diff --git a/.dev/md2yml.py b/.dev/md2yml.py deleted file mode 100755 index fc9c67e470..0000000000 --- a/.dev/md2yml.py +++ /dev/null @@ -1,317 +0,0 @@ -#!/usr/bin/env python - -# Copyright (c) OpenMMLab. All rights reserved. -# This tool is used to update model-index.yml which is required by MIM, and -# will be automatically called as a pre-commit hook. The updating will be -# triggered if any change of model information (.md files in configs/) has been -# detected before a commit. - -import glob -import os -import os.path as osp -import re -import sys - -from lxml import etree -from mmengine.fileio import dump - -MMSEG_ROOT = osp.dirname(osp.dirname(osp.dirname(__file__))) - -COLLECTIONS = [ - 'ANN', 'APCNet', 'BiSeNetV1', 'BiSeNetV2', 'CCNet', 'CGNet', 'DANet', - 'DeepLabV3', 'DeepLabV3+', 'DMNet', 'DNLNet', 'DPT', 'EMANet', 'EncNet', - 'ERFNet', 'FastFCN', 'FastSCNN', 'FCN', 'GCNet', 'ICNet', 'ISANet', 'KNet', - 'NonLocalNet', 'OCRNet', 'PointRend', 'PSANet', 'PSPNet', 'Segformer', - 'Segmenter', 'FPN', 'SETR', 'STDC', 'UNet', 'UPerNet' -] -COLLECTIONS_TEMP = [] - - -def dump_yaml_and_check_difference(obj, filename, sort_keys=False): - """Dump object to a yaml file, and check if the file content is different - from the original. - - Args: - obj (any): The python object to be dumped. - filename (str): YAML filename to dump the object to. - sort_keys (str); Sort key by dictionary order. - Returns: - Bool: If the target YAML file is different from the original. - """ - - str_dump = dump(obj, None, file_format='yaml', sort_keys=sort_keys) - if osp.isfile(filename): - file_exists = True - with open(filename, encoding='utf-8') as f: - str_orig = f.read() - else: - file_exists = False - str_orig = None - - if file_exists and str_orig == str_dump: - is_different = False - else: - is_different = True - with open(filename, 'w', encoding='utf-8') as f: - f.write(str_dump) - - return is_different - - -def parse_md(md_file): - """Parse .md file and convert it to a .yml file which can be used for MIM. - - Args: - md_file (str): Path to .md file. - Returns: - Bool: If the target YAML file is different from the original. - """ - collection_name = osp.split(osp.dirname(md_file))[1] - configs = os.listdir(osp.dirname(md_file)) - - collection = dict( - Name=collection_name, - Metadata={'Training Data': []}, - Paper={ - 'URL': '', - 'Title': '' - }, - README=md_file, - Code={ - 'URL': '', - 'Version': '' - }) - collection.update({'Converted From': {'Weights': '', 'Code': ''}}) - models = [] - datasets = [] - paper_url = None - paper_title = None - code_url = None - code_version = None - repo_url = None - - # To avoid re-counting number of backbone model in OpenMMLab, - # if certain model in configs folder is backbone whose name is already - # recorded in MMClassification, then the `COLLECTION` dict of this model - # in MMSegmentation should be deleted, and `In Collection` in `Models` - # should be set with head or neck of this config file. - is_backbone = None - - with open(md_file, encoding='UTF-8') as md: - lines = md.readlines() - i = 0 - current_dataset = '' - while i < len(lines): - line = lines[i].strip() - # In latest README.md the title and url are in the third line. - if i == 2: - paper_url = lines[i].split('](')[1].split(')')[0] - paper_title = lines[i].split('](')[0].split('[')[1] - if len(line) == 0: - i += 1 - continue - elif line[:3] == ' List[str]: + """Get the list of collection names.""" + collection_name_list: List[str] = [] + for md_file in md_file_list: + with open(md_file) as f: + lines = f.readlines() + collection_name = lines[0].split('#')[1].strip() + collection_name_list.append(collection_name) + return collection_name_list + + +def get_md_file_list() -> Tuple[List[str], List[str]]: + """Get the list of md files.""" + md_file_list: List[str] = [] + md_dir_list: List[str] = [] + for root, _, files in os.walk(osp.join(MMSEG_ROOT, 'configs')): + for file in files: + if file.endswith('.md'): + md_file_list.append(osp.join(root, file)) + md_dir_list.append(root) + break + return md_file_list, md_dir_list + + +def get_model_info(md_file: str, config_dir: str, + collection_name_list: List[str]) -> Tuple[dict, str]: + """Get model information from md file.""" + datasets: List[str] = [] + models: List[dict] = [] + current_dataset: str = '' + paper_name: str = '' + paper_url: str = '' + code_url: str = '' + is_backbone: bool = False + is_dataset: bool = False + collection_name: str = '' + with open(md_file) as f: + lines: List[str] = f.readlines() + i: int = 0 + + while i < len(lines): + line: str = lines[i].strip() + if len(line) == 0: + i += 1 + continue + # get paper name and url + if re.match(r'> \[.*\]+\([a-zA-Z]+://[^\s]*\)', line): + paper_info = line.split('](') + paper_name = paper_info[0][paper_info[0].index('[') + 1:] + paper_url = paper_info[1][:len(paper_info[1]) - 1] + + # get code info + if 'Code Snippet' in line: + code_url = line.split('"')[1].split('"')[0] + + if line.startswith(' -
- -
-
DEEPLABv3_ResNet-D8 DEEPLABv3_ResNet-D8 model structure
-## Citation - -```bibtext -@article{chen2017rethinking, - title={Rethinking atrous convolution for semantic image segmentation}, - author={Chen, Liang-Chieh and Papandreou, George and Schroff, Florian and Adam, Hartwig}, - journal={arXiv preprint arXiv:1706.05587}, - year={2017} -} -``` - ## Results and models ### Cityscapes -| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | mIoU | mIoU(ms+flip) | config | download | -| ---------------- | --------------- | --------- | ------: | -------- | -------------- | ----: | ------------: | ---------------------------------------------------------------------------------------------------------------------------------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ | -| DeepLabV3 | R-50-D8 | 512x1024 | 40000 | 6.1 | 2.57 | 79.09 | 80.45 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/deeplabv3/deeplabv3_r50-d8_4xb2-40k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r50-d8_512x1024_40k_cityscapes/deeplabv3_r50-d8_512x1024_40k_cityscapes_20200605_022449-acadc2f8.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r50-d8_512x1024_40k_cityscapes/deeplabv3_r50-d8_512x1024_40k_cityscapes_20200605_022449.log.json) | -| DeepLabV3 | R-101-D8 | 512x1024 | 40000 | 9.6 | 1.92 | 77.12 | 79.61 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/deeplabv3/deeplabv3_r101-d8_4xb2-40k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101-d8_512x1024_40k_cityscapes/deeplabv3_r101-d8_512x1024_40k_cityscapes_20200605_012241-7fd3f799.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101-d8_512x1024_40k_cityscapes/deeplabv3_r101-d8_512x1024_40k_cityscapes_20200605_012241.log.json) | -| DeepLabV3 | R-50-D8 | 769x769 | 40000 | 6.9 | 1.11 | 78.58 | 79.89 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/deeplabv3/deeplabv3_r50-d8_4xb2-40k_cityscapes-769x769.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r50-d8_769x769_40k_cityscapes/deeplabv3_r50-d8_769x769_40k_cityscapes_20200606_113723-7eda553c.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r50-d8_769x769_40k_cityscapes/deeplabv3_r50-d8_769x769_40k_cityscapes_20200606_113723.log.json) | -| DeepLabV3 | R-101-D8 | 769x769 | 40000 | 10.9 | 0.83 | 79.27 | 80.11 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/deeplabv3/deeplabv3_r101-d8_4xb2-40k_cityscapes-769x769.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101-d8_769x769_40k_cityscapes/deeplabv3_r101-d8_769x769_40k_cityscapes_20200606_113809-c64f889f.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101-d8_769x769_40k_cityscapes/deeplabv3_r101-d8_769x769_40k_cityscapes_20200606_113809.log.json) | -| DeepLabV3 | R-18-D8 | 512x1024 | 80000 | 1.7 | 13.78 | 76.70 | 78.27 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/deeplabv3/deeplabv3_r18-d8_4xb2-80k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r18-d8_512x1024_80k_cityscapes/deeplabv3_r18-d8_512x1024_80k_cityscapes_20201225_021506-23dffbe2.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r18-d8_512x1024_80k_cityscapes/deeplabv3_r18-d8_512x1024_80k_cityscapes-20201225_021506.log.json) | -| DeepLabV3 | R-50-D8 | 512x1024 | 80000 | - | - | 79.32 | 80.57 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/deeplabv3/deeplabv3_r50-d8_4xb2-80k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r50-d8_512x1024_80k_cityscapes/deeplabv3_r50-d8_512x1024_80k_cityscapes_20200606_113404-b92cfdd4.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r50-d8_512x1024_80k_cityscapes/deeplabv3_r50-d8_512x1024_80k_cityscapes_20200606_113404.log.json) | -| DeepLabV3 | R-101-D8 | 512x1024 | 80000 | - | - | 80.20 | 81.21 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/deeplabv3/deeplabv3_r101-d8_4xb2-80k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101-d8_512x1024_80k_cityscapes/deeplabv3_r101-d8_512x1024_80k_cityscapes_20200606_113503-9e428899.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101-d8_512x1024_80k_cityscapes/deeplabv3_r101-d8_512x1024_80k_cityscapes_20200606_113503.log.json) | -| DeepLabV3 (FP16) | R-101-D8 | 512x1024 | 80000 | 5.75 | 3.86 | 80.48 | - | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/deeplabv3/deeplabv3_r101-d8_4xb2-amp-80k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101-d8_fp16_512x1024_80k_cityscapes/deeplabv3_r101-d8_fp16_512x1024_80k_cityscapes_20200717_230920-774d9cec.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101-d8_fp16_512x1024_80k_cityscapes/deeplabv3_r101-d8_fp16_512x1024_80k_cityscapes_20200717_230920.log.json) | -| DeepLabV3 | R-18-D8 | 769x769 | 80000 | 1.9 | 5.55 | 76.60 | 78.26 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/deeplabv3/deeplabv3_r18-d8_4xb2-80k_cityscapes-769x769.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r18-d8_769x769_80k_cityscapes/deeplabv3_r18-d8_769x769_80k_cityscapes_20201225_021506-6452126a.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r18-d8_769x769_80k_cityscapes/deeplabv3_r18-d8_769x769_80k_cityscapes-20201225_021506.log.json) | -| DeepLabV3 | R-50-D8 | 769x769 | 80000 | - | - | 79.89 | 81.06 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/deeplabv3/deeplabv3_r50-d8_4xb2-80k_cityscapes-769x769.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r50-d8_769x769_80k_cityscapes/deeplabv3_r50-d8_769x769_80k_cityscapes_20200606_221338-788d6228.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r50-d8_769x769_80k_cityscapes/deeplabv3_r50-d8_769x769_80k_cityscapes_20200606_221338.log.json) | -| DeepLabV3 | R-101-D8 | 769x769 | 80000 | - | - | 79.67 | 80.81 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/deeplabv3/deeplabv3_r101-d8_4xb2-80k_cityscapes-769x769.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101-d8_769x769_80k_cityscapes/deeplabv3_r101-d8_769x769_80k_cityscapes_20200607_013353-60e95418.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101-d8_769x769_80k_cityscapes/deeplabv3_r101-d8_769x769_80k_cityscapes_20200607_013353.log.json) | -| DeepLabV3 | R-101-D16-MG124 | 512x1024 | 40000 | 4.7 | - 6.96 | 76.71 | 78.63 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/deeplabv3/deeplabv3_r101-d16-mg124_4xb2-40k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101-d16-mg124_512x1024_40k_cityscapes/deeplabv3_r101-d16-mg124_512x1024_40k_cityscapes_20200908_005644-67b0c992.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101-d16-mg124_512x1024_40k_cityscapes/deeplabv3_r101-d16-mg124_512x1024_40k_cityscapes-20200908_005644.log.json) | -| DeepLabV3 | R-101-D16-MG124 | 512x1024 | 80000 | - | - | 78.36 | 79.84 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/deeplabv3/deeplabv3_r101-d16-mg124_4xb2-80k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101-d16-mg124_512x1024_80k_cityscapes/deeplabv3_r101-d16-mg124_512x1024_80k_cityscapes_20200908_005644-57bb8425.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101-d16-mg124_512x1024_80k_cityscapes/deeplabv3_r101-d16-mg124_512x1024_80k_cityscapes-20200908_005644.log.json) | -| DeepLabV3 | R-18b-D8 | 512x1024 | 80000 | 1.6 | 13.93 | 76.26 | 77.88 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/deeplabv3/deeplabv3_r18b-d8_4xb2-80k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r18b-d8_512x1024_80k_cityscapes/deeplabv3_r18b-d8_512x1024_80k_cityscapes_20201225_094144-46040cef.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r18b-d8_512x1024_80k_cityscapes/deeplabv3_r18b-d8_512x1024_80k_cityscapes-20201225_094144.log.json) | -| DeepLabV3 | R-50b-D8 | 512x1024 | 80000 | 6.0 | 2.74 | 79.63 | 80.98 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/deeplabv3/deeplabv3_r50b-d8_4xb2-80k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r50b-d8_512x1024_80k_cityscapes/deeplabv3_r50b-d8_512x1024_80k_cityscapes_20201225_155148-ec368954.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r50b-d8_512x1024_80k_cityscapes/deeplabv3_r50b-d8_512x1024_80k_cityscapes-20201225_155148.log.json) | -| DeepLabV3 | R-101b-D8 | 512x1024 | 80000 | 9.5 | 1.81 | 80.01 | 81.21 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/deeplabv3/deeplabv3_r101b-d8_4xb2-80k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101b-d8_512x1024_80k_cityscapes/deeplabv3_r101b-d8_512x1024_80k_cityscapes_20201226_171821-8fd49503.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101b-d8_512x1024_80k_cityscapes/deeplabv3_r101b-d8_512x1024_80k_cityscapes-20201226_171821.log.json) | -| DeepLabV3 | R-18b-D8 | 769x769 | 80000 | 1.8 | 5.79 | 75.63 | 77.51 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/deeplabv3/deeplabv3_r18b-d8_4xb2-80k_cityscapes-769x769.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r18b-d8_769x769_80k_cityscapes/deeplabv3_r18b-d8_769x769_80k_cityscapes_20201225_094144-fdc985d9.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r18b-d8_769x769_80k_cityscapes/deeplabv3_r18b-d8_769x769_80k_cityscapes-20201225_094144.log.json) | -| DeepLabV3 | R-50b-D8 | 769x769 | 80000 | 6.8 | 1.16 | 78.80 | 80.27 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/deeplabv3/deeplabv3_r50b-d8_4xb2-80k_cityscapes-769x769.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r50b-d8_769x769_80k_cityscapes/deeplabv3_r50b-d8_769x769_80k_cityscapes_20201225_155404-87fb0cf4.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r50b-d8_769x769_80k_cityscapes/deeplabv3_r50b-d8_769x769_80k_cityscapes-20201225_155404.log.json) | -| DeepLabV3 | R-101b-D8 | 769x769 | 80000 | 10.7 | 0.82 | 79.41 | 80.73 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/deeplabv3/deeplabv3_r101b-d8_4xb2-80k_cityscapes-769x769.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101b-d8_769x769_80k_cityscapes/deeplabv3_r101b-d8_769x769_80k_cityscapes_20201226_190843-9142ee57.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101b-d8_769x769_80k_cityscapes/deeplabv3_r101b-d8_769x769_80k_cityscapes-20201226_190843.log.json) | +| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | Device | mIoU | mIoU(ms+flip) | config | download | +| ---------------- | --------------- | --------- | ------: | -------- | -------------- | ------ | ----: | ------------: | ---------------------------------------------------------------------------------------------------------------------------------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ | +| DeepLabV3 | R-50-D8 | 512x1024 | 40000 | 6.1 | 2.57 | V100 | 79.09 | 80.45 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/deeplabv3/deeplabv3_r50-d8_4xb2-40k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r50-d8_512x1024_40k_cityscapes/deeplabv3_r50-d8_512x1024_40k_cityscapes_20200605_022449-acadc2f8.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r50-d8_512x1024_40k_cityscapes/deeplabv3_r50-d8_512x1024_40k_cityscapes_20200605_022449.log.json) | +| DeepLabV3 | R-101-D8 | 512x1024 | 40000 | 9.6 | 1.92 | V100 | 77.12 | 79.61 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/deeplabv3/deeplabv3_r101-d8_4xb2-40k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101-d8_512x1024_40k_cityscapes/deeplabv3_r101-d8_512x1024_40k_cityscapes_20200605_012241-7fd3f799.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101-d8_512x1024_40k_cityscapes/deeplabv3_r101-d8_512x1024_40k_cityscapes_20200605_012241.log.json) | +| DeepLabV3 | R-50-D8 | 769x769 | 40000 | 6.9 | 1.11 | V100 | 78.58 | 79.89 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/deeplabv3/deeplabv3_r50-d8_4xb2-40k_cityscapes-769x769.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r50-d8_769x769_40k_cityscapes/deeplabv3_r50-d8_769x769_40k_cityscapes_20200606_113723-7eda553c.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r50-d8_769x769_40k_cityscapes/deeplabv3_r50-d8_769x769_40k_cityscapes_20200606_113723.log.json) | +| DeepLabV3 | R-101-D8 | 769x769 | 40000 | 10.9 | 0.83 | V100 | 79.27 | 80.11 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/deeplabv3/deeplabv3_r101-d8_4xb2-40k_cityscapes-769x769.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101-d8_769x769_40k_cityscapes/deeplabv3_r101-d8_769x769_40k_cityscapes_20200606_113809-c64f889f.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101-d8_769x769_40k_cityscapes/deeplabv3_r101-d8_769x769_40k_cityscapes_20200606_113809.log.json) | +| DeepLabV3 | R-18-D8 | 512x1024 | 80000 | 1.7 | 13.78 | V100 | 76.70 | 78.27 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/deeplabv3/deeplabv3_r18-d8_4xb2-80k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r18-d8_512x1024_80k_cityscapes/deeplabv3_r18-d8_512x1024_80k_cityscapes_20201225_021506-23dffbe2.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r18-d8_512x1024_80k_cityscapes/deeplabv3_r18-d8_512x1024_80k_cityscapes-20201225_021506.log.json) | +| DeepLabV3 | R-50-D8 | 512x1024 | 80000 | - | - | V100 | 79.32 | 80.57 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/deeplabv3/deeplabv3_r50-d8_4xb2-80k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r50-d8_512x1024_80k_cityscapes/deeplabv3_r50-d8_512x1024_80k_cityscapes_20200606_113404-b92cfdd4.