-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsystem.cpp
270 lines (195 loc) · 7.42 KB
/
system.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
#include "system.h"
#include <cassert>
#include "sampler.h"
#include "particle.h"
#include "WaveFunctions/wavefunction.h"
#include "Hamiltonians/hamiltonian.h"
#include "InitialStates/initialstate.h"
#include "Math/random.h"
#include <iostream>
#include <cmath>
using std::cout;
using std::endl;
using std::sqrt;
System::System(bool importanceSampling, bool with_jastrow, bool writeToFile) {
m_importanceSampling = importanceSampling;
m_with_jastrow = with_jastrow;
m_writeToFile = writeToFile;
}
bool System::metropolisStepSlaterDet() {
int random_particle = Random::nextInt(m_numberOfParticles); //Choose a random particle
int random_dimension = Random::nextInt(m_numberOfDimensions); //Choose a random dimension
double Rc_old = 1;
if(m_with_jastrow) {
Rc_old = m_waveFunction->compute_Jastrow(random_particle);
}
double change = Random::nextDouble()*2.0-1.0;
m_particles[random_particle]->adjustPosition(change*m_stepLength,random_dimension);
double Rc_new = 1;
if(m_with_jastrow) {
Rc_new = m_waveFunction->compute_Jastrow(random_particle);
}
double R_sd = m_waveFunction->computeRatio(random_particle);
double s = Random::nextDouble();
double w = R_sd*R_sd*(Rc_new*Rc_new)/(Rc_old*Rc_old);
//double jastrow_ratio = Rc_new/Rc_old;
if(w > 1) {
m_waveFunction->updateInverse(random_particle);
return true;
} else if(w >= s) {
m_waveFunction->updateInverse(random_particle);
return true;
} else {
m_particles[random_particle]->adjustPosition(-change*m_stepLength,random_dimension);
return false;
}
//return true;
}
bool System::metropolisStepSlaterDetImportance() {
int random_particle = Random::nextInt(m_numberOfParticles); //Choose a random particle
std::vector<double> F_old = quantumForce(random_particle);
double Rc_old = 1;
if(m_with_jastrow) {
Rc_old = m_waveFunction->compute_Jastrow(random_particle);
}
std::vector<double> change(m_numberOfDimensions);
for(int i = 0; i < m_numberOfDimensions; i++) {
change[i] = 0.5*F_old[i]*m_timeStep + Random::nextGaussian(0.0,sqrt(m_timeStep));
m_particles[random_particle]->adjustPosition(change[i],i);
}
double Rc_new = 1;
if(m_with_jastrow) {
Rc_new = m_waveFunction->compute_Jastrow(random_particle);
}
double R_sd = m_waveFunction->computeRatio(random_particle);
double ratio = R_sd*R_sd*(Rc_new*Rc_new)/(Rc_old*Rc_old);
std::vector<double> F_new = quantumForce(random_particle);
//Compute greens function
std::vector<double> oldPosition(m_numberOfDimensions);
std::vector<double> newPosition(m_numberOfDimensions);
for(int i = 0; i < m_numberOfDimensions; i++) {
newPosition[i] = m_particles[random_particle]->getPosition()[i];
oldPosition[i] = m_particles[random_particle]->getPosition()[i] - change[i];
}
double exponent = 0;
for (int dim=0; dim < m_numberOfDimensions; dim++) {
double term1 = - (oldPosition[dim] - newPosition[dim] - 0.5*m_timeStep*F_new[dim]) *
(oldPosition[dim] - newPosition[dim] - 0.5*m_timeStep*F_new[dim]);
double term2 = (-oldPosition[dim] + newPosition[dim] - 0.5*m_timeStep*F_old[dim]) *
(-oldPosition[dim] + newPosition[dim] - 0.5*m_timeStep*F_old[dim]);
exponent += term1 + term2;
}
double greensRatio = exp(exponent / 2*m_timeStep);
//double greens_old = evaluateGreensFunction(newPosition,oldPosition,F_old);
//double greens_new = evaluateGreensFunction(oldPosition,newPosition,F_new);
