-
Notifications
You must be signed in to change notification settings - Fork 15
/
Copy pathdecode.py
372 lines (310 loc) · 11.1 KB
/
decode.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
from shared import *
from nltk.translate.bleu_score import SmoothingFunction
"""
AUTHOR:
Sean Xiang Gao ([email protected]) at Microsoft Research
"""
class Decoder:
def __init__(self, dataset, model, decoder_depth, latent_dim, allowed_words=None):
self.dataset = dataset
self.model = model
self.decoder_depth = decoder_depth
self.latent_dim = latent_dim
if allowed_words is None:
self.mask = np.array([1.] * (self.dataset.num_tokens + 1))
else:
self.mask = np.array([0.] * (self.dataset.num_tokens + 1))
for word in allowed_words:
ix = self._ix(word)
if ix is not None:
self.mask[ix] = 1.
print('allowed words %i/%i'%(sum(self.mask), len(self.mask)))
default_forbid = [UNK_token, '(', '__url__', ')', EQN_token, CITE_token, IX_token] #+ ['queer', 'holmes', 'sherlock', 'john', 'watson', 'bannister']
for word in default_forbid:
ix = self._ix(word)
if ix is not None:
self.mask[ix] = 0. # in either case, UNK is not allowed
def _ix(self, token):
return self.dataset.token2index.get(token, None)
def predict(self, latents, sampling=False, softmax_temperature=1, lm_wt=None):
# autoregressive in parallel, greedy or softmax sampling
latents = np.reshape(latents, (-1, self.latent_dim)) # (n, dim)
n = latents.shape[0]
n_vocab = len(self.mask)
prev = np.zeros((n, 1)) + self._ix(SOS_token)
states = [latents] * self.decoder_depth # list of state, each is [n, dim]
mask = np.repeat(np.reshape(self.mask, (1, -1)), n, axis=0) # (n, vocab)
logP = [0.] * n
stop = [False] * n
hyp = []
for _ in range(n):
hyp.append([])
def sample_token_index_softmax(prob):
if softmax_temperature != 1:
prob = np.exp(np.log(prob) * softmax_temperature)
return np.random.choice(n_vocab, 1, p=prob/sum(prob))[0]
def sample_token_index_greedy(prob):
return np.argmax(prob)
if sampling:
sample_token_index = sample_token_index_softmax
else:
sample_token_index = sample_token_index_greedy
for _ in range(self.dataset.max_resp_len):
out = self.model.predict([prev] + states)
states = out[1:]
tokens_proba = np.squeeze(out[0]) * mask # squeeze: (n, 1, vocab) => (n, vocab)
prev = [0] * n
for i in range(n):
if stop[i]:
continue
prob = tokens_proba[i,:].ravel()
ix = sample_token_index(prob)
logP[i] += np.log(prob[ix])
hyp[i].append(ix)
prev[i] = ix
if ix == self._ix(EOS_token):
stop[i] = True
prev = np.reshape(prev, (n, 1))
return [logP[i]/len(hyp[i]) for i in range(n)], hyp
def evaluate(self, latents, tgt_seqs):
# teacher-forcing in parallel
latents = np.reshape(latents, (-1, self.latent_dim)) # (n, dim)
n = latents.shape[0]
states = [latents] * self.decoder_depth # list of state, each is [n, dim]
logP = [0.] * n
prev = np.zeros((n, 1)) + self._ix(SOS_token)
lens = [len(seq) for seq in tgt_seqs]
epsilon = 1e-6
for t in range(self.dataset.max_resp_len):
out = self.model.predict([prev] + states)
states = out[1:]
tokens_proba = np.reshape(out[0], (n, -1)) # squeeze: (n, 1, vocab) => (n, vocab)
prev = [0] * n
for i in range(n):
if t < lens[i]:
ix = tgt_seqs[i][t]
logP[i] += np.log(max(epsilon, tokens_proba[i, ix]))
prev[i] = ix
prev = np.reshape(prev, (n, 1))
return [logP[i]/lens[i] for i in range(n)]
#return [logP[i]/self.dataset.max_resp_len for i in range(n)]
def predict_beam(self, latents, beam_width=10, n_child=3, max_n_hyp=100):
# multi-head beam search, not yet parallel
prev = np.atleast_2d([self._ix(SOS_token)])
beam = []
for latent in latents:
latent = np.atleast_2d(latent)
