Skip to content

Commit 608c803

Browse files
[pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
1 parent 3592acb commit 608c803

File tree

6 files changed

+290
-295
lines changed

6 files changed

+290
-295
lines changed

.pre-commit-config.yaml

Lines changed: 0 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -43,4 +43,3 @@ repos:
4343
# language: system
4444
# types: [python]
4545
# args: ["--fail-under=7.0","--max-line-length=120"]
46-

code/common_basis.R

Lines changed: 18 additions & 19 deletions
Original file line numberDiff line numberDiff line change
@@ -20,31 +20,30 @@ while (!exists("con")) {
2020
drv = MariaDB(),
2121
host = "vm3634.kaj.pouta.csc.fi",
2222
dbname = "filter_statistical_overview",
23-
user = if (Sys.getenv("DB_USER")!="") Sys.getenv("DB_USER") else key_get("filter_overview","DB_USER"),
24-
password = if (Sys.getenv("DB_PASS")!="") Sys.getenv("DB_PASS") else key_get("filter_overview","DB_PASS"),
23+
user = if (Sys.getenv("DB_USER") != "") Sys.getenv("DB_USER") else key_get("filter_overview", "DB_USER"),
24+
password = if (Sys.getenv("DB_PASS") != "") Sys.getenv("DB_PASS") else key_get("filter_overview", "DB_PASS"),
2525
bigint = "integer",
2626
load_data_local_infile = TRUE,
2727
autocommit = TRUE,
2828
reconnect = TRUE
2929
), error = function(e) {
3030
print(e)
31-
key_set("filter_overview","DB_USER", prompt="DB username: ")
32-
key_set("filter_overview","DB_PASS", prompt="DB password: ")
31+
key_set("filter_overview", "DB_USER", prompt = "DB username: ")
32+
key_set("filter_overview", "DB_PASS", prompt = "DB password: ")
3333
})
3434
}
3535

36-
poems <- tbl(con,dbplyr::in_schema("filter","poems"))
37-
poem_stats <- tbl(con,dbplyr::in_schema("filter","poem_stats"))
38-
p_year <- tbl(con,dbplyr::in_schema("filter","p_year"))
39-
verses <- tbl(con,dbplyr::in_schema("filter","verses"))
40-
verse_poem <- tbl(con,dbplyr::in_schema("filter","verse_poem"))
41-
collectors <- tbl(con,dbplyr::in_schema("filter","collectors"))
42-
p_col <- tbl(con,dbplyr::in_schema("filter","p_col"))
43-
locations <- tbl(con,dbplyr::in_schema("filter","locations"))
44-
polygons <- tbl(con,dbplyr::in_schema("filter","polygons"))
45-
p_loc <- tbl(con,dbplyr::in_schema("filter","p_loc"))
46-
themes <- tbl(con,dbplyr::in_schema("filter","themes"))
47-
poem_theme <- tbl(con,dbplyr::in_schema("filter","poem_theme"))
48-
refs <- tbl(con,dbplyr::in_schema("filter","refs"))
49-
raw_meta <- tbl(con,dbplyr::in_schema("filter","raw_meta"))
50-
36+
poems <- tbl(con, dbplyr::in_schema("filter", "poems"))
37+
poem_stats <- tbl(con, dbplyr::in_schema("filter", "poem_stats"))
38+
p_year <- tbl(con, dbplyr::in_schema("filter", "p_year"))
39+
verses <- tbl(con, dbplyr::in_schema("filter", "verses"))
40+
verse_poem <- tbl(con, dbplyr::in_schema("filter", "verse_poem"))
41+
collectors <- tbl(con, dbplyr::in_schema("filter", "collectors"))
42+
p_col <- tbl(con, dbplyr::in_schema("filter", "p_col"))
43+
locations <- tbl(con, dbplyr::in_schema("filter", "locations"))
44+
polygons <- tbl(con, dbplyr::in_schema("filter", "polygons"))
45+
p_loc <- tbl(con, dbplyr::in_schema("filter", "p_loc"))
46+
themes <- tbl(con, dbplyr::in_schema("filter", "themes"))
47+
poem_theme <- tbl(con, dbplyr::in_schema("filter", "poem_theme"))
48+
refs <- tbl(con, dbplyr::in_schema("filter", "refs"))
49+
raw_meta <- tbl(con, dbplyr::in_schema("filter", "raw_meta"))

