Skip to content

Latest commit

 

History

History
 
 

toolkit

Folders and files

NameName
Last commit message
Last commit date

parent directory

..
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

OpenTraj Toolkit

The official implementation for the paper:

OpenTraj: Assessing Prediction Complexity in Human Trajectories Datasets
Javad Amirian, Bingqing Zhang, Francisco Valente Castro, Juan José Baldelomar, Jean-Bernard Hayet, Julien Pettré
Published at ACCV2020: [paper], [presentation]

Dataset Analysis

We present indicators in 3 categories:

  • Predictability

    • Conditional Entropy conditional_entropy.py
    • Number of Clusters global_multimodality.py
      • The algorithm implemented here reparametrizes all the trajectories in the dataset using a cubic spline. We can take samples of points at specific times (like t = 1.0) for all the trajectories and then calculate the number of clusters and adjust a Gaussian Mixture Model. The following image describes the method for t = 1.0 on the ETH dataset.

        global multimodality

  • Trajlet Regularity

    • Average Speed
    • Speed Range
    • Average Acceleration
    • Maximum Acceleration
    • Path Efficiency
    • Angular Deviation
  • Context Complexity

    • Distance to Closest Approach (DCA)
    • Time-to-Collision (TTC)
    • Local Density

Setup

To set up the code and to run the benchmarking, run the following script:

# create a virtualenv and activate it
python3 -m venv env
source env/bin/activate

# install dependencies
cd [OpenTraj]
pip install -r benchmarking/requirements.txt

# run it!
python toolkit/benchmarking . [output_dir]

# exit the environment
deactivate  # Exit virtual environment