-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmain_transformer.py
127 lines (109 loc) · 4.39 KB
/
main_transformer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
import torch
import matplotlib.pyplot as plt
from loader import data_loader1
import argparse
import evaluate
import numpy as np
import random
from model.base_transformer import trainer
import imp
def setup_seed(seed):
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
np.random.seed(seed)
random.seed(seed)
torch.backends.cudnn.deterministic = True
# 设置随机数种子
setup_seed(2)
# 训练或测试模式
mode = 'train'
parser = argparse.ArgumentParser()
parser.add_argument('--model_name', default="base", type=str)
parser.add_argument('--tw', default=180, type=int)
parser.add_argument('--train_batch', default=100, type=int)
parser.add_argument('--vaild_batch', default=30, type=int)
parser.add_argument('--test_batch', default=76, type=int)
parser.add_argument('--batch_size', default=64, type=int)
parser.add_argument('--train_epoch', default=30, type=int)
parser.add_argument('--lr', default=3e-3, type=float)
parser.add_argument('--pre_train', default=True, type=bool)
parser.add_argument('--pre_tr_times', default=0, type=int)
parser.add_argument('--device', default=1, type=int)
parser.add_argument('--best_loss', default=80000, type=int)
args = parser.parse_args()
# 预训练文件路径
pre_file = f'/home/user02/HYK/bis_transformer/output/{args.model_name}/epoch{args.pre_tr_times}.pth'
best_file = f'/home/user02/HYK/bis_transformer/output/{args.model_name}/best_epoch.pth'
# 保存文件路径
save_file = f'/home/user02/HYK/bis_transformer/output/{args.model_name}/epoch{args.pre_tr_times}.pth'
if __name__ == "__main__":
with torch.cuda.device(args.device):
args.device = torch.device(f'cuda:{args.device}' if torch.cuda.is_available() else 'cpu')
if torch.cuda.is_available():
print(f"GPU{args.device} open")
else:
print("cpu open")
# 开始训练或测试
if mode == "train":
test_loader, test_label = data_loader1.test_data_loader(
tw=args.tw,
data="test",
batch=7,
batch_size=128,
timestep=1)
train_loader = data_loader1.train_data_loader(
tw=args.tw,
batch=150,
batch_size=1024,
time_step=1)
vaild_loader = data_loader1.train_data_loader(
tw=args.tw,
data="vaild",
batch=5,
batch_size=1024,
time_step=1)
box = trainer.Trainer(
model_name=args.model_name,
device=args.device,
epoch=args.train_epoch,
epoch_pth=best_file,
pre_train=args.pre_train,
pre_tr_times=args.pre_tr_times,
vaild_label=0,
)
box.train(
X=train_loader,
X2=vaild_loader,
lr=args.lr,
pre_file=best_file,
best_loss=args.best_loss
)
test_out = box.test(
X=test_loader,
epoch_pth=best_file,
test_batch=7)
ist, isp = data_loader1.time_devide(case_nums=7, traindata="test")
access = evaluate.Evalulate(test_label, test_out, ist, isp, case_num=7)
print("MDPE MDAPE RMSE\r")
for i in range(4):
print("%.2f %.2f %.2f" % access.loss(i))
elif mode == "test":
test_loader, test_label = data_loader1.test_data_loader(
tw=args.tw,
batch=args.test_batch,
batch_size=100,
timestep=1)
pre_tr_times = 5
pre_file = f'/home/user02/HYK/bis_transformer/output/base/epoch{pre_tr_times}.pth'
test_out = box.test(
X=test_loader,
epoch_pth=best_file,
test_batch=7)
plt.grid(True)
plt.autoscale(axis='x', tight=True)
for i in range(3):
plt.figure()
plt.plot(test_label[i])
plt.plot(test_out[i])
plt.savefig(f'/home/user02/HYK/bis/attention/output_picture/case{i}.png')
plt.show()