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r50-d8_512x1024_80k_cityscapes/deeplabv3_r50-d8_512x1024_80k_cityscapes_20200606_113404.log.json) | +| DeepLabV3 | R-101-D8 | 512x1024 | 80000 | - | - | V100 | 80.20 | 81.21 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/deeplabv3/deeplabv3_r101-d8_4xb2-80k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101-d8_512x1024_80k_cityscapes/deeplabv3_r101-d8_512x1024_80k_cityscapes_20200606_113503-9e428899.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101-d8_512x1024_80k_cityscapes/deeplabv3_r101-d8_512x1024_80k_cityscapes_20200606_113503.log.json) | +| DeepLabV3 (FP16) | R-101-D8 | 512x1024 | 80000 | 5.75 | 3.86 | V100 | 80.48 | - | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/deeplabv3/deeplabv3_r101-d8_4xb2-amp-80k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101-d8_fp16_512x1024_80k_cityscapes/deeplabv3_r101-d8_fp16_512x1024_80k_cityscapes_20200717_230920-774d9cec.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101-d8_fp16_512x1024_80k_cityscapes/deeplabv3_r101-d8_fp16_512x1024_80k_cityscapes_20200717_230920.log.json) | +| DeepLabV3 | R-18-D8 | 769x769 | 80000 | 1.9 | 5.55 | V100 | 76.60 | 78.26 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/deeplabv3/deeplabv3_r18-d8_4xb2-80k_cityscapes-769x769.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r18-d8_769x769_80k_cityscapes/deeplabv3_r18-d8_769x769_80k_cityscapes_20201225_021506-6452126a.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r18-d8_769x769_80k_cityscapes/deeplabv3_r18-d8_769x769_80k_cityscapes-20201225_021506.log.json) | +| DeepLabV3 | R-50-D8 | 769x769 | 80000 | - | - | V100 | 79.89 | 81.06 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/deeplabv3/deeplabv3_r50-d8_4xb2-80k_cityscapes-769x769.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r50-d8_769x769_80k_cityscapes/deeplabv3_r50-d8_769x769_80k_cityscapes_20200606_221338-788d6228.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r50-d8_769x769_80k_cityscapes/deeplabv3_r50-d8_769x769_80k_cityscapes_20200606_221338.log.json) | +| DeepLabV3 | R-101-D8 | 769x769 | 80000 | - | - | V100 | 79.67 | 80.81 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/deeplabv3/deeplabv3_r101-d8_4xb2-80k_cityscapes-769x769.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101-d8_769x769_80k_cityscapes/deeplabv3_r101-d8_769x769_80k_cityscapes_20200607_013353-60e95418.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101-d8_769x769_80k_cityscapes/deeplabv3_r101-d8_769x769_80k_cityscapes_20200607_013353.log.json) | +| DeepLabV3 | R-101-D16-MG124 | 512x1024 | 40000 | 4.7 | 6.96 | V100 | 76.71 | 78.63 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/deeplabv3/deeplabv3_r101-d16-mg124_4xb2-40k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101-d16-mg124_512x1024_40k_cityscapes/deeplabv3_r101-d16-mg124_512x1024_40k_cityscapes_20200908_005644-67b0c992.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101-d16-mg124_512x1024_40k_cityscapes/deeplabv3_r101-d16-mg124_512x1024_40k_cityscapes-20200908_005644.log.json) | +| DeepLabV3 | R-101-D16-MG124 | 512x1024 | 80000 | - | - | V100 | 78.36 | 79.84 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/deeplabv3/deeplabv3_r101-d16-mg124_4xb2-80k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101-d16-mg124_512x1024_80k_cityscapes/deeplabv3_r101-d16-mg124_512x1024_80k_cityscapes_20200908_005644-57bb8425.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101-d16-mg124_512x1024_80k_cityscapes/deeplabv3_r101-d16-mg124_512x1024_80k_cityscapes-20200908_005644.log.json) | +| DeepLabV3 | R-18b-D8 | 512x1024 | 80000 | 1.6 | 13.93 | V100 | 76.26 | 77.88 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/deeplabv3/deeplabv3_r18b-d8_4xb2-80k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r18b-d8_512x1024_80k_cityscapes/deeplabv3_r18b-d8_512x1024_80k_cityscapes_20201225_094144-46040cef.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r18b-d8_512x1024_80k_cityscapes/deeplabv3_r18b-d8_512x1024_80k_cityscapes-20201225_094144.log.json) | +| DeepLabV3 | R-50b-D8 | 512x1024 | 80000 | 6.0 | 2.74 | V100 | 79.63 | 80.98 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/deeplabv3/deeplabv3_r50b-d8_4xb2-80k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r50b-d8_512x1024_80k_cityscapes/deeplabv3_r50b-d8_512x1024_80k_cityscapes_20201225_155148-ec368954.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r50b-d8_512x1024_80k_cityscapes/deeplabv3_r50b-d8_512x1024_80k_cityscapes-20201225_155148.log.json) | +| DeepLabV3 | R-101b-D8 | 512x1024 | 80000 | 9.5 | 1.81 | V100 | 80.01 | 81.21 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/deeplabv3/deeplabv3_r101b-d8_4xb2-80k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101b-d8_512x1024_80k_cityscapes/deeplabv3_r101b-d8_512x1024_80k_cityscapes_20201226_171821-8fd49503.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101b-d8_512x1024_80k_cityscapes/deeplabv3_r101b-d8_512x1024_80k_cityscapes-20201226_171821.log.json) | +| DeepLabV3 | R-18b-D8 | 769x769 | 80000 | 1.8 | 5.79 | V100 | 75.63 | 77.51 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/deeplabv3/deeplabv3_r18b-d8_4xb2-80k_cityscapes-769x769.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r18b-d8_769x769_80k_cityscapes/deeplabv3_r18b-d8_769x769_80k_cityscapes_20201225_094144-fdc985d9.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r18b-d8_769x769_80k_cityscapes/deeplabv3_r18b-d8_769x769_80k_cityscapes-20201225_094144.log.json) | +| DeepLabV3 | R-50b-D8 | 769x769 | 80000 | 6.8 | 1.16 | V100 | 78.80 | 80.27 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/deeplabv3/deeplabv3_r50b-d8_4xb2-80k_cityscapes-769x769.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r50b-d8_769x769_80k_cityscapes/deeplabv3_r50b-d8_769x769_80k_cityscapes_20201225_155404-87fb0cf4.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r50b-d8_769x769_80k_cityscapes/deeplabv3_r50b-d8_769x769_80k_cityscapes-20201225_155404.log.json) | +| DeepLabV3 | R-101b-D8 | 769x769 | 80000 | 10.7 | 0.82 | V100 | 79.41 | 80.73 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/deeplabv3/deeplabv3_r101b-d8_4xb2-80k_cityscapes-769x769.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101b-d8_769x769_80k_cityscapes/deeplabv3_r101b-d8_769x769_80k_cityscapes_20201226_190843-9142ee57.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101b-d8_769x769_80k_cityscapes/deeplabv3_r101b-d8_769x769_80k_cityscapes-20201226_190843.log.json) | ### ADE20K -| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | mIoU | mIoU(ms+flip) | config | download | -| --------- | -------- | --------- | ------: | -------- | -------------- | ----: | ------------: | ----------------------------------------------------------------------------------------------------------------------------------- | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | -| DeepLabV3 | R-50-D8 | 512x512 | 80000 | 8.9 | 14.76 | 42.42 | 43.28 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/deeplabv3/deeplabv3_r50-d8_4xb4-80k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r50-d8_512x512_80k_ade20k/deeplabv3_r50-d8_512x512_80k_ade20k_20200614_185028-0bb3f844.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r50-d8_512x512_80k_ade20k/deeplabv3_r50-d8_512x512_80k_ade20k_20200614_185028.log.json) | -| DeepLabV3 | R-101-D8 | 512x512 | 80000 | 12.4 | 10.14 | 44.08 | 45.19 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/deeplabv3/deeplabv3_r101-d8_4xb4-80k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101-d8_512x512_80k_ade20k/deeplabv3_r101-d8_512x512_80k_ade20k_20200615_021256-d89c7fa4.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101-d8_512x512_80k_ade20k/deeplabv3_r101-d8_512x512_80k_ade20k_20200615_021256.log.json) | -| DeepLabV3 | R-50-D8 | 512x512 | 160000 | - | - | 42.66 | 44.09 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/deeplabv3/deeplabv3_r50-d8_4xb4-160k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r50-d8_512x512_160k_ade20k/deeplabv3_r50-d8_512x512_160k_ade20k_20200615_123227-5d0ee427.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r50-d8_512x512_160k_ade20k/deeplabv3_r50-d8_512x512_160k_ade20k_20200615_123227.log.json) | -| DeepLabV3 | R-101-D8 | 512x512 | 160000 | - | - | 45.00 | 46.66 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/deeplabv3/deeplabv3_r101-d8_4xb4-160k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101-d8_512x512_160k_ade20k/deeplabv3_r101-d8_512x512_160k_ade20k_20200615_105816-b1f72b3b.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101-d8_512x512_160k_ade20k/deeplabv3_r101-d8_512x512_160k_ade20k_20200615_105816.log.json) | +| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | Device | mIoU | mIoU(ms+flip) | config | download | +| --------- | -------- | --------- | ------: | -------- | -------------- | ------ | ----: | ------------: | ----------------------------------------------------------------------------------------------------------------------------------- | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | +| DeepLabV3 | R-50-D8 | 512x512 | 80000 | 8.9 | 14.76 | V100 | 42.42 | 43.28 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/deeplabv3/deeplabv3_r50-d8_4xb4-80k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r50-d8_512x512_80k_ade20k/deeplabv3_r50-d8_512x512_80k_ade20k_20200614_185028-0bb3f844.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r50-d8_512x512_80k_ade20k/deeplabv3_r50-d8_512x512_80k_ade20k_20200614_185028.log.json) | +| DeepLabV3 | R-101-D8 | 512x512 | 80000 | 12.4 | 10.14 | V100 | 44.08 | 45.19 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/deeplabv3/deeplabv3_r101-d8_4xb4-80k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101-d8_512x512_80k_ade20k/deeplabv3_r101-d8_512x512_80k_ade20k_20200615_021256-d89c7fa4.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101-d8_512x512_80k_ade20k/deeplabv3_r101-d8_512x512_80k_ade20k_20200615_021256.log.json) | +| DeepLabV3 | R-50-D8 | 512x512 | 160000 | - | - | V100 | 42.66 | 44.09 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/deeplabv3/deeplabv3_r50-d8_4xb4-160k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r50-d8_512x512_160k_ade20k/deeplabv3_r50-d8_512x512_160k_ade20k_20200615_123227-5d0ee427.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r50-d8_512x512_160k_ade20k/deeplabv3_r50-d8_512x512_160k_ade20k_20200615_123227.log.json) | +| DeepLabV3 | R-101-D8 | 512x512 | 160000 | - | - | V100 | 45.00 | 46.66 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/deeplabv3/deeplabv3_r101-d8_4xb4-160k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101-d8_512x512_160k_ade20k/deeplabv3_r101-d8_512x512_160k_ade20k_20200615_105816-b1f72b3b.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101-d8_512x512_160k_ade20k/deeplabv3_r101-d8_512x512_160k_ade20k_20200615_105816.log.json) | ### Pascal VOC 2012 + Aug -| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | mIoU | mIoU(ms+flip) | config | download | -| --------- | -------- | --------- | ------: | -------- | -------------- | ----: | ------------: | ------------------------------------------------------------------------------------------------------------------------------------ | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | -| DeepLabV3 | R-50-D8 | 512x512 | 20000 | 6.1 | 13.88 | 76.17 | 77.42 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/deeplabv3/deeplabv3_r50-d8_4xb4-20k_voc12aug-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r50-d8_512x512_20k_voc12aug/deeplabv3_r50-d8_512x512_20k_voc12aug_20200617_010906-596905ef.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r50-d8_512x512_20k_voc12aug/deeplabv3_r50-d8_512x512_20k_voc12aug_20200617_010906.log.json) | -| DeepLabV3 | R-101-D8 | 512x512 | 20000 | 9.6 | 9.81 | 78.70 | 79.95 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/deeplabv3/deeplabv3_r101-d8_4xb4-20k_voc12aug-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101-d8_512x512_20k_voc12aug/deeplabv3_r101-d8_512x512_20k_voc12aug_20200617_010932-8d13832f.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101-d8_512x512_20k_voc12aug/deeplabv3_r101-d8_512x512_20k_voc12aug_20200617_010932.log.json) | -| DeepLabV3 | R-50-D8 | 512x512 | 40000 | - | - | 77.68 | 78.78 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/deeplabv3/deeplabv3_r50-d8_4xb4-40k_voc12aug-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r50-d8_512x512_40k_voc12aug/deeplabv3_r50-d8_512x512_40k_voc12aug_20200613_161546-2ae96e7e.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r50-d8_512x512_40k_voc12aug/deeplabv3_r50-d8_512x512_40k_voc12aug_20200613_161546.log.json) | -| DeepLabV3 | R-101-D8 | 512x512 | 40000 | - | - | 77.92 | 79.18 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/deeplabv3/deeplabv3_r101-d8_4xb4-40k_voc12aug-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101-d8_512x512_40k_voc12aug/deeplabv3_r101-d8_512x512_40k_voc12aug_20200613_161432-0017d784.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101-d8_512x512_40k_voc12aug/deeplabv3_r101-d8_512x512_40k_voc12aug_20200613_161432.log.json) | +| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | Device | mIoU | mIoU(ms+flip) | config | download | +| --------- | -------- | --------- | ------: | -------- | -------------- | ------ | ----: | ------------: | ------------------------------------------------------------------------------------------------------------------------------------ | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | +| DeepLabV3 | R-50-D8 | 512x512 | 20000 | 6.1 | 13.88 | V100 | 76.17 | 77.42 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/deeplabv3/deeplabv3_r50-d8_4xb4-20k_voc12aug-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r50-d8_512x512_20k_voc12aug/deeplabv3_r50-d8_512x512_20k_voc12aug_20200617_010906-596905ef.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r50-d8_512x512_20k_voc12aug/deeplabv3_r50-d8_512x512_20k_voc12aug_20200617_010906.log.json) | +| DeepLabV3 | R-101-D8 | 512x512 | 20000 | 9.6 | 9.81 | V100 | 78.70 | 79.95 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/deeplabv3/deeplabv3_r101-d8_4xb4-20k_voc12aug-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101-d8_512x512_20k_voc12aug/deeplabv3_r101-d8_512x512_20k_voc12aug_20200617_010932-8d13832f.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101-d8_512x512_20k_voc12aug/deeplabv3_r101-d8_512x512_20k_voc12aug_20200617_010932.log.json) | +| DeepLabV3 | R-50-D8 | 512x512 | 40000 | - | - | V100 | 77.68 | 78.78 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/deeplabv3/deeplabv3_r50-d8_4xb4-40k_voc12aug-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r50-d8_512x512_40k_voc12aug/deeplabv3_r50-d8_512x512_40k_voc12aug_20200613_161546-2ae96e7e.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r50-d8_512x512_40k_voc12aug/deeplabv3_r50-d8_512x512_40k_voc12aug_20200613_161546.log.json) | +| DeepLabV3 | R-101-D8 | 512x512 | 40000 | - | - | V100 | 77.92 | 79.18 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/deeplabv3/deeplabv3_r101-d8_4xb4-40k_voc12aug-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101-d8_512x512_40k_voc12aug/deeplabv3_r101-d8_512x512_40k_voc12aug_20200613_161432-0017d784.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101-d8_512x512_40k_voc12aug/deeplabv3_r101-d8_512x512_40k_voc12aug_20200613_161432.log.json) | ### Pascal Context -| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | mIoU | mIoU(ms+flip) | config | download | -| --------- | -------- | --------- | ------: | -------- | -------------- | ----: | ------------: | ------------------------------------------------------------------------------------------------------------------------------------------ | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | -| DeepLabV3 | R-101-D8 | 480x480 | 40000 | 9.2 | 7.09 | 46.55 | 47.81 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/deeplabv3/deeplabv3_r101-d8_4xb4-40k_pascal-context-480x480.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101-d8_480x480_40k_pascal_context/deeplabv3_r101-d8_480x480_40k_pascal_context_20200911_204118-1aa27336.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101-d8_480x480_40k_pascal_context/deeplabv3_r101-d8_480x480_40k_pascal_context-20200911_204118.log.json) | -| DeepLabV3 | R-101-D8 | 480x480 | 80000 | - | - | 46.42 | 47.53 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/deeplabv3/deeplabv3_r101-d8_4xb4-80k_pascal-context-480x480.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101-d8_480x480_80k_pascal_context/deeplabv3_r101-d8_480x480_80k_pascal_context_20200911_170155-2a21fff3.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101-d8_480x480_80k_pascal_context/deeplabv3_r101-d8_480x480_80k_pascal_context-20200911_170155.log.json) | +| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | Device | mIoU | mIoU(ms+flip) | config | download | +| --------- | -------- | --------- | ------: | -------- | -------------- | ------ | ----: | ------------: | ------------------------------------------------------------------------------------------------------------------------------------------ | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | +| DeepLabV3 | R-101-D8 | 480x480 | 40000 | 9.2 | 7.09 | V100 | 46.55 | 47.81 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/deeplabv3/deeplabv3_r101-d8_4xb4-40k_pascal-context-480x480.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101-d8_480x480_40k_pascal_context/deeplabv3_r101-d8_480x480_40k_pascal_context_20200911_204118-1aa27336.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101-d8_480x480_40k_pascal_context/deeplabv3_r101-d8_480x480_40k_pascal_context-20200911_204118.log.json) | +| DeepLabV3 | R-101-D8 | 480x480 | 80000 | - | - | V100 | 46.42 | 47.53 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/deeplabv3/deeplabv3_r101-d8_4xb4-80k_pascal-context-480x480.