-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmain.py
548 lines (450 loc) · 22.4 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
# @file main.py
# @author Junming Zhang, [email protected]; Haomeng Zhang, [email protected]
# @brief main file for training and testing
# @copyright Copyright University of Michigan, Ford Motor Company (c) 2020-2021
import torch
import numpy as np
import os
import time
import yaml
import shutil
import argparse
import torch.nn.functional as F
import torch_geometric.transforms as T
import random
from tqdm import tqdm
from utils.model import Model
from utils.completion3D_dataset import completion3D_class
from utils.mvp_dataset import MVP
from torch.optim.lr_scheduler import StepLR
from torchvision import transforms
from torch_geometric.datasets import ShapeNet, ModelNet
from torch_geometric.loader import DataLoader
from torch.utils.tensorboard import SummaryWriter
os.environ["CUDA_LAUNCH_BLOCKING"] = "1"
def seed_everything(seed=1234):
torch.backends.cudnn.benchmark = False
torch.backends.cudnn.deterministic = True
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
random.seed(seed)
torch.use_deterministic_algorithms(True, warn_only=True)
g = torch.Generator()
g.manual_seed(seed)
os.environ['PYTHONHASHSEED'] = str(seed)
def get_lr(optimizer):
for param_group in optimizer.param_groups:
return param_group['lr']
def train_one_epoch(args, loader, optimizer, logger, epoch, check_dir):
'''
Note: only complete point clouds are loaded during training, so data.x is
both the input and label for the point cloud completion task. While partial
point clouds (data.y) are loaded at testing.
'''
model.train()
loss_summary = {}
global i
cos_sim = []
grad_cls = []
grad_comp = []
for j, data in enumerate(loader, 0):
data = data.to(device)
if args.dataset == 'c3d':
pos, batch, pc_label, category = data.pos, data.batch, data.y, data.category
elif args.dataset == 'm40':
pos, batch, pc_label, category = data.pos, data.batch, data.pos, data.y
elif args.dataset == 'snet':
pos, batch, pc_label, category = data.pos, data.batch, data.pos, data.y
elif args.dataset == 'mvp':
pos, batch, pc_label, category = data.pos, data.batch, data.y, data.category
else:
raise ValueError('{} dataset has not been supported yet.'.format(args.dataset))
# training
model.zero_grad()
model(None, pos, batch)
if args.uncertainty_flag:
loss = model.compute_loss(category, pc_label, model.w1, model.w2).mean()
loss_summary['W1'] = model.w1.item()
loss_summary['W2'] = model.w2.item()
loss_summary['expW1'] = torch.exp(model.w1).item()
loss_summary['expW2'] = torch.exp(model.w2).item()
loss_summary['W1^2'] = torch.square(model.w1).item()
loss_summary['W2^2'] = torch.square(model.w2).item()
loss_summary['Total Loss'] = loss
elif args.optimal_search:
w1 = args.ratio / (args.ratio + 1)
w2 = 1 - w1
loss = model.compute_loss(category, pc_label, w1, w2).mean()
else:
loss = model.compute_loss(category, pc_label).mean()
if 'classification' in args.task:
loss_summary['loss_cls'] = model.loss_classification.mean()
if 'segmentation' in args.task:
loss_summary['loss_seg'] = model.loss_segmentation.mean()
if 'completion' in args.task:
loss_summary['loss_chamfer'] = model.loss_completion.mean()
if model.loss_sec is not None:
loss_summary['loss_sec'] = model.loss_sec.mean()
# gradients for shared layers
if args.compute_gradient_norm:
weights = [w for w in model.encoder.parameters()]
if args.use_hyperspherical_module:
weights += [w for w in model.hyperspherical_module.parameters()]
if 'classification' in args.task:
model.zero_grad()
grad_classification = torch.autograd.grad(model.loss_classification.mean(), weights, retain_graph=True)
flatten_grad_classification = torch.cat([g.flatten() for g in grad_classification])
grad_norm_classification = torch.norm(flatten_grad_classification)
