-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathslides-abmv2024.tex
885 lines (757 loc) · 36.5 KB
/
slides-abmv2024.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
\documentclass[12pt,utf8,notheorems,compress,t,aspectratio=169]{beamer}
\usepackage{etex}
\usepackage{pgfpages}
\usepackage[export]{adjustbox}
% Workaround for the issue described at
% https://tex.stackexchange.com/questions/164406/beamer-using-href-in-notes.
\newcommand{\fixedhref}[2]{\makebox[0pt][l]{\hspace*{\paperwidth}\href{#1}{#2}}\href{#1}{#2}}
\usepackage[english]{babel}
\usepackage{mathtools}
\usepackage{xspace}
\usepackage{booktabs}
\usepackage{stmaryrd}
\usepackage{amssymb}
\usepackage{manfnt}
\usepackage{array}
\usepackage{ragged2e}
\usepackage{multicol}
\usepackage{tabto}
\usepackage{xstring}
\usepackage{proof}
\usepackage{agda}
\usepackage[all]{xy}
\xyoption{rotate}
\usepackage{tikz}
\usetikzlibrary{calc,shapes,shapes.callouts,shapes.arrows,patterns,fit,backgrounds,decorations.pathmorphing,positioning,svg.path}
\hypersetup{colorlinks=true}
\DeclareFontFamily{U}{bbm}{}
\DeclareFontShape{U}{bbm}{m}{n}
{ <5> <6> <7> <8> <9> <10> <12> gen * bbm
<10.95> bbm10%
<14.4> bbm12%
<17.28><20.74><24.88> bbm17}{}
\DeclareFontShape{U}{bbm}{m}{sl}
{ <5> <6> <7> bbmsl8%
<8> <9> <10> <12> gen * bbmsl
<10.95> bbmsl10%
<14.4> <17.28> <20.74> <24.88> bbmsl12}{}
\DeclareFontShape{U}{bbm}{bx}{n}
{ <5> <6> <7> <8> <9> <10> <12> gen * bbmbx
<10.95> bbmbx10%
<14.4> <17.28> <20.74> <24.88> bbmbx12}{}
\DeclareFontShape{U}{bbm}{bx}{sl}
{ <5> <6> <7> <8> <9> <10> <10.95> <12> <14.4> <17.28>%
<20.74> <24.88> bbmbxsl10}{}
\DeclareFontShape{U}{bbm}{b}{n}
{ <5> <6> <7> <8> <9> <10> <10.95> <12> <14.4> <17.28>%
<20.74> <24.88> bbmb10}{}
\DeclareMathAlphabet{\mathbbm}{U}{bbm}{m}{n}
\SetMathAlphabet\mathbbm{bold}{U}{bbm}{bx}{n}
\usepackage{pifont}
\newcommand{\cmark}{\ding{51}}
\newcommand{\xmark}{\ding{55}}
\DeclareSymbolFont{extraup}{U}{zavm}{m}{n}
\DeclareMathSymbol{\varheart}{\mathalpha}{extraup}{86}
\graphicspath{{images/}}
\usepackage[protrusion=true,expansion=true]{microtype}
\setlength\parskip{\medskipamount}
\setlength\parindent{0pt}
\title{Modal operators for a constructive account of well quasi-orders}
\author{Ingo Blechschmidt}
\date{November 30th, 2024}
\setbeameroption{show notes on second screen=bottom}
\newcommand{\jnote}[2]{\only<#1>{\note{\setlength\parskip{\medskipamount}\footnotesize\justifying#2\par}}}
%\useinnertheme[shadow=true]
\setbeamerfont{block title}{size={}}
\useinnertheme{rectangles}
\usecolortheme{orchid}
\usecolortheme{seahorse}
\definecolor{mypurple}{RGB}{253,73,34}
\definecolor{mypurpledark}{RGB}{100,0,150}
\setbeamercolor{structure}{fg=mypurple}
\setbeamercolor*{title}{bg=mypurple,fg=white}
\setbeamercolor*{titlelike}{bg=mypurple,fg=white}
\setbeamercolor{frame}{bg=black}
\usefonttheme{serif}
\usepackage[T1]{fontenc}
\usepackage{libertine}
% lifted from https://arxiv.org/abs/1506.08870
\DeclareFontFamily{U}{min}{}
\DeclareFontShape{U}{min}{m}{n}{<-> udmj30}{}
\newcommand\yon{\!\text{\usefont{U}{min}{m}{n}\symbol{'210}}\!}
\newcommand{\A}{\mathcal{A}}
\newcommand{\B}{\mathcal{B}}
\newcommand{\C}{\mathcal{C}}
\newcommand{\M}{\mathcal{M}}
\renewcommand{\AA}{\mathbb{A}}
\newcommand{\BB}{\mathbb{B}}
\newcommand{\pp}{\mathbbm{p}}
\newcommand{\MM}{\mathbb{M}}
\newcommand{\E}{\mathcal{E}}
\newcommand{\F}{\mathcal{F}}
\newcommand{\FF}{\mathbb{F}}
\newcommand{\G}{\mathcal{G}}
\newcommand{\J}{\mathcal{J}}
\newcommand{\GG}{\mathbb{G}}
\renewcommand{\O}{\mathcal{O}}
\newcommand{\K}{\mathcal{K}}
\newcommand{\NN}{\mathbb{N}}
\newcommand{\QQ}{\mathbb{Q}}
\newcommand{\RR}{\mathbb{R}}
\newcommand{\TT}{\mathbb{T}}
\newcommand{\PP}{\mathbb{P}}
\newcommand{\ZZ}{\mathbb{Z}}
\newcommand{\CC}{\mathbb{C}}
\renewcommand{\P}{\mathcal{P}}
\newcommand{\aaa}{\mathfrak{a}}
\newcommand{\bbb}{\mathfrak{b}}
\newcommand{\ccc}{\mathfrak{c}}