ratio = ratio*ratio*greensRatio;
if(ratio >= Random::nextDouble()) {
m_waveFunction->updateInverse(random_particle);
return true;
} else {
for(int i = 0; i < m_numberOfDimensions; i++) {
m_particles[random_particle]->adjustPosition(-change[i],i);
}
return false;
}
}
std::vector<double> System::quantumForce(int random_particle) {
std::vector<double> qForce = m_waveFunction->computeGradientImportance(random_particle);
for(int i = 0; i < m_numberOfDimensions; i++) {
qForce[i] *= 2.0;
}
return qForce;
}
double System::evaluateGreensFunction(std::vector<double> newPosition, std::vector<double> oldPosition,
std::vector<double> quantumForce) {
std::vector<double> greensVector;
// make vector that needs to be dotted
for (int dim=0; dim < m_numberOfDimensions; dim++) {
greensVector.push_back(newPosition[dim] - oldPosition[dim] - 0.5*m_timeStep*quantumForce[dim]);
}
double greensFunction = 0;
// find length squared of vector
for (int dim=0; dim < m_numberOfDimensions; dim++) {
greensFunction += greensVector[dim]*greensVector[dim];
}
greensFunction /= 2*m_timeStep;
return exp(-greensFunction);
}
void System::runMetropolisSteps(int numberOfMetropolisSteps) {
m_sampler = new Sampler(this, m_writeToFile);
m_numberOfMetropolisSteps = numberOfMetropolisSteps;
m_sampler->setNumberOfMetropolisSteps(numberOfMetropolisSteps);
bool acceptedStep = false;
for (int i=0; i < numberOfMetropolisSteps; i++) {
if(m_importanceSampling) {
acceptedStep = metropolisStepSlaterDetImportance();
} else {
acceptedStep = metropolisStepSlaterDet();
}
if (i > m_equilibrationFraction * m_numberOfMetropolisSteps) {
m_sampler->sample(acceptedStep);
}
if(m_rank == 0) {
if (!(i%1000)) {
cout << "Progress: " << i/((double) numberOfMetropolisSteps) * 100 << " % \r";
fflush(stdout);
}
}
}
m_sampler->computeAverages();
}
void System::setNumberOfParticles(int numberOfParticles) {
m_numberOfParticles = numberOfParticles;
}
void System::setNumberOfDimensions(int numberOfDimensions) {
m_numberOfDimensions = numberOfDimensions;
}
void System::setStepLength(double stepLength) {
assert(stepLength >= 0);
m_stepLength = stepLength;
}
void System::setTimeStepImportanceSampling(double timeStep) {
assert(timeStep >= 0);
m_timeStep = timeStep;
}
void System::setEquilibrationFraction(double equilibrationFraction) {
assert(equilibrationFraction >= 0);
m_equilibrationFraction = equilibrationFraction;
}
void System::setHamiltonian(Hamiltonian* hamiltonian) {
m_hamiltonian = hamiltonian;
}
void System::setWaveFunction(WaveFunction* waveFunction) {
m_waveFunction = waveFunction;
}
void System::setInitialState(InitialState* initialState) {
m_initialState = initialState;
m_particles = m_initialState->getParticles();
}
double System::getEnergy() {
return m_sampler->getEnergy();
}
double System::getAlphaDerivativeEnergy() {
return m_sampler->getDEDalpha();
}
double System::getBetaDerivativeEnergy() {
return m_sampler->getDEDbeta();
}
void System::printToTerminal() {
m_sampler->printOutputToTerminal();
}
void System::setAlpha(double alpha) {
m_waveFunction->setAlpha(alpha);
}
void System::setBeta(double beta) {
m_waveFunction->setBeta(beta);
}
void System::printParticlePositions() {
for(int i = 0; i < m_numberOfParticles; i++) {
cout << m_particles[i]->getPosition()[0];
}
}
void System::setWriteToFile(bool writeToFile) {
m_writeToFile = writeToFile;
m_sampler->setWriteToFile(writeToFile);
}