-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
181 lines (153 loc) · 7.54 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
import numpy as np
import torch
import pickle
import argparse
import os
import sys
from torch.utils.data import DataLoader
from sklearn.model_selection import KFold
from src.model.vae import *
from src.data.data import *
from decouple import config
from loguru import logger
from utils import *
def create_dataset(data, train_test_splits):
data = np.array(data)
ids = list(range(data.shape[0]))
train_ids = np.random.choice(ids, size=len(ids)*(1-train_test_splits), replace=False)
valid_ids = [item for item in ids if item not in train_ids]
return Vae_Dataset(torch.tensor(data[train_ids], dtype=torch.float)), Vae_Dataset(torch.tensor(data[valid_ids], dtype=torch.float))
def create_dataloader(train_dataset, valid_dataset, arguments):
train_dataloader = DataLoader(train_dataset, shuffle=True, batch_size=arguments.batch_size)
valid_dataloader = DataLoader(valid_dataset, shuffle=False, batch_size=arguments.batch_size)
return train_dataloader, valid_dataloader
def validation(model, valid_dataloader, device):
model.eval()
total_loss = 0.0
for i, batch in enumerate(valid_dataloader):
image = batch
image = image.to(device)
output = model(image)
total_loss += output["loss"].item()
total_loss = total_loss / len(valid_dataloader)
model.train()
return total_loss
def train():
parser = argparse.ArgumentParser()
parser.add_argument("--data_dir", type=str, default="data/cifar-10",
help="Path to data folder, which may contains one or several files of data.")
parser.add_argument("--k_fold", type=int, default=9,
help="Numbef of folds to train with k-fold cross validation style, if k_fold=0, training with normal style.")
parser.add_argument("--epoch", type=int, default=100,
help="Max epoch number.")
parser.add_argument("--num_cnn", type=int, default=3,
help="Numbef of CNN layer.")
parser.add_argument("--latent_dim", type=int, default=128,
help="Dim of z.")
parser.add_argument("--lr", type=float, default=1e-3,
help="Learning rate.")
parser.add_argument("--train_test_split", type=float, default=0.2,
help="Use when training in normal style.")
parser.add_argument("--batch_size", type=int, default=16,
help="Batch size for creating dataloader.")
parser.add_argument("--train_from_checkpoint", action="store_true",
help="Continue training from checkpoint")
arguments = parser.parse_args()
if not os.path.exists(config('MODEL_DIR')):
os.makedirs(config('MODEL_DIR'))
data = read_data_from_disk(arguments.data_dir)
data = data.reshape((-1, 3, 32, 32))
if arguments.k_fold == 0:
train_dataset, valid_dataset = create_dataset(data, arguments.train_test_split)
train_dataloader, valid_dataloader = create_dataloader(train_dataset, valid_dataset, arguments)
else:
dataset = Vae_Dataset(torch.tensor(data, dtype=torch.float))
kfold = KFold(arguments.k_fold)
image_shape = data.shape[1:]
if arguments.train_from_checkpoint:
logger.info("Load model from checkpoint.")
hyper_param = process_log()
current_best_loss = hyper_param["current_best_loss"]
number_from_improvement = hyper_param["number_from_improvement"]
current_epoch = hyper_param["current_epoch"] + 1
model = torch.load(os.path.join(config('MODEL_DIR'), 'checkpoint_epoch_{}'.format(current_epoch)))
else:
current_best_loss = float('inf')
number_from_improvement = 0
current_epoch = 0
model = VAE(image_shape, arguments.num_cnn, arguments.latent_dim)
optimizer = torch.optim.AdamW(model.parameters(), lr=arguments.lr)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model.to(device)
for epoch in range(current_epoch+1, arguments.epoch):
model.train()
print(f"Training epoch {epoch}")
logger.info("Training epoch {}".format(epoch))
loss_valid_epoch = 0.0
if arguments.k_fold != 0:
logger.info("Training with k-fold cross validation style, numbef of folds: {}".format(arguments.k_fold))
for fold, (train_ids, valid_ids) in enumerate(kfold.split(dataset)):
logger.info("Fold: {}".format(fold))
train_subsampler = torch.utils.data.SubsetRandomSampler(train_ids)
valid_subsampler = torch.utils.data.SubsetRandomSampler(valid_ids)
train_dataloader = torch.utils.data.DataLoader(
dataset,
batch_size = arguments.batch_size,
sampler = train_subsampler
)
valid_dataloader = torch.utils.data.DataLoader(
dataset,
batch_size = arguments.batch_size,
sampler = valid_subsampler
)
total_loss = 0.0
for i, batch in enumerate(train_dataloader):
image = batch
image = image.to(device)
optimizer.zero_grad()
output = model(image)
loss = output["loss"]
out_image = output["output"]
loss.backward()
optimizer.step()
total_loss += loss.item()
if i % 50 == 0 or i == len(train_dataloader) - 1:
logger.info("Batch {}/{}: loss {}({})".format(i+1, len(train_dataloader), loss.item(), total_loss / (i+1)))
loss_valid = validation(model, valid_dataloader, device)
loss_valid_epoch += loss_valid
logger.info("Fold {}: loss {}".format(fold, loss_valid))
loss_valid_epoch = loss_valid_epoch / arguments.k_fold
logger.info("EPOCH {}: loss {}".format(epoch, loss_valid_epoch))
else:
for i, batch in enumerate(train_dataloader):
image = batch
image = image.to(device)
optimizer.zero_grad()
output = model(image)
loss = output["loss"]
out_image = output["output"]
loss.backward()
optimizer.step()
if i % 50 == 0 or i == len(train_dataloader) - 1:
logger.info("Batch {}/{}: loss {}({})".format(i+1, len(train_dataloader), loss.item(), total_loss / (i+1)))
loss_valid_epoch = validation(model, valid_dataloader, device)
logger.info("EPOCH {}: loss {}".format(epoch, loss_valid_epoch))
model_path = os.path.join(config('MODEL_DIR'), "checkpoint_epoch_{}".format(epoch))
torch.save(model, model_path)
if loss_valid_epoch < current_best_loss:
current_best_loss = loss_valid_epoch
number_from_improvement = 0
else:
number_from_improvement += 1
print(f"Epoch {epoch}, loss {loss_valid_epoch}, number from improvement {number_from_improvement}")
if number_from_improvement >= 8:
logger.info("TRAING END DUE TO POOR IMPROVEMENT ON VALIDATION DATA.")
logger.info("BEST EPOCH {}".format(epoch - number_from_improvement))
break
if epoch == arguments.epoch - 1:
logger.info("BEST EPOCH {}".format(epoch - number_from_improvement))
if __name__ == "__main__":
logger.remove()
#logger.add(sys.stderr, level="INFO")
logger.add("training.log", level="INFO")
train()