\newcommand{\ppp}{\mathfrak{p}}
\newcommand{\fff}{\mathfrak{f}}
\newcommand{\mmm}{\mathfrak{m}}
\newcommand{\defeq}{\vcentcolon=}
\newcommand{\defeqv}{\vcentcolon\equiv}
\newcommand{\Cov}{\mathrm{Cov}}
\renewcommand{\_}{\mathpunct{.}}
\newcommand{\?}{\,{:}\,}
\newcommand{\speak}[1]{\ulcorner\text{\textnormal{#1}}\urcorner}
\newcommand{\inv}{inv.\@}
\newcommand{\forces}{\vDash}
\newcommand{\ind}{\ensuremath{_\text{ind}}\xspace}
\newcommand{\sinf}{\ensuremath{_\infty}}
\newcommand{\impl}{\ensuremath{_\text{impl}}\xspace}
\setbeamertemplate{blocks}[shadow=false]
\newenvironment{indentblock}{%
\list{}{\leftmargin\leftmargin}%
\item\relax
}{%
\endlist
}
% Adapted from https://latex.org/forum/viewtopic.php?t=2251 (Stefan Kottwitz)
\newenvironment<>{hilblock}{
\begin{center}
\begin{minipage}{9.05cm}
\setlength{\textwidth}{9.05cm}
\begin{actionenv}#1
\def\insertblocktitle{}
\par
\usebeamertemplate{block begin}}{
\par
\usebeamertemplate{block end}
\end{actionenv}
\end{minipage}
\end{center}}
\newenvironment{changemargin}[2]{%
\begin{list}{}{%
\setlength{\topsep}{0pt}%
\setlength{\leftmargin}{#1}%
\setlength{\rightmargin}{#2}%
\setlength{\listparindent}{\parindent}%
\setlength{\itemindent}{\parindent}%
\setlength{\parsep}{\parskip}%
}%
\item[]}{\end{list}}
\tikzset{
invisible/.style={opacity=0,text opacity=0},
visible on/.style={alt={#1{}{invisible}}},
alt/.code args={<#1>#2#3}{%
\alt<#1>{\pgfkeysalso{#2}}{\pgfkeysalso{#3}}}
}
% https://tex.stackexchange.com/questions/172336/drawing-roman-laurel-leaves-spqr-in-tikz
\tikzset{
laurel-wreath/.pic = {
\fill svg{M14.4-24.6c-1.5-1.5-2.6-3.3-3.1-5.3l-.4-1.7c-.2-1.1-.2-4.1 .2-5.7 .2-.9 .3-1.3 .5-1.3l1.4 1.1 2.5 2.4c2.7 2.5 5.2 6 5.8 8 .2 .6-.5 .3-2.2-.9-1.6-1.3-3.3-2.6-5-3.8l.1 1.4c.2 1.4 .5 2.7 1.1 4.6s.8 2.5 .5 2.5l-1.4-1.3zm69.6 1.1 .3-1.2c.8-2.3 1.3-4.8 1.6-7.3l-1.5 1.1c-1.3 .9-2.6 1.9-3.7 3-1.6 1.1-2 1.3-2.1 1 .7-1.8 1.6-3.4 2.8-4.9 1.3-1.7 6.5-6.8 7-6.8 .2 0 .3 .2 .3 .5l.3 1.6c.3 2.2 .2 5.7-.5 7.4-.8 1.9-1.6 3.1-3 4.7-1.1 1.1-1.4 1.3-1.5 .9z};
\fill svg{M10-29.4c-.8-1.1-1.4-2.2-2-4.1l-.7-3.5c-.2-3 .2-4.4 1.4-8.3l.5-1.4c.2-1.3 .3-1.9 .6-1.9 .3-.2 .6 .3 .7 .8s.9 2.2 1.9 3.6c1.4 2.2 2.7 4.4 3.9 6.6l.9 2.7c0 .6 0 .6-.3 .6-.6 0-4.9-4.4-5.8-6l-.2-.6-.1 1.7-.3 2.8c-.3 2.7-.3 3.8 0 5.5 .6 2 .5 2.4-.5 1.5zm79.2 .3 .4-2.4c.2-1.3 .2-2.7-.1-4.9l-.3-2.8v-1.6l-.7 1c-.8 1.3-5 5.5-5.5 5.5s-.5-.3 .2-1.9c.5-1.7 1.4-3.3 3.3-6.5 2.4-3.6 2.7-3.9 2.8-4.7 .5-1.3 .5-1.4 .8-1.2 .3 0 .6 .8 .6 1.5l.7 2.4c.9 2.7 1.1 3.6 1.2 6 .2 3.1-.5 6-2 8.2-.8 1.3-1.3 1.7-1.4 1.5z};
\fill svg{M5-40c-.4-3.2-.1-6.5 .9-9.6 .5-1.1 1.6-2.8 2.2-3.4l1.3-1.6 2-2.7 .2 .6c.1 1.3 .4 2.6 .9 3.8l.3 1c.8 1.7 1.1 2.7 1.6 5.3 .6 2.5 .6 4.6 .2 4.6-.3 0-.9-.8-1-1.1l-.5-.8c-1.4-2-3-5.2-2.9-6.5-.9 2.7-2 5.4-3.5 7.9l-.3 .8-.3 .8c0 .5-.6 1.6-.8 1.6l-.3-.7zm89.2 .2-.2-.5-.3-.9-1.1-2.7-1.1-2.4c-.6-1.4-1.2-2.8-1.6-4.2l-.3 .9c-.3 1.3-1.6 3.9-3 6-1.3 2-1.6 2-1.5 0s1.1-6.3 2.2-9c.8-1.7 1.1-3.1 .9-4.1-.2-1.1 .5-.8 2.2 1.8 3.3 4.4 3.8 5.4 4.4 7.8 .6 2.4 .5 7.7-.3 7.8l-.3-.5z};
\fill svg{M13.9-50.1c-.5-1.9-.8-3.9-.9-5.8-.2-1.6-.1-3.3 .1-4.9-.3 .8-1.7 2.5-4.2 5.1l-3 4.9-.3 .1c-.3 0-.3-2.2 0-3.3 .8-3 1.4-4.6 2.5-6.1 .9-1.3 1.7-1.9 2.5-2.5 1.1-.6 2.7-1.9 3.5-2.7 .9-.9 1.9-1.4 2.2-1.4v1.1l-.3 6.6c0 6.8 .2 6.3-1 8.9-.5 1.1-.8 1.1-1.1 0zm70.8-.4c-.8-2.2-.8-2.5-.7-6.3-.1-2.7-.1-5.5-.2-8.2-.3-1.6-.3-1.9 .5-1.6l.6 .5c1.4 1.4 3 2.5 3.9 3.1 1.3 .9 1.9 1.6 2.7 2.6l.6 .7 .2 .4 .2 .3c.8 .9 2 4.9 2 6.9 .2 1.9-.2 1.9-.9 .5-.7-1.4-1.5-2.7-2.6-4-1.6-1.5-3-3.2-4.2-5 .4 3 .3 6-.5 9 0 .8-.5 2.2-.8 2.3-.2 0-.5-.3-.8-1.2z};
\fill svg{M16.4-58.5l.2-1.5 .3-3.7c.2-2.8 .3-3.5 1.1-5.4l.7-1.3-.5 .4-1 .7c-.5 .4-1.1 .8-1.5 1.3l-.5 .3-1.9 1.6c-2.2 1.6-2.7 2-3.9 3.6-.5 .8-1.1 1.3-1.3 1.3-.5 0 0-2.4 1.1-4.7 1.5-3.4 4.3-6 7.7-7.4l1.3-.4 1.9-.4 2-.5c1.4 0 1.4 0 1 1.1-.5 .8-.8 2-1.1 4.2-.3 2.3-1.1 4.5-2.2 6.5l-.4 .6c-.6 1.1-1.3 2.1-2 3.2-.5 .6-.8 .8-1 .5zm66.3-.2c-.8-.9-2.8-4.4-3.5-6.1-.6-1.3-.9-2.5-1.1-3.5-.2-2.1-.7-4.1-1.5-6 0-.3 0-.3 1.2-.3l2.1 .5 1.9 .4 1.2 .4 .6 .1 1 .6c3 1.4 5.7 4.6 6.8 8.5l.7 2.6c-.2 .6-.5 .5-1.4-.7-2.2-2.7-4.8-5-7.7-6.9l-1.7-1.3 .6 1.3c.3 .6 .6 1.2 .8 1.9l.3 2.5 .3 3.9c.3 2.4 .2 2.8-.6};
