForce RTX 2080 Ti, compute capability 7.5, VMM: yes
  Device 1: NVIDIA GeForce RTX 2080 Ti, compute capability 7.5, VMM: yes
version: 4735 (73e2ed3c)
built with cc (Ubuntu 13.3.0-6ubuntu2~24.04) 13.3.0 for x86_64-linux-gnu

Operating systems

Linux

GGML backends

CUDA

Hardware

2x RTX 2080 Ti

Models

DeepSeek-R1-Distill-Qwen-32B-Q8_0

Problem description & steps to reproduce

export LLAMA_ARG_N_GPU_LAYERS=26
export LLAMA_ARG_TENSOR_SPLIT=1,1
export MODELS_PATH=$1
llama-server -m $MODELS_PATH -fa --jinja

First Bad Commit

When inferring with DeepSeek-R1-Distill-Qwen-32B-Q8_0 model, the model was prompted to use tools, but the log of llama.cpp printed incorrectly and disconnected the request.

terminate called after throwing an instance of 'std::runtime_error'
  what():  Unexpected empty grammar stack after accepting piece: <|tool_calls_begin|>

Relevant log output

ggml_cuda_init: GGML_CUDA_FORCE_MMQ:    no
ggml_cuda_init: GGML_CUDA_FORCE_CUBLAS: no
ggml_cuda_init: found 2 CUDA devices:
  Device 0: NVIDIA GeForce RTX 2080 Ti, compute capability 7.5, VMM: yes
  Device 1: NVIDIA GeForce RTX 2080 Ti, compute capability 7.5, VMM: yes
build: 4735 (73e2ed3c) with cc (Ubuntu 13.3.0-6ubuntu2~24.04) 13.3.0 for x86_64-linux-gnu
system info: n_threads = 18, n_threads_batch = 18, total_threads = 36

system_info: n_threads = 18 (n_threads_batch = 18) / 36 | CUDA : ARCHS = 750 | USE_GRAPHS = 1 | PEER_MAX_BATCH_SIZE = 128 | CPU : SSE3 = 1 | SSSE3 = 1 | AVX = 1 | AVX2 = 1 | F16C = 1 | FMA = 1 | LLAMAFILE = 1 | OPENMP = 1 | AARCH64_REPACK = 1 | 

