-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathLoadData.py
56 lines (48 loc) · 1.62 KB
/
LoadData.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
import numpy as np
# def load_next_batch(batch=100, loaded=0):
# arrays = []
# data = []
# labels = []
# apple_data = np.load('apple.npy', 'r')
# for i in range(batch//2):
# arrays.append([apple_data[i+loaded], [1, 0]])
# banana_data = np.load('banana.npy', 'r')
# for i in range(batch//2):
# arrays.append([banana_data[i+loaded], [0, 1]])
# ret_array = np.asarray(arrays)
# np.random.shuffle(ret_array)
# for k in ret_array:
# data.append(k[0])
# labels.append(k[1])
# return np.asarray(data), np.asarray(labels)
def load_next_batch(batch=100, loaded=0):
arrays = []
data = []
labels = []
apple_data = np.load('apple.npy', 'r')
for i in range(batch):
arrays.append([apple_data[i+loaded], [1, 0]])
banana_data = np.load('banana.npy', 'r')
for i in range(batch//2):
arrays.append([banana_data[i+loaded], [0, 1]])
ret_array = np.asarray(arrays)
np.random.shuffle(ret_array)
for k in ret_array:
data.append(k[0])
labels.append(k[1])
return np.asarray(data), np.asarray(labels)
def create_data():
num_of_imgs = 50000
arrays = []
apple_data = np.load('apple.npy', 'r')
for i in range(num_of_imgs):
arrays.append([apple_data[i + num_of_imgs], [1, 0]])
banana_data = np.load('banana.npy', 'r')
for i in range(num_of_imgs):
arrays.append([banana_data[i + num_of_imgs], [0, 1]])
ret_array = np.asarray(arrays)
np.random.shuffle(ret_array)
np.save('train_data.txt', ret_array)
#d, l = load_next_batch(1000, 10000)
#for i in range(100):
# print(l[i])