\fill svg{M21.6-66.1l.4-1.1 .9-3.2c.3-1.9 1.1-3.3 2.4-4.7l.4-.8-1.2 .2-2.2 .3c-2.7 .3-5.3 1.2-7.7 2.5-.6 .5-1.3 .6-1.3 .3 0-.5 .9-1.9 2-2.9 .8-.9 2-1.9 3.2-2.6l.9-.4 2.2-1c.3-.2 1.3-.3 3.2-.1 3 0 4.1 .2 6.3 .7l1.1 .4c.5 .2 .6 .6 .3 .6-.5 0-1.4 .9-1.9 1.7l-1.2 1.8c-1.7 2.8-2.2 3.5-4.6 5.9l-3 2.7-.2-.3zm53.9-2c-2.7-2.8-3.5-3.8-5.4-6.8-.9-1.6-1.4-2.4-1.9-2.5l-.8-.5c-.3 0-.2-.5 .4-.6l1.1-.4c1.9-.6 3-.8 5.6-.9l3.3 .2c2 .6 3.8 1.5 5.4 2.8 .3 0 1.9 1.6 2.5 2.4l.9 1.8c0 .3-.3 .2-1.9-.6-2.8-1.4-4.4-1.9-7.7-2.2l-2.2-.5c-.9-.2-.9-.2-.6 .2 .6 .5 1.7 2 2.1 2.8l.9 2.5c.3 1.5 .6 3 .9 4.6l-2.6-2.3z};
\fill svg{M34.1-78.7c-3.4-1.3-6.9-2.1-10.6-2.5-.9 0-1.4 0-2.3 .3-2 .5-2 0 0-1.3l2.8-1.2c1.4-.5 1.9-.5 3.8-.6 3.8-.2 6.1 .3 9.3 1.7l3.6 1.1 2.2 .3c1.3 0 1.7 0 2.7-.3 1.1-.3 2.8-1.1 2.8-1.3l-1.3-.9c-1.9-1.4-3.1-2.7-3.1-3.2l.8-.6c.9-.3 1.3-.2 2 .8 .5 .8 1.1 1.4 2.9 2.7 .2 .3 .3 .2 1.1-.3 .9-.8 2.4-2 2.6-2.7 .5-.6 .9-.8 1.8-.5l.8 .6c0 .5-1.4 1.7-3.2 3.2l-1.3 .9c0 .2 1.7 .9 2.9 1.3 .9 .3 1.4 .3 2.7 .3l2.2-.3c1.7-.4 3.4-1 5-1.7 2-.8 4.4-1.3 7.7-1.1 2 .2 2.5 .2 3.8 .6 .9 .3 2.2 .8 2.8 1.2 2 1.1 2 1.6 .2 1.3-1.6-.3-1.9-.3-4.4 0-2.4 .3-4.7 .8-7 1.6l-1.5 .6c-2.9 .3-5.9 .2-8.8-.3-1.7-.3-3.6-.9-6-2.1l-1.1-.4-1.3 .6c-4.5 2.2-9.6 3-14.6 2.2zm-6.3-9.1c};
}
}
\newcommand{\pointthis}[3]{%
\tikz[remember picture,baseline]{
\node[anchor=base,inner sep=0,outer sep=0] (#2) {#2};
\node[visible on=#1,overlay,rectangle callout,rounded corners,callout relative pointer={(0.3cm,0.5cm)},fill=blue!20] at ($(#2.north)+(-0.1cm,-1.1cm)$) {#3};
}%
}
\tikzset{
invisible/.style={opacity=0,text opacity=0},
visible on/.style={alt={#1{}{invisible}}},
alt/.code args={<#1>#2#3}{%
\alt<#1>{\pgfkeysalso{#2}}{\pgfkeysalso{#3}}}
}
\newcommand{\hcancel}[5]{%
\tikz[baseline=(tocancel.base)]{
\node[inner sep=0pt,outer sep=0pt] (tocancel) {#1};
\draw[red!80, line width=0.4mm] ($(tocancel.south west)+(#2,#3)$) -- ($(tocancel.north east)+(#4,#5)$);
}%
}
\newcommand{\explain}[7]{%
\tikz[remember picture,baseline]{
\node[anchor=base,inner sep=2pt,outer sep=0,fill=#3,rounded corners] (label) {#1};
\node[anchor=north,visible on=<#2>,overlay,rectangle callout,rounded corners,callout
relative pointer={(0.0cm,0.5cm)+(0.0cm,#6)},fill=#3] at ($(label.south)+(0,-0.3cm)+(#4,#5)$) {#7};
}%
}
\newcommand{\explainstub}[2]{%
\tikz[remember picture,baseline]{
\node[anchor=base,inner sep=2pt,outer sep=0,fill=#2,rounded corners] (label) {#1};
}%
}
\newcommand{\squiggly}[1]{%
\tikz[remember picture,baseline]{
\node[anchor=base,inner sep=0,outer sep=0] (label) {#1};
\draw[thick,color=red!80,decoration={snake,amplitude=0.5pt,segment
length=3pt},decorate] ($(label.south west) + (0,-2pt)$) -- ($(label.south east) + (0,-2pt)$);
}%
}
% Adapted from https://latex.org/forum/viewtopic.php?t=2251 (Stefan Kottwitz)
\newenvironment<>{varblock}[2]{\begin{varblockextra}{#1}{#2}{}}{\end{varblockextra}}
\newenvironment<>{varblockextra}[3]{
\begin{center}
\begin{minipage}{#1}
\begin{actionenv}#4
{\centering \hil{#2}\par}
\def\insertblocktitle{}%\centering #2}
\def\varblockextraend{#3}
\usebeamertemplate{block begin}}{
\par
\usebeamertemplate{block end}
\varblockextraend
\end{actionenv}
\end{minipage}
\end{center}}
\setbeamertemplate{headline}{}
\setbeamertemplate{frametitle}{%
\leavevmode%
\vskip-1.6em%
\begin{beamercolorbox}[dp=1ex,center,wd=\paperwidth,ht=2.25ex]{title}%
\vskip0.5em%
\bf\insertframetitle
\end{beamercolorbox}%
\vskip-0.77em\hspace*{-2em}%
\textcolor{mypurpledark}{\rule[0em]{1.1\paperwidth}{2.4pt}}
\vskip-0.4em%
}
\setbeamertemplate{navigation symbols}{}
\newcounter{framenumberpreappendix}
\newcommand{\backupstart}{
\setcounter{framenumberpreappendix}{\value{framenumber}}