loss_summary['grad_norm_classification'] = grad_norm_classification.item()
grad_cls.append(grad_norm_classification.item())
if 'completion' in args.task:
model.zero_grad()
grad_completion = torch.autograd.grad(model.loss_completion.mean(), weights, retain_graph=True)
flatten_grad_completion = torch.cat([g.flatten() for g in grad_completion])
grad_norm_completion = torch.norm(flatten_grad_completion)
loss_summary['grad_norm_completion'] = grad_norm_completion.item()
grad_comp.append(grad_norm_completion.item())
if len(args.task) > 1:
cosine = torch.sum(flatten_grad_classification * flatten_grad_completion) / (1e-9 + grad_norm_completion * grad_norm_classification)
cos_sim.append(cosine.item())
loss_summary['grad_cosine'] = cosine.item()
model.zero_grad()
loss.backward()
if args.compute_gradient_norm and args.grad_surgey_flag and cosine < 0:
new_grad_classification = torch.subtract(flatten_grad_classification, flatten_grad_completion * torch.sum(flatten_grad_completion * flatten_grad_classification) / (torch.sum(flatten_grad_completion * flatten_grad_completion)))
new_grad_completion = torch.subtract(flatten_grad_completion, flatten_grad_classification * torch.sum(flatten_grad_completion * flatten_grad_classification) / (torch.sum(flatten_grad_classification * flatten_grad_classification)))
new_cosine = torch.sum(new_grad_classification * new_grad_completion) / (torch.norm(new_grad_classification) * torch.norm(new_grad_completion))
loss_summary['new_grad_cosine'] = new_cosine
start = 0
for index, w in enumerate(weights):
temp_size = w.shape
temp_num = w.numel()
new_temp_grad_classification = new_grad_classification[start:start + temp_num].reshape(temp_size)
new_temp_grad_completion = new_grad_completion[start:start + temp_num].reshape(temp_size)
start += temp_num
if args.uncertainty_flag:
w.grad = torch.add(1 / (torch.square(model.w1)).item() * new_temp_grad_classification, 1 / (2 * torch.square(model.w2)).item() * new_temp_grad_completion)
else:
w.grad = torch.add(new_temp_grad_classification, new_temp_grad_completion)
optimizer.step()
# write summary
if i % 100 == 0:
for item in loss_summary:
logger.add_scalar(item, loss_summary[item], i)
logger.add_scalar('lr', get_lr(optimizer), i)
print(''.join(['{}: {:.4f}, '.format(k, v) for k,v in loss_summary.items()]))
i = i + 1
if args.compute_gradient_norm:
logger.add_scalar('grad_cls_epoch', sum(grad_cls)/len(grad_cls), epoch)
logger.add_scalar('grad_comp_epoch', sum(grad_comp)/len(grad_comp), epoch)
logger.add_scalar('cos_epoch', sum(cos_sim)/len(cos_sim), epoch)
def val_one_epoch(args, loader, logger, epoch):
print()
print('Evaluating on {}'.format(args.model_name))
model.eval()
results = []
results_classification = []
results_segmentation = []
results_completion = []
for j, data in enumerate(loader, 0):
data = data.to(device)
if args.dataset == 'c3d':
pos, batch, pc_label, category = data.pos, data.batch, data.y, data.category
elif args.dataset == 'm40':
pos, batch, pc_label, category = data.pos, data.batch, data.pos, data.y
elif args.dataset == 'snet':
pos, batch, pc_label, category = data.pos, data.batch, data.pos, data.y
elif args.dataset == 'mvp':
pos, batch, pc_label, category = data.pos, data.batch, data.y, data.category
else:
raise ValueError('{} dataset has not been supported yet.'.format(args.dataset))
# inference
with torch.no_grad():
model(None, pos, batch)
if args.uncertainty_flag:
loss = model.compute_loss(category, pc_label, model.w1, model.w2)
elif args.optimal_search:
w1 = args.ratio / (args.ratio + 1)
w2 = 1 - w1
loss = model.compute_loss(category, pc_label, w1, w2)
else:
loss = model.compute_loss(category, pc_label)
if 'completion' in args.task:
results_completion.append(model.loss_completion)
if 'classification' in args.task:
pred = model.pred_classification