main: HTTP server is listening, hostname: 0.0.0.0, port: 15011, http threads: 35
main: loading model
srv    load_model: loading model '/models/modelscope/hub/unsloth/DeepSeek-R1-Distill-Qwen-32B-GGUF/DeepSeek-R1-Distill-Qwen-32B-Q8_0.gguf'
llama_model_load_from_file_impl: using device CUDA0 (NVIDIA GeForce RTX 2080 Ti) - 22023 MiB free
llama_model_load_from_file_impl: using device CUDA1 (NVIDIA GeForce RTX 2080 Ti) - 22026 MiB free
llama_model_loader: loaded meta data with 27 key-value pairs and 771 tensors from /models/modelscope/hub/unsloth/DeepSeek-R1-Distill-Qwen-32B-GGUF/DeepSeek-R1-Distill-Qwen-32B-Q8_0.gguf (version GGUF V3 (latest))
llama_model_loader: Dumping metadata keys/values. Note: KV overrides do not apply in this output.
llama_model_loader: - kv   0:                       general.architecture str              = qwen2
llama_model_loader: - kv   1:                               general.type str              = model
llama_model_loader: - kv   2:                               general.name str              = DeepSeek R1 Distill Qwen 32B
llama_model_loader: - kv   3:                       general.organization str              = Deepseek Ai
llama_model_loader: - kv   4:                           general.basename str              = DeepSeek-R1-Distill-Qwen
llama_model_loader: - kv   5:                         general.size_label str              = 32B
llama_model_loader: - kv   6:                          qwen2.block_count u32              = 64
llama_model_loader: - kv   7:                       qwen2.context_length u32              = 131072
llama_model_loader: - kv   8:                     qwen2.embedding_length u32              = 5120
llama_model_loader: - kv   9:                  qwen2.feed_forward_length u32              = 27648
llama_model_loader: - kv  10:                 qwen2.attention.head_count u32              = 40
llama_model_loader: - kv  11:              qwen2.attention.head_count_kv u32              = 8
llama_model_loader: - kv  12:                       qwen2.rope.freq_base f32              = 1000000.000000
llama_model_loader: - kv  13:     qwen2.attention.layer_norm_rms_epsilon f32              = 0.000010
llama_model_loader: - kv  14:                          general.file_type u32              = 7
llama_model_loader: - kv  15:                       tokenizer.ggml.model str              = gpt2
llama_model_loader: - kv  16:                         tokenizer.ggml.pre str              = deepseek-r1-qwen
llama_model_loader: - kv  17:                      tokenizer.ggml.tokens arr[str,152064]  = ["!", "\"", "#", "$", "%", "&", "'", ...
llama_model_loader: - kv  18:                  tokenizer.ggml.token_type arr[i32,152064]  = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
llama_model_loader: - kv  19:                      tokenizer.ggml.merges arr[str,151387]  = ["Ġ Ġ", "ĠĠ ĠĠ", "i n", "Ġ t",...
llama_model_loader: - kv  20:                tokenizer.ggml.bos_token_id u32              = 151646
llama_model_loader: - kv  21:                tokenizer.ggml.eos_token_id u32              = 151643
llama_model_loader: - kv  22:            tokenizer.ggml.padding_token_id u32              = 151654
llama_model_loader: - kv  23:               tokenizer.ggml.add_bos_token bool             = true
llama_model_loader: - kv  24:               tokenizer.ggml.add_eos_token bool             = false
llama_model_loader: - kv  25:                    tokenizer.chat_template str              = {% if not add_generation_prompt is de...
llama_model_loader: - kv  26:               general.quantization_version u32              = 2
llama_model_loader: - type  f32:  321 tensors
llama_model_loader: - type q8_0:  450 tensors
print_info: file format = GGUF V3 (latest)
print_info: file type   = Q8_0
print_info: file size   = 32.42 GiB (8.50 BPW) 
load: special_eos_id is not in special_eog_ids - the tokenizer config may be incorrect
load: special tokens cache size = 22
load: token to piece cache size = 0.9310 MB
print_info: arch             = qwen2
print_info: vocab_only       = 0
print_info: n_ctx_train      = 131072
print_info: n_embd           = 5120
print_info: n_layer          = 64
print_info: n_head           = 40
print_info: n_head_kv        = 8
print_info: n_rot            = 128
print_info: n_swa            = 0
print_info: n_embd_head_k    = 128
print_info: n_embd_head_v    = 128
print_info: n_gqa            = 5