states = [latent] * self.decoder_depth
node = {'states':states[:], 'prev':prev, 'logP':0, 'hyp':[]}
beam.append(node)
print('beam search initial n = %i'%len(beam))
results = queue.PriorityQueue()
t = 0
while True:
t += 1
if t > 20:#self.dataset.max_tgt_len:
break
if len(beam) == 0:
break
pq = queue.PriorityQueue()
for node in beam:
out = self.model.predict([node['prev']] + node['states'])
tokens_proba = out[0].ravel()
states = out[1:]
tokens_proba = tokens_proba * self.mask
tokens_proba = tokens_proba/sum(tokens_proba)
top_tokens = np.argsort(-tokens_proba)
for ix in top_tokens[:n_child]:
logP = node['logP'] + np.log(tokens_proba[ix])
hyp = node['hyp'][:] + [ix]
if ix == self._ix(EOS_token):
results.put((logP/t, hyp))
if results.qsize() > max_n_hyp:
results.get() # pop the hyp of lowest logP/t
continue
pq.put((
logP, # no need to normalize to logP/t as every node is at the same t
np.random.random(), # to avoid the case logP is the same
{
'states':states,
'prev':np.atleast_2d([ix]),
'logP':logP,
'hyp':hyp,
}
))
if pq.qsize() > beam_width:
pq.get() # pop the node of lowest logP to maintain at most beam_width nodes => but this will encourage bland response
beam = []
while not pq.empty():
_, _, node = pq.get()
beam.append(node)
logPs = []
hyps = []
while not results.empty():
logP, hyp = results.get()
logPs.append(logP)
hyps.append(hyp)
return logPs, hyps
def rank_nbest(hyps, logP, logP_center, master, inp, infer_args=dict(), base_ranker=None):
# make sure hyps are list of str, and inp is str
# as base_ranker, master, and clf may not share the same vocab
assert(isinstance(hyps, list))
assert(isinstance(hyps[0], str))
assert(isinstance(inp, str))
hyps_no_ie = []
for hyp in hyps[:]:
hyps_no_ie.append((' '+hyp+' ').replace(' i . e . ,',' ').replace(' i . e. ',' ').strip())
hyps = hyps_no_ie[:]
wt_clf = infer_args.get('wt_clf', 0) / len(master.classifiers)
wt_rep = infer_args.get('wt_rep', 0)
wt_len = infer_args.get('wt_len', 0)
wt_center = infer_args.get('wt_center', 0)
wt_base = infer_args.get('wt_base', 0)
n = len(logP)
clf_score = []
max_tgt_len = 30
for clf in master.classifiers:
clf_score.append(clf.predict(hyps).ravel())
if base_ranker is not None:
hyp_seqs_base = [base_ranker.dataset.txt2seq(hyp) for hyp in hyps]
inp_seq_base = base_ranker.dataset.txt2seq(inp)
latent_base = base_ranker.model_encoder['S2S'].predict(np.atleast_2d(inp_seq_base))
logP_base = base_ranker.decoder.evaluate([latent_base]*n, hyp_seqs_base)
else:
logP_base = [0] * n
pq = queue.PriorityQueue()
for i in range(n):
hyp = hyps[i]
rep = repetition_penalty(hyp)
l = min(max_tgt_len, len(hyp.split()))/max_tgt_len
score = logP[i] + wt_center * logP_center[i] + wt_rep * rep + wt_len * l + wt_base * logP_base[i]
clf_score_ = []
for k in range(len(master.classifiers)):
s = clf_score[k][i]
score += wt_clf * s
clf_score_.append(s)
pq.put((-score, hyp, (logP[i], logP_center[i], logP_base[i], rep, l) + tuple(clf_score_)))
results = []
while not pq.empty():
neg_score, hyp, terms = pq.get()
#if len(set(['queer', 'holmes', 'sherlock', 'john', 'watson', 'bannister']) & set(hyp.split())) > 0:
# continue
hyp = (' ' + hyp + ' ').replace(' to day ',' today ').replace(' to morrow ',' tomorrow ')#.replace('mr barker','')
results.append((-neg_score, hyp, terms))
return results
def repetition_penalty(hyp):
# simplified from https://sunlamp.visualstudio.com/sunlamp/_git/sunlamp?path=%2Fsunlamp%2Fpython%2Fdynamic_decoder_custom.py&version=GBmaster
# ratio of unique 1-gram
ww = hyp.split()
return np.log(min(1.0, len(set(ww)) / len(ww)))
def infer(latent, master, method='greedy', beam_width=10, n_rand=20, r_rand=1.5, softmax_temperature=1, lm_wt=0.5):