results_classification.append(pred.eq(category).float())
if 'segmentation' in args.task:
pred = model.pred_segmentation
results_segmentation.append(pred.eq(category).float())
results.append(loss)
print('Epoch: {:03d}, '.format(epoch), end='')
if 'completion' in args.task:
results_completion = torch.cat(results_completion, dim=0).mean().item()
logger.add_scalar('test_chamfer_dist', results_completion, epoch)
print('Test Chamfer: {:.5f}, '.format(results_completion), end='')
acc = -results_completion
if 'classification' in args.task:
results_classification = torch.cat(results_classification, dim=0).mean().item()
logger.add_scalar('test_acc', results_classification, epoch)
print('Test Acc: {:.4f}'.format(results_classification), end='')
acc = results_classification
if 'segmentation' in args.task:
results_segmentation = torch.cat(results_segmentation, dim=0).mean().item()
logger.add_scalar('test_seg_acc', results_segmentation, epoch)
print('Test Seg Acc: {:.4f}'.format(results_segmentation), end='')
acc = results_segmentation
if len(args.task) > 1 and 'completion' in args.task:
acc = -results_completion
print()
return acc
def train(args, train_dataloader, test_dataloader):
check_dir, log_dir = check_overwrite(args)
logger = SummaryWriter(log_dir=log_dir)
backup(log_dir, parser)
# define optimizer
optimizer = torch.optim.Adam(model.parameters(), lr=args.lr, betas=(0.9, 0.999))
scheduler = StepLR(optimizer, step_size=args.lr_step_size, gamma=args.lr_gamma)
global i
i = 1
acc = -1000000
for epoch in range(1, args.max_epoch+1):
# do training
train_one_epoch(args, train_dataloader, optimizer, logger, epoch, check_dir)
# reduce learning rate
scheduler.step()
# validation
acc_ = val_one_epoch(args, test_dataloader, logger, epoch)
if epoch % 1 == 0:
torch.save(model.state_dict(), os.path.join(check_dir,
'model_{}_epoch.pth'.format(epoch)))
if acc_ > acc:
# save model
torch.save(model.state_dict(), os.path.join(check_dir,
'model.pth'))
acc = acc_
def fake_partial_point_clouds(pos):
'''
pos: 2048 x 3
'''
inputs = pos
pos = pos[pos[:, 0]>0.35]
if pos.size(0)==0:
pos = inputs
pos = pos[np.random.choice(pos.size(0), 2048)]
return pos
def evaluate(args, loader, save_dir):
print()
print('Evaluating on {}'.format(args.model_name))
model.eval()
results = []
results_classification = []
results_completion = []
intersections, unions, categories = [], [], []
categories_summary = {k:[] for k in loader.dataset.idx2cat.keys()}
categories_encoding = {v:[] for v in loader.dataset.idx2cat.values()}
idx2cat = loader.dataset.idx2cat
encoding_norm = []
for _ in range(1):
for j, data in enumerate(tqdm(loader)):
data = data.to(device)
if args.dataset == 'c3d':
pos, batch, pc_label, category = data.pos, data.batch, data.y, data.category
elif args.dataset == 'm40':
pos, batch, pc_label, category = data.pos, data.batch, data.pos, data.y
elif args.dataset == 'snet':
pos, batch, pc_label, category = data.pos, data.batch, data.pos, data.y
elif args.dataset == 'mvp':
pos, batch, pc_label, category = data.pos, data.batch, data.y, data.category
else:
raise ValueError('{} dataset has not been supported yet.'.format(args.dataset))
with torch.no_grad():
model(None, pos, batch)
if args.uncertainty_flag:
model.compute_loss(category, pc_label, model.w1, model.w2)
else:
model.compute_loss(category, pc_label)
encoding = model.encoding_feature.cpu().detach().numpy()
encoding_norm.append(np.linalg.norm(encoding, axis=-1))
pos = pos.cpu().detach().numpy().reshape(-1, 2048*3)
pc_label = pc_label.cpu().detach().numpy().reshape(-1, 2048*3)
out_info = np.concatenate([encoding, pos, pc_label], axis=-1)
if 'completion' in args.task:
if args.completion_decoder_choice=='folding':
pc_pred = model.pred_completion.cpu().detach().numpy().reshape(-1, 2025*3)
else:
pc_pred = model.pred_completion.cpu().detach().numpy().reshape(-1, 2048*3)
