-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdataset_loader.py
161 lines (125 loc) · 5.29 KB
/
dataset_loader.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
import torch
import math
import pickle
import os.path as osp
import numpy as np
import torch.nn.functional as F
import torch_geometric.transforms as T
from torch_geometric.datasets import Planetoid
from torch_geometric.datasets import Coauthor
from torch_geometric.datasets import Amazon
from torch_geometric.nn import APPNP
from torch_sparse import coalesce
from torch_geometric.data import InMemoryDataset, download_url, Data
from torch_geometric.utils.undirected import is_undirected, to_undirected
from torch_geometric.io import read_npz
import os
class dataset_heterophily(InMemoryDataset):
def __init__(self, root='data/', name=None,
p2raw=None,
train_percent=0.01,
transform=None, pre_transform=None):
if name=='actor':
name='film'
existing_dataset = ['chameleon', 'film', 'squirrel']
if name not in existing_dataset:
raise ValueError(
f'name of hypergraph dataset must be one of: {existing_dataset}')
else:
self.name = name
self._train_percent = train_percent
if (p2raw is not None) and osp.isdir(p2raw):
self.p2raw = p2raw
elif p2raw is None:
self.p2raw = None
elif not osp.isdir(p2raw):
raise ValueError(
f'path to raw hypergraph dataset "{p2raw}" does not exist!')
if not osp.isdir(root):
os.makedirs(root)
self.root = root
super(dataset_heterophily, self).__init__(
root, transform, pre_transform)
self.data, self.slices = torch.load(self.processed_paths[0])
self.train_percent = self.data.train_percent.item()
@property
def raw_dir(self):
return osp.join(self.root, self.name, 'raw')
@property
def processed_dir(self):
return osp.join(self.root, self.name, 'processed')
@property
def raw_file_names(self):
file_names = [self.name]
return file_names
@property
def processed_file_names(self):
return ['data.pt']
def download(self):
pass
def process(self):
p2f = osp.join(self.raw_dir, self.name)
with open(p2f, 'rb') as f:
data = pickle.load(f)
data = data if self.pre_transform is None else self.pre_transform(data)
torch.save(self.collate([data]), self.processed_paths[0])
def __repr__(self):
return '{}()'.format(self.name)
class WebKB(InMemoryDataset):
url = ('https://raw.githubusercontent.com/graphdml-uiuc-jlu/geom-gcn/'
'master/new_data')
def __init__(self, root, name, transform=None, pre_transform=None):
self.name = name.lower()
assert self.name in ['cornell', 'texas', 'washington', 'wisconsin']
super(WebKB, self).__init__(root, transform, pre_transform)
self.data, self.slices = torch.load(self.processed_paths[0])
@property
def raw_dir(self):
return osp.join(self.root, self.name, 'raw')
@property
def processed_dir(self):
return osp.join(self.root, self.name, 'processed')
@property
def raw_file_names(self):
return ['out1_node_feature_label.txt', 'out1_graph_edges.txt']
@property
def processed_file_names(self):
return 'data.pt'
def download(self):
for name in self.raw_file_names:
download_url(f'{self.url}/{self.name}/{name}', self.raw_dir)
def process(self):
with open(self.raw_paths[0], 'r') as f:
data = f.read().split('\n')[1:-1]
x = [[float(v) for v in r.split('\t')[1].split(',')] for r in data]
x = torch.tensor(x, dtype=torch.float)
y = [int(r.split('\t')[2]) for r in data]
y = torch.tensor(y, dtype=torch.long)
with open(self.raw_paths[1], 'r') as f:
data = f.read().split('\n')[1:-1]
data = [[int(v) for v in r.split('\t')] for r in data]
edge_index = torch.tensor(data, dtype=torch.long).t().contiguous()
edge_index = to_undirected(edge_index)
edge_index, _ = coalesce(edge_index, None, x.size(0), x.size(0))
data = Data(x=x, edge_index=edge_index, y=y)
data = data if self.pre_transform is None else self.pre_transform(data)
torch.save(self.collate([data]), self.processed_paths[0])
def __repr__(self):
return '{}()'.format(self.name)
def DataLoader(name):
name = name.lower()
if name in ['cora', 'citeseer', 'pubmed']:
root_path = './'
path = osp.join(root_path, 'data2', name)
dataset = Planetoid(path, name, transform=T.NormalizeFeatures())
elif name in ['computers', 'photo']:
root_path = './'
path = osp.join(root_path, 'data2', name)
dataset = Amazon(path, name, T.NormalizeFeatures())
elif name in ['chameleon', 'actor', 'squirrel']:
dataset = dataset_heterophily(root='./data2/', name=name, transform=T.NormalizeFeatures())
elif name in ['texas', 'cornell']:
dataset = WebKB(root='./data2/',name=name, transform=T.NormalizeFeatures())
else:
raise ValueError(f'dataset {name} not supported in dataloader')
return dataset