}
\newcommand{\backupend}{
\addtocounter{framenumberpreappendix}{-\value{framenumber}}
\addtocounter{framenumber}{\value{framenumberpreappendix}}
}
\newcommand{\insertframeextra}{}
\setbeamertemplate{footline}{%
\begin{beamercolorbox}[wd=\paperwidth,ht=2.25ex,dp=1ex,right,rightskip=1mm,leftskip=1mm]{}%
% \inserttitle
\hfill
\insertframenumber\insertframeextra\,/\,\inserttotalframenumber
\end{beamercolorbox}%
\vskip0pt%
}
\newcommand{\hil}[1]{{\usebeamercolor[fg]{item}{\textbf{#1}}}}
\newcommand{\hill}[1]{{\usebeamercolor[fg]{item}{#1}}}
\newcommand{\bad}[1]{\textcolor{red!90}{\textnormal{#1}}}
\newcommand{\good}[1]{\textcolor{mypurple}{\textnormal{#1}}}
\newcommand{\bignumber}[1]{%
\renewcommand{\insertenumlabel}{#1}\scalebox{1.2}{\!\usebeamertemplate{enumerate item}\!}
}
\newcommand{\normalnumber}[1]{%
{\renewcommand{\insertenumlabel}{#1}\!\usebeamertemplate{enumerate item}\!}
}
\newcommand{\bigheart}{\includegraphics{heart}}
\newcommand{\subhead}[1]{{\centering\textcolor{gray}{\hrulefill}\quad\textnormal{#1}\quad\textcolor{gray}{\hrulefill}\par}}
\newcommand{\badbox}[1]{\colorbox{red!30}{#1}}
\newcommand{\infobox}[1]{\colorbox{yellow!70}{\color{black}#1}}
% taken from JDH "The modal logic of arithmetic potentialism and the universal algorithm"
\DeclareMathOperator{\possible}{\text{\tikz[scale=.6ex/1cm,baseline=-.6ex,rotate=45,line width=.1ex]{\draw (-1,-1) rectangle (1,1);}}}
\DeclareMathOperator{\necessary}{\text{\tikz[scale=.6ex/1cm,baseline=-.6ex,line width=.1ex]{\draw (-1,-1) rectangle (1,1);}}}
\DeclareMathOperator{\xpossible}{\text{\tikz[scale=.6ex/1cm,baseline=-.6ex,rotate=45,line width=.1ex]{\draw (-1,-1) rectangle (1,1); \draw[very thin] (-.6,-.6) rectangle (.6,.6);}}}
\DeclareMathOperator{\xnecessary}{\text{\tikz[scale=.6ex/1cm,baseline=-.6ex,line width=.1ex]{\draw (-1,-1) rectangle (1,1); \draw[very thin] (-.6,-.6) rectangle (.6,.6);}}}
\input{images/primes.tex}
\newcommand{\triang}{\hil{$\blacktriangleright$}}
\newcommand{\concat}{\mathbin{{+}\mspace{-8mu}{+}}}
\newcommand{\astikznode}[2]{\tikz[baseline,remember picture]{\node[anchor=base,inner sep=0,outer sep=0.1em] (#1) {#2};}}
\newcommand{\astikznodecircled}[3]{\tikz[baseline,remember picture]{\node[anchor=base,circle,draw=#2,thick,inner sep=0.05em,outer sep=0.05em] (#1) {#3};}}
\newcommand{\astikznodetransparentlycircled}[2]{\tikz[baseline,remember picture]{\node[anchor=base,circle,opacity=0,draw=white,text opacity=1,thick,inner sep=0.05em,outer sep=0.05em] (#1) {#2};}}
\setbeamersize{text margin left=1.60em,text margin right=1.60em}
\newlength\stextwidth
\newcommand\makesamewidth[3][c]{%
\settowidth{\stextwidth}{#2}%
\makebox[\stextwidth][#1]{#3}%
}
\newcommand{\dnote}[1]{%
\begin{tabular}{@{}m{2em}@{}m{0.83\textwidth}@{}}%
\textdbend %
\end{tabular}%
\par
}
\newcommand{\genalpha}{\mbox{$\hspace{0.12em}\shortmid\hspace{-0.62em}\alpha$}}
\usepackage{newunicodechar}
\newunicodechar{∇}{\ensuremath{\nabla}}
\newunicodechar{λ}{\ensuremath{\lambda}}
\newunicodechar{σ}{\ensuremath{\sigma}}
\newunicodechar{τ}{\ensuremath{\tau}}
\newunicodechar{∷}{\ensuremath{\!\!\!}}
\newunicodechar{⧺}{\ensuremath{\!\!\!}}
\newunicodechar{₁}{\ensuremath{_1}}
\newunicodechar{₂}{\ensuremath{_2}}
\newunicodechar{∈}{\ensuremath{\in}}
\begin{document}
\addtocounter{framenumber}{-1}
{\usebackgroundtemplate{\begin{minipage}{\paperwidth}\centering\includegraphics[width=\paperwidth]{tower}\end{minipage}}
\begin{frame}[c]
\centering
\color{white}
\bigskip
\bigskip
\bigskip
\bigskip
\bigskip
\bigskip
\bigskip
\bigskip
\bigskip
\scriptsize
\setbeamercolor{block body}{bg=black!100}
\begin{minipage}{0.62\textwidth}
\begin{block}{\centering Arbeitstagung Bern--München--Verona}
\centering\normalsize\color{white}
\hil{Modal operators for \\ a constructive account of
well quasi-orders} \\[-0.9em]
\
\end{block}
\end{minipage}
\bigskip
\bigskip
\bigskip
\bigskip
\bf