out_info = np.concatenate([encoding, pos, pc_label, pc_pred], axis=-1)
if 'completion' in args.task:
results_completion.append(model.loss_completion)
if 'classification' in args.task:
pred = model.pred_classification
results_classification.append(pred.eq(category).float())
category = category.cpu().detach().numpy()
for idx in range(category.shape[0]):
categories_encoding[idx2cat[category[idx]]].append(out_info[idx])
categories.append(category)
categories = np.concatenate(categories, axis=0)
print('Encoding norm avg:', np.stack(encoding_norm).mean())
if 'completion' in args.task:
results = torch.cat(results_completion, dim=0)
for i in range(len(categories)):
categories_summary[categories[i]].append(results[i])
total_chamfer_distance = 0
for idx in categories_summary:
chamfer_distance_cat = torch.stack(categories_summary[idx], dim=0).mean().item()
total_chamfer_distance += chamfer_distance_cat
print('{}: {:.7f}'.format(idx2cat[idx], chamfer_distance_cat))
print('Mean Class Chamfer Distance: {:.6f}'.format(total_chamfer_distance/len(categories_summary)))
if 'classification' in args.task:
results = torch.cat(results_classification, dim=0).mean().item()
print('Test Acc: {:.4f}'.format(results))
for cat in categories_encoding:
encodings = np.concatenate(categories_encoding[cat], 0)
np.save(os.path.join(save_dir, '{}.npy'.format(cat)), encodings)
print('Sample results are saved to: {}'.format(save_dir))
print('{} point clouds are evaluated.'.format(len(loader.dataset)))
def load_dataset(args):
if args.dataset == 'c3d':
pre_transform, transform = None, None
categories ='plane,cabinet,car,chair,lamp,couch,table,watercraft'
categories = categories.split(',')
train_dataset = completion3D_class('data_root/Completion3D', categories, split='train',
include_normals=False, pre_transform=pre_transform, transform=transform)
test_dataset = completion3D_class('data_root/Completion3D', categories, split='val',
include_normals=False, pre_transform=pre_transform, transform=transform)
elif args.dataset == 'm40':
pre_transform, transform = T.NormalizeScale(), T.SamplePoints(2048)
train_dataset = ModelNet('data_root/ModelNet40', name='40', train=True,
pre_transform=pre_transform, transform=transform)
test_dataset = ModelNet('data_root/ModelNet40', name='40', train=False,
pre_transform=pre_transform, transform=transform)
elif args.dataset == 'snet':
pre_transform, transform = T.NormalizeScale(), T.FixedPoints(2048)
train_dataset = ShapeNet('data_root/ShapeNet', split='trainval', include_normals=False,
pre_transform=pre_transform, transform=transform)
test_dataset = ShapeNet('data_root/ShapeNet', split='test', include_normals=False,
pre_transform=pre_transform, transform=transform)
elif args.dataset == 'mvp':
train_dataset = MVP('data_root/MVP', split='train', npoints=2048)
test_dataset = MVP('data_root/MVP', split='test', npoints=2048)
train_dataloader = DataLoader(train_dataset, batch_size=args.bsize, shuffle=True,
num_workers=6, drop_last=True)
test_dataloader = DataLoader(test_dataset, batch_size=args.bsize, shuffle=False,
num_workers=6, drop_last=False)
return train_dataloader, test_dataloader
def create_model_name(args):
model_name = args.dataset
for task, name in [('classification','cls'), ('segmentation','seg'), ('completion', 'pc')]:
if task in args.task:
model_name += '_{}'.format(name)
model_name += '_b{}ep{}lr{}s{}g{}'.format(args.bsize, args.max_epoch,
args.lr, args.lr_step_size, args.lr_gamma)
model_name += '_{}'.format(args.encoder_choice)
model_name += '_HyperModule{}'.format(args.use_hyperspherical_module)
if args.use_hyperspherical_module:
model_name += '_HyperEncode{}'.format(args.use_hyperspherical_encoding)
model_name += '_MaxPool{}'.format(args.maxpool_bottleneck)
if args.use_hyperspherical_module:
model_name += '-Hyper{}'.format(args.hyper_bottleneck)