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101-d8_480x480_80k_pascal_context/deeplabv3_r101-d8_480x480_80k_pascal_context_20200911_170155-2a21fff3.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101-d8_480x480_80k_pascal_context/deeplabv3_r101-d8_480x480_80k_pascal_context-20200911_170155.log.json) | ### Pascal Context 59 -| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | mIoU | mIoU(ms+flip) | config | download | -| --------- | -------- | --------- | ------: | -------- | -------------- | ----: | ------------: | --------------------------------------------------------------------------------------------------------------------------------------------- | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | -| DeepLabV3 | R-101-D8 | 480x480 | 40000 | - | - | 52.61 | 54.28 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/deeplabv3/deeplabv3_r101-d8_4xb4-40k_pascal-context-59-480x480.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101-d8_480x480_40k_pascal_context_59/deeplabv3_r101-d8_480x480_40k_pascal_context_59_20210416_110332-cb08ea46.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101-d8_480x480_40k_pascal_context_59/deeplabv3_r101-d8_480x480_40k_pascal_context_59-20210416_110332.log.json) | -| DeepLabV3 | R-101-D8 | 480x480 | 80000 | - | - | 52.46 | 54.09 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/deeplabv3/deeplabv3_r101-d8_4xb4-80k_pascal-context-59-480x480.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101-d8_480x480_80k_pascal_context_59/deeplabv3_r101-d8_480x480_80k_pascal_context_59_20210416_113002-26303993.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101-d8_480x480_80k_pascal_context_59/deeplabv3_r101-d8_480x480_80k_pascal_context_59-20210416_113002.log.json) | +| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | Device | mIoU | mIoU(ms+flip) | config | download | +| --------- | -------- | --------- | ------: | -------- | -------------- | ------ | ----: | ------------: | --------------------------------------------------------------------------------------------------------------------------------------------- | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | +| DeepLabV3 | R-101-D8 | 480x480 | 40000 | - | - | V100 | 52.61 | 54.28 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/deeplabv3/deeplabv3_r101-d8_4xb4-40k_pascal-context-59-480x480.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101-d8_480x480_40k_pascal_context_59/deeplabv3_r101-d8_480x480_40k_pascal_context_59_20210416_110332-cb08ea46.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101-d8_480x480_40k_pascal_context_59/deeplabv3_r101-d8_480x480_40k_pascal_context_59-20210416_110332.log.json) | +| DeepLabV3 | R-101-D8 | 480x480 | 80000 | - | - | V100 | 52.46 | 54.09 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/deeplabv3/deeplabv3_r101-d8_4xb4-80k_pascal-context-59-480x480.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101-d8_480x480_80k_pascal_context_59/deeplabv3_r101-d8_480x480_80k_pascal_context_59_20210416_113002-26303993.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101-d8_480x480_80k_pascal_context_59/deeplabv3_r101-d8_480x480_80k_pascal_context_59-20210416_113002.log.json) | ### COCO-Stuff 10k -| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | mIoU | mIoU(ms+flip) | config | download | -| --------- | -------- | --------- | ------: | -------- | -------------- | ----: | ------------: | ----------------------------------------------------------------------------------------------------------------------------------------- | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | -| DeepLabV3 | R-50-D8 | 512x512 | 20000 | 9.6 | 10.8 | 34.66 | 36.08 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/deeplabv3/deeplabv3_r50-d8_4xb4-20k_coco-stuff10k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r50-d8_512x512_4x4_20k_coco-stuff10k/deeplabv3_r50-d8_512x512_4x4_20k_coco-stuff10k_20210821_043025-b35f789d.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r50-d8_512x512_4x4_20k_coco-stuff10k/deeplabv3_r50-d8_512x512_4x4_20k_coco-stuff10k_20210821_043025.log.json) | -| DeepLabV3 | R-101-D8 | 512x512 | 20000 | 13.2 | 8.7 | 37.30 | 38.42 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/deeplabv3/deeplabv3_r101-d8_4xb4-20k_coco-stuff10k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101-d8_512x512_4x4_20k_coco-stuff10k/deeplabv3_r101-d8_512x512_4x4_20k_coco-stuff10k_20210821_043025-c49752cb.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101-d8_512x512_4x4_20k_coco-stuff10k/deeplabv3_r101-d8_512x512_4x4_20k_coco-stuff10k_20210821_043025.log.json) | -| DeepLabV3 | R-50-D8 | 512x512 | 40000 | - | - | 35.73 | 37.09 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/deeplabv3/deeplabv3_r50-d8_4xb4-40k_coco-stuff10k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r50-d8_512x512_4x4_40k_coco-stuff10k/deeplabv3_r50-d8_512x512_4x4_40k_coco-stuff10k_20210821_043305-dc76f3ff.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r50-d8_512x512_4x4_40k_coco-stuff10k/deeplabv3_r50-d8_512x512_4x4_40k_coco-stuff10k_20210821_043305.log.json) | -| DeepLabV3 | R-101-D8 | 512x512 | 40000 | - | - | 37.81 | 38.80 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/deeplabv3/deeplabv3_r101-d8_4xb4-40k_coco-stuff10k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101-d8_512x512_4x4_40k_coco-stuff10k/deeplabv3_r101-d8_512x512_4x4_40k_coco-stuff10k_20210821_043305-636cb433.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101-d8_512x512_4x4_40k_coco-stuff10k/deeplabv3_r101-d8_512x512_4x4_40k_coco-stuff10k_20210821_043305.log.json) | +| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | Device | mIoU | mIoU(ms+flip) | config | download | +| --------- | -------- | --------- | ------: | -------- | -------------- | ------ | ----: | ------------: | ----------------------------------------------------------------------------------------------------------------------------------------- | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | +| DeepLabV3 | R-50-D8 | 512x512 | 20000 | 9.6 | 10.8 | V100 | 34.66 | 36.08 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/deeplabv3/deeplabv3_r50-d8_4xb4-20k_coco-stuff10k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r50-d8_512x512_4x4_20k_coco-stuff10k/deeplabv3_r50-d8_512x512_4x4_20k_coco-stuff10k_20210821_043025-b35f789d.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r50-d8_512x512_4x4_20k_coco-stuff10k/deeplabv3_r50-d8_512x512_4x4_20k_coco-stuff10k_20210821_043025.log.json) | +| DeepLabV3 | R-101-D8 | 512x512 | 20000 | 13.2 | 8.7 | V100 | 37.30 | 38.42 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/deeplabv3/deeplabv3_r101-d8_4xb4-20k_coco-stuff10k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101-d8_512x512_4x4_20k_coco-stuff10k/deeplabv3_r101-d8_512x512_4x4_20k_coco-stuff10k_20210821_043025-c49752cb.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101-d8_512x512_4x4_20k_coco-stuff10k/deeplabv3_r101-d8_512x512_4x4_20k_coco-stuff10k_20210821_043025.log.json) | +| DeepLabV3 | R-50-D8 | 512x512 | 40000 | - | - | V100 | 35.73 | 37.09 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/deeplabv3/deeplabv3_r50-d8_4xb4-40k_coco-stuff10k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r50-d8_512x512_4x4_40k_coco-stuff10k/deeplabv3_r50-d8_512x512_4x4_40k_coco-stuff10k_20210821_043305-dc76f3ff.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r50-d8_512x512_4x4_40k_coco-stuff10k/deeplabv3_r50-d8_512x512_4x4_40k_coco-stuff10k_20210821_043305.log.json) | +| DeepLabV3 | R-101-D8 | 512x512 | 40000 | - | - | V100 | 37.81 | 38.80 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/deeplabv3/deeplabv3_r101-d8_4xb4-40k_coco-stuff10k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101-d8_512x512_4x4_40k_coco-stuff10k/deeplabv3_r101-d8_512x512_4x4_40k_coco-stuff10k_20210821_043305-636cb433.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101-d8_512x512_4x4_40k_coco-stuff10k/deeplabv3_r101-d8_512x512_4x4_40k_coco-stuff10k_20210821_043305.log.json) | ### COCO-Stuff 164k -| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | mIoU | mIoU(ms+flip) | config | download | -| --------- | -------- | --------- | ------: | -------- | -------------- | ----: | ------------: | ------------------------------------------------------------------------------------------------------------------------------------------- | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | -| DeepLabV3 | R-50-D8 | 512x512 | 80000 | 9.6 | 10.8 | 39.38 | 40.03 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/deeplabv3/deeplabv3_r50-d8_4xb4-80k_coco-stuff164k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r50-d8_512x512_4x4_80k_coco-stuff164k/deeplabv3_r50-d8_512x512_4x4_80k_coco-stuff164k_20210709_163016-88675c24.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r50-d8_512x512_4x4_80k_coco-stuff164k/deeplabv3_r50-d8_512x512_4x4_80k_coco-stuff164k_20210709_163016.log.json) | -| DeepLabV3 | R-101-D8 | 512x512 | 80000 | 13.2 | 8.7 | 40.87 | 41.50 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/deeplabv3/deeplabv3_r101-d8_4xb4-80k_coco-stuff164k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101-d8_512x512_4x4_80k_coco-stuff164k/deeplabv3_r101-d8_512x512_4x4_80k_coco-stuff164k_20210709_201252-13600dc2.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101-d8_512x512_4x4_80k_coco-stuff164k/deeplabv3_r101-d8_512x512_4x4_80k_coco-stuff164k_20210709_201252.log.json) | -| DeepLabV3 | R-50-D8 | 512x512 | 160000 | - | - | 41.09 | 41.69 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/deeplabv3/deeplabv3_r50-d8_4xb4-160k_coco-stuff164k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r50-d8_512x512_4x4_160k_coco-stuff164k/deeplabv3_r50-d8_512x512_4x4_160k_coco-stuff164k_20210709_163016-49f2812b.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r50-d8_512x512_4x4_160k_coco-stuff164k/deeplabv3_r50-d8_512x512_4x4_160k_coco-stuff164k_20210709_163016.log.json) | -| DeepLabV3 | R-101-D8 | 512x512 | 160000 | - | - | 41.82 | 42.49 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/deeplabv3/deeplabv3_r101-d8_4xb4-160k_coco-stuff164k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101-d8_512x512_4x4_160k_coco-stuff164k/deeplabv3_r101-d8_512x512_4x4_160k_coco-stuff164k_20210709_155402-f035acfd.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101-d8_512x512_4x4_160k_coco-stuff164k/deeplabv3_r101-d8_512x512_4x4_160k_coco-stuff164k_20210709_155402.log.json) | -| DeepLabV3 | R-50-D8 | 512x512 | 320000 | - | - | 41.37 | 42.22 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/deeplabv3/deeplabv3_r50-d8_4xb4-320k_coco-stuff164k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r50-d8_512x512_4x4_320k_coco-stuff164k/deeplabv3_r50-d8_512x512_4x4_320k_coco-stuff164k_20210709_155403-51b21115.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r50-d8_512x512_4x4_320k_coco-stuff164k/deeplabv3_r50-d8_512x512_4x4_320k_coco-stuff164k_20210709_155403.log.json) | -| DeepLabV3 | R-101-D8 | 512x512 | 320000 | - | - | 42.61 | 43.42 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/deeplabv3/deeplabv3_r101-d8_4xb4-320k_coco-stuff164k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101-d8_512x512_4x4_320k_coco-stuff164k/deeplabv3_r101-d8_512x512_4x4_320k_coco-stuff164k_20210709_155402-3cbca14d.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101-d8_512x512_4x4_320k_coco-stuff164k/deeplabv3_r101-d8_512x512_4x4_320k_coco-stuff164k_20210709_155402.log.json) | +| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | Device | mIoU | mIoU(ms+flip) | config | download | +| --------- | -------- | --------- | ------: | -------- | -------------- | ------ | ----: | ------------: | ------------------------------------------------------------------------------------------------------------------------------------------- | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | +| DeepLabV3 | R-50-D8 | 512x512 | 80000 | 9.6 | 10.8 | V100 | 39.38 | 40.03 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/deeplabv3/deeplabv3_r50-d8_4xb4-80k_coco-stuff164k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r50-d8_512x512_4x4_80k_coco-stuff164k/deeplabv3_r50-d8_512x512_4x4_80k_coco-stuff164k_20210709_163016-88675c24.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r50-d8_512x512_4x4_80k_coco-stuff164k/deeplabv3_r50-d8_512x512_4x4_80k_coco-stuff164k_20210709_163016.log.json) | +| DeepLabV3 | R-101-D8 | 512x512 | 80000 | 13.2 | 8.7 | V100 | 40.87 | 41.50 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/deeplabv3/deeplabv3_r101-d8_4xb4-80k_coco-stuff164k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101-d8_512x512_4x4_80k_coco-stuff164k/deeplabv3_r101-d8_512x512_4x4_80k_coco-stuff164k_20210709_201252-13600dc2.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101-d8_512x512_4x4_80k_coco-stuff164k/deeplabv3_r101-d8_512x512_4x4_80k_coco-stuff164k_20210709_201252.log.json) | +| DeepLabV3 | R-50-D8 | 512x512 | 160000 | - | - | V100 | 41.09 | 41.69 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/deeplabv3/deeplabv3_r50-d8_4xb4-160k_coco-stuff164k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r50-d8_512x512_4x4_160k_coco-stuff164k/deeplabv3_r50-d8_512x512_4x4_160k_coco-stuff164k_20210709_163016-49f2812b.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r50-d8_512x512_4x4_160k_coco-stuff164k/deeplabv3_r50-d8_512x512_4x4_160k_coco-stuff164k_20210709_163016.log.json) | +| DeepLabV3 | R-101-D8 | 512x512 | 160000 | - | - | V100 | 41.82 | 42.49 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/deeplabv3/deeplabv3_r101-d8_4xb4-160k_coco-stuff164k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101-d8_512x512_4x4_160k_coco-stuff164k/deeplabv3_r101-d8_512x512_4x4_160k_coco-stuff164k_20210709_155402-f035acfd.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101-d8_512x512_4x4_160k_coco-stuff164k/deeplabv3_r101-d8_512x512_4x4_160k_coco-stuff164k_20210709_155402.log.json) | +| DeepLabV3 | R-50-D8 | 512x512 | 320000 | - | - | V100 | 41.37 | 42.22 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/deeplabv3/deeplabv3_r50-d8_4xb4-320k_coco-stuff164k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r50-d8_512x512_4x4_320k_coco-stuff164k/deeplabv3_r50-d8_512x512_4x4_320k_coco-stuff164k_20210709_155403-51b21115.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r50-d8_512x512_4x4_320k_coco-stuff164k/deeplabv3_r50-d8_512x512_4x4_320k_coco-stuff164k_20210709_155403.log.json) | +| DeepLabV3 | R-101-D8 | 512x512 | 320000 | - | - | V100 | 42.61 | 43.42 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/deeplabv3/deeplabv3_r101-d8_4xb4-320k_coco-stuff164k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101-d8_512x512_4x4_320k_coco-stuff164k/deeplabv3_r101-d8_512x512_4x4_320k_coco-stuff164k_20210709_155402-3cbca14d.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101-d8_512x512_4x4_320k_coco-stuff164k/deeplabv3_r101-d8_512x512_4x4_320k_coco-stuff164k_20210709_155402.log.json) | Note: - `D-8` here corresponding to the output stride 8 setting for DeepLab series. - `FP16` means Mixed Precision (FP16) is adopted in training. + +## Citation + +```bibtext +@article{chen2017rethinking, + title={Rethinking atrous convolution for semantic image segmentation}, + author={Chen, Liang-Chieh and Papandreou, George and Schroff, Florian and Adam, Hartwig}, + journal={arXiv preprint arXiv:1706.05587}, + year={2017} +} +``` diff --git a/configs/deeplabv3/deeplabv3.yml b/configs/deeplabv3/deeplabv3.yml deleted file mode 100644 index 6196212992..0000000000 --- a/configs/deeplabv3/deeplabv3.yml +++ /dev/null @@ -1,756 +0,0 @@ -Collections: -- Name: DeepLabV3 - Metadata: - Training Data: - - Cityscapes - - ADE20K - - Pascal VOC 2012 + Aug - - Pascal Context - - Pascal Context 59 - - COCO-Stuff 10k - - COCO-Stuff 164k - Paper: - URL: https://arxiv.org/abs/1706.05587 - Title: Rethinking atrous convolution for semantic image segmentation - README: configs/deeplabv3/README.md - Code: - URL: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/aspp_head.py#L54 - Version: v0.17.0 - Converted From: - Code: https://github.com/tensorflow/models/tree/master/research/deeplab -Models: -- Name: deeplabv3_r50-d8_4xb2-40k_cityscapes-512x1024 - In Collection: DeepLabV3 - Metadata: - backbone: R-50-D8 - crop size: (512,1024) - lr schd: 40000 - inference time (ms/im): - - value: 389.11 - hardware: V100 - backend: PyTorch - batch size: 1 - mode: FP32 - resolution: (512,1024) - Training Memory (GB): 6.1 - Results: - - Task: Semantic Segmentation - Dataset: Cityscapes - Metrics: - mIoU: 79.09 - mIoU(ms+flip): 80.45 - Config: configs/deeplabv3/deeplabv3_r50-d8_4xb2-40k_cityscapes-512x1024.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r50-d8_512x1024_40k_cityscapes/deeplabv3_r50-d8_512x1024_40k_cityscapes_20200605_022449-acadc2f8.pth -- Name: deeplabv3_r101-d8_4xb2-40k_cityscapes-512x1024 - In Collection: DeepLabV3 - Metadata: - backbone: R-101-D8 - crop size: (512,1024) - lr schd: 40000 - inference time (ms/im): - - value: 520.83 - hardware: V100 - backend: PyTorch - batch size: 1 - mode: FP32 - resolution: (512,1024) - Training Memory (GB): 9.6 - Results: - - Task: Semantic Segmentation - Dataset: Cityscapes - Metrics: - mIoU: 77.12 - mIoU(ms+flip): 79.61 - Config: configs/deeplabv3/deeplabv3_r101-d8_4xb2-40k_cityscapes-512x1024.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101-d8_512x1024_40k_cityscapes/deeplabv3_r101-d8_512x1024_40k_cityscapes_20200605_012241-7fd3f799.pth -- Name: deeplabv3_r50-d8_4xb2-40k_cityscapes-769x769 - In Collection: DeepLabV3 - Metadata: - backbone: R-50-D8 - crop size: (769,769) - lr schd: 40000 - inference time (ms/im): - - value: 900.9 - hardware: V100 - backend: PyTorch - batch size: 1 - mode: FP32 - resolution: (769,769) - Training Memory (GB): 6.9 - Results: - - Task: Semantic Segmentation - Dataset: Cityscapes - Metrics: - mIoU: 78.58 - mIoU(ms+flip): 79.89 - Config: configs/deeplabv3/deeplabv3_r50-d8_4xb2-40k_cityscapes-769x769.