-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsample.py
66 lines (52 loc) · 2 KB
/
sample.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
import argparse
import os
from pathlib import Path
import torch
from models.unet import UNet
from diffusion.ddpm_diffusion import DDPM
from diffusion.ddpm_scheduler import DDPMScheduler
from utils.tensor_to_PIL_img import tensor_to_PIL_img
def main():
parser = argparse.ArgumentParser(description="Sample images from a trained DDPM model.")
parser.add_argument("--checkpoint_path", type=str, required=True,
help="Path to the checkpoint file.")
parser.add_argument("--num_samples", type=int, default=4,
help="Number of images to generate.")
parser.add_argument("--save_dir", type=str, default="samples",
help="Directory to save sampled images.")
parser.add_argument("--gpu", type=int, default=0,
help="GPU index to use (default: 0)")
args = parser.parse_args()
# Set device
device = torch.device(f"cuda:{args.gpu}" if torch.cuda.is_available() else "cpu")
# Load checkpoint
checkpoint = torch.load(args.checkpoint_path, map_location=device)
# Extract saved hyperparameters
beta_1 = checkpoint["beta_1"]
beta_T = checkpoint["beta_T"]
T = checkpoint["num_diffusion_timesteps"]
var_type = checkpoint["var_type"]
img_size = checkpoint["img_size"]
# Rebuild model and scheduler
unet = UNet(img_res=img_size)
scheduler = DDPMScheduler(
total_timesteps=T,
beta_1=beta_1,
beta_T=beta_T,
var_type=var_type,
)
ddpm = DDPM(unet, scheduler).to(device)
ddpm.load_state_dict(checkpoint["model_state_dict"])
ddpm.eval()
# Create save directory
os.makedirs(args.save_dir, exist_ok=True)
# Generate samples
print(f"Sampling {args.num_samples} image(s)...")
with torch.no_grad():
samples, _ = ddpm.sample(batch_size=args.num_samples)
imgs = tensor_to_PIL_img(samples)
for i, img in enumerate(imgs):
img.save(Path(args.save_dir) / f"sample_{i}.png")
print(f"Saved {args.num_samples} samples to {args.save_dir}/")
if __name__ == "__main__":
main()