code/overview.Rmd

Lines changed: 23 additions & 24 deletions
Original file line numberDiff line numberDiff line change
@@ -1,9 +1,9 @@
11
---
22
title: "General statistical overviews of FILTER data"
33
date: "`r Sys.Date()`"
4-
output:
4+
output:
55
md_document:
6-
variant: gfm
6+
variant: gfm
77
toc: yes
88
html_notebook:
99
code_folding: hide
@@ -17,32 +17,31 @@ source(here::here("code/common_basis.R"), local = knitr::knit_global())
1717
# Temporal overview
1818

1919
```{r temporal_overview, fig.width=8, fig.height=8}
20-
p_year %>%
21-
inner_join(poems,by=c("p_id")) %>%
22-
count(collection,year) %>%
23-
mutate(measure="yearly count") %>%
20+
p_year %>%
21+
inner_join(poems, by = c("p_id")) %>%
22+
count(collection, year) %>%
23+
mutate(measure = "yearly count") %>%
2424
union_all(
2525
p_year %>% # 10 year rolling mean
26-
distinct(year) %>%
27-
left_join(p_year %>% distinct(year),sql_on="RHS.year BETWEEN LHS.year-5 AND LHS.year+5") %>%
28-
inner_join(p_year,by=c("year.y"="year")) %>%
29-
inner_join(poems,by=c("p_id")) %>%
30-
group_by(collection=collection,year=year.x) %>%
31-
summarize(n=n()/10,.groups="drop") %>%
32-
mutate(measure="10 year rolling mean")
26+
distinct(year) %>%
27+
left_join(p_year %>% distinct(year), sql_on = "RHS.year BETWEEN LHS.year-5 AND LHS.year+5") %>%
28+
inner_join(p_year, by = c("year.y" = "year")) %>%
29+
inner_join(poems, by = c("p_id")) %>%
30+
group_by(collection = collection, year = year.x) %>%
31+
summarize(n = n() / 10, .groups = "drop") %>%
32+
mutate(measure = "10 year rolling mean")
3333
) %>%
34-
filter(year>0,year<9999,collection!="literary") %>%
35-
ggplot(aes(x=year,y=n,color=measure)) +
36-
geom_point(data=~.x %>% filter(measure=="yearly count")) +
37-
geom_line(data=~.x %>% filter(measure=="10 year rolling mean")) +
38-
theme_hsci_discrete(base_family="Arial") +
39-
theme(legend.justification=c(0,1), legend.position=c(0.02, 0.98), legend.background = element_blank(), legend.key=element_blank()) +
40-
labs(color=NULL) +
41-
scale_y_continuous(breaks=seq(0,20000,by=2000)) +
34+
filter(year > 0, year < 9999, collection != "literary") %>%
35+
ggplot(aes(x = year, y = n, color = measure)) +
36+
geom_point(data = ~ .x %>% filter(measure == "yearly count")) +
37+
geom_line(data = ~ .x %>% filter(measure == "10 year rolling mean")) +
38+
theme_hsci_discrete(base_family = "Arial") +
39+
theme(legend.justification = c(0, 1), legend.position = c(0.02, 0.98), legend.background = element_blank(), legend.key = element_blank()) +
40+
labs(color = NULL) +
41+
scale_y_continuous(breaks = seq(0, 20000, by = 2000)) +
4242
ylab("Poems") +
43-
scale_x_continuous(breaks=seq(1000,2000,by=50)) +
43+
scale_x_continuous(breaks = seq(1000, 2000, by = 50)) +
4444
xlab("Year") +
45-
facet_wrap(~collection, ncol=1) +
45+
facet_wrap(~collection, ncol = 1) +
4646
ggtitle("Number of poems by year and collection")
4747
```
48-

output/md/overview.md

Lines changed: 2 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -1,9 +1,9 @@
11
---
22
title: "General statistical overviews of FILTER data"
33
date: "2022-08-31"
4-
output:
4+
output:
55
md_document:
6-
variant: gfm
6+
variant: gfm
77
toc: yes
88
html_notebook:
99
code_folding: hide
@@ -15,4 +15,3 @@ output:
1515
# Temporal overview
1616