if method == 'greedy':
return master.decoder.predict(latent, lm_wt=lm_wt)
elif method == 'softmax':
return master.decoder.predict([latent] * n_rand, sampling=True, lm_wt=lm_wt)
elif method == 'beam':
return master.decoder.predict_beam([latent], beam_width=beam_width)
elif method.startswith('latent'):
latents = []
if r_rand >= 0:
rr = [r_rand] * n_rand
else:
rr = np.linspace(0, 5, n_rand)
for r in rr:
latents.append(rand_latent(latent, r, limit=True))
if 'beam' in method:
return master.decoder.predict_beam(latents, beam_width=beam_width)
else:
return master.decoder.predict(latents, sampling=('softmax' in method), softmax_temperature=softmax_temperature, lm_wt=lm_wt)
else:
raise ValueError
def infer_comb(inp, master):
inp_seq = master.dataset.txt2seq(inp)
latent = master.model_encoder['S2S'].predict(np.atleast_2d(inp_seq))
reset_rand()
logP, hyp_seqs = infer(latent, master, method='latent', n_rand=10, r_rand=-1)
logP, hyp_seqs = remove_duplicate_unfished(logP, hyp_seqs, master.dataset.token2index[EOS_token])
results = sorted(zip(logP, hyp_seqs), reverse=True)
s = '-'*10 + '\n' + inp + '\n'
for i, (logP, seq) in enumerate(results):
hyp = master.dataset.seq2txt(seq)
s += '%.3f'%logP + '\t' + hyp + '\n'
if i == 4:
break
s += '-'*5 + '\n'
return s
def remove_duplicate_unfished(logP, hyp_seqs, ix_EOS):
d = dict()
for i in range(len(logP)):
k = tuple(hyp_seqs[i])
if k[-1] != ix_EOS:
continue
if k not in d or logP[i] > d[k]:
d[k] = logP[i]
logP0, hyp0 = logP[0], hyp_seqs[0][:]
logP = []
hyp_seqs = []
for k in d:
logP.append(d[k])
hyp_seqs.append(list(k))
if len(logP) == 0:
return [logP0], [hyp0]
else:
return logP, hyp_seqs
def parse_infer_args():
arg = {'prefix':'S2S'}
for line in open('src/infer_args.csv'):
if line.startswith('#'):
continue
if ',' not in line:
continue
k, v = line.strip('\n').split(',')
if k != 'method':
if k in ['beam_width', 'n_rand']:
v = int(v)
else:
v = float(v)
arg[k] = v
return arg
def infer_rank(inp, master, infer_args, base_ranker=None, unique=True, verbose=True):
if verbose:
print('infer_args = '+str(infer_args))
inp_seq = master.dataset.txt2seq(inp)
latent = master.model_encoder['S2S'].predict(np.atleast_2d(inp_seq))
reset_rand()
if verbose:
print('infering...')
t0 = datetime.datetime.now()
logP, hyp_seqs = infer(latent, master, method=infer_args['method'],
beam_width=infer_args.get('beam_width'), n_rand=infer_args.get('n_rand'), r_rand=infer_args.get('r_rand'),
softmax_temperature=infer_args.get('softmax_temperature'), lm_wt=infer_args.get('lm_wt'))
t1 = datetime.datetime.now()
if verbose:
print('*'*10 + ' infer spent: '+str(t1-t0))
n_raw = len(logP)
logP, hyp_seqs = remove_duplicate_unfished(logP, hyp_seqs, master.dataset.token2index[EOS_token])
if verbose:
print('kept %i/%i after remove deuplication/unfisihed'%(len(logP), n_raw))
hyps = [master.dataset.seq2txt(seq) for seq in hyp_seqs]
if len(hyps) == 0:
return []
n_results = len(logP)
if infer_args['method'] == 'latent' and infer_args['r_rand'] > 0:
if verbose:
print('calculating tf_logP...')
logP_center = master.decoder.evaluate([latent]*n_results, hyp_seqs)
else:
logP_center = logP
t2 = datetime.datetime.now()
if verbose:
print('*'*10 + ' logP_center spent: '+str(t2-t1))
wts_classifier = []
for clf_name in master.clf_names:
wts_classifier.append(infer_args.get(clf_name, 0))
if verbose:
print('ranking...')
results = rank_nbest(hyps, logP, logP_center, master, inp, infer_args, base_ranker)
t3 = datetime.datetime.now()
if verbose:
print('*'*10 + ' ranking spent: '+str(t3-t2))
return results