2
2
Title : Stochastic analysis of egress simulations
3
3
Sub Title :
4
4
Author : Quentin Jullien
5
- Affiliation : Centre Scientifique et Technique du Bâtiment ![logo2]
5
+ Affiliation : Centre Scientifique et Technique du Bâtiment - France ![logo2]
6
6
7
7
Reveal Theme : sky
8
8
Beamer Theme : singapore
@@ -26,13 +26,16 @@ Toc Depth : 1
26
26
# Context
27
27
The use of egress simulation models in performance-based analysis relies on the confidence in the input data and the output data.
28
28
29
- * But data strongly depend on a large number of parameters.
30
- * So the results are prone to be scattered.
29
+ But, data strongly depend on a large number of parameters.
30
+
31
+ These parameters model human behavior and are scattered.
32
+
33
+ → The results are prone to be scattered.
31
34
32
35
33
36
34
37
## Aim of the study
35
- Propose a method to analyze the statistical aspects of an egress simulation model.
38
+ Realization of a method to analyze the stochastic aspects of an egress simulation model.
36
39
37
40
* The method is based on statistical estimations of the distribution quantiles of the output parameters.
38
41
The key result is Required Safe Egress Time (RSET).
@@ -47,13 +50,13 @@ Benefits of the method:
47
50
48
51
~ Begin Vertical { data-background:Gainsbor }
49
52
50
- # Presentation of the method of statistical analysis {#vertical}
53
+ # Statistical analysis method {#vertical}
51
54
52
55
Example:
53
56
54
- * Take a sample of n realizations of a random variable that follows a normal law distribution.
55
- * Build a confidence interval Ip for each order quantile α.
56
- * Choose a level of confidence p: here 90%.
57
+ * A sample of n realizations of a random variable that follows a normal law distribution.
58
+ * A confidence interval Ip for each quantile α.
59
+ * A level of confidence p: here 90%.
57
60
58
61
~ Math { #eq-alignment; caption:"Alignment example" }
59
62
\begin{aligned}
@@ -64,7 +67,7 @@ Example:
64
67
c equals to 1.645 for p=90%.
65
68
66
69
67
- ## Build the empirical distribution function
70
+ ## Calculating the empirical distribution function
68
71
→ Random realizations ranked in ascending order constitute the
69
72
empirical distribution function.
70
73
@@ -80,14 +83,14 @@ empirical distribution function.
80
83
~ Align-Left
81
84
* A random variable can not show a theoretical maximum.
82
85
* Even if there is a maximum value, the finite size of
83
- the samples didn't allow to access to this maximum value.
86
+ the samples prevent from calculating this maximum value.
84
87
85
88
→ Only percentiles are available.
86
89
87
- * Percentiles increases with the growth of the sample size.
88
- * Confidence interval decreases with the growth of the sample size.
90
+ * Available percentiles increases with the growth of the sample size.
91
+ * Confidence interval width decreases with the growth of the sample size.
89
92
90
- → So, the required number of draws is set by:
93
+ → So, the required number of simulations is set by:
91
94
92
95
* the desired precision,
93
96
* the order of the desired quantile.
@@ -127,7 +130,6 @@ Reminder:
127
130
~ Align-Left
128
131
Occupants:
129
132
130
- * are men,
131
133
* have same leaderships,
132
134
* have same patience,
133
135
* are valid,
@@ -136,7 +138,7 @@ Occupants:
136
138
* act independently of each other.
137
139
138
140
The identical leaderships imply a conflict resolution time included between 0.8 s and 1.5 s.
139
- During this study the fixed value of 1.15 s will be use too.
141
+ The fixed value of 1.15 s will be use too.
140
142
141
143
The draws are realized with an uniform law.
142
144
~
@@ -150,66 +152,51 @@ The draws are realized with an uniform law.
150
152
~ Begin Vertical { data-background:Gainsbor }
151
153
# Reference study case
152
154
153
- Occupants are randomly positioned in the room and drawn between 1 and 1,000.
155
+ Occupants are randomly located in the room and drawn between 1 and 1,000.
154
156
155
157
~ Begin Columns
156
158
~ Column { width:50% }
157
- 100 draws
159
+ 100 simulations
158
160
159
161
![fig5_1]
160
- [fig5_1]: images/fig5_1.PNG "fig5_1" { width:auto; max-width:80 %; border:solid 1px black}
162
+ [fig5_1]: images/fig5_1.PNG "fig5_1" { width:auto; max-width:100 %; border:solid 1px black}
161
163
~
162
164
~ Column
163
- 1,000 draws
165
+ 1,000 simulations
164
166
165
167
![fig5_2]
166
- [fig5_2]: images/fig5_2.PNG "fig5_2" { width:auto; max-width:80 %; border:solid 1px black}
168
+ [fig5_2]: images/fig5_2.PNG "fig5_2" { width:auto; max-width:100 %; border:solid 1px black}
167
169
~
168
170
~ End Columns
169
171
170
172
171
173
172
174
## Observations (1)
173
175
174
- It is impossible to determine statistically a RSET maximum.