model_name += '-NormOrder{}'.format(args.norm_order)
model_name += '-LayerNum{}'.format(args.hyperspherical_module_layers)
model_name += '-HyperModuleBN{}'.format(args.hyperspherical_module_BN)
if 'completion' in args.task:
model_name += '_{}'.format(args.completion_decoder_choice)
if 'classification' in args.task:
model_name += '_Classifier{}BN{}'.format(args.mlps_classifier.replace(',', '-'), args.use_BN_classifier)
if 'segmentation' in args.task:
model_name += '_Seg{}BN{}'.format(args.mlps_segmentator.replace(',', '-'), args.use_BN_segmentator)
if args.use_hyperspherical_module \
and args.use_hyperspherical_encoding \
and args.weight_sec_loss is not None:
model_name += '_{}SecLoss'.format(args.weight_sec_loss)
if args.grad_surgey_flag:
model_name += '_grad_surgey'
if args.uncertainty_flag:
model_name += '_uncertainty'
if args.optimal_search:
model_name += '_search'
model_name += str(args.ratio)
if args.compute_gradient_norm and not args.grad_surgey_flag:
model_name += '_gradient'
return model_name
def check_overwrite(args):
model_name = args.model_name
check_dir = '{}/{}'.format(args.check_dir, model_name)
log_dir = '{}/{}'.format(args.log_dir, model_name)
if os.path.exists(check_dir) or os.path.exists(log_dir):
valid = ['y', 'yes', 'no', 'n']
inp = None
while inp not in valid:
inp = input('{} already exists. Do you want to overwrite it? (y/n)'.format(model_name))
if inp.lower() in ['n', 'no']:
raise Exception('Please create new experiment.')
# remove the existing dir if overwriting.
if os.path.exists(check_dir):
shutil.rmtree(check_dir)
if os.path.exists(log_dir):
shutil.rmtree(log_dir)
# waiting for updating of tensorboard
time.sleep(2)
# create directory
os.makedirs(check_dir)
os.makedirs(log_dir)
return check_dir, log_dir
def backup(log_dir, parser):
shutil.copyfile('main.py', os.path.join(log_dir, 'main.py'))
shutil.copytree('utils', os.path.join(log_dir, 'utils'))
file = open(os.path.join(log_dir, 'parameters.txt'), 'w')
adict = vars(parser.parse_args())
keys = list(adict.keys())
keys.sort()
for item in keys:
file.write('{0}:{1}\n'.format(item, adict[item]))
file.close()
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--config_path', help='path to config file', required=True)
args = parser.parse_args()
seed_everything()
with open('./cfgs/config.yaml') as f:
config = yaml.safe_load(f)
print('\n**************************\n')
for k, v in config.items():
setattr(args, k, v)
print('\t{}:{}'.format(k, v))
print('\n**************************\n')
args.task = args.task.split(',')
for item in args.task:
assert item in ['completion', 'classification', 'segmentation']
args.model_name = create_model_name(args)
print('Model name: {}'.format(args.model_name))
# construct data loader
train_dataloader, test_dataloader = load_dataset(args)
model = Model(args)
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model.to(device)
# evaluation
if args.eval:
model_path = os.path.join(args.check_dir, args.model_name)
if model_path.endswith('.pth'):
model.load_state_dict(torch.load(model_path))
else:
model.load_state_dict(torch.load(os.path.join(model_path, 'model.pth')))
print('Successfully load model from: {}'.format(model_path))
save_dir = os.path.join(model_path, 'eval_sample_results')
if not os.path.exists(save_dir):
os.makedirs(save_dir)
evaluate(args=args, loader=test_dataloader, save_dir=save_dir)
# training
else:
if args.pretrained_path is None:
print('\nStart training!\n')
train(args=args, train_dataloader=train_dataloader, test_dataloader=test_dataloader)
print('Training is done: {}'.format(args.model_name))
else:
pretrained_dict = torch.load(args.pretrained_path)
print('Successfully load pretrained.')
model.load_state_dict(pretrained_dict)
train(args=args, train_dataloader=train_dataloader, test_dataloader=test_dataloader)