print_info: n_embd_k_gqa     = 1024
print_info: n_embd_v_gqa     = 1024
print_info: f_norm_eps       = 0.0e+00
print_info: f_norm_rms_eps   = 1.0e-05
print_info: f_clamp_kqv      = 0.0e+00
print_info: f_max_alibi_bias = 0.0e+00
print_info: f_logit_scale    = 0.0e+00
print_info: n_ff             = 27648
print_info: n_expert         = 0
print_info: n_expert_used    = 0
print_info: causal attn      = 1
print_info: pooling type     = 0
print_info: rope type        = 2
print_info: rope scaling     = linear
print_info: freq_base_train  = 1000000.0
print_info: freq_scale_train = 1
print_info: n_ctx_orig_yarn  = 131072
print_info: rope_finetuned   = unknown
print_info: ssm_d_conv       = 0
print_info: ssm_d_inner      = 0
print_info: ssm_d_state      = 0
print_info: ssm_dt_rank      = 0
print_info: ssm_dt_b_c_rms   = 0
print_info: model type       = 32B
print_info: model params     = 32.76 B
print_info: general.name     = DeepSeek R1 Distill Qwen 32B
print_info: vocab type       = BPE
print_info: n_vocab          = 152064
print_info: n_merges         = 151387
print_info: BOS token        = 151646 '<|begin▁of▁sentence|>'
print_info: EOS token        = 151643 '<|end▁of▁sentence|>'
print_info: EOT token        = 151643 '<|end▁of▁sentence|>'
print_info: PAD token        = 151654 '<|vision_pad|>'
print_info: LF token         = 198 'Ċ'
print_info: FIM PRE token    = 151659 '<|fim_prefix|>'
print_info: FIM SUF token    = 151661 '<|fim_suffix|>'
print_info: FIM MID token    = 151660 '<|fim_middle|>'
print_info: FIM PAD token    = 151662 '<|fim_pad|>'
print_info: FIM REP token    = 151663 '<|repo_name|>'
print_info: FIM SEP token    = 151664 '<|file_sep|>'
print_info: EOG token        = 151643 '<|end▁of▁sentence|>'
print_info: EOG token        = 151662 '<|fim_pad|>'
print_info: EOG token        = 151663 '<|repo_name|>'
print_info: EOG token        = 151664 '<|file_sep|>'
print_info: max token length = 256
load_tensors: loading model tensors, this can take a while... (mmap = true)
load_tensors: offloading 64 repeating layers to GPU
load_tensors: offloading output layer to GPU
load_tensors: offloaded 65/65 layers to GPU
load_tensors:        CUDA0 model buffer size = 16306.25 MiB
load_tensors:        CUDA1 model buffer size = 16106.92 MiB
load_tensors:   CPU_Mapped model buffer size =   788.91 MiB
.................................................................................................
llama_init_from_model: n_seq_max     = 1
llama_init_from_model: n_ctx         = 4096
llama_init_from_model: n_ctx_per_seq = 4096
llama_init_from_model: n_batch       = 2048
llama_init_from_model: n_ubatch      = 512
llama_init_from_model: flash_attn    = 1
llama_init_from_model: freq_base     = 1000000.0
llama_init_from_model: freq_scale    = 1
llama_init_from_model: n_ctx_per_seq (4096) < n_ctx_train (131072) -- the full capacity of the model will not be utilized
llama_kv_cache_init: kv_size = 4096, offload = 1, type_k = 'f16', type_v = 'f16', n_layer = 64, can_shift = 1
llama_kv_cache_init:      CUDA0 KV buffer size =   528.00 MiB
llama_kv_cache_init:      CUDA1 KV buffer size =   496.00 MiB
llama_init_from_model: KV self size  = 1024.00 MiB, K (f16):  512.00 MiB, V (f16):  512.00 MiB
llama_init_from_model:  CUDA_Host  output buffer size =     0.58 MiB
llama_init_from_model: pipeline parallelism enabled (n_copies=4)
llama_init_from_model:      CUDA0 compute buffer size =   214.01 MiB
llama_init_from_model:      CUDA1 compute buffer size =   363.02 MiB
llama_init_from_model:  CUDA_Host compute buffer size =    42.02 MiB
llama_init_from_model: graph nodes  = 1991
llama_init_from_model: graph splits = 3
common_init_from_params: setting dry_penalty_last_n to ctx_size = 4096
common_init_from_params: warming up the model with an empty run - please wait ... (--no-warmup to disable)
srv          init: initializing slots, n_slots = 1
slot         init: id  0 | task -1 | new slot n_ctx_slot = 4096
main: model loaded