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r50-d8_769x769_40k_cityscapes/deeplabv3_r50-d8_769x769_40k_cityscapes_20200606_113723-7eda553c.pth -- Name: deeplabv3_r101-d8_4xb2-40k_cityscapes-769x769 - In Collection: DeepLabV3 - Metadata: - backbone: R-101-D8 - crop size: (769,769) - lr schd: 40000 - inference time (ms/im): - - value: 1204.82 - hardware: V100 - backend: PyTorch - batch size: 1 - mode: FP32 - resolution: (769,769) - Training Memory (GB): 10.9 - Results: - - Task: Semantic Segmentation - Dataset: Cityscapes - Metrics: - mIoU: 79.27 - mIoU(ms+flip): 80.11 - Config: configs/deeplabv3/deeplabv3_r101-d8_4xb2-40k_cityscapes-769x769.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101-d8_769x769_40k_cityscapes/deeplabv3_r101-d8_769x769_40k_cityscapes_20200606_113809-c64f889f.pth -- Name: deeplabv3_r18-d8_4xb2-80k_cityscapes-512x1024 - In Collection: DeepLabV3 - Metadata: - backbone: R-18-D8 - crop size: (512,1024) - lr schd: 80000 - inference time (ms/im): - - value: 72.57 - hardware: V100 - backend: PyTorch - batch size: 1 - mode: FP32 - resolution: (512,1024) - Training Memory (GB): 1.7 - Results: - - Task: Semantic Segmentation - Dataset: Cityscapes - Metrics: - mIoU: 76.7 - mIoU(ms+flip): 78.27 - Config: configs/deeplabv3/deeplabv3_r18-d8_4xb2-80k_cityscapes-512x1024.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r18-d8_512x1024_80k_cityscapes/deeplabv3_r18-d8_512x1024_80k_cityscapes_20201225_021506-23dffbe2.pth -- Name: deeplabv3_r50-d8_4xb2-80k_cityscapes-512x1024 - In Collection: DeepLabV3 - Metadata: - backbone: R-50-D8 - crop size: (512,1024) - lr schd: 80000 - Results: - - Task: Semantic Segmentation - Dataset: Cityscapes - Metrics: - mIoU: 79.32 - mIoU(ms+flip): 80.57 - Config: configs/deeplabv3/deeplabv3_r50-d8_4xb2-80k_cityscapes-512x1024.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r50-d8_512x1024_80k_cityscapes/deeplabv3_r50-d8_512x1024_80k_cityscapes_20200606_113404-b92cfdd4.pth -- Name: deeplabv3_r101-d8_4xb2-80k_cityscapes-512x1024 - In Collection: DeepLabV3 - Metadata: - backbone: R-101-D8 - crop size: (512,1024) - lr schd: 80000 - Results: - - Task: Semantic Segmentation - Dataset: Cityscapes - Metrics: - mIoU: 80.2 - mIoU(ms+flip): 81.21 - Config: configs/deeplabv3/deeplabv3_r101-d8_4xb2-80k_cityscapes-512x1024.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101-d8_512x1024_80k_cityscapes/deeplabv3_r101-d8_512x1024_80k_cityscapes_20200606_113503-9e428899.pth -- Name: deeplabv3_r101-d8_4xb2-amp-80k_cityscapes-512x1024 - In Collection: DeepLabV3 - Metadata: - backbone: R-101-D8 - crop size: (512,1024) - lr schd: 80000 - inference time (ms/im): - - value: 259.07 - hardware: V100 - backend: PyTorch - batch size: 1 - mode: AMP - resolution: (512,1024) - Training Memory (GB): 5.75 - Results: - - Task: Semantic Segmentation - Dataset: Cityscapes - Metrics: - mIoU: 80.48 - Config: configs/deeplabv3/deeplabv3_r101-d8_4xb2-amp-80k_cityscapes-512x1024.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101-d8_fp16_512x1024_80k_cityscapes/deeplabv3_r101-d8_fp16_512x1024_80k_cityscapes_20200717_230920-774d9cec.pth -- Name: deeplabv3_r18-d8_4xb2-80k_cityscapes-769x769 - In Collection: DeepLabV3 - Metadata: - backbone: R-18-D8 - crop size: (769,769) - lr schd: 80000 - inference time (ms/im): - - value: 180.18 - hardware: V100 - backend: PyTorch - batch size: 1 - mode: FP32 - resolution: (769,769) - Training Memory (GB): 1.9 - Results: - - Task: Semantic Segmentation - Dataset: Cityscapes - Metrics: - mIoU: 76.6 - mIoU(ms+flip): 78.26 - Config: configs/deeplabv3/deeplabv3_r18-d8_4xb2-80k_cityscapes-769x769.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r18-d8_769x769_80k_cityscapes/deeplabv3_r18-d8_769x769_80k_cityscapes_20201225_021506-6452126a.pth -- Name: deeplabv3_r50-d8_4xb2-80k_cityscapes-769x769 - In Collection: DeepLabV3 - Metadata: - backbone: R-50-D8 - crop size: (769,769) - lr schd: 80000 - Results: - - Task: Semantic Segmentation - Dataset: Cityscapes - Metrics: - mIoU: 79.89 - mIoU(ms+flip): 81.06 - Config: configs/deeplabv3/deeplabv3_r50-d8_4xb2-80k_cityscapes-769x769.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r50-d8_769x769_80k_cityscapes/deeplabv3_r50-d8_769x769_80k_cityscapes_20200606_221338-788d6228.pth -- Name: deeplabv3_r101-d8_4xb2-80k_cityscapes-769x769 - In Collection: DeepLabV3 - Metadata: - backbone: R-101-D8 - crop size: (769,769) - lr schd: 80000 - Results: - - Task: Semantic Segmentation - Dataset: Cityscapes - Metrics: - mIoU: 79.67 - mIoU(ms+flip): 80.81 - Config: configs/deeplabv3/deeplabv3_r101-d8_4xb2-80k_cityscapes-769x769.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101-d8_769x769_80k_cityscapes/deeplabv3_r101-d8_769x769_80k_cityscapes_20200607_013353-60e95418.pth -- Name: deeplabv3_r101-d16-mg124_4xb2-80k_cityscapes-512x1024 - In Collection: DeepLabV3 - Metadata: - backbone: R-101-D16-MG124 - crop size: (512,1024) - lr schd: 80000 - Results: - - Task: Semantic Segmentation - Dataset: Cityscapes - Metrics: - mIoU: 78.36 - mIoU(ms+flip): 79.84 - Config: configs/deeplabv3/deeplabv3_r101-d16-mg124_4xb2-80k_cityscapes-512x1024.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101-d16-mg124_512x1024_80k_cityscapes/deeplabv3_r101-d16-mg124_512x1024_80k_cityscapes_20200908_005644-57bb8425.pth -- Name: deeplabv3_r18b-d8_4xb2-80k_cityscapes-512x1024 - In Collection: DeepLabV3 - Metadata: - backbone: R-18b-D8 - crop size: (512,1024) - lr schd: 80000 - inference time (ms/im): - - value: 71.79 - hardware: V100 - backend: PyTorch - batch size: 1 - mode: FP32 - resolution: (512,1024) - Training Memory (GB): 1.6 - Results: - - Task: Semantic Segmentation - Dataset: Cityscapes - Metrics: - mIoU: 76.26 - mIoU(ms+flip): 77.88 - Config: configs/deeplabv3/deeplabv3_r18b-d8_4xb2-80k_cityscapes-512x1024.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r18b-d8_512x1024_80k_cityscapes/deeplabv3_r18b-d8_512x1024_80k_cityscapes_20201225_094144-46040cef.pth -- Name: deeplabv3_r50b-d8_4xb2-80k_cityscapes-512x1024 - In Collection: DeepLabV3 - Metadata: - backbone: R-50b-D8 - crop size: (512,1024) - lr schd: 80000 - inference time (ms/im): - - value: 364.96 - hardware: V100 - backend: PyTorch - batch size: 1 - mode: FP32 - resolution: (512,1024) - Training Memory (GB): 6.0 - Results: - - Task: Semantic Segmentation - Dataset: Cityscapes - Metrics: - mIoU: 79.63 - mIoU(ms+flip): 80.98 - Config: configs/deeplabv3/deeplabv3_r50b-d8_4xb2-80k_cityscapes-512x1024.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r50b-d8_512x1024_80k_cityscapes/deeplabv3_r50b-d8_512x1024_80k_cityscapes_20201225_155148-ec368954.pth -- Name: deeplabv3_r101b-d8_4xb2-80k_cityscapes-512x1024 - In Collection: DeepLabV3 - Metadata: - backbone: R-101b-D8 - crop size: (512,1024) - lr schd: 80000 - inference time (ms/im): - - value: 552.49 - hardware: V100 - backend: PyTorch - batch size: 1 - mode: FP32 - resolution: (512,1024) - Training Memory (GB): 9.5 - Results: - - Task: Semantic Segmentation - Dataset: Cityscapes - Metrics: - mIoU: 80.01 - mIoU(ms+flip): 81.21 - Config: configs/deeplabv3/deeplabv3_r101b-d8_4xb2-80k_cityscapes-512x1024.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101b-d8_512x1024_80k_cityscapes/deeplabv3_r101b-d8_512x1024_80k_cityscapes_20201226_171821-8fd49503.pth -- Name: deeplabv3_r18b-d8_4xb2-80k_cityscapes-769x769 - In Collection: DeepLabV3 - Metadata: - backbone: R-18b-D8 - crop size: (769,769) - lr schd: 80000 - inference time (ms/im): - - value: 172.71 - hardware: V100 - backend: PyTorch - batch size: 1 - mode: FP32 - resolution: (769,769) - Training Memory (GB): 1.8 - Results: - - Task: Semantic Segmentation - Dataset: Cityscapes - Metrics: - mIoU: 75.63 - mIoU(ms+flip): 77.51 - Config: configs/deeplabv3/deeplabv3_r18b-d8_4xb2-80k_cityscapes-769x769.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r18b-d8_769x769_80k_cityscapes/deeplabv3_r18b-d8_769x769_80k_cityscapes_20201225_094144-fdc985d9.pth -- Name: deeplabv3_r50b-d8_4xb2-80k_cityscapes-769x769 - In Collection: DeepLabV3 - Metadata: - backbone: R-50b-D8 - crop size: (769,769) - lr schd: 80000 - inference time (ms/im): - - value: 862.07 - hardware: V100 - backend: PyTorch - batch size: 1 - mode: FP32 - resolution: (769,769) - Training Memory (GB): 6.8 - Results: - - Task: Semantic Segmentation - Dataset: Cityscapes - Metrics: - mIoU: 78.8 - mIoU(ms+flip): 80.27 - Config: configs/deeplabv3/deeplabv3_r50b-d8_4xb2-80k_cityscapes-769x769.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r50b-d8_769x769_80k_cityscapes/deeplabv3_r50b-d8_769x769_80k_cityscapes_20201225_155404-87fb0cf4.pth -- Name: deeplabv3_r101b-d8_4xb2-80k_cityscapes-769x769 - In Collection: DeepLabV3 - Metadata: - backbone: R-101b-D8 - crop size: (769,769) - lr schd: 80000 - inference time (ms/im): - - value: 1219.51 - hardware: V100 - backend: PyTorch - batch size: 1 - mode: FP32 - resolution: (769,769) - Training Memory (GB): 10.7 - Results: - - Task: Semantic Segmentation - Dataset: Cityscapes - Metrics: - mIoU: 79.41 - mIoU(ms+flip): 80.73 - Config: configs/deeplabv3/deeplabv3_r101b-d8_4xb2-80k_cityscapes-769x769.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101b-d8_769x769_80k_cityscapes/deeplabv3_r101b-d8_769x769_80k_cityscapes_20201226_190843-9142ee57.pth -- Name: deeplabv3_r50-d8_4xb4-80k_ade20k-512x512 - In Collection: DeepLabV3 - Metadata: - backbone: R-50-D8 - crop size: (512,512) - lr schd: 80000 - inference time (ms/im): - - value: 67.75 - hardware: V100 - backend: PyTorch - batch size: 1 - mode: FP32 - resolution: (512,512) - Training Memory (GB): 8.9 - Results: - - Task: Semantic Segmentation - Dataset: ADE20K - Metrics: - mIoU: 42.42 - mIoU(ms+flip): 43.28 - Config: configs/deeplabv3/deeplabv3_r50-d8_4xb4-80k_ade20k-512x512.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r50-d8_512x512_80k_ade20k/deeplabv3_r50-d8_512x512_80k_ade20k_20200614_185028-0bb3f844.pth -- Name: deeplabv3_r101-d8_4xb4-80k_ade20k-512x512 - In Collection: DeepLabV3 - Metadata: - backbone: R-101-D8 - crop size: (512,512) - lr schd: 80000 - inference time (ms/im): - - value: 98.62 - hardware: V100 - backend: PyTorch - batch size: 1 - mode: FP32 - resolution: (512,512) - Training Memory (GB): 12.4 - Results: - - Task: Semantic Segmentation - Dataset: ADE20K - Metrics: - mIoU: 44.08 - mIoU(ms+flip): 45.19 - Config: configs/deeplabv3/deeplabv3_r101-d8_4xb4-80k_ade20k-512x512.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101-d8_512x512_80k_ade20k/deeplabv3_r101-d8_512x512_80k_ade20k_20200615_021256-d89c7fa4.pth -- Name: deeplabv3_r50-d8_4xb4-160k_ade20k-512x512 - In Collection: DeepLabV3 - Metadata: - backbone: R-50-D8 - crop size: (512,512) - lr schd: 160000 - Results: - - Task: Semantic Segmentation - Dataset: ADE20K - Metrics: - mIoU: 42.66 - mIoU(ms+flip): 44.09 - Config: configs/deeplabv3/deeplabv3_r50-d8_4xb4-160k_ade20k-512x512.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r50-d8_512x512_160k_ade20k/deeplabv3_r50-d8_512x512_160k_ade20k_20200615_123227-5d0ee427.pth -- Name: deeplabv3_r101-d8_4xb4-160k_ade20k-512x512 - In Collection: DeepLabV3 - Metadata: - backbone: R-101-D8 - crop size: (512,512) - lr schd: 160000 - Results: - - Task: Semantic Segmentation - Dataset: ADE20K - Metrics: - mIoU: 45.0 - mIoU(ms+flip): 46.66 - Config: configs/deeplabv3/deeplabv3_r101-d8_4xb4-160k_ade20k-512x512.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101-d8_512x512_160k_ade20k/deeplabv3_r101-d8_512x512_160k_ade20k_20200615_105816-b1f72b3b.pth -- Name: deeplabv3_r50-d8_4xb4-20k_voc12aug-512x512 - In Collection: DeepLabV3 - Metadata: - backbone: R-50-D8 - crop size: (512,512) - lr schd: 20000 - inference time (ms/im): - - value: 72.05 - hardware: V100 - backend: PyTorch - batch size: 1 - mode: FP32 - resolution: (512,512) - Training Memory (GB): 6.1 - Results: - - Task: Semantic Segmentation - Dataset: Pascal VOC 2012 + Aug - Metrics: - mIoU: 76.17 - mIoU(ms+flip): 77.42 - Config: configs/deeplabv3/deeplabv3_r50-d8_4xb4-20k_voc12aug-512x512.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r50-d8_512x512_20k_voc12aug/deeplabv3_r50-d8_512x512_20k_voc12aug_20200617_010906-596905ef.pth -- Name: deeplabv3_r101-d8_4xb4-20k_voc12aug-512x512 - In Collection: DeepLabV3 - Metadata: - backbone: R-101-D8 - crop size: (512,512) - lr schd: 20000 - inference time (ms/im): - - value: 101.94 - hardware: V100 - backend: PyTorch - batch size: 1 - mode: FP32 - resolution: (512,512) - Training Memory (GB): 9.6 - Results: - - Task: Semantic Segmentation - Dataset: Pascal VOC 2012 + Aug - Metrics: - mIoU: 78.7 - mIoU(ms+flip): 79.95 - Config: configs/deeplabv3/deeplabv3_r101-d8_4xb4-20k_voc12aug-512x512.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101-d8_512x512_20k_voc12aug/deeplabv3_r101-d8_512x512_20k_voc12aug_20200617_010932-8d13832f.pth -- Name: deeplabv3_r50-d8_4xb4-40k_voc12aug-512x512 - In Collection: DeepLabV3 - Metadata: - backbone: R-50-D8 - crop size: (512,512) - lr schd: 40000 - Results: - - Task: Semantic Segmentation - Dataset: Pascal VOC 2012 + Aug - Metrics: - mIoU: 77.68 - mIoU(ms+flip): 78.78 - Config: configs/deeplabv3/deeplabv3_r50-d8_4xb4-40k_voc12aug-512x512.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r50-d8_512x512_40k_voc12aug/deeplabv3_r50-d8_512x512_40k_voc12aug_20200613_161546-2ae96e7e.pth -- Name: deeplabv3_r101-d8_4xb4-40k_voc12aug-512x512 - In Collection: DeepLabV3 - Metadata: - backbone: R-101-D8 - crop size: (512,512) - lr schd: 40000 - Results: - - Task: Semantic Segmentation - Dataset: Pascal VOC 2012 + Aug - Metrics: - mIoU: 77.92 - mIoU(ms+flip): 79.18 - Config: configs/deeplabv3/deeplabv3_r101-d8_4xb4-40k_voc12aug-512x512.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101-d8_512x512_40k_voc12aug/deeplabv3_r101-d8_512x512_40k_voc12aug_20200613_161432-0017d784.pth -- Name: deeplabv3_r101-d8_4xb4-40k_pascal-context-480x480 - In Collection: DeepLabV3 - Metadata: - backbone: R-101-D8 - crop size: (480,480) - lr schd: 40000 - inference time (ms/im): - - value: 141.04 - hardware: V100 - backend: PyTorch - batch size: 1 - mode: FP32 - resolution: (480,480) - Training Memory (GB): 9.2 - Results: - - Task: Semantic Segmentation - Dataset: Pascal Context - Metrics: - mIoU: 46.55 - mIoU(ms+flip): 47.81 - Config: configs/deeplabv3/deeplabv3_r101-d8_4xb4-40k_pascal-context-480x480.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101-d8_480x480_40k_pascal_context/deeplabv3_r101-d8_480x480_40k_pascal_context_20200911_204118-1aa27336.pth -- Name: deeplabv3_r101-d8_4xb4-80k_pascal-context-480x480 - In Collection: DeepLabV3 - Metadata: - backbone: R-101-D8 - crop size: (480,480) - lr schd: 80000 - Results: - - Task: Semantic Segmentation - Dataset: Pascal Context - Metrics: - mIoU: 46.42 - mIoU(ms+flip): 47.53 - Config: configs/deeplabv3/deeplabv3_r101-d8_4xb4-80k_pascal-context-480x480.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101-d8_480x480_80k_pascal_context/deeplabv3_r101-d8_480x480_80k_pascal_context_20200911_170155-2a21fff3.pth -- Name: deeplabv3_r101-d8_4xb4-40k_pascal-context-59-480x480 - In Collection: DeepLabV3 - Metadata: - backbone: R-101-D8 - crop size: (480,480) - lr schd: 40000 - Results: - - Task: Semantic Segmentation - Dataset: Pascal Context 59 - Metrics: - mIoU: 52.61 - mIoU(ms+flip): 54.28 - Config: configs/deeplabv3/deeplabv3_r101-d8_4xb4-40k_pascal-context-59-480x480.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101-d8_480x480_40k_pascal_context_59/deeplabv3_r101-d8_480x480_40k_pascal_context_59_20210416_110332-cb08ea46.pth -- Name: deeplabv3_r101-d8_4xb4-80k_pascal-context-59-480x480 - In Collection: DeepLabV3 - Metadata: - backbone: R-101-D8 - crop size: (480,480) - lr schd: 80000 - Results: - - Task: Semantic Segmentation - Dataset: Pascal Context 59 - Metrics: - mIoU: 52.46 - mIoU(ms+flip): 54.09 - Config: configs/deeplabv3/deeplabv3_r101-d8_4xb4-80k_pascal-context-59-480x480.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101-d8_480x480_80k_pascal_context_59/deeplabv3_r101-d8_480x480_80k_pascal_context_59_20210416_113002-26303993.pth -- Name: deeplabv3_r50-d8_4xb4-20k_coco-stuff10k-512x512 - In Collection: DeepLabV3 - Metadata: - backbone: R-50-D8 - crop size: (512,512) - lr schd: 20000 - inference time (ms/im): - - value: 92.59 - hardware: V100 - backend: PyTorch - batch size: 1 - mode: FP32 - resolution: (512,512) - Training Memory (GB): 9.6 - Results: - - Task: Semantic Segmentation - Dataset: COCO-Stuff 10k - Metrics: - mIoU: 34.66 - mIoU(ms+flip): 36.08 - Config: configs/deeplabv3/deeplabv3_r50-d8_4xb4-20k_coco-stuff10k-512x512.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r50-d8_512x512_4x4_20k_coco-stuff10k/deeplabv3_r50-d8_512x512_4x4_20k_coco-stuff10k_20210821_043025-b35f789d.pth -- Name: deeplabv3_r101-d8_4xb4-20k_coco-stuff10k-512x512 - In Collection: DeepLabV3 - Metadata: - backbone: R-101-D8 - crop size: (512,512) - lr schd: 20000 - inference time (ms/im): - - value: 114.94 - hardware: V100 - backend: PyTorch - batch size: 1 - mode: FP32 - resolution: (512,512) - Training Memory (GB): 13.2 - Results: - - Task: Semantic Segmentation - Dataset: COCO-Stuff 10k - Metrics: - mIoU: 37.3 - mIoU(ms+flip): 38.42 - Config: configs/deeplabv3/deeplabv3_r101-d8_4xb4-20k_coco-stuff10k-512x512.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101-d8_512x512_4x4_20k_coco-stuff10k/deeplabv3_r101-d8_512x512_4x4_20k_coco-stuff10k_20210821_043025-c49752cb.pth -- Name: deeplabv3_r50-d8_4xb4-40k_coco-stuff10k-512x512 - In Collection: DeepLabV3 - Metadata: - backbone: R-50-D8 - crop size: (512,512) - lr schd: 40000 - Results: - - Task: Semantic Segmentation - Dataset: COCO-Stuff 10k - Metrics: - mIoU: 35.73 - mIoU(ms+flip): 37.09 - Config: configs/deeplabv3/deeplabv3_r50-d8_4xb4-40k_coco-stuff10k-512x512.