1717
![plot of chunk temporal_overview](figures/temporal_overview-1.png)
18-

overview.Rmd

Lines changed: 23 additions & 24 deletions
Original file line numberDiff line numberDiff line change
@@ -1,9 +1,9 @@
11
---
22
title: "General statistical overviews of FILTER data"
33
date: "`r Sys.Date()`"
4-
output:
4+
output:
55
md_document:
6-
variant: gfm
6+
variant: gfm
77
toc: yes
88
html_notebook:
99
code_folding: hide
@@ -17,32 +17,31 @@ source(here::here("code/common_basis.R"), local = knitr::knit_global())
1717
# Temporal overview
1818

1919
```{r temporal_overview, fig.width=8, fig.height=8}
20-
p_year %>%
21-
inner_join(poems,by=c("p_id")) %>%
22-
count(collection,year) %>%
23-
mutate(measure="yearly count") %>%
20+
p_year %>%
21+
inner_join(poems, by = c("p_id")) %>%
22+
count(collection, year) %>%
23+
mutate(measure = "yearly count") %>%
2424
union_all(
2525
p_year %>% # 10 year rolling mean
26-
distinct(year) %>%
27-
left_join(p_year %>% distinct(year),sql_on="RHS.year BETWEEN LHS.year-5 AND LHS.year+5") %>%
28-
inner_join(p_year,by=c("year.y"="year")) %>%
29-
inner_join(poems,by=c("p_id")) %>%
30-
group_by(collection=collection,year=year.x) %>%
31-
summarize(n=n()/10,.groups="drop") %>%
32-
mutate(measure="10 year rolling mean")
26+
distinct(year) %>%
27+
left_join(p_year %>% distinct(year), sql_on = "RHS.year BETWEEN LHS.year-5 AND LHS.year+5") %>%
28+
inner_join(p_year, by = c("year.y" = "year")) %>%
29+
inner_join(poems, by = c("p_id")) %>%
30+
group_by(collection = collection, year = year.x) %>%
31+
summarize(n = n() / 10, .groups = "drop") %>%
32+
mutate(measure = "10 year rolling mean")
3333
) %>%
34-
filter(year>0,year<9999,collection!="literary") %>%
35-
ggplot(aes(x=year,y=n,color=measure)) +
36-
geom_point(data=~.x %>% filter(measure=="yearly count")) +
37-
geom_line(data=~.x %>% filter(measure=="10 year rolling mean")) +
38-
theme_hsci_discrete(base_family="Arial") +
39-
theme(legend.justification=c(0,1), legend.position=c(0.02, 0.98), legend.background = element_blank(), legend.key=element_blank()) +
40-
labs(color=NULL) +
41-
scale_y_continuous(breaks=seq(0,20000,by=2000)) +
34+
filter(year > 0, year < 9999, collection != "literary") %>%
35+
ggplot(aes(x = year, y = n, color = measure)) +
36+
geom_point(data = ~ .x %>% filter(measure == "yearly count")) +
37+
geom_line(data = ~ .x %>% filter(measure == "10 year rolling mean")) +
38+
theme_hsci_discrete(base_family = "Arial") +
39+
theme(legend.justification = c(0, 1), legend.position = c(0.02, 0.98), legend.background = element_blank(), legend.key = element_blank()) +
40+
labs(color = NULL) +
41+
scale_y_continuous(breaks = seq(0, 20000, by = 2000)) +
4242
ylab("Poems") +
43-
scale_x_continuous(breaks=seq(1000,2000,by=50)) +
43+
scale_x_continuous(breaks = seq(1000, 2000, by = 50)) +
4444
xlab("Year") +
45-
facet_wrap(~collection, ncol=1) +
45+
facet_wrap(~collection, ncol = 1) +
4646
ggtitle("Number of poems by year and collection")
4747
```
48-

0 commit comments

Comments
 (0)