-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathapp.py
106 lines (82 loc) · 3.4 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
from nltk.corpus import stopwords
import numpy as np
import networkx as nx
import regex
from flask import Flask, request, jsonify, render_template
import nltk
# nltk.download('stopwords')
def read_article(data):
article = data.split(". ")
sentences = []
for sentence in article:
review = regex.sub("[^A-Za-z0-9]",' ', sentence)
sentences.append(review.replace("[^a-zA-Z]", " ").split(" "))
sentences.pop()
return sentences
def sentence_similarity(sent1, sent2, stopwords=None):
if stopwords is None:
stopwords = []
sent1 = [w.lower() for w in sent1]
sent2 = [w.lower() for w in sent2]
all_words = list(set(sent1 + sent2))
vector1 = [0] * len(all_words) #makes a vector of len all_words
vector2 = [0] * len(all_words)
# build the vector for the first sentence
for w in sent1:
if w in stopwords:
continue
vector1[all_words.index(w)] += 1
# build the vector for the second sentence
for w in sent2:
if w in stopwords:
continue
vector2[all_words.index(w)] += 1
return 1 - nltk.cluster.util.cosine_distance(vector1, vector2)
def build_similarity_matrix(sentences, stop_words):
# Create an empty similarity matrix
similarity_matrix = np.zeros((len(sentences), len(sentences)))
for idx1 in range(len(sentences)):
for idx2 in range(len(sentences)):
if idx1 == idx2: #ignore if both are same sentences
continue
similarity_matrix[idx1][idx2] = sentence_similarity(sentences[idx1], sentences[idx2], stop_words)
return similarity_matrix
def generate_summary(file_name, top_n=5):
stop_words = stopwords.words('english')
summarize_text = []
# Step 1 - Read text anc split it
sentences = read_article(file_name)
# Step 2 - Generate Similary Martix across sentences
sentence_similarity_martix = build_similarity_matrix(sentences, stop_words)
# Step 3 - Rank sentences in similarity martix
sentence_similarity_graph = nx.from_numpy_array(sentence_similarity_martix)
scores = nx.pagerank(sentence_similarity_graph)
# Step 4 - Sort the rank and pick top sentences
ranked_sentence = sorted(((scores[i],s) for i,s in enumerate(sentences)), reverse=True)
# print("\n\n---------------\nIndexes of top ranked_sentence order are ", ranked_sentence)
for i in range(top_n):
summarize_text.append(" ".join(ranked_sentence[i][1]))
# Step 5 - Offcourse, output the summarize texr
# print("\n")
# print("*"*140)
# print("\n\nSUMMARY: \n---------\n\n", ". ".join(summarize_text))
a = ". ".join(summarize_text)
return a
#----------FLASK-----------------------------#
app = Flask(__name__)
@app.route('/templates', methods =['POST'])
def original_text_form():
text = request.form['input_text']
number_of_sent = request.form['num_sentences']
# print("TEXT:\n",text)
summary = generate_summary(text,int(number_of_sent))
# print("*"*30)
# print(summary)
return render_template('index1.html', title = "Summarizer", original_text = text, output_summary = summary, num_sentences = 5)
@app.route('/')
def homepage():
title = "TEXT summarizer"
return render_template('index1.html', title = title)
if __name__ == "__main__":
app.debug = True
app.run()