@@ -99,6 +99,7 @@ def vector_search(
99
99
distance_type : Optional [Literal ["euclidean" , "cosine" , "dot_product" ]] = None ,
100
100
fraction_lists_to_search : Optional [float ] = None ,
101
101
use_brute_force : Optional [bool ] = None ,
102
+ allow_large_results : Optional [bool ] = None ,
102
103
) -> dataframe .DataFrame :
103
104
"""
104
105
Conduct vector search which searches embeddings to find semantically similar entities.
@@ -199,6 +200,10 @@ def vector_search(
199
200
use_brute_force (bool):
200
201
Determines whether to use brute force search by skipping the vector index if one is available.
201
202
Default to False.
203
+ allow_large_results (bool, optional):
204
+ Whether to allow large query results. If ``True``, the query
205
+ results can be larger than the maximum response size.
206
+ Defaults to ``bpd.options.compute.allow_large_results``.
202
207
203
208
Returns:
204
209
bigframes.dataframe.DataFrame: A DataFrame containing vector search result.
@@ -236,9 +241,11 @@ def vector_search(
236
241
options = options ,
237
242
)
238
243
if index_col_ids is not None :
239
- df = query ._session .read_gbq (sql , index_col = index_col_ids )
244
+ df = query ._session .read_gbq_query (
245
+ sql , index_col = index_col_ids , allow_large_results = allow_large_results
246
+ )
240
247
df .index .names = index_labels
241
248
else :
242
- df = query ._session .read_gbq (sql )
249
+ df = query ._session .read_gbq_query (sql , allow_large_results = allow_large_results )
243
250
244
251
return df
0 commit comments