176
+ It is impossible to statistically determine a RSET maximum.
175
177
~ Align-Left
176
178
* Extreme percentiles have a confidence interval with infinite bounds.
177
- ~
179
+
178
180
179
181
In any case, a RSET max is bound to a catastrophic scenario.
180
182
181
- → It seems preferable to retain the associated RSET 95^th^ percentile.
183
+ → It seems preferable to retain a high order percentile.
182
184
185
+ * This study used the 95^th^ percentile.
186
+ ~
183
187
~ Align-Left
184
- * The value of 95^th^ percentile is arbitrary .
188
+ * The value of this parameter is essential to an egress study conclusions and has to be discussed .
185
189
~
186
190
187
191
## Observations (2)
188
- The confidence interval decreases with the increase of the number of draws.
189
-
190
- ~ Center
191
- ![fig5_3]
192
- [fig5_3]: images/fig5_3.PNG "fig5_3" { width:auto; max-width:60%; border:solid 1px black}
193
- ~
194
-
195
- ## Observations (3)
196
- There are at least 3 separate evacuation schemes according to the number of occupants.
192
+ The confidence interval decreases with the increase of the number of simulations. &bcheckmark;
197
193
198
- ~ Center
199
- ![fig_tab3]
200
- [fig_tab3]: images/fig_tab3.PNG "fig_tab3" { width:auto; max-width:50%; border:solid 1px black}
201
- ~
202
- ~ Begin Columns
203
- ~ Column { width:50% }
204
- ![fig5_2]
205
- [fig5_2]: images/fig5_2.PNG "fig5_2" { width:auto; max-width:80%; border:solid 1px black}
206
- ~
207
- ~ Column
208
- ![fig5_4]
209
- [fig5_4]: images/fig5_4.PNG "fig5_4" { width:auto; max-width:85%; border:solid 1px black}
194
+ There are at least 3 separate evacuation patterns according to the number of occupants.
195
+ ~ Align-left
210
196
197
+ * Three parameters sets are based on this three patterns and used in this study to get rid of the occupant density influence.These patterns are used in this study to see the influence of others parameters more independently of the density of people.
211
198
~
212
- ~ End Columns
199
+ → The method provides additional elements to understand evacuation behaviors even in this simplistic case.
213
200
214
201
~ End Vertical
215
202
@@ -227,22 +214,31 @@ There are at least 3 separate evacuation schemes according to the number of occu
227
214
228
215
Parameters tested: conflict resolution time, position of the occupants and response time (RT).
229
216
230
- ~ Center
231
- ![fig_tab4]
232
- [fig_tab4]: images/fig_tab4.PNG "fig_tab4" { width:auto; max-width:55%; border:solid 1px black}
233
- ~
234
- 3 schemes to free from influence of occupant density.
235
- ~ Center
236
- ![fig_tab5]
237
- [fig_tab5]: images/fig_tab5.PNG "fig_tab5" { width:auto; max-width:55%; border:solid 1px black}
238
- ~
217
+ 1,000 simulations for each patterns.
218
+
219
+
220
+
221
+ |-----------|---------------------|---------------|----------|
222
+ | Test case | Conflict resolution | Position of | RT (s) |
223
+ | | time (s) | the occupants | |
224
+ +:---------:+:-------------------:+:-------------:+:--------:+
225
+ | 1 | [0.8 ; 1.5] | Fixed | 15 |
226
+ | 2 | 1.15 | Fixed | 15 |
227
+ | 3 | [0.8 ; 1.5] | Random | 15 |
228
+ | 4 | [0.8 ; 1.5] | Random | [0 ; 30] |
229
+ |-----------|---------------------|---------------|----------|
230
+ | | | | |
231
+ { text-align:center }
232
+
233
+
234
+
239
235
240
236
241
237
## Test case 1
242
238
243
- The empirical distribution function is not linear .
239
+ The empirical distribution function is not uniform .
244
240
245
- → linked to the variability of the conflict resolution time and to the effect of history.
241
+ → linked to the variability of the conflict resolution time and to the history effect .
246
242
247
243
~ Center
248
244
![fig6_3]
@@ -280,54 +276,39 @@ Notations used to make quantitative comparisons:
280
276
Reminder:
281
277
Conflict resolution time, position, RT fixed.
282
278
283
- ~ Begin Columns
284
- ~ Column { width:55% }
279
+ ~ Center
285
280
![fig6_5]
286
- [fig6_5]: images/fig6_5.PNG "fig6_5" { width:auto; max-width:85%; border:solid 1px black}
287
- ~
288
- ~ Column
289
- ![fig_tab7]
290
- [fig_tab7]: images/fig_tab7.PNG "fig_tab7" { width:auto; max-width:100%; border:solid 1px black}
281
+ [fig6_5]: images/fig6_5.PNG "fig6_5" { width:auto; max-width:50%; border:solid 1px black}
291
282
~
292
- ~ End Columns
283
+
293
284
294
285
295
286
~ left-align
296
- → Most of the variability comes from the effect of history.
