Stable Diffusion Models
Glide
company
AI & ML interests
None defined yet.
Recent Activity
Organization Card
Usage
You can load models using the Hugging Face Transformers library:
from transformers import pipeline
pipe = pipeline("text-generation", model="nroggendorff/mayo")
question = "What color is the sky?"
conv = [{"role": "user", "content": question}]
response = pipe(conv, max_new_tokens=32)[0]['generated_text'][-1]['content']
print(response)
To use models with quantization:
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig
import torch
bnb_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_use_double_quant=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_compute_dtype=torch.bfloat16
)
model_id = "nroggendorff/mayo"
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(model_id, quantization_config=bnb_config)
question = "What color is the sky?"
prompt = tokenizer.apply_chat_template([{"role": "user", "content": question}], tokenize=False)
inputs = tokenizer(prompt, return_tensors="pt")
outputs = model.generate(**inputs, max_new_tokens=32)
generated_text = tokenizer.batch_decode(outputs)[0]
print(generated_text)
Collections
3
models
12
glides/mistral-pro
Text Generation
•
Updated
•
7
glides/gemma-pro
Text Generation
•
Updated
•
8
glides/llama-pro
Text Generation
•
Updated
•
8
glides/gemma-eap
Text Generation
•
Updated
•
7
glides/llama-eap
Text Generation
•
Updated
•
15
•
1
glides/mistral-eap
Text Generation
•
Updated
•
11
•
1
glides/epicrealism
Text-to-Image
•
Updated
•
2
•
1
glides/animexl
Text-to-Image
•
Updated
•
9
•
1
glides/epicrealismxl
Text-to-Image
•
Updated
•
332
glides/animesh
Text-to-Image
•
Updated
•
5
•
1
datasets
None public yet