main: chat template, chat_template: {% if not add_generation_prompt is defined %}{% set add_generation_prompt = false %}{% endif %}{% set ns = namespace(is_first=false, is_tool=false, is_output_first=true, system_prompt='') %}{%- for message in messages %}{%- if message['role'] == 'system' %}{% set ns.system_prompt = message['content'] %}{%- endif %}{%- endfor %}{{bos_token}}{{ns.system_prompt}}{%- for message in messages %}{%- if message['role'] == 'user' %}{%- set ns.is_tool = false -%}{{'<|User|>' + message['content']}}{%- endif %}{%- if message['role'] == 'assistant' and message['content'] is none %}{%- set ns.is_tool = false -%}{%- for tool in message['tool_calls']%}{%- if not ns.is_first %}{{'<|Assistant|><|tool▁calls▁begin|><|tool▁call▁begin|>' + tool['type'] + '<|tool▁sep|>' + tool['function']['name'] + '\n' + '' + '\n' + tool['function']['arguments'] + '\n' + '' + '<|tool▁call▁end|>'}}{%- set ns.is_first = true -%}{%- else %}{{'\n' + '<|tool▁call▁begin|>' + tool['type'] + '<|tool▁sep|>' + tool['function']['name'] + '\n' + '' + '\n' + tool['function']['arguments'] + '\n' + '' + '<|tool▁call▁end|>'}}{{'<|tool▁calls▁end|><|end▁of▁sentence|>'}}{%- endif %}{%- endfor %}{%- endif %}{%- if message['role'] == 'assistant' and message['content'] is not none %}{%- if ns.is_tool %}{{'<|tool▁outputs▁end|>' + message['content'] + '<|end▁of▁sentence|>'}}{%- set ns.is_tool = false -%}{%- else %}{% set content = message['content'] %}{% if '</think>' in content %}{% set content = content.split('</think>')[-1] %}{% endif %}{{'<|Assistant|>' + content + '<|end▁of▁sentence|>'}}{%- endif %}{%- endif %}{%- if message['role'] == 'tool' %}{%- set ns.is_tool = true -%}{%- if ns.is_output_first %}{{'<|tool▁outputs▁begin|><|tool▁output▁begin|>' + message['content'] + '<|tool▁output▁end|>'}}{%- set ns.is_output_first = false %}{%- else %}{{'\n<|tool▁output▁begin|>' + message['content'] + '<|tool▁output▁end|>'}}{%- endif %}{%- endif %}{%- endfor -%}{% if ns.is_tool %}{{'<|tool▁outputs▁end|>'}}{% endif %}{% if add_generation_prompt and not ns.is_tool %}{{'<|Assistant|><think>\n'}}{% endif %}, example_format: 'You are a helpful assistant<|User|>Hello<|Assistant|>Hi there<|end▁of▁sentence|><|User|>How are you?<|Assistant|><think>
'
main: server is listening on http://0.0.0.0:15011 - starting the main loop
srv  update_slots: all slots are idle
Template supports tool calls but does not natively describe tools. The fallback behaviour used may produce bad results, inspect prompt w/ --verbose & consider overriding the template.
srv  params_from_: Chat format: DeepSeek R1 (extract reasoning)
srv  params_from_: Not preserved because more than 1 token (wrong chat template override?): <|tool▁sep|>
srv  params_from_: Not preserved because more than 1 token (wrong chat template override?): <|tool▁calls▁end|
srv  params_from_: Not preserved because more than 1 token (wrong chat template override?): <|tool▁call▁end|>
slot launch_slot_: id  0 | task 0 | processing task
slot update_slots: id  0 | task 0 | new prompt, n_ctx_slot = 4096, n_keep = 0, n_prompt_tokens = 1353
slot update_slots: id  0 | task 0 | kv cache rm [0, end)
slot update_slots: id  0 | task 0 | prompt processing progress, n_past = 1353, n_tokens = 1353, progress = 1.000000
slot update_slots: id  0 | task 0 | prompt done, n_past = 1353, n_tokens = 1353
terminate called after throwing an instance of 'std::runtime_error'
  what():  Unexpected empty grammar stack after accepting piece: <|tool_calls_begin|>
@henryclw
Copy link

I was experiencing the same problem. But today I might have find a way to work around this:
according to https://github.com/ggml-org/llama.cpp/tree/master/examples/server#post-v1chatcompletions-openai-compatible-chat-completions-api

# Native support for DeepSeek R1 works best w/ our own template (official template buggy)
llama-server --jinja -fa -hf bartowski/DeepSeek-R1-Distill-Qwen-7B-GGUF:Q6_K_L \
  --chat-template-file models/templates/llama-cpp-deepseek-r1.jinja

I try using this template llama-cpp-deepseek-r1.jinja and it works, but with a few more warning logs as well:

srv  params_from_: Chat format: DeepSeek R1 (extract reasoning)
srv  params_from_: Not preserved because more than 1 token (wrong chat template override?): <think>
srv  params_from_: Not preserved because more than 1 token (wrong chat template override?): </think>
srv  params_from_: Not preserved because more than 1 token (wrong chat template override?): <|tool▁sep|>
srv  params_from_: Not preserved because more than 1 token (wrong chat template override?): <|tool▁calls▁end|
srv  params_from_: Not preserved because more than 1 token (wrong chat template override?): <|tool▁call▁end|>

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Projects
None yet
Development

No branches or pull requests

2 participants