\colorbox{black}{November 30th, 2024}%
\bigskip
\colorbox{black}{\begin{minipage}{0.2\textwidth}
\centering
Ingo Blechschmidt \\
University of Antwerp
\end{minipage}}
\end{frame}}
\definecolor{mypurple}{RGB}{150,0,255}
\setbeamercolor{structure}{fg=mypurple}
{\usebackgroundtemplate{\begin{minipage}{\paperwidth}\vspace*{2.1em}\includegraphics[height=\paperheight]{sea-of-clouds-1}\end{minipage}}
\begin{frame}{Well quasi-orders}
\jnote{2-3}{
The presented proof rests on the law of excluded middle and hence cannot
immediately be interpreted as a program for finding suitable indices~$i <
j$. However, constructive proofs are also possible (for instance by
induction on the value of a given term of the sequence, see
\href{https://www.math.lmu.de/~petrakis/Dickson.pdf}{Constructive
combinatorics of Dickson's Lemma} by Iosif Petrakis for several fine
quantitative results). And even more:
There is a procedure for regarding this proof---and many others in the
theory of well quasi-orders---as \emph{blueprints} for more informative
constructive proofs. This shall be our motto for today:
\emph{Do not take classical proofs literally, instead ask which
constructive proofs they are blueprints for.}
}
\jnote{3}{
The displayed stability results, along with several others, provide a
flexible toolbox for constructing new well quasi-orders from given ones.
However, with the classical formulation of \emph{well},
renamed~``well\sinf'' on the next slide, these results are inherently
classical.
In Higman's lemma, the set~$X^*$ of finite lists of elements of~$X$ is
equipped with the following ordering: We have~$x_0 \ldots x_{n-1} \leq y_0
\ldots y_{m-1}$ iff there is an increasing injection~$f : \{ 0,\ldots,n-1 \} \to \{
0,\ldots,m-1 \}$ such that~$x_i \leq y_{f(i)}$ for all~$i < n$.
}
\jnote{4}{
The dependence of the theory on well quasi-orders on classical transfinite
methods is already present in one of basic observations of this theory:
\textbf{Lemma.} Let~$X$ be well\sinf. Let~$\alpha : \NN \to X$. Then there
is an increasing subsequence~$\alpha\,i_0 \leq \alpha\,i_1 \leq
\ldots$.
\emph{Proof.} Let~$K \defeq \{ n \in \NN \,|\, \neg \exists m > n\_
\alpha\,n \leq \alpha\,m \}$ be the set of indices of those terms which cannot
appear as the first component of a good pair. If~$K$ is in bijection
with~$\NN$, there is a subsequence~$\alpha\,k_0 \leq \alpha\,k_1 \leq
\ldots$ with~$k_0, k_1, \ldots \in K$. As~$X$ is well\sinf, this sequence
is good, a contradiction.
Hence~$K$ is not in bijection with~$\NN$. Assuming~\bad{\textsc{lem}},
it is hence bounded by a number~$N$, and (again
with~\bad{\textsc{lem}}), for every index~$a > N$ there is an index~$b >
a$ such that~$\alpha\,a \leq \alpha\,b$. Thus,
assuming~\bad{\textsc{dc}}, every number~$i_0 > N$ is a suitable
starting index for an infinite increasing subsequence. \qed
The appeal to dependent choice can be removed by always picking the
smallest possible next index in~$\NN \setminus K$, doable by yet another
invocation of~\bad{\textsc{lem}}, but the result remains fundamentally
noneffective---in the special case~$X = (\{ 0, 1 \}, {=})$, the statement
of the lemma implies the infinite pigeonhole principle.
}
\jnote{5-7}{
Luckily, thanks to work by Thierry Coquand, Daniel Fridlender and Monika
Seisenberger, a constructive substitute is available, the notion well\ind.
In classical mathematics (where~\textsc{lem} and~\textsc{dc} and hence bar
induction are available), this notion is equivalent to well\sinf.
The assertion~``$\mathsf{Good} \mid [\,]$'' is pronounced ``$\mathsf{Good}$
bars the empty list'', and is defined as follows: Let~$B$ be a predicate
on~$X^\star$. Then~$B \mid
\sigma$ is inductively generated by the following two clauses.
\vspace*{-0.5em}
\begin{enumerate}
\item If~$B\sigma$, then~$B \mid \sigma$.
\\[-1.3em]
\item If~$B \mid \sigma x$ for all~$x \in X$, then~$B \mid \sigma$.