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r50-d8_512x512_4x4_40k_coco-stuff10k/deeplabv3_r50-d8_512x512_4x4_40k_coco-stuff10k_20210821_043305-dc76f3ff.pth -- Name: deeplabv3_r101-d8_4xb4-40k_coco-stuff10k-512x512 - In Collection: DeepLabV3 - Metadata: - backbone: R-101-D8 - crop size: (512,512) - lr schd: 40000 - Results: - - Task: Semantic Segmentation - Dataset: COCO-Stuff 10k - Metrics: - mIoU: 37.81 - mIoU(ms+flip): 38.8 - Config: configs/deeplabv3/deeplabv3_r101-d8_4xb4-40k_coco-stuff10k-512x512.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101-d8_512x512_4x4_40k_coco-stuff10k/deeplabv3_r101-d8_512x512_4x4_40k_coco-stuff10k_20210821_043305-636cb433.pth -- Name: deeplabv3_r50-d8_4xb4-80k_coco-stuff164k-512x512 - In Collection: DeepLabV3 - Metadata: - backbone: R-50-D8 - crop size: (512,512) - lr schd: 80000 - inference time (ms/im): - - value: 92.59 - hardware: V100 - backend: PyTorch - batch size: 1 - mode: FP32 - resolution: (512,512) - Training Memory (GB): 9.6 - Results: - - Task: Semantic Segmentation - Dataset: COCO-Stuff 164k - Metrics: - mIoU: 39.38 - mIoU(ms+flip): 40.03 - Config: configs/deeplabv3/deeplabv3_r50-d8_4xb4-80k_coco-stuff164k-512x512.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r50-d8_512x512_4x4_80k_coco-stuff164k/deeplabv3_r50-d8_512x512_4x4_80k_coco-stuff164k_20210709_163016-88675c24.pth -- Name: deeplabv3_r101-d8_4xb4-80k_coco-stuff164k-512x512 - In Collection: DeepLabV3 - Metadata: - backbone: R-101-D8 - crop size: (512,512) - lr schd: 80000 - inference time (ms/im): - - value: 114.94 - hardware: V100 - backend: PyTorch - batch size: 1 - mode: FP32 - resolution: (512,512) - Training Memory (GB): 13.2 - Results: - - Task: Semantic Segmentation - Dataset: COCO-Stuff 164k - Metrics: - mIoU: 40.87 - mIoU(ms+flip): 41.5 - Config: configs/deeplabv3/deeplabv3_r101-d8_4xb4-80k_coco-stuff164k-512x512.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101-d8_512x512_4x4_80k_coco-stuff164k/deeplabv3_r101-d8_512x512_4x4_80k_coco-stuff164k_20210709_201252-13600dc2.pth -- Name: deeplabv3_r50-d8_4xb4-160k_coco-stuff164k-512x512 - In Collection: DeepLabV3 - Metadata: - backbone: R-50-D8 - crop size: (512,512) - lr schd: 160000 - Results: - - Task: Semantic Segmentation - Dataset: COCO-Stuff 164k - Metrics: - mIoU: 41.09 - mIoU(ms+flip): 41.69 - Config: configs/deeplabv3/deeplabv3_r50-d8_4xb4-160k_coco-stuff164k-512x512.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r50-d8_512x512_4x4_160k_coco-stuff164k/deeplabv3_r50-d8_512x512_4x4_160k_coco-stuff164k_20210709_163016-49f2812b.pth -- Name: deeplabv3_r101-d8_4xb4-160k_coco-stuff164k-512x512 - In Collection: DeepLabV3 - Metadata: - backbone: R-101-D8 - crop size: (512,512) - lr schd: 160000 - Results: - - Task: Semantic Segmentation - Dataset: COCO-Stuff 164k - Metrics: - mIoU: 41.82 - mIoU(ms+flip): 42.49 - Config: configs/deeplabv3/deeplabv3_r101-d8_4xb4-160k_coco-stuff164k-512x512.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101-d8_512x512_4x4_160k_coco-stuff164k/deeplabv3_r101-d8_512x512_4x4_160k_coco-stuff164k_20210709_155402-f035acfd.pth -- Name: deeplabv3_r50-d8_4xb4-320k_coco-stuff164k-512x512 - In Collection: DeepLabV3 - Metadata: - backbone: R-50-D8 - crop size: (512,512) - lr schd: 320000 - Results: - - Task: Semantic Segmentation - Dataset: COCO-Stuff 164k - Metrics: - mIoU: 41.37 - mIoU(ms+flip): 42.22 - Config: configs/deeplabv3/deeplabv3_r50-d8_4xb4-320k_coco-stuff164k-512x512.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r50-d8_512x512_4x4_320k_coco-stuff164k/deeplabv3_r50-d8_512x512_4x4_320k_coco-stuff164k_20210709_155403-51b21115.pth -- Name: deeplabv3_r101-d8_4xb4-320k_coco-stuff164k-512x512 - In Collection: DeepLabV3 - Metadata: - backbone: R-101-D8 - crop size: (512,512) - lr schd: 320000 - Results: - - Task: Semantic Segmentation - Dataset: COCO-Stuff 164k - Metrics: - mIoU: 42.61 - mIoU(ms+flip): 43.42 - Config: configs/deeplabv3/deeplabv3_r101-d8_4xb4-320k_coco-stuff164k-512x512.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101-d8_512x512_4x4_320k_coco-stuff164k/deeplabv3_r101-d8_512x512_4x4_320k_coco-stuff164k_20210709_155402-3cbca14d.pth diff --git a/configs/deeplabv3/metafile.yaml b/configs/deeplabv3/metafile.yaml new file mode 100644 index 0000000000..650f7d695d --- /dev/null +++ b/configs/deeplabv3/metafile.yaml @@ -0,0 +1,985 @@ +Collections: +- Name: DeepLabV3 + License: Apache License 2.0 + Metadata: + Training Data: + - Cityscapes + - ADE20K + - Pascal VOC 2012 + Aug + - Pascal Context + - Pascal Context 59 + - COCO-Stuff 10k + - COCO-Stuff 164k + Paper: + Title: Rethinking atrous convolution for semantic image segmentation + URL: https://arxiv.org/abs/1706.05587 + README: configs/deeplabv3/README.md + Frameworks: + - PyTorch +Models: +- Name: deeplabv3_r50-d8_4xb2-40k_cityscapes-512x1024 + In Collection: DeepLabV3 + Results: + Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 79.09 + mIoU(ms+flip): 80.45 + Config: configs/deeplabv3/deeplabv3_r50-d8_4xb2-40k_cityscapes-512x1024.py + Metadata: + Training Data: Cityscapes + Batch Size: 8 + Architecture: + - R-50-D8 + - DeepLabV3 + Training Resources: 4x V100 GPUS + Memory (GB): 6.1 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r50-d8_512x1024_40k_cityscapes/deeplabv3_r50-d8_512x1024_40k_cityscapes_20200605_022449-acadc2f8.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r50-d8_512x1024_40k_cityscapes/deeplabv3_r50-d8_512x1024_40k_cityscapes_20200605_022449.log.json + Paper: + Title: Rethinking atrous convolution for semantic image segmentation + URL: https://arxiv.org/abs/1706.05587 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/aspp_head.py#L54 + Framework: PyTorch +- Name: deeplabv3_r101-d8_4xb2-40k_cityscapes-512x1024 + In Collection: DeepLabV3 + Results: + Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 77.12 + mIoU(ms+flip): 79.61 + Config: configs/deeplabv3/deeplabv3_r101-d8_4xb2-40k_cityscapes-512x1024.py + Metadata: + Training Data: Cityscapes + Batch Size: 8 + Architecture: + - R-101-D8 + - DeepLabV3 + Training Resources: 4x V100 GPUS + Memory (GB): 9.6 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101-d8_512x1024_40k_cityscapes/deeplabv3_r101-d8_512x1024_40k_cityscapes_20200605_012241-7fd3f799.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101-d8_512x1024_40k_cityscapes/deeplabv3_r101-d8_512x1024_40k_cityscapes_20200605_012241.log.json + Paper: + Title: Rethinking atrous convolution for semantic image segmentation + URL: https://arxiv.org/abs/1706.05587 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/aspp_head.py#L54 + Framework: PyTorch +- Name: deeplabv3_r50-d8_4xb2-40k_cityscapes-769x769 + In Collection: DeepLabV3 + Results: + Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 78.58 + mIoU(ms+flip): 79.89 + Config: configs/deeplabv3/deeplabv3_r50-d8_4xb2-40k_cityscapes-769x769.py + Metadata: + Training Data: Cityscapes + Batch Size: 8 + Architecture: + - R-50-D8 + - DeepLabV3 + Training Resources: 4x V100 GPUS + Memory (GB): 6.9 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r50-d8_769x769_40k_cityscapes/deeplabv3_r50-d8_769x769_40k_cityscapes_20200606_113723-7eda553c.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r50-d8_769x769_40k_cityscapes/deeplabv3_r50-d8_769x769_40k_cityscapes_20200606_113723.log.json + Paper: + Title: Rethinking atrous convolution for semantic image segmentation + URL: https://arxiv.org/abs/1706.05587 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/aspp_head.py#L54 + Framework: PyTorch +- Name: deeplabv3_r101-d8_4xb2-40k_cityscapes-769x769 + In Collection: DeepLabV3 + Results: + Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 79.27 + mIoU(ms+flip): 80.11 + Config: configs/deeplabv3/deeplabv3_r101-d8_4xb2-40k_cityscapes-769x769.py + Metadata: + Training Data: Cityscapes + Batch Size: 8 + Architecture: + - R-101-D8 + - DeepLabV3 + Training Resources: 4x V100 GPUS + Memory (GB): 10.9 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101-d8_769x769_40k_cityscapes/deeplabv3_r101-d8_769x769_40k_cityscapes_20200606_113809-c64f889f.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101-d8_769x769_40k_cityscapes/deeplabv3_r101-d8_769x769_40k_cityscapes_20200606_113809.log.json + Paper: + Title: Rethinking atrous convolution for semantic image segmentation + URL: https://arxiv.org/abs/1706.05587 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/aspp_head.py#L54 + Framework: PyTorch +- Name: deeplabv3_r18-d8_4xb2-80k_cityscapes-512x1024 + In Collection: DeepLabV3 + Results: + Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 76.7 + mIoU(ms+flip): 78.27 + Config: configs/deeplabv3/deeplabv3_r18-d8_4xb2-80k_cityscapes-512x1024.py + Metadata: + Training Data: Cityscapes + Batch Size: 8 + Architecture: + - R-18-D8 + - DeepLabV3 + Training Resources: 4x V100 GPUS + Memory (GB): 1.7 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r18-d8_512x1024_80k_cityscapes/deeplabv3_r18-d8_512x1024_80k_cityscapes_20201225_021506-23dffbe2.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r18-d8_512x1024_80k_cityscapes/deeplabv3_r18-d8_512x1024_80k_cityscapes-20201225_021506.log.json + Paper: + Title: Rethinking atrous convolution for semantic image segmentation + URL: https://arxiv.org/abs/1706.05587 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/aspp_head.py#L54 + Framework: PyTorch +- Name: deeplabv3_r50-d8_4xb2-80k_cityscapes-512x1024 + In Collection: DeepLabV3 + Results: + Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 79.32 + mIoU(ms+flip): 80.57 + Config: configs/deeplabv3/deeplabv3_r50-d8_4xb2-80k_cityscapes-512x1024.py + Metadata: + Training Data: Cityscapes + Batch Size: 8 + Architecture: + - R-50-D8 + - DeepLabV3 + Training Resources: 4x V100 GPUS + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r50-d8_512x1024_80k_cityscapes/deeplabv3_r50-d8_512x1024_80k_cityscapes_20200606_113404-b92cfdd4.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r50-d8_512x1024_80k_cityscapes/deeplabv3_r50-d8_512x1024_80k_cityscapes_20200606_113404.log.json + Paper: + Title: Rethinking atrous convolution for semantic image segmentation + URL: https://arxiv.org/abs/1706.05587 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/aspp_head.py#L54 + Framework: PyTorch +- Name: deeplabv3_r101-d8_4xb2-80k_cityscapes-512x1024 + In Collection: DeepLabV3 + Results: + Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 80.2 + mIoU(ms+flip): 81.21 + Config: configs/deeplabv3/deeplabv3_r101-d8_4xb2-80k_cityscapes-512x1024.py + Metadata: + Training Data: Cityscapes + Batch Size: 8 + Architecture: + - R-101-D8 + - DeepLabV3 + Training Resources: 4x V100 GPUS + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101-d8_512x1024_80k_cityscapes/deeplabv3_r101-d8_512x1024_80k_cityscapes_20200606_113503-9e428899.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101-d8_512x1024_80k_cityscapes/deeplabv3_r101-d8_512x1024_80k_cityscapes_20200606_113503.log.json + Paper: + Title: Rethinking atrous convolution for semantic image segmentation + URL: https://arxiv.org/abs/1706.05587 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/aspp_head.py#L54 + Framework: PyTorch +- Name: deeplabv3_r101-d8_4xb2-amp-80k_cityscapes-512x1024 + In Collection: DeepLabV3 + Results: + Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 80.48 + Config: configs/deeplabv3/deeplabv3_r101-d8_4xb2-amp-80k_cityscapes-512x1024.py + Metadata: + Training Data: Cityscapes + Batch Size: 8 + Architecture: + - R-101-D8 + - DeepLabV3 + - (FP16) + Training Resources: 4x V100 GPUS + Memory (GB): 5.75 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101-d8_fp16_512x1024_80k_cityscapes/deeplabv3_r101-d8_fp16_512x1024_80k_cityscapes_20200717_230920-774d9cec.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101-d8_fp16_512x1024_80k_cityscapes/deeplabv3_r101-d8_fp16_512x1024_80k_cityscapes_20200717_230920.log.json + Paper: + Title: Rethinking atrous convolution for semantic image segmentation + URL: https://arxiv.org/abs/1706.05587 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/aspp_head.py#L54 + Framework: PyTorch +- Name: deeplabv3_r18-d8_4xb2-80k_cityscapes-769x769 + In Collection: DeepLabV3 + Results: + Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 76.6 + mIoU(ms+flip): 78.26 + Config: configs/deeplabv3/deeplabv3_r18-d8_4xb2-80k_cityscapes-769x769.py + Metadata: + Training Data: Cityscapes + Batch Size: 8 + Architecture: + - R-18-D8 + - DeepLabV3 + Training Resources: 4x V100 GPUS + Memory (GB): 1.9 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r18-d8_769x769_80k_cityscapes/deeplabv3_r18-d8_769x769_80k_cityscapes_20201225_021506-6452126a.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r18-d8_769x769_80k_cityscapes/deeplabv3_r18-d8_769x769_80k_cityscapes-20201225_021506.log.json + Paper: + Title: Rethinking atrous convolution for semantic image segmentation + URL: https://arxiv.org/abs/1706.05587 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/aspp_head.py#L54 + Framework: PyTorch +- Name: deeplabv3_r50-d8_4xb2-80k_cityscapes-769x769 + In Collection: DeepLabV3 + Results: + Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 79.89 + mIoU(ms+flip): 81.06 + Config: configs/deeplabv3/deeplabv3_r50-d8_4xb2-80k_cityscapes-769x769.py + Metadata: + Training Data: Cityscapes + Batch Size: 8 + Architecture: + - R-50-D8 + - DeepLabV3 + Training Resources: 4x V100 GPUS + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r50-d8_769x769_80k_cityscapes/deeplabv3_r50-d8_769x769_80k_cityscapes_20200606_221338-788d6228.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r50-d8_769x769_80k_cityscapes/deeplabv3_r50-d8_769x769_80k_cityscapes_20200606_221338.log.json + Paper: + Title: Rethinking atrous convolution for semantic image segmentation + URL: https://arxiv.org/abs/1706.05587 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/aspp_head.py#L54 + Framework: PyTorch +- Name: deeplabv3_r101-d8_4xb2-80k_cityscapes-769x769 + In Collection: DeepLabV3 + Results: + Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 79.67 + mIoU(ms+flip): 80.81 + Config: configs/deeplabv3/deeplabv3_r101-d8_4xb2-80k_cityscapes-769x769.py + Metadata: + Training Data: Cityscapes + Batch Size: 8 + Architecture: + - R-101-D8 + - DeepLabV3 + Training Resources: 4x V100 GPUS + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101-d8_769x769_80k_cityscapes/deeplabv3_r101-d8_769x769_80k_cityscapes_20200607_013353-60e95418.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101-d8_769x769_80k_cityscapes/deeplabv3_r101-d8_769x769_80k_cityscapes_20200607_013353.log.json + Paper: + Title: Rethinking atrous convolution for semantic image segmentation + URL: https://arxiv.org/abs/1706.05587 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/aspp_head.py#L54 + Framework: PyTorch +- Name: deeplabv3_r101-d16-mg124_4xb2-40k_cityscapes-512x1024 + In Collection: DeepLabV3 + Results: + Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 76.71 + mIoU(ms+flip): 78.63 + Config: configs/deeplabv3/deeplabv3_r101-d16-mg124_4xb2-40k_cityscapes-512x1024.py + Metadata: + Training Data: Cityscapes + Batch Size: 8 + Architecture: + - R-101-D16-MG124 + - DeepLabV3 + Training Resources: 4x V100 GPUS + Memory (GB): 4.7 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101-d16-mg124_512x1024_40k_cityscapes/deeplabv3_r101-d16-mg124_512x1024_40k_cityscapes_20200908_005644-67b0c992.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101-d16-mg124_512x1024_40k_cityscapes/deeplabv3_r101-d16-mg124_512x1024_40k_cityscapes-20200908_005644.log.json + Paper: + Title: Rethinking atrous convolution for semantic image segmentation + URL: https://arxiv.org/abs/1706.05587 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/aspp_head.py#L54 + Framework: PyTorch +- Name: deeplabv3_r101-d16-mg124_4xb2-80k_cityscapes-512x1024 + In Collection: DeepLabV3 + Results: + Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 78.36 + mIoU(ms+flip): 79.84 + Config: configs/deeplabv3/deeplabv3_r101-d16-mg124_4xb2-80k_cityscapes-512x1024.py + Metadata: + Training Data: Cityscapes + Batch Size: 8 + Architecture: + - R-101-D16-MG124 + - DeepLabV3 + Training Resources: 4x V100 GPUS + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101-d16-mg124_512x1024_80k_cityscapes/deeplabv3_r101-d16-mg124_512x1024_80k_cityscapes_20200908_005644-57bb8425.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101-d16-mg124_512x1024_80k_cityscapes/deeplabv3_r101-d16-mg124_512x1024_80k_cityscapes-20200908_005644.log.json + Paper: + Title: Rethinking atrous convolution for semantic image segmentation + URL: https://arxiv.org/abs/1706.05587 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/aspp_head.py#L54 + Framework: PyTorch +- Name: deeplabv3_r18b-d8_4xb2-80k_cityscapes-512x1024 + In Collection: DeepLabV3 + Results: + Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 76.26 + mIoU(ms+flip): 77.88 + Config: configs/deeplabv3/deeplabv3_r18b-d8_4xb2-80k_cityscapes-512x1024.py + Metadata: + Training Data: Cityscapes + Batch Size: 8 + Architecture: + - R-18b-D8 + - DeepLabV3 + Training Resources: 4x V100 GPUS + Memory (GB): 1.6 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r18b-d8_512x1024_80k_cityscapes/deeplabv3_r18b-d8_512x1024_80k_cityscapes_20201225_094144-46040cef.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r18b-d8_512x1024_80k_cityscapes/deeplabv3_r18b-d8_512x1024_80k_cityscapes-20201225_094144.log.json + Paper: + Title: Rethinking atrous convolution for semantic image segmentation + URL: https://arxiv.org/abs/1706.05587 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/aspp_head.py#L54 + Framework: PyTorch +- Name: deeplabv3_r50b-d8_4xb2-80k_cityscapes-512x1024 + In Collection: DeepLabV3 + Results: + Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 79.63 + mIoU(ms+flip): 80.98 + Config: configs/deeplabv3/deeplabv3_r50b-d8_4xb2-80k_cityscapes-512x1024.py + Metadata: + Training Data: Cityscapes + Batch Size: 8 + Architecture: + - R-50b-D8 + - DeepLabV3 + Training Resources: 4x V100 GPUS + Memory (GB): 6.0 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r50b-d8_512x1024_80k_cityscapes/deeplabv3_r50b-d8_512x1024_80k_cityscapes_20201225_155148-ec368954.