287
+ → Most of the variability comes from the history effect .
297
288
298
- → Width of confidence intervals can increase or decrease whereas the parameters are less variable .
289
+ → Confidence intervals width variations are not intuitive .
299
290
~
300
291
301
292
## Test case 3
302
293
Reminder:
303
294
Conflict resolution time and position vary, RT is fixed.
304
- ~ Begin Columns
305
- ~ Column { width:55% }
295
+ ~ Center
306
296
![fig6_6]
307
- [fig6_6]: images/fig6_6.PNG "fig6_6" { width:auto; max-width:85 %; border:solid 1px black}
297
+ [fig6_6]: images/fig6_6.PNG "fig6_6" { width:auto; max-width:50 %; border:solid 1px black}
308
298
~
309
- ~ Column
310
- ![fig_tab8]
311
- [fig_tab8]: images/fig_tab8.PNG "fig_tab8" { width:auto; max-width:100%; border:solid 1px black}
312
- ~
313
- ~ End Columns
314
299
→ Position has more influence on low and average densities.
315
300
316
301
317
302
318
303
## Test case 4
319
304
Reminder:
320
305
Resolution conflict time, position and RT vary.
321
- ~ Begin Columns
322
- ~ Column { width:50% }
306
+
307
+ ~ Center
308
+
323
309
![fig6_7]
324
- [fig6_7]: images/fig6_7.PNG "fig6_7" { width:auto; max-width:100 %; border:solid 1px black}
310
+ [fig6_7]: images/fig6_7.PNG "fig6_7" { width:auto; max-width:50 %; border:solid 1px black}
325
311
~
326
- ~ Column
327
- ![fig_tab9]
328
- [fig_tab9]: images/fig_tab9.PNG "fig_tab9" { width:auto; max-width:100%; border:solid 1px black}
329
- ~
330
- ~ End Columns
331
312
332
313
→ the variability of output parameters increases with the one of the input parameters &bcheckmark;
333
314
@@ -340,11 +321,29 @@ Resolution conflict time, position and RT vary.
340
321
~ Begin Vertical { data-background:Gainsbor }
341
322
# Synthesis of results
342
323
324
+ |--------------------------|-----------------------------------------------------|-----------------------|
325
+ | Studied parameters | Variation range of the input parameter | Qualitative influence |
326
+ +:------------------------:+:---------------------------------------------------:+:---------------------:+
327
+ | Occupant number | From 1 to 1,000 persons or 187, 610 and 927 persons | Very important |
328
+ |--------------------------|-----------------------------------------------------|-----------------------|
329
+ | Occupant position | Fixed or random | Important |
330
+ |--------------------------|-----------------------------------------------------|-----------------------|
331
+ | Conflict resolution time | From 0.8 s to 1.5 s or 1.15 s | Negligible |
332
+ |--------------------------|-----------------------------------------------------|-----------------------|
333
+ | Response time | From 0 s to 30 s or 15 s | Important |
334
+ |--------------------------|-----------------------------------------------------|-----------------------|
335
+ | | | |
336
+ { }
337
+
338
+
339
+
340
+
341
+
343
342
344
- ~ center
345
- ![fig_tab10]
346
- [fig_tab10]: images/fig_tab10.PNG "fig_tab10" { width:auto; max-width:70%; border:solid 1px black}
347
- ~
343
+
344
+
345
+
346
+ # Synthesis of results (2)
348
347
349
348
Advantage of the method:
350
349
@@ -355,10 +354,17 @@ Advantage of the method:
355
354
* Estimate quantitatively the influence on the RSET of the input parameters dispersion.
356
355
~
357
356
358
- ~ End Vertical
357
+ # Synthesis of results (3)
358
+
359
359
360
360
361
361
362
+
363
+
364
+ ~ End Vertical
365
+
366
+
367
+ ~ Begin Vertical { data-background:Gainsbor }
362
368
# Conclusion
363
369
364
370
@@ -369,22 +375,30 @@ Advantage of the method:
369
375
370
376
→ There is still a lot of work.
371
377
378
+ Pas les données
379
+ la méthode à améliorer
380
+
381
+
382
+ # Conclusion (2)
383
+
372
384
Prospects:
373
385
374
386
~ Align-Left
375
- * Test more complex geometry .
387
+ * Test more realistic case .
376
388
* Test cross interactions thoroughly (experiment plans).
377
389
* Compare to some evacuation trials.
378
390
* Need for a bibliography work.
379
391
* Industrialize the method on tools dedicated to stochastic analysis.
380
392
* Compare different simulations tools.
381
393
~
382
394
395
+ ~ End Vertical
396
+
397
+
383
398
384
399
385
400
386
401
387
- # Thank you for your attention
388
402
389
403
390
404
0 commit comments