\end{enumerate}
\vspace*{-0.5em}
Here~$\sigma x$ denotes the concatenation of the list~$\sigma$ with the
element~$x$. The accompanying induction principle is the following: Let~$Q$
be a predicate on~$X^*$ such that, for all~$\sigma \in X^*$,~$B\sigma \Rightarrow Q\sigma$ and
$(\forall x \in X\_ Q(\sigma x)) \Rightarrow Q\sigma$. Then, for
all~$\sigma \in X^*$: If~$B \mid \sigma$, then~$Q\sigma$.
Intuitively, the assertion~``$B \mid \sigma$'' expresses (in a positive
direct way) that no matter how~$\sigma$ evolves to a longer finite
list~$\tau$, eventually~$B\tau$ will hold.
}
\jnote{8}{
\begin{columns}[t]
\begin{column}{0.60\textwidth}
The original notion well\sinf:
\begin{itemize}
\justifying
\item[\cmark] short and simple
\\[-1.3em]
\item[\cmark] constructively satisfied for the main examples (but
only because of the theory around well\ind)
\\[-1.3em]
\item[\cmark] concise abstract proofs (albeit employing transfinite methods)
\\[-1.3em]
\item[\xmark] main results not constructively attainable
\\[-1.3em]
\item[\xmark] philosophically strenuous by the quantification over all sequences
\\[-1.3em]
\item[\xmark] not stable under ``change of base''---a forcing extension
of the universe may well contain more sequences than the base universe
\\[-1.3em]
\item[\xmark] negative (universal) condition
\end{itemize}
\end{column}
\begin{column}{0.45\textwidth}
The constructive substitute well\ind:
\begin{itemize}
\justifying
\item[\cmark] main results constructive
\\[-1.3em]
\item[\cmark] stable under change of base
\\[-1.3em]
\item[\cmark] positive (existential) condition
\\[-1.3em]
\item[\xmark] proofs intriguing, but also somewhat alien, not just some
trivial reshuffling of the classical arguments, classical sequence
language cannot be used
\end{itemize}
\end{column}
\end{columns}
}
\jnote{9}{
Constructively, the notion~well\ind is much stronger than~well\sinf, as it
ensures goodness (in an appropriate sense) of sequence-like entities
which are not actually honest maps~$\NN \to X$.
For partial maps~$\alpha$, by~$\alpha\,n\,\downarrow$ we mean that~$\alpha$
is defined on the input~$n$. If~\bad{\textsc{lem}} is available, then a
partial map such that~$\neg\neg(\alpha\,n\,\downarrow)$ for all~$n \in \NN$
is already a total map, but without~\bad{\textsc{lem}} the hypothesis
well\sinf{} does not have anything to say about such a partially-defined
sequence.
If~\bad{\textsc{dc}} is available, then every multivalued map contains a
singlevalued map, but again without~\bad{\textsc{dc}} the hypothesis well\sinf{}
does not have anything to say about multivalued sequences.
}
\jnote{10}{
It turns out that these entities are, or give rise to, actual maps~$\NN \to
X$---but in a forcing extension of the universe.
Forcing originated in set theory to construct new models for set theory
from given ones, in order to explore the range of set-theoretic
possibility. For instance, by forcing we can construct models of~\text{zfc}
validating the continuum hypothesis and also models which falsify it.
We here refer to a simplification of original forcing which is useful in a
constructive metatheory. At its core, every forcing extension is just a
formula and proof translation of a certain form. For instance, there is a
forcing extension validating~\bad{\textsc{lem}} even if the base universe
does not; this forcing extension is not a deep mystery, for a statement holds
in that forcing extension iff its double negation translation holds in the
base universe and it is well-known that the double negation translation
of~\bad{\textsc{lem}} is an intuitionistic tautology.
\href{https://www.speicherleck.de/iblech/stuff/slides-herrsching2023.pdf}{Here
is a set of slides on constructive forcing}, and Section~4 of
\href{https://raw.githubusercontent.com/iblech/constructive-maximal-ideals/master/tex/extended.pdf}{this
joint paper with Peter Schuster} contains a written summary of constructive
forcing.
}
\textbf{Def.} Let~$(X,{\leq})$ be a quasi-order.
\vspace*{-0.3em}
\begin{itemize}
\item A sequence~$\alpha : \NN \to X$ is \hil{good} iff
there exist~$i < j$ with~$\alpha\,i \leq \alpha\,j$.
\item The quasi-order~$X$ is \hil{well\only<4->{\sinf}} iff every sequence~$\NN \to X$ is good.
\end{itemize}
\pause
\vspace*{-0.9em}
\begin{columns}[t]
\begin{column}{0.46\textwidth}
\begin{block}{Natural numbers\phantom{y}}
\textbf{Prop.} $(\NN, {\leq})$ is well\only<4->{\sinf}.
\smallskip
\emph{Proof.} Let~$\alpha : \NN \to \NN$. By~\badbox{\textsc{lem}}, there is a
\bad{minimum}~$\alpha\,i$.
Set~$j \defeq i + 1$. \qed
\hfill\color{gray}offensive?
\end{block}
\only<2-4>{
\vspace*{-2em}
\[ \astikznodetransparentlycircled{xm}{7}\!,
\quad \astikznodetransparentlycircled{x0}{4}\!,
\quad \astikznodecircled{t1}{mypurple}{3}\!,
\quad \astikznodetransparentlycircled{x1}{1}\!,
\quad \astikznodecircled{t2}{mypurple}{8}\!,
\quad \astikznodetransparentlycircled{x2}{2}\!,
\quad \ldots \]
{\centering\begin{tikzpicture}[remember picture,overlay]
\node[draw=mypurple, circle, thick, inner sep=0.1em] (t3) {\scriptsize$\leq$};
\path[draw=mypurple,thick]
(t1)
to [out=-90, in=180] (t3)
to [out=0, in=-90] (t2);
\end{tikzpicture}\par}}
\end{column}
\pause
\begin{column}{0.50\textwidth}
\begin{block}{Key stability results}
\justifying
\only<1-5>{Assuming~\badbox{\textsc{lem}}
and~\badbox{\textsc{dc}}}\only<6->{Constructively}, \ldots
\hil{Dickson:} \tabto{1.8cm} If~$X$ and~$Y$ are well\only<4-5>{\sinf}\only<6->{\ind}, so is~$X \times Y$. \\
\hil{Higman:} \tabto{1.8cm} If~$X$ is well\only<4-5>{\sinf}\only<6->{\ind}, so is~$X^\star$. \\
\hil{Kruskal:} \tabto{1.8cm} If~$X$ is well\only<4-5>{\sinf}\only<6->{\ind}, so is~$\mathrm{Tree}(X)$.