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r50b-d8_512x1024_80k_cityscapes/deeplabv3_r50b-d8_512x1024_80k_cityscapes-20201225_155148.log.json + Paper: + Title: Rethinking atrous convolution for semantic image segmentation + URL: https://arxiv.org/abs/1706.05587 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/aspp_head.py#L54 + Framework: PyTorch +- Name: deeplabv3_r101b-d8_4xb2-80k_cityscapes-512x1024 + In Collection: DeepLabV3 + Results: + Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 80.01 + mIoU(ms+flip): 81.21 + Config: configs/deeplabv3/deeplabv3_r101b-d8_4xb2-80k_cityscapes-512x1024.py + Metadata: + Training Data: Cityscapes + Batch Size: 8 + Architecture: + - R-101b-D8 + - DeepLabV3 + Training Resources: 4x V100 GPUS + Memory (GB): 9.5 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101b-d8_512x1024_80k_cityscapes/deeplabv3_r101b-d8_512x1024_80k_cityscapes_20201226_171821-8fd49503.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101b-d8_512x1024_80k_cityscapes/deeplabv3_r101b-d8_512x1024_80k_cityscapes-20201226_171821.log.json + Paper: + Title: Rethinking atrous convolution for semantic image segmentation + URL: https://arxiv.org/abs/1706.05587 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/aspp_head.py#L54 + Framework: PyTorch +- Name: deeplabv3_r18b-d8_4xb2-80k_cityscapes-769x769 + In Collection: DeepLabV3 + Results: + Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 75.63 + mIoU(ms+flip): 77.51 + Config: configs/deeplabv3/deeplabv3_r18b-d8_4xb2-80k_cityscapes-769x769.py + Metadata: + Training Data: Cityscapes + Batch Size: 8 + Architecture: + - R-18b-D8 + - DeepLabV3 + Training Resources: 4x V100 GPUS + Memory (GB): 1.8 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r18b-d8_769x769_80k_cityscapes/deeplabv3_r18b-d8_769x769_80k_cityscapes_20201225_094144-fdc985d9.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r18b-d8_769x769_80k_cityscapes/deeplabv3_r18b-d8_769x769_80k_cityscapes-20201225_094144.log.json + Paper: + Title: Rethinking atrous convolution for semantic image segmentation + URL: https://arxiv.org/abs/1706.05587 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/aspp_head.py#L54 + Framework: PyTorch +- Name: deeplabv3_r50b-d8_4xb2-80k_cityscapes-769x769 + In Collection: DeepLabV3 + Results: + Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 78.8 + mIoU(ms+flip): 80.27 + Config: configs/deeplabv3/deeplabv3_r50b-d8_4xb2-80k_cityscapes-769x769.py + Metadata: + Training Data: Cityscapes + Batch Size: 8 + Architecture: + - R-50b-D8 + - DeepLabV3 + Training Resources: 4x V100 GPUS + Memory (GB): 6.8 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r50b-d8_769x769_80k_cityscapes/deeplabv3_r50b-d8_769x769_80k_cityscapes_20201225_155404-87fb0cf4.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r50b-d8_769x769_80k_cityscapes/deeplabv3_r50b-d8_769x769_80k_cityscapes-20201225_155404.log.json + Paper: + Title: Rethinking atrous convolution for semantic image segmentation + URL: https://arxiv.org/abs/1706.05587 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/aspp_head.py#L54 + Framework: PyTorch +- Name: deeplabv3_r101b-d8_4xb2-80k_cityscapes-769x769 + In Collection: DeepLabV3 + Results: + Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 79.41 + mIoU(ms+flip): 80.73 + Config: configs/deeplabv3/deeplabv3_r101b-d8_4xb2-80k_cityscapes-769x769.py + Metadata: + Training Data: Cityscapes + Batch Size: 8 + Architecture: + - R-101b-D8 + - DeepLabV3 + Training Resources: 4x V100 GPUS + Memory (GB): 10.7 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101b-d8_769x769_80k_cityscapes/deeplabv3_r101b-d8_769x769_80k_cityscapes_20201226_190843-9142ee57.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101b-d8_769x769_80k_cityscapes/deeplabv3_r101b-d8_769x769_80k_cityscapes-20201226_190843.log.json + Paper: + Title: Rethinking atrous convolution for semantic image segmentation + URL: https://arxiv.org/abs/1706.05587 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/aspp_head.py#L54 + Framework: PyTorch +- Name: deeplabv3_r50-d8_4xb4-80k_ade20k-512x512 + In Collection: DeepLabV3 + Results: + Task: Semantic Segmentation + Dataset: ADE20K + Metrics: + mIoU: 42.42 + mIoU(ms+flip): 43.28 + Config: configs/deeplabv3/deeplabv3_r50-d8_4xb4-80k_ade20k-512x512.py + Metadata: + Training Data: ADE20K + Batch Size: 16 + Architecture: + - R-50-D8 + - DeepLabV3 + Training Resources: 4x V100 GPUS + Memory (GB): 8.9 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r50-d8_512x512_80k_ade20k/deeplabv3_r50-d8_512x512_80k_ade20k_20200614_185028-0bb3f844.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r50-d8_512x512_80k_ade20k/deeplabv3_r50-d8_512x512_80k_ade20k_20200614_185028.log.json + Paper: + Title: Rethinking atrous convolution for semantic image segmentation + URL: https://arxiv.org/abs/1706.05587 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/aspp_head.py#L54 + Framework: PyTorch +- Name: deeplabv3_r101-d8_4xb4-80k_ade20k-512x512 + In Collection: DeepLabV3 + Results: + Task: Semantic Segmentation + Dataset: ADE20K + Metrics: + mIoU: 44.08 + mIoU(ms+flip): 45.19 + Config: configs/deeplabv3/deeplabv3_r101-d8_4xb4-80k_ade20k-512x512.py + Metadata: + Training Data: ADE20K + Batch Size: 16 + Architecture: + - R-101-D8 + - DeepLabV3 + Training Resources: 4x V100 GPUS + Memory (GB): 12.4 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101-d8_512x512_80k_ade20k/deeplabv3_r101-d8_512x512_80k_ade20k_20200615_021256-d89c7fa4.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101-d8_512x512_80k_ade20k/deeplabv3_r101-d8_512x512_80k_ade20k_20200615_021256.log.json + Paper: + Title: Rethinking atrous convolution for semantic image segmentation + URL: https://arxiv.org/abs/1706.05587 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/aspp_head.py#L54 + Framework: PyTorch +- Name: deeplabv3_r50-d8_4xb4-160k_ade20k-512x512 + In Collection: DeepLabV3 + Results: + Task: Semantic Segmentation + Dataset: ADE20K + Metrics: + mIoU: 42.66 + mIoU(ms+flip): 44.09 + Config: configs/deeplabv3/deeplabv3_r50-d8_4xb4-160k_ade20k-512x512.py + Metadata: + Training Data: ADE20K + Batch Size: 16 + Architecture: + - R-50-D8 + - DeepLabV3 + Training Resources: 4x V100 GPUS + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r50-d8_512x512_160k_ade20k/deeplabv3_r50-d8_512x512_160k_ade20k_20200615_123227-5d0ee427.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r50-d8_512x512_160k_ade20k/deeplabv3_r50-d8_512x512_160k_ade20k_20200615_123227.log.json + Paper: + Title: Rethinking atrous convolution for semantic image segmentation + URL: https://arxiv.org/abs/1706.05587 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/aspp_head.py#L54 + Framework: PyTorch +- Name: deeplabv3_r101-d8_4xb4-160k_ade20k-512x512 + In Collection: DeepLabV3 + Results: + Task: Semantic Segmentation + Dataset: ADE20K + Metrics: + mIoU: 45.0 + mIoU(ms+flip): 46.66 + Config: configs/deeplabv3/deeplabv3_r101-d8_4xb4-160k_ade20k-512x512.py + Metadata: + Training Data: ADE20K + Batch Size: 16 + Architecture: + - R-101-D8 + - DeepLabV3 + Training Resources: 4x V100 GPUS + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101-d8_512x512_160k_ade20k/deeplabv3_r101-d8_512x512_160k_ade20k_20200615_105816-b1f72b3b.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101-d8_512x512_160k_ade20k/deeplabv3_r101-d8_512x512_160k_ade20k_20200615_105816.log.json + Paper: + Title: Rethinking atrous convolution for semantic image segmentation + URL: https://arxiv.org/abs/1706.05587 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/aspp_head.py#L54 + Framework: PyTorch +- Name: deeplabv3_r50-d8_4xb4-20k_voc12aug-512x512 + In Collection: DeepLabV3 + Results: + Task: Semantic Segmentation + Dataset: Pascal VOC 2012 + Aug + Metrics: + mIoU: 76.17 + mIoU(ms+flip): 77.42 + Config: configs/deeplabv3/deeplabv3_r50-d8_4xb4-20k_voc12aug-512x512.py + Metadata: + Training Data: Pascal VOC 2012 + Aug + Batch Size: 16 + Architecture: + - R-50-D8 + - DeepLabV3 + Training Resources: 4x V100 GPUS + Memory (GB): 6.1 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r50-d8_512x512_20k_voc12aug/deeplabv3_r50-d8_512x512_20k_voc12aug_20200617_010906-596905ef.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r50-d8_512x512_20k_voc12aug/deeplabv3_r50-d8_512x512_20k_voc12aug_20200617_010906.log.json + Paper: + Title: Rethinking atrous convolution for semantic image segmentation + URL: https://arxiv.org/abs/1706.05587 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/aspp_head.py#L54 + Framework: PyTorch +- Name: deeplabv3_r101-d8_4xb4-20k_voc12aug-512x512 + In Collection: DeepLabV3 + Results: + Task: Semantic Segmentation + Dataset: Pascal VOC 2012 + Aug + Metrics: + mIoU: 78.7 + mIoU(ms+flip): 79.95 + Config: configs/deeplabv3/deeplabv3_r101-d8_4xb4-20k_voc12aug-512x512.py + Metadata: + Training Data: Pascal VOC 2012 + Aug + Batch Size: 16 + Architecture: + - R-101-D8 + - DeepLabV3 + Training Resources: 4x V100 GPUS + Memory (GB): 9.6 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101-d8_512x512_20k_voc12aug/deeplabv3_r101-d8_512x512_20k_voc12aug_20200617_010932-8d13832f.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101-d8_512x512_20k_voc12aug/deeplabv3_r101-d8_512x512_20k_voc12aug_20200617_010932.log.json + Paper: + Title: Rethinking atrous convolution for semantic image segmentation + URL: https://arxiv.org/abs/1706.05587 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/aspp_head.py#L54 + Framework: PyTorch +- Name: deeplabv3_r50-d8_4xb4-40k_voc12aug-512x512 + In Collection: DeepLabV3 + Results: + Task: Semantic Segmentation + Dataset: Pascal VOC 2012 + Aug + Metrics: + mIoU: 77.68 + mIoU(ms+flip): 78.78 + Config: configs/deeplabv3/deeplabv3_r50-d8_4xb4-40k_voc12aug-512x512.py + Metadata: + Training Data: Pascal VOC 2012 + Aug + Batch Size: 16 + Architecture: + - R-50-D8 + - DeepLabV3 + Training Resources: 4x V100 GPUS + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r50-d8_512x512_40k_voc12aug/deeplabv3_r50-d8_512x512_40k_voc12aug_20200613_161546-2ae96e7e.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r50-d8_512x512_40k_voc12aug/deeplabv3_r50-d8_512x512_40k_voc12aug_20200613_161546.log.json + Paper: + Title: Rethinking atrous convolution for semantic image segmentation + URL: https://arxiv.org/abs/1706.05587 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/aspp_head.py#L54 + Framework: PyTorch +- Name: deeplabv3_r101-d8_4xb4-40k_voc12aug-512x512 + In Collection: DeepLabV3 + Results: + Task: Semantic Segmentation + Dataset: Pascal VOC 2012 + Aug + Metrics: + mIoU: 77.92 + mIoU(ms+flip): 79.18 + Config: configs/deeplabv3/deeplabv3_r101-d8_4xb4-40k_voc12aug-512x512.py + Metadata: + Training Data: Pascal VOC 2012 + Aug + Batch Size: 16 + Architecture: + - R-101-D8 + - DeepLabV3 + Training Resources: 4x V100 GPUS + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101-d8_512x512_40k_voc12aug/deeplabv3_r101-d8_512x512_40k_voc12aug_20200613_161432-0017d784.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101-d8_512x512_40k_voc12aug/deeplabv3_r101-d8_512x512_40k_voc12aug_20200613_161432.log.json + Paper: + Title: Rethinking atrous convolution for semantic image segmentation + URL: https://arxiv.org/abs/1706.05587 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/aspp_head.py#L54 + Framework: PyTorch +- Name: deeplabv3_r101-d8_4xb4-40k_pascal-context-480x480 + In Collection: DeepLabV3 + Results: + Task: Semantic Segmentation + Dataset: Pascal Context + Metrics: + mIoU: 46.55 + mIoU(ms+flip): 47.81 + Config: configs/deeplabv3/deeplabv3_r101-d8_4xb4-40k_pascal-context-480x480.py + Metadata: + Training Data: Pascal Context + Batch Size: 16 + Architecture: + - R-101-D8 + - DeepLabV3 + Training Resources: 4x V100 GPUS + Memory (GB): 9.2 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101-d8_480x480_40k_pascal_context/deeplabv3_r101-d8_480x480_40k_pascal_context_20200911_204118-1aa27336.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101-d8_480x480_40k_pascal_context/deeplabv3_r101-d8_480x480_40k_pascal_context-20200911_204118.log.json + Paper: + Title: Rethinking atrous convolution for semantic image segmentation + URL: https://arxiv.org/abs/1706.05587 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/aspp_head.py#L54 + Framework: PyTorch +- Name: deeplabv3_r101-d8_4xb4-80k_pascal-context-480x480 + In Collection: DeepLabV3 + Results: + Task: Semantic Segmentation + Dataset: Pascal Context + Metrics: + mIoU: 46.42 + mIoU(ms+flip): 47.53 + Config: configs/deeplabv3/deeplabv3_r101-d8_4xb4-80k_pascal-context-480x480.py + Metadata: + Training Data: Pascal Context + Batch Size: 16 + Architecture: + - R-101-D8 + - DeepLabV3 + Training Resources: 4x V100 GPUS + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101-d8_480x480_80k_pascal_context/deeplabv3_r101-d8_480x480_80k_pascal_context_20200911_170155-2a21fff3.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101-d8_480x480_80k_pascal_context/deeplabv3_r101-d8_480x480_80k_pascal_context-20200911_170155.log.json + Paper: + Title: Rethinking atrous convolution for semantic image segmentation + URL: https://arxiv.org/abs/1706.05587 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/aspp_head.py#L54 + Framework: PyTorch +- Name: deeplabv3_r101-d8_4xb4-40k_pascal-context-59-480x480 + In Collection: DeepLabV3 + Results: + Task: Semantic Segmentation + Dataset: Pascal Context 59 + Metrics: + mIoU: 52.61 + mIoU(ms+flip): 54.28 + Config: configs/deeplabv3/deeplabv3_r101-d8_4xb4-40k_pascal-context-59-480x480.py + Metadata: + Training Data: Pascal Context 59 + Batch Size: 16 + Architecture: + - R-101-D8 + - DeepLabV3 + Training Resources: 4x V100 GPUS + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101-d8_480x480_40k_pascal_context_59/deeplabv3_r101-d8_480x480_40k_pascal_context_59_20210416_110332-cb08ea46.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101-d8_480x480_40k_pascal_context_59/deeplabv3_r101-d8_480x480_40k_pascal_context_59-20210416_110332.log.json + Paper: + Title: Rethinking atrous convolution for semantic image segmentation + URL: https://arxiv.org/abs/1706.05587 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/aspp_head.py#L54 + Framework: PyTorch +- Name: deeplabv3_r101-d8_4xb4-80k_pascal-context-59-480x480 + In Collection: DeepLabV3 + Results: + Task: Semantic Segmentation + Dataset: Pascal Context 59 + Metrics: + mIoU: 52.46 + mIoU(ms+flip): 54.09 + Config: configs/deeplabv3/deeplabv3_r101-d8_4xb4-80k_pascal-context-59-480x480.py + Metadata: + Training Data: Pascal Context 59 + Batch Size: 16 + Architecture: + - R-101-D8 + - DeepLabV3 + Training Resources: 4x V100 GPUS + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101-d8_480x480_80k_pascal_context_59/deeplabv3_r101-d8_480x480_80k_pascal_context_59_20210416_113002-26303993.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101-d8_480x480_80k_pascal_context_59/deeplabv3_r101-d8_480x480_80k_pascal_context_59-20210416_113002.log.json + Paper: + Title: Rethinking atrous convolution for semantic image segmentation + URL: https://arxiv.org/abs/1706.05587 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/aspp_head.py#L54 + Framework: PyTorch +- Name: deeplabv3_r50-d8_4xb4-20k_coco-stuff10k-512x512 + In Collection: DeepLabV3 + Results: + Task: Semantic Segmentation + Dataset: COCO-Stuff 10k + Metrics: + mIoU: 34.66 + mIoU(ms+flip): 36.08 + Config: configs/deeplabv3/deeplabv3_r50-d8_4xb4-20k_coco-stuff10k-512x512.py + Metadata: + Training Data: COCO-Stuff 10k + Batch Size: 16 + Architecture: + - R-50-D8 + - DeepLabV3 + Training Resources: 4x V100 GPUS + Memory (GB): 9.6 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r50-d8_512x512_4x4_20k_coco-stuff10k/deeplabv3_r50-d8_512x512_4x4_20k_coco-stuff10k_20210821_043025-b35f789d.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r50-d8_512x512_4x4_20k_coco-stuff10k/deeplabv3_r50-d8_512x512_4x4_20k_coco-stuff10k_20210821_043025.log.json + Paper: + Title: Rethinking atrous convolution for semantic image segmentation + URL: https://arxiv.org/abs/1706.05587 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/aspp_head.py#L54 + Framework: PyTorch +- Name: deeplabv3_r101-d8_4xb4-20k_coco-stuff10k-512x512 + In Collection: DeepLabV3 + Results: + Task: Semantic Segmentation + Dataset: COCO-Stuff 10k + Metrics: + mIoU: 37.3 + mIoU(ms+flip): 38.42 + Config: configs/deeplabv3/deeplabv3_r101-d8_4xb4-20k_coco-stuff10k-512x512.py + Metadata: + Training Data: COCO-Stuff 10k + Batch Size: 16 + Architecture: + - R-101-D8 + - DeepLabV3 + Training Resources: 4x V100 GPUS + Memory (GB): 13.2 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101-d8_512x512_4x4_20k_coco-stuff10k/deeplabv3_r101-d8_512x512_4x4_20k_coco-stuff10k_20210821_043025-c49752cb.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101-d8_512x512_4x4_20k_coco-stuff10k/deeplabv3_r101-d8_512x512_4x4_20k_coco-stuff10k_20210821_043025.log.json + Paper: + Title: Rethinking atrous convolution for semantic image segmentation + URL: https://arxiv.org/abs/1706.05587 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/aspp_head.py#L54 + Framework: PyTorch +- Name: deeplabv3_r50-d8_4xb4-40k_coco-stuff10k-512x512 + In Collection: DeepLabV3 + Results: + Task: Semantic Segmentation + Dataset: COCO-Stuff 10k + Metrics: + mIoU: 35.73 + mIoU(ms+flip): 37.09 + Config: configs/deeplabv3/deeplabv3_r50-d8_4xb4-40k_coco-stuff10k-512x512.py + Metadata: + Training Data: COCO-Stuff 10k + Batch Size: 16 + Architecture: + - R-50-D8 + - DeepLabV3 + Training Resources: 4x V100 GPUS + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r50-d8_512x512_4x4_40k_coco-stuff10k/deeplabv3_r50-d8_512x512_4x4_40k_coco-stuff10k_20210821_043305-dc76f3ff.