-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrainfilenew.py
117 lines (93 loc) · 3.42 KB
/
trainfilenew.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
# -*- coding: utf-8 -*-
"""
Created on Sun Jan 29 15:45:15 2023
@author: Hamza
"""
import pickle
import cv2
import numpy as np
import os
from glob import glob
import matplotlib.pyplot as plt
#lib for lazy
from lazypredict.Supervised import LazyClassifier
#from sklearn.datasets import load_breast_cancer
from sklearn.model_selection import train_test_split
from sklearn.ensemble import RandomForestClassifier
from sklearn.neighbors import KNeighborsClassifier
from sklearn import svm
import matplotlib.pyplot as plt
import numpy
from sklearn import metrics
from sklearn.discriminant_analysis import LinearDiscriminantAnalysis
from sklearn.tree import DecisionTreeClassifier
from sklearn.naive_bayes import GaussianNB
from sklearn.cluster import KMeans
from sklearn.linear_model import LogisticRegression
from sklearn.linear_model import Perceptron
from sklearn.linear_model import SGDClassifier
from sklearn.neighbors import NearestCentroid
from sklearn.linear_model import PassiveAggressiveClassifier
from sklearn.naive_bayes import BernoulliNB
from sklearn.calibration import CalibratedClassifierCV
import lightgbm as lgb
from sklearn.linear_model import RidgeClassifier
from sklearn.metrics import confusion_matrix
import cv2
import numpy as np
import os
from glob import glob
import matplotlib.pyplot as plt
#lib for lazy
from lazypredict.Supervised import LazyClassifier
#from sklearn.datasets import load_breast_cancer
from sklearn.model_selection import train_test_split
from sklearn.ensemble import RandomForestClassifier
from sklearn.neighbors import KNeighborsClassifier
from sklearn import svm
from sklearn.discriminant_analysis import LinearDiscriminantAnalysis
import time
import datetime
import numpy as np
#z=np.load('C:/Users/Hamza/Desktop/dtsavedfiles/label5k.npy'
import numpy as np
from skimage.feature import hog
#%%
# Load the numpy file containing the images
images = np.load('C:/Users/Hamza/Desktop/project/Dataset/image5k.npy')
#images = np.load('C:/Users/Hamza/Desktop/experiments/expl.npy')
# Initialize an empty list to store the HOG features
y=np.load('C:/Users/Hamza/Desktop/project/Dataset/label5k.npy')
#%%
hog_features = []
# Iterate through the images
for image in images:
# Apply HOG to the current image and append the resulting feature vector to the list
hog_features.append(hog(image, channel_axis=2))
#fd, hog_image = hog(image, visualise = True)
X=np.array(hog_features)
#%%
#y=np.load('C:/Users/Hamza/Desktop/experiments/expi.npy')
start=time.time()
X_train, X_test, y_train, y_test = train_test_split(X, y,test_size=.2,random_state =123)
#%%
def evaluate_model(model_name,X,y):
with open('C:/Users/Hamza/Desktop/project/Machine_learning/saved_models/'+ model_name+'.pkl', 'rb') as file:
model = pickle.load(file)
y_pred = model.predict(X_test)
accuracy = model.score(X_test, y_test)
print("Accuracy of ",model,":"" {:.2f}%".format(accuracy * 100))
conf_matrix = confusion_matrix(y_test, y_pred)
plt.imshow(conf_matrix, cmap='Blues')
plt.colorbar()
plt.xlabel('Predicted')
plt.ylabel('Actual')
for i in range(len(conf_matrix)):
for j in range(len(conf_matrix[i])):
text = conf_matrix[i][j]
plt.text(j, i, text, ha="center",fontsize=15, va="center", color="black")
# Save the figure
fig_1 = plt.gcf()
confusion_matrix_plot = fig_1
confusion_matrix_plot.savefig("confusion_matrix_" + model_name + ".png")
plt.show()