\end{block}
\end{column}
\end{columns}
\pause
\pause
\textbf{Def.} A quasi-order~$X$ is \hil{well\ind} iff~$\mathsf{Good} \mid
[\,]$, where~$\mathsf{Good}\,x_0 \ldots x_{n-1}$ iff~$\exists i < j\_ x_i \leq x_j$.
\pause
\pause
\small
With \bad{bar induction},\tabto{3.10cm} $\text{well}\ind \Leftarrow \text{well}\sinf$. \\[-0.2em]
Constructively,\tabto{3.10cm} $\text{well}\ind \Rightarrow \text{well}\sinf$.
\only<8>{
\bigskip
\begin{columns}[c]
\begin{column}{0.01\textwidth}
\includegraphics[height=2.4em]{question-mark}
\end{column}
\begin{column}{0.9\textwidth}
Is there a procedure for reinterpreting \hil{classical proofs}
regarding well\sinf{} as \newline \hil{blueprints for constructive proofs} regarding well\ind?
\end{column}
\end{columns}
}
\pause
\pause
Moreover, if~$X$ is well\ind, then \ldots
\begin{itemize}
\vspace*{-0.7em}
\small
\item for every \emph{partial} function~$\alpha$,\tabto{5.25cm}
if~$\forall n\_ \neg\neg(\alpha\,n\,{\downarrow})$,
then~$\neg\neg \exists i < j\_ \alpha\,i\,{\downarrow} \wedge
\alpha\,j\,{\downarrow} \wedge \alpha\,i \leq \alpha\,j$. \\[-2.0em]\
\item for every \emph{multivalued} function~$\alpha$,\tabto{5.25cm}
$\exists i < j\_ \exists x \in \alpha\,i\_
\exists y \in \alpha\,j\_ x \leq y$.
\end{itemize}
\pause
\vspace*{-0.7em}
\hil{Central insight:} A quasi-order $X$ is well\ind iff $\hil{$\necessary$}\,\forall\alpha : \NN \to
X\_ \exists i < j\_ \alpha\,i \leq \alpha\,j$.
\end{frame}}
{\usebackgroundtemplate{\begin{minipage}{\paperwidth}\includegraphics[width=\paperwidth]{staircase-more-faded}\end{minipage}}
\begin{frame}{The modal multiverse of constructive forcing}
\jnote{1}{
By \emph{topos}, we mean \emph{Grothendieck topos}. In constructive
forcing, a ``forcing extension of the base universe'' is exactly the same
thing as a Grothendieck topos.
A particular member of the rich and varied landscape of toposes is the
\emph{trivial topos}, in which every statement whatsoever holds. By
restricting to positive toposes, we exclude this special case.
For positive toposes~$\E$, a geometric implication holds in~$\E$ iff it
holds in the base universe. For positive overt toposes~$\E$, we even have
that a bounded first-order formula holds in~$\E$ iff it holds in the base.
Hence, for the purpose of verifying a bounded first-order assertion about
the base, we can freely pass to a positive overt topos with problem-adapted
better higher-order properties (such as that some uncountable set from the
base now appears countable, or that an infinite sequence whose existence is
predicted by failing dependent choice now actually exists).
\href{https://www.speicherleck.de/iblech/stuff/early-draft-modal-multiverse.pdf}{Here
is a rough early draft of a preprint with more details about the modal
multiverse.}
}
\jnote{2}{
The idea to study the modal multiverse of toposes in a principled manner
was proposed by Alexander Oldenziel in 2016. \emph{Foreshadowed by:}
\begin{itemize}
\item[1984\phantom{s}] André Joyal, Miles Tierney. ``An extension of the Galois theory of Grothendieck''.
\\[-1em]
\item[1987\phantom{s}] Andreas Blass. ``Well-ordering and induction in intuitionistic logic and topoi''.
\\[-1em]
\item[2010s] Milly Maietti, Steve Vickers. Ongoing work on arithmetic universes.
\\[-1em]
\item[2011\phantom{s}] Joel David Hamkins. ``The set-theoretic multiverse''.
\\[-1em]
\item[2013\phantom{s}] Shawn Henry. ``Classifying topoi and preservation of higher order logic by geometric morphisms''.
\end{itemize}
}
\jnote{3}{
With the modal language we seek to provide an accessible and modular
framework for constructivization results.
For instance, conservativity of classical logic over intuitionistic logic
for geometric implications (known under various names such as Barr's
theorem, Friedman's trick, escaping the continuation monad, \ldots) is
packaged up by the observation that \emph{somewhere}, the law of excluded
middle holds.
Another example:
In the community around Krull's lemma, it is well-known that
we can constructively infer that a given ring element~$x \in A$ is nilpotent from
knowing that it is contained in the \emph{generic prime ideal} of~$A$. This entity
is not actually an honest prime ideal of the ring~$A$ in the base
universe, but a certain combinatorial notion (efficiently dealt with using
\emph{entailment relations}). Constructive forcing allows us to reify the
generic prime ideal as an actual prime ideal in a suitable forcing extension.
}
\jnote{4}{
Here is an example how the modal language helps us to give a constructive
proof (for well\ind) of Dickson's lemma. In a similar vein Higman's lemma
and Kruskal's theorem can be proven; with the exception of a preparatory
first paragraph the original proofs can be copied word for word.
\textbf{Prop.} Let~$X$ and~$Y$ be well\ind quasi-orders. Then~$X \times Y$
is well\ind.
\emph{Proof.} Let~$\alpha = (\beta,\gamma) : \NN \to X \times Y$ be a sequence in an
arbitrary topos. We need to show that~$\alpha$ is good. It suffices to
prove that \emph{somewhere}, $\alpha$ is good, as goodness is a geometric
implication (in fact even a geometric formula). Without loss of generality,
we may suppose~\textsc{lem} as it holds \emph{somewhere}.