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r50-d8_512x512_4x4_40k_coco-stuff10k/deeplabv3_r50-d8_512x512_4x4_40k_coco-stuff10k_20210821_043305.log.json + Paper: + Title: Rethinking atrous convolution for semantic image segmentation + URL: https://arxiv.org/abs/1706.05587 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/aspp_head.py#L54 + Framework: PyTorch +- Name: deeplabv3_r101-d8_4xb4-40k_coco-stuff10k-512x512 + In Collection: DeepLabV3 + Results: + Task: Semantic Segmentation + Dataset: COCO-Stuff 10k + Metrics: + mIoU: 37.81 + mIoU(ms+flip): 38.8 + Config: configs/deeplabv3/deeplabv3_r101-d8_4xb4-40k_coco-stuff10k-512x512.py + Metadata: + Training Data: COCO-Stuff 10k + Batch Size: 16 + Architecture: + - R-101-D8 + - DeepLabV3 + Training Resources: 4x V100 GPUS + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101-d8_512x512_4x4_40k_coco-stuff10k/deeplabv3_r101-d8_512x512_4x4_40k_coco-stuff10k_20210821_043305-636cb433.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101-d8_512x512_4x4_40k_coco-stuff10k/deeplabv3_r101-d8_512x512_4x4_40k_coco-stuff10k_20210821_043305.log.json + Paper: + Title: Rethinking atrous convolution for semantic image segmentation + URL: https://arxiv.org/abs/1706.05587 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/aspp_head.py#L54 + Framework: PyTorch +- Name: deeplabv3_r50-d8_4xb4-80k_coco-stuff164k-512x512 + In Collection: DeepLabV3 + Results: + Task: Semantic Segmentation + Dataset: COCO-Stuff 164k + Metrics: + mIoU: 39.38 + mIoU(ms+flip): 40.03 + Config: configs/deeplabv3/deeplabv3_r50-d8_4xb4-80k_coco-stuff164k-512x512.py + Metadata: + Training Data: COCO-Stuff 164k + Batch Size: 16 + Architecture: + - R-50-D8 + - DeepLabV3 + Training Resources: 4x V100 GPUS + Memory (GB): 9.6 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r50-d8_512x512_4x4_80k_coco-stuff164k/deeplabv3_r50-d8_512x512_4x4_80k_coco-stuff164k_20210709_163016-88675c24.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r50-d8_512x512_4x4_80k_coco-stuff164k/deeplabv3_r50-d8_512x512_4x4_80k_coco-stuff164k_20210709_163016.log.json + Paper: + Title: Rethinking atrous convolution for semantic image segmentation + URL: https://arxiv.org/abs/1706.05587 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/aspp_head.py#L54 + Framework: PyTorch +- Name: deeplabv3_r101-d8_4xb4-80k_coco-stuff164k-512x512 + In Collection: DeepLabV3 + Results: + Task: Semantic Segmentation + Dataset: COCO-Stuff 164k + Metrics: + mIoU: 40.87 + mIoU(ms+flip): 41.5 + Config: configs/deeplabv3/deeplabv3_r101-d8_4xb4-80k_coco-stuff164k-512x512.py + Metadata: + Training Data: COCO-Stuff 164k + Batch Size: 16 + Architecture: + - R-101-D8 + - DeepLabV3 + Training Resources: 4x V100 GPUS + Memory (GB): 13.2 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101-d8_512x512_4x4_80k_coco-stuff164k/deeplabv3_r101-d8_512x512_4x4_80k_coco-stuff164k_20210709_201252-13600dc2.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101-d8_512x512_4x4_80k_coco-stuff164k/deeplabv3_r101-d8_512x512_4x4_80k_coco-stuff164k_20210709_201252.log.json + Paper: + Title: Rethinking atrous convolution for semantic image segmentation + URL: https://arxiv.org/abs/1706.05587 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/aspp_head.py#L54 + Framework: PyTorch +- Name: deeplabv3_r50-d8_4xb4-160k_coco-stuff164k-512x512 + In Collection: DeepLabV3 + Results: + Task: Semantic Segmentation + Dataset: COCO-Stuff 164k + Metrics: + mIoU: 41.09 + mIoU(ms+flip): 41.69 + Config: configs/deeplabv3/deeplabv3_r50-d8_4xb4-160k_coco-stuff164k-512x512.py + Metadata: + Training Data: COCO-Stuff 164k + Batch Size: 16 + Architecture: + - R-50-D8 + - DeepLabV3 + Training Resources: 4x V100 GPUS + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r50-d8_512x512_4x4_160k_coco-stuff164k/deeplabv3_r50-d8_512x512_4x4_160k_coco-stuff164k_20210709_163016-49f2812b.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r50-d8_512x512_4x4_160k_coco-stuff164k/deeplabv3_r50-d8_512x512_4x4_160k_coco-stuff164k_20210709_163016.log.json + Paper: + Title: Rethinking atrous convolution for semantic image segmentation + URL: https://arxiv.org/abs/1706.05587 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/aspp_head.py#L54 + Framework: PyTorch +- Name: deeplabv3_r101-d8_4xb4-160k_coco-stuff164k-512x512 + In Collection: DeepLabV3 + Results: + Task: Semantic Segmentation + Dataset: COCO-Stuff 164k + Metrics: + mIoU: 41.82 + mIoU(ms+flip): 42.49 + Config: configs/deeplabv3/deeplabv3_r101-d8_4xb4-160k_coco-stuff164k-512x512.py + Metadata: + Training Data: COCO-Stuff 164k + Batch Size: 16 + Architecture: + - R-101-D8 + - DeepLabV3 + Training Resources: 4x V100 GPUS + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101-d8_512x512_4x4_160k_coco-stuff164k/deeplabv3_r101-d8_512x512_4x4_160k_coco-stuff164k_20210709_155402-f035acfd.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101-d8_512x512_4x4_160k_coco-stuff164k/deeplabv3_r101-d8_512x512_4x4_160k_coco-stuff164k_20210709_155402.log.json + Paper: + Title: Rethinking atrous convolution for semantic image segmentation + URL: https://arxiv.org/abs/1706.05587 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/aspp_head.py#L54 + Framework: PyTorch +- Name: deeplabv3_r50-d8_4xb4-320k_coco-stuff164k-512x512 + In Collection: DeepLabV3 + Results: + Task: Semantic Segmentation + Dataset: COCO-Stuff 164k + Metrics: + mIoU: 41.37 + mIoU(ms+flip): 42.22 + Config: configs/deeplabv3/deeplabv3_r50-d8_4xb4-320k_coco-stuff164k-512x512.py + Metadata: + Training Data: COCO-Stuff 164k + Batch Size: 16 + Architecture: + - R-50-D8 + - DeepLabV3 + Training Resources: 4x V100 GPUS + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r50-d8_512x512_4x4_320k_coco-stuff164k/deeplabv3_r50-d8_512x512_4x4_320k_coco-stuff164k_20210709_155403-51b21115.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r50-d8_512x512_4x4_320k_coco-stuff164k/deeplabv3_r50-d8_512x512_4x4_320k_coco-stuff164k_20210709_155403.log.json + Paper: + Title: Rethinking atrous convolution for semantic image segmentation + URL: https://arxiv.org/abs/1706.05587 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/aspp_head.py#L54 + Framework: PyTorch +- Name: deeplabv3_r101-d8_4xb4-320k_coco-stuff164k-512x512 + In Collection: DeepLabV3 + Results: + Task: Semantic Segmentation + Dataset: COCO-Stuff 164k + Metrics: + mIoU: 42.61 + mIoU(ms+flip): 43.42 + Config: configs/deeplabv3/deeplabv3_r101-d8_4xb4-320k_coco-stuff164k-512x512.py + Metadata: + Training Data: COCO-Stuff 164k + Batch Size: 16 + Architecture: + - R-101-D8 + - DeepLabV3 + Training Resources: 4x V100 GPUS + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101-d8_512x512_4x4_320k_coco-stuff164k/deeplabv3_r101-d8_512x512_4x4_320k_coco-stuff164k_20210709_155402-3cbca14d.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101-d8_512x512_4x4_320k_coco-stuff164k/deeplabv3_r101-d8_512x512_4x4_320k_coco-stuff164k_20210709_155402.log.json + Paper: + Title: Rethinking atrous convolution for semantic image segmentation + URL: https://arxiv.org/abs/1706.05587 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/aspp_head.py#L54 + Framework: PyTorch diff --git a/configs/deeplabv3plus/README.md b/configs/deeplabv3plus/README.md index f60f547391..15c51a504a 100644 --- a/configs/deeplabv3plus/README.md +++ b/configs/deeplabv3plus/README.md @@ -1,6 +1,6 @@ # DeepLabV3+ -[Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation](https://arxiv.org/abs/1802.02611) +> [Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation](https://arxiv.org/abs/1802.02611) ## Introduction @@ -22,107 +22,96 @@ Spatial pyramid pooling module or encode-decoder structure are used in deep neur -## Citation - -```bibtex -@inproceedings{deeplabv3plus2018, - title={Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation}, - author={Liang-Chieh Chen and Yukun Zhu and George Papandreou and Florian Schroff and Hartwig Adam}, - booktitle={ECCV}, - year={2018} -} -``` - ## Results and models ### Cityscapes -| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | mIoU | mIoU(ms+flip) | config | download | -| ----------------- | --------------- | --------- | ------: | -------- | -------------- | ----: | ------------: | -------------------------------------------------------------------------------------------------------------------------------------------------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ | -| DeepLabV3+ | R-50-D8 | 512x1024 | 40000 | 7.5 | 3.94 | 79.61 | 81.01 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/deeplabv3plus/deeplabv3plus_r50-d8_4xb2-40k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r50-d8_512x1024_40k_cityscapes/deeplabv3plus_r50-d8_512x1024_40k_cityscapes_20200605_094610-d222ffcd.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r50-d8_512x1024_40k_cityscapes/deeplabv3plus_r50-d8_512x1024_40k_cityscapes_20200605_094610.log.json) | -| DeepLabV3+ | R-101-D8 | 512x1024 | 40000 | 11 | 2.60 | 80.21 | 81.82 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/deeplabv3plus/deeplabv3plus_r101-d8_4xb2-40k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r101-d8_512x1024_40k_cityscapes/deeplabv3plus_r101-d8_512x1024_40k_cityscapes_20200605_094614-3769eecf.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r101-d8_512x1024_40k_cityscapes/deeplabv3plus_r101-d8_512x1024_40k_cityscapes_20200605_094614.log.json) | -| DeepLabV3+ | R-50-D8 | 769x769 | 40000 | 8.5 | 1.72 | 78.97 | 80.46 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/deeplabv3plus/deeplabv3plus_r50-d8_4xb2-40k_cityscapes-769x769.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r50-d8_769x769_40k_cityscapes/deeplabv3plus_r50-d8_769x769_40k_cityscapes_20200606_114143-1dcb0e3c.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r50-d8_769x769_40k_cityscapes/deeplabv3plus_r50-d8_769x769_40k_cityscapes_20200606_114143.log.json) | -| DeepLabV3+ | R-101-D8 | 769x769 | 40000 | 12.5 | 1.15 | 79.46 | 80.50 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/deeplabv3plus/deeplabv3plus_r101-d8_4xb2-40k_cityscapes-769x769.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r101-d8_769x769_40k_cityscapes/deeplabv3plus_r101-d8_769x769_40k_cityscapes_20200606_114304-ff414b9e.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r101-d8_769x769_40k_cityscapes/deeplabv3plus_r101-d8_769x769_40k_cityscapes_20200606_114304.log.json) | -| DeepLabV3+ | R-18-D8 | 512x1024 | 80000 | 2.2 | 14.27 | 76.89 | 78.76 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/deeplabv3plus/deeplabv3plus_r18-d8_4xb2-80k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r18-d8_512x1024_80k_cityscapes/deeplabv3plus_r18-d8_512x1024_80k_cityscapes_20201226_080942-cff257fe.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r18-d8_512x1024_80k_cityscapes/deeplabv3plus_r18-d8_512x1024_80k_cityscapes-20201226_080942.log.json) | -| DeepLabV3+ | R-50-D8 | 512x1024 | 80000 | - | - | 80.09 | 81.13 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/deeplabv3plus/deeplabv3plus_r50-d8_4xb2-80k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r50-d8_512x1024_80k_cityscapes/deeplabv3plus_r50-d8_512x1024_80k_cityscapes_20200606_114049-f9fb496d.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r50-d8_512x1024_80k_cityscapes/deeplabv3plus_r50-d8_512x1024_80k_cityscapes_20200606_114049.log.json) | -| DeepLabV3+ | R-101-D8 | 512x1024 | 80000 | - | - | 80.97 | 82.03 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/deeplabv3plus/deeplabv3plus_r101-d8_4xb2-80k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r101-d8_512x1024_80k_cityscapes/deeplabv3plus_r101-d8_512x1024_80k_cityscapes_20200606_114143-068fcfe9.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r101-d8_512x1024_80k_cityscapes/deeplabv3plus_r101-d8_512x1024_80k_cityscapes_20200606_114143.log.json) | -| DeepLabV3+ (FP16) | R-101-D8 | 512x1024 | 80000 | 6.35 | 7.87 | 80.46 | - | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/deeplabv3plus/deeplabv3plus_r101-d8_4xb2-amp-80k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r101-d8_fp16_512x1024_80k_cityscapes/deeplabv3plus_r101-d8_fp16_512x1024_80k_cityscapes_20200717_230920-f1104f4b.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r101-d8_fp16_512x1024_80k_cityscapes/deeplabv3plus_r101-d8_fp16_512x1024_80k_cityscapes_20200717_230920.log.json) | -| DeepLabV3+ | R-18-D8 | 769x769 | 80000 | 2.5 | 5.74 | 76.26 | 77.91 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/deeplabv3plus/deeplabv3plus_r18-d8_4xb2-80k_cityscapes-769x769.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r18-d8_769x769_80k_cityscapes/deeplabv3plus_r18-d8_769x769_80k_cityscapes_20201226_083346-f326e06a.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r18-d8_769x769_80k_cityscapes/deeplabv3plus_r18-d8_769x769_80k_cityscapes-20201226_083346.log.json) | -| DeepLabV3+ | R-50-D8 | 769x769 | 80000 | - | - | 79.83 | 81.48 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/deeplabv3plus/deeplabv3plus_r50-d8_4xb2-80k_cityscapes-769x769.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r50-d8_769x769_80k_cityscapes/deeplabv3plus_r50-d8_769x769_80k_cityscapes_20200606_210233-0e9dfdc4.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r50-d8_769x769_80k_cityscapes/deeplabv3plus_r50-d8_769x769_80k_cityscapes_20200606_210233.log.json) | -| DeepLabV3+ | R-101-D8 | 769x769 | 80000 | - | - | 80.65 | 81.47 | [config\[1\]](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/deeplabv3plus/deeplabv3plus_r101-d8_4xb2-80k_cityscapes-769x769.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r101-d8_769x769_80k_cityscapes/deeplabv3plus_r101-d8_769x769_80k_cityscapes_20220406_154720-dfcc0b68.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r101-d8_769x769_80k_cityscapes/deeplabv3plus_r101-d8_769x769_80k_cityscapes_20220406_154720.log.json) | -| DeepLabV3+ | R-101-D16-MG124 | 512x1024 | 40000 | 5.8 | 7.48 | 79.09 | 80.36 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/deeplabv3plus/ddeeplabv3plus_r101-d16-mg124_4xb2-40k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r101-d16-mg124_512x1024_40k_cityscapes/deeplabv3plus_r101-d16-mg124_512x1024_40k_cityscapes_20200908_005644-cf9ce186.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r101-d16-mg124_512x1024_40k_cityscapes/deeplabv3plus_r101-d16-mg124_512x1024_40k_cityscapes-20200908_005644.log.json) | -| DeepLabV3+ | R-101-D16-MG124 | 512x1024 | 80000 | 9.9 | - | 79.90 | 81.33 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/deeplabv3plus/deeplabv3plus_r101-d16-mg124_4xb2-80k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r101-d16-mg124_512x1024_80k_cityscapes/deeplabv3plus_r101-d16-mg124_512x1024_80k_cityscapes_20200908_005644-ee6158e0.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r101-d16-mg124_512x1024_80k_cityscapes/deeplabv3plus_r101-d16-mg124_512x1024_80k_cityscapes-20200908_005644.log.json) | -| DeepLabV3+ | R-18b-D8 | 512x1024 | 80000 | 2.1 | 14.95 | 75.87 | 77.52 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/deeplabv3plus/deeplabv3plus_r18b-d8_4xb2-80k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r18b-d8_512x1024_80k_cityscapes/deeplabv3plus_r18b-d8_512x1024_80k_cityscapes_20201226_090828-e451abd9.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r18b-d8_512x1024_80k_cityscapes/deeplabv3plus_r18b-d8_512x1024_80k_cityscapes-20201226_090828.log.json) | -| DeepLabV3+ | R-50b-D8 | 512x1024 | 80000 | 7.4 | 3.94 | 80.28 | 81.44 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/deeplabv3plus/deeplabv3plus_r50b-d8_4xb2-80k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r50b-d8_512x1024_80k_cityscapes/deeplabv3plus_r50b-d8_512x1024_80k_cityscapes_20201225_213645-a97e4e43.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r50b-d8_512x1024_80k_cityscapes/deeplabv3plus_r50b-d8_512x1024_80k_cityscapes-20201225_213645.log.json) | -| DeepLabV3+ | R-101b-D8 | 512x1024 | 80000 | 10.9 | 2.60 | 80.16 | 81.41 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/deeplabv3plus/deeplabv3plus_r101b-d8_4xb2-80k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r101b-d8_512x1024_80k_cityscapes/deeplabv3plus_r101b-d8_512x1024_80k_cityscapes_20201226_190843-9c3c93a4.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r101b-d8_512x1024_80k_cityscapes/deeplabv3plus_r101b-d8_512x1024_80k_cityscapes-20201226_190843.log.json) | -| DeepLabV3+ | R-18b-D8 | 769x769 | 80000 | 2.4 | 5.96 | 76.36 | 78.24 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/deeplabv3plus/deeplabv3plus_r18b-d8_4xb2-80k_cityscapes-769x769.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r18b-d8_769x769_80k_cityscapes/deeplabv3plus_r18b-d8_769x769_80k_cityscapes_20201226_151312-2c868aff.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r18b-d8_769x769_80k_cityscapes/deeplabv3plus_r18b-d8_769x769_80k_cityscapes-20201226_151312.log.json) | -| DeepLabV3+ | R-50b-D8 | 769x769 | 80000 | 8.4 | 1.72 | 79.41 | 80.56 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/deeplabv3plus/deeplabv3plus_r50b-d8_4xb2-80k_cityscapes-769x769.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r50b-d8_769x769_80k_cityscapes/deeplabv3plus_r50b-d8_769x769_80k_cityscapes_20201225_224655-8b596d1c.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r50b-d8_769x769_80k_cityscapes/deeplabv3plus_r50b-d8_769x769_80k_cityscapes-20201225_224655.log.json) | -| DeepLabV3+ | R-101b-D8 | 769x769 | 80000 | 12.3 | 1.10 | 79.88 | 81.46 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/deeplabv3plus/deeplabv3plus_r101b-d8_4xb2-80k_cityscapes-769x769.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r101b-d8_769x769_80k_cityscapes/deeplabv3plus_r101b-d8_769x769_80k_cityscapes_20201226_205041-227cdf7c.