Hence there is an infinite increasing subsequence
\[ \beta\,k_0 \leq \beta\,k_1 \leq \ldots. \]
As~$Y$ is well\ind, the sequence~$\gamma\,k_0, \gamma\,k_1, \ldots$
is good, so there exist~$i < j$ with~$\gamma\,k_i \leq \gamma\,k_j$. Since we
also have~$\beta\,k_i \leq \beta\,k_j$, we are done. \qed
}
\textbf{Def.} A statement~$\varphi$ holds \ldots
\begin{itemize}
\small
\item \hil{everywhere} \tabto{2.15cm}($\necessary\varphi$)\tabto{3.08cm} iff it holds in every topos
(over the current base).
\item \hil{somewhere} \tabto{2.15cm}($\possible\varphi$)\tabto{3.08cm} iff it holds in some positive topos.
\item \hil{proximally} \tabto{2.15cm}($\xpossible\varphi$)\tabto{3.08cm} iff it holds in some positive overt topos.
\end{itemize}
\bigskip
\begin{tikzpicture}[overlay]
\node[anchor=south east,inner sep=0] (image) at (14.8,0.6) {
\includegraphics[width=0.2\textwidth]{branching}
};
\end{tikzpicture}\vspace*{-2.3em}
\pause
\colorbox{white}{\bignumber{1} A quasiorder is well\ind iff \emph{everywhere}, every sequence is good.}
\mbox{\qquad
\colorbox{white}{\bignumber{2} A relation is well-founded iff \emph{everywhere}, there is
no infinite descending chain.}}
\qquad
\qquad
\colorbox{white}{\bignumber{3} A ring element is nilpotent iff all prime ideals \emph{everywhere} contain it.}
\mbox{\qquad
\qquad
\qquad
\colorbox{white}{\bignumber{4} For every inhabited set~$X$, \emph{proximally} there is an
enumeration~$\NN \twoheadrightarrow X$.}}
\qquad
\qquad
\qquad
\qquad
\colorbox{white}{\bignumber{5} For every ring, \emph{proximally} there is a maximal ideal.}
\qquad
\qquad
\qquad
\qquad
\qquad
\colorbox{white}{\bignumber{6} \emph{Somewhere}, the law of excluded middle holds.}
\pause
\end{frame}}
{\usebackgroundtemplate{\begin{minipage}{\paperwidth}\vspace*{-4.68em}\includegraphics[width=1.2\paperwidth]{wqo-faded}\end{minipage}}
\begin{frame}{Answering a question by Berardi--Buriola--Schuster}
\jnote{1-3}{
Stefano Berardi, Gabriele Buriola and Peter Schuster recognized in their
recent article
\href{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CSL.2024.16}{A
general constructive form of Higman's lemma} the displayed implication as an
efficient organizing principle for structuring a constructive account of
well quasi-orders, which they elevated to the status of a definition.
They recognized that their definition implies well\ind (and hence
well\sinf), and posed the converse as an open question.
The generating clauses for~$B \mid_\text{incr} \sigma$, for increasing
finite lists~$\sigma$, are the following:
\vspace*{-0.5em}
\begin{enumerate}
\item If~$B\sigma$, then~$B \mid_\text{incr} \sigma$.
\\[-1.3em]
\item If~$B \mid_\text{incr} \sigma x$ for all~$x \in X$ such that~$\sigma x$ is
increasing, then~$B \mid_\text{incr} \sigma$.
\end{enumerate}
}
\jnote{4}{
The modal language unlocked the displayed positive answer to their
question. As the modal framework is fully constructive, the proof can in
principle be unrolled to yield a direct (but likely longer) argument not
involving constructive forcing, giving an explicit algorithm of type
\[ \mathsf{Good} \mid [\,] \ \times\ B \mid_\text{incr} [\,]
\ \longrightarrow\ B \mid [\,] \]
for transforming given witnessing trees. This unwinding is work in
progress.
}
\textbf{Def.} A quasi-order~$X$ is \hil{well\impl} iff (approximately) for
every monotone predicate~$B$,
\[ \text{if $B \mid_{\text{incr}} [\,]$, then $B \mid [\,]$.} \]
\justifying
{\small``Assume that no matter how the empty list evolves to an \emph{increasing}
list~$\sigma$, eventually~$B\,\sigma$. Then no matter how the empty
list evolves to an \emph{arbitrary} list~$\tau$, eventually~$B\,\tau$.''\par}
\pause
\hil{Equivalently:} If everywhere every \emph{increasing} infinite sequence~$\alpha : \NN
\to X$ has a finite prefix validating~$B$, then so does every
\emph{arbitrary} infinite sequence everywhere.
\pause
\textbf{Prop.} $\text{well\impl} \Rightarrow \text{well\ind}$.
\emph{Proof.} Trivially~$\mathsf{Good} \mid_{\text{incr}} [\,]$,
hence~$\mathsf{Good} \mid [\,]$ by assumption. \qed
\pause
\textbf{Thm.} $\text{well\impl} \Leftarrow \text{well\ind}$.
\small
\emph{Proof.} Let~$x_0,x_1,\ldots$ be an infinite sequence (in an arbitrary topos).
\emph{Somewhere,} \textsc{lem} holds and implies that there is an increasing infinite subsequence~$x_{i_0},
x_{i_1}, \ldots$. \emph{There} we have, by assumption, a finite prefix
with~$B\,x_{i_0}\ldots x_{i_n}$. As~$B$ is monotone, \emph{there}
we also have~$B\,x_0x_1\ldots x_{i_n}$. So \emph{somewhere} there is a finite
prefix validating~$B$. Hence there actually is a finite prefix
validating~$B$. \qed
\end{frame}}
\backupstart
{\usebackgroundtemplate{\begin{minipage}{\paperwidth}\vspace*{-2.2em}\includegraphics[width=\paperwidth]{agda-wqo}\end{minipage}}
\begin{frame}
\vspace*{\paperheight}\vspace*{-2.5em}\centering
\emph{Agda formalization in progress.}
\end{frame}}
\backupend
\end{document}