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r101b-d8_769x769_80k_cityscapes/deeplabv3plus_r101b-d8_769x769_80k_cityscapes-20201226_205041.log.json) | +| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | Device | mIoU | mIoU(ms+flip) | config | download | +| ----------------- | --------------- | --------- | ------: | -------- | -------------- | ------ | ----: | ------------: | -------------------------------------------------------------------------------------------------------------------------------------------------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ | +| DeepLabV3+ | R-50-D8 | 512x1024 | 40000 | 7.5 | 3.94 | V100 | 79.61 | 81.01 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/deeplabv3plus/deeplabv3plus_r50-d8_4xb2-40k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r50-d8_512x1024_40k_cityscapes/deeplabv3plus_r50-d8_512x1024_40k_cityscapes_20200605_094610-d222ffcd.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r50-d8_512x1024_40k_cityscapes/deeplabv3plus_r50-d8_512x1024_40k_cityscapes_20200605_094610.log.json) | +| DeepLabV3+ | R-101-D8 | 512x1024 | 40000 | 11 | 2.60 | V100 | 80.21 | 81.82 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/deeplabv3plus/deeplabv3plus_r101-d8_4xb2-40k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r101-d8_512x1024_40k_cityscapes/deeplabv3plus_r101-d8_512x1024_40k_cityscapes_20200605_094614-3769eecf.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r101-d8_512x1024_40k_cityscapes/deeplabv3plus_r101-d8_512x1024_40k_cityscapes_20200605_094614.log.json) | +| DeepLabV3+ | R-50-D8 | 769x769 | 40000 | 8.5 | 1.72 | V100 | 78.97 | 80.46 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/deeplabv3plus/deeplabv3plus_r50-d8_4xb2-40k_cityscapes-769x769.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r50-d8_769x769_40k_cityscapes/deeplabv3plus_r50-d8_769x769_40k_cityscapes_20200606_114143-1dcb0e3c.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r50-d8_769x769_40k_cityscapes/deeplabv3plus_r50-d8_769x769_40k_cityscapes_20200606_114143.log.json) | +| DeepLabV3+ | R-101-D8 | 769x769 | 40000 | 12.5 | 1.15 | V100 | 79.46 | 80.50 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/deeplabv3plus/deeplabv3plus_r101-d8_4xb2-40k_cityscapes-769x769.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r101-d8_769x769_40k_cityscapes/deeplabv3plus_r101-d8_769x769_40k_cityscapes_20200606_114304-ff414b9e.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r101-d8_769x769_40k_cityscapes/deeplabv3plus_r101-d8_769x769_40k_cityscapes_20200606_114304.log.json) | +| DeepLabV3+ | R-18-D8 | 512x1024 | 80000 | 2.2 | 14.27 | V100 | 76.89 | 78.76 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/deeplabv3plus/deeplabv3plus_r18-d8_4xb2-80k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r18-d8_512x1024_80k_cityscapes/deeplabv3plus_r18-d8_512x1024_80k_cityscapes_20201226_080942-cff257fe.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r18-d8_512x1024_80k_cityscapes/deeplabv3plus_r18-d8_512x1024_80k_cityscapes-20201226_080942.log.json) | +| DeepLabV3+ | R-50-D8 | 512x1024 | 80000 | - | - | V100 | 80.09 | 81.13 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/deeplabv3plus/deeplabv3plus_r50-d8_4xb2-80k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r50-d8_512x1024_80k_cityscapes/deeplabv3plus_r50-d8_512x1024_80k_cityscapes_20200606_114049-f9fb496d.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r50-d8_512x1024_80k_cityscapes/deeplabv3plus_r50-d8_512x1024_80k_cityscapes_20200606_114049.log.json) | +| DeepLabV3+ | R-101-D8 | 512x1024 | 80000 | - | - | V100 | 80.97 | 82.03 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/deeplabv3plus/deeplabv3plus_r101-d8_4xb2-80k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r101-d8_512x1024_80k_cityscapes/deeplabv3plus_r101-d8_512x1024_80k_cityscapes_20200606_114143-068fcfe9.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r101-d8_512x1024_80k_cityscapes/deeplabv3plus_r101-d8_512x1024_80k_cityscapes_20200606_114143.log.json) | +| DeepLabV3+ (FP16) | R-101-D8 | 512x1024 | 80000 | 6.35 | 7.87 | V100 | 80.46 | - | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/deeplabv3plus/deeplabv3plus_r101-d8_4xb2-amp-80k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r101-d8_fp16_512x1024_80k_cityscapes/deeplabv3plus_r101-d8_fp16_512x1024_80k_cityscapes_20200717_230920-f1104f4b.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r101-d8_fp16_512x1024_80k_cityscapes/deeplabv3plus_r101-d8_fp16_512x1024_80k_cityscapes_20200717_230920.log.json) | +| DeepLabV3+ | R-18-D8 | 769x769 | 80000 | 2.5 | 5.74 | V100 | 76.26 | 77.91 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/deeplabv3plus/deeplabv3plus_r18-d8_4xb2-80k_cityscapes-769x769.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r18-d8_769x769_80k_cityscapes/deeplabv3plus_r18-d8_769x769_80k_cityscapes_20201226_083346-f326e06a.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r18-d8_769x769_80k_cityscapes/deeplabv3plus_r18-d8_769x769_80k_cityscapes-20201226_083346.log.json) | +| DeepLabV3+ | R-50-D8 | 769x769 | 80000 | - | - | V100 | 79.83 | 81.48 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/deeplabv3plus/deeplabv3plus_r50-d8_4xb2-80k_cityscapes-769x769.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r50-d8_769x769_80k_cityscapes/deeplabv3plus_r50-d8_769x769_80k_cityscapes_20200606_210233-0e9dfdc4.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r50-d8_769x769_80k_cityscapes/deeplabv3plus_r50-d8_769x769_80k_cityscapes_20200606_210233.log.json) | +| DeepLabV3+ | R-101-D8 | 769x769 | 80000 | - | - | V100 | 80.65 | 81.47 | [config\[1\]](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/deeplabv3plus/deeplabv3plus_r101-d8_4xb2-80k_cityscapes-769x769.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r101-d8_769x769_80k_cityscapes/deeplabv3plus_r101-d8_769x769_80k_cityscapes_20220406_154720-dfcc0b68.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r101-d8_769x769_80k_cityscapes/deeplabv3plus_r101-d8_769x769_80k_cityscapes_20220406_154720.log.json) | +| DeepLabV3+ | R-101-D16-MG124 | 512x1024 | 40000 | 5.8 | 7.48 | V100 | 79.09 | 80.36 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/deeplabv3plus/ddeeplabv3plus_r101-d16-mg124_4xb2-40k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r101-d16-mg124_512x1024_40k_cityscapes/deeplabv3plus_r101-d16-mg124_512x1024_40k_cityscapes_20200908_005644-cf9ce186.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r101-d16-mg124_512x1024_40k_cityscapes/deeplabv3plus_r101-d16-mg124_512x1024_40k_cityscapes-20200908_005644.log.json) | +| DeepLabV3+ | R-101-D16-MG124 | 512x1024 | 80000 | 9.9 | - | V100 | 79.90 | 81.33 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/deeplabv3plus/deeplabv3plus_r101-d16-mg124_4xb2-80k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r101-d16-mg124_512x1024_80k_cityscapes/deeplabv3plus_r101-d16-mg124_512x1024_80k_cityscapes_20200908_005644-ee6158e0.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r101-d16-mg124_512x1024_80k_cityscapes/deeplabv3plus_r101-d16-mg124_512x1024_80k_cityscapes-20200908_005644.log.json) | +| DeepLabV3+ | R-18b-D8 | 512x1024 | 80000 | 2.1 | 14.95 | V100 | 75.87 | 77.52 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/deeplabv3plus/deeplabv3plus_r18b-d8_4xb2-80k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r18b-d8_512x1024_80k_cityscapes/deeplabv3plus_r18b-d8_512x1024_80k_cityscapes_20201226_090828-e451abd9.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r18b-d8_512x1024_80k_cityscapes/deeplabv3plus_r18b-d8_512x1024_80k_cityscapes-20201226_090828.log.json) | +| DeepLabV3+ | R-50b-D8 | 512x1024 | 80000 | 7.4 | 3.94 | V100 | 80.28 | 81.44 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/deeplabv3plus/deeplabv3plus_r50b-d8_4xb2-80k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r50b-d8_512x1024_80k_cityscapes/deeplabv3plus_r50b-d8_512x1024_80k_cityscapes_20201225_213645-a97e4e43.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r50b-d8_512x1024_80k_cityscapes/deeplabv3plus_r50b-d8_512x1024_80k_cityscapes-20201225_213645.log.json) | +| DeepLabV3+ | R-101b-D8 | 512x1024 | 80000 | 10.9 | 2.60 | V100 | 80.16 | 81.41 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/deeplabv3plus/deeplabv3plus_r101b-d8_4xb2-80k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r101b-d8_512x1024_80k_cityscapes/deeplabv3plus_r101b-d8_512x1024_80k_cityscapes_20201226_190843-9c3c93a4.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r101b-d8_512x1024_80k_cityscapes/deeplabv3plus_r101b-d8_512x1024_80k_cityscapes-20201226_190843.log.json) | +| DeepLabV3+ | R-18b-D8 | 769x769 | 80000 | 2.4 | 5.96 | V100 | 76.36 | 78.24 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/deeplabv3plus/deeplabv3plus_r18b-d8_4xb2-80k_cityscapes-769x769.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r18b-d8_769x769_80k_cityscapes/deeplabv3plus_r18b-d8_769x769_80k_cityscapes_20201226_151312-2c868aff.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r18b-d8_769x769_80k_cityscapes/deeplabv3plus_r18b-d8_769x769_80k_cityscapes-20201226_151312.log.json) | +| DeepLabV3+ | R-50b-D8 | 769x769 | 80000 | 8.4 | 1.72 | V100 | 79.41 | 80.56 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/deeplabv3plus/deeplabv3plus_r50b-d8_4xb2-80k_cityscapes-769x769.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r50b-d8_769x769_80k_cityscapes/deeplabv3plus_r50b-d8_769x769_80k_cityscapes_20201225_224655-8b596d1c.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r50b-d8_769x769_80k_cityscapes/deeplabv3plus_r50b-d8_769x769_80k_cityscapes-20201225_224655.log.json) | +| DeepLabV3+ | R-101b-D8 | 769x769 | 80000 | 12.3 | 1.10 | V100 | 79.88 | 81.46 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/deeplabv3plus/deeplabv3plus_r101b-d8_4xb2-80k_cityscapes-769x769.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r101b-d8_769x769_80k_cityscapes/deeplabv3plus_r101b-d8_769x769_80k_cityscapes_20201226_205041-227cdf7c.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r101b-d8_769x769_80k_cityscapes/deeplabv3plus_r101b-d8_769x769_80k_cityscapes-20201226_205041.log.json) | \[1\] The training of the model is sensitive to random seed, and the seed to train it is 1111. ### ADE20K -| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | mIoU | mIoU(ms+flip) | config | download | -| ---------- | -------- | --------- | ------: | -------- | -------------- | ----: | ------------: | ------------------------------------------------------------------------------------------------------------------------------------------- | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | -| DeepLabV3+ | R-50-D8 | 512x512 | 80000 | 10.6 | 21.01 | 42.72 | 43.75 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/deeplabv3plus/deeplabv3plus_r50-d8_4xb4-80k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r50-d8_512x512_80k_ade20k/deeplabv3plus_r50-d8_512x512_80k_ade20k_20200614_185028-bf1400d8.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r50-d8_512x512_80k_ade20k/deeplabv3plus_r50-d8_512x512_80k_ade20k_20200614_185028.log.json) | -| DeepLabV3+ | R-101-D8 | 512x512 | 80000 | 14.1 | 14.16 | 44.60 | 46.06 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/deeplabv3plus/deeplabv3plus_r101-d8_4xb4-160k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r101-d8_512x512_80k_ade20k/deeplabv3plus_r101-d8_512x512_80k_ade20k_20200615_014139-d5730af7.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r101-d8_512x512_80k_ade20k/deeplabv3plus_r101-d8_512x512_80k_ade20k_20200615_014139.log.json) | -| DeepLabV3+ | R-50-D8 | 512x512 | 160000 | - | - | 43.95 | 44.93 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/deeplabv3plus/deeplabv3plus_r50-d8_4xb4-160k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r50-d8_512x512_160k_ade20k/deeplabv3plus_r50-d8_512x512_160k_ade20k_20200615_124504-6135c7e0.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r50-d8_512x512_160k_ade20k/deeplabv3plus_r50-d8_512x512_160k_ade20k_20200615_124504.log.json) | -| DeepLabV3+ | R-101-D8 | 512x512 | 160000 | - | - | 45.47 | 46.35 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/deeplabv3plus/deeplabv3plus_r101-d8_4xb4-160k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r101-d8_512x512_160k_ade20k/deeplabv3plus_r101-d8_512x512_160k_ade20k_20200615_123232-38ed86bb.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r101-d8_512x512_160k_ade20k/deeplabv3plus_r101-d8_512x512_160k_ade20k_20200615_123232.log.json) | +| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | Device | mIoU | mIoU(ms+flip) | config | download | +| ---------- | -------- | --------- | ------: | -------- | -------------- | ------ | ----: | ------------: | ------------------------------------------------------------------------------------------------------------------------------------------- | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | +| DeepLabV3+ | R-50-D8 | 512x512 | 80000 | 10.6 | 21.01 | V100 | 42.72 | 43.75 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/deeplabv3plus/deeplabv3plus_r50-d8_4xb4-80k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r50-d8_512x512_80k_ade20k/deeplabv3plus_r50-d8_512x512_80k_ade20k_20200614_185028-bf1400d8.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r50-d8_512x512_80k_ade20k/deeplabv3plus_r50-d8_512x512_80k_ade20k_20200614_185028.log.json) | +| DeepLabV3+ | R-101-D8 | 512x512 | 80000 | 14.1 | 14.16 | V100 | 44.60 | 46.06 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/deeplabv3plus/deeplabv3plus_r101-d8_4xb4-160k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r101-d8_512x512_80k_ade20k/deeplabv3plus_r101-d8_512x512_80k_ade20k_20200615_014139-d5730af7.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r101-d8_512x512_80k_ade20k/deeplabv3plus_r101-d8_512x512_80k_ade20k_20200615_014139.log.json) | +| DeepLabV3+ | R-50-D8 | 512x512 | 160000 | - | - | V100 | 43.95 | 44.93 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/deeplabv3plus/deeplabv3plus_r50-d8_4xb4-160k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r50-d8_512x512_160k_ade20k/deeplabv3plus_r50-d8_512x512_160k_ade20k_20200615_124504-6135c7e0.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r50-d8_512x512_160k_ade20k/deeplabv3plus_r50-d8_512x512_160k_ade20k_20200615_124504.log.json) | +| DeepLabV3+ | R-101-D8 | 512x512 | 160000 | - | - | V100 | 45.47 | 46.35 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/deeplabv3plus/deeplabv3plus_r101-d8_4xb4-160k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r101-d8_512x512_160k_ade20k/deeplabv3plus_r101-d8_512x512_160k_ade20k_20200615_123232-38ed86bb.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r101-d8_512x512_160k_ade20k/deeplabv3plus_r101-d8_512x512_160k_ade20k_20200615_123232.log.json) | ### Pascal VOC 2012 + Aug -| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | mIoU | mIoU(ms+flip) | config | download | -| ---------- | -------- | --------- | ------: | -------- | -------------- | ----: | ------------: | -------------------------------------------------------------------------------------------------------------------------------------------- | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | -| DeepLabV3+ | R-50-D8 | 512x512 | 20000 | 7.6 | 21 | 75.93 | 77.50 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/deeplabv3plus/deeplabv3plus_r50-d8_4xb4-20k_voc12aug-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r50-d8_512x512_20k_voc12aug/deeplabv3plus_r50-d8_512x512_20k_voc12aug_20200617_102323-aad58ef1.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r50-d8_512x512_20k_voc12aug/deeplabv3plus_r50-d8_512x512_20k_voc12aug_20200617_102323.log.json) | -| DeepLabV3+ | R-101-D8 | 512x512 | 20000 | 11 | 13.88 | 77.22 | 78.59 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/deeplabv3plus/deeplabv3plus_r101-d8_4xb4-20k_voc12aug-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r101-d8_512x512_20k_voc12aug/deeplabv3plus_r101-d8_512x512_20k_voc12aug_20200617_102345-c7ff3d56.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r101-d8_512x512_20k_voc12aug/deeplabv3plus_r101-d8_512x512_20k_voc12aug_20200617_102345.log.json) | -| DeepLabV3+ | R-50-D8 | 512x512 | 40000 | - | - | 76.81 | 77.57 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/deeplabv3plus/deeplabv3plus_r50-d8_4xb4-40k_voc12aug-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r50-d8_512x512_40k_voc12aug/deeplabv3plus_r50-d8_512x512_40k_voc12aug_20200613_161759-e1b43aa9.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r50-d8_512x512_40k_voc12aug/deeplabv3plus_r50-d8_512x512_40k_voc12aug_20200613_161759.log.json) | -| DeepLabV3+ | R-101-D8 | 512x512 | 40000 | - | - | 78.62 | 79.53 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/deeplabv3plus/deeplabv3plus_r101-d8_4xb4-40k_voc12aug-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r101-d8_512x512_40k_voc12aug/deeplabv3plus_r101-d8_512x512_40k_voc12aug_20200613_205333-faf03387.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r101-d8_512x512_40k_voc12aug/deeplabv3plus_r101-d8_512x512_40k_voc12aug_20200613_205333.log.json) | +| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | Device | mIoU | mIoU(ms+flip) | config | download | +| ---------- | -------- | --------- | ------: | -------- | -------------- | ------ | ----: | ------------: | -------------------------------------------------------------------------------------------------------------------------------------------- | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | +| DeepLabV3+ | R-50-D8 | 512x512 | 20000 | 7.6 | 21 | V100 | 75.93 | 77.50 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/deeplabv3plus/deeplabv3plus_r50-d8_4xb4-20k_voc12aug-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r50-d8_512x512_20k_voc12aug/deeplabv3plus_r50-d8_512x512_20k_voc12aug_20200617_102323-aad58ef1.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r50-d8_512x512_20k_voc12aug/deeplabv3plus_r50-d8_512x512_20k_voc12aug_20200617_102323.log.json) | +| DeepLabV3+ | R-101-D8 | 512x512 | 20000 | 11 | 13.88 | V100 | 77.22 | 78.59 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/deeplabv3plus/deeplabv3plus_r101-d8_4xb4-20k_voc12aug-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r101-d8_512x512_20k_voc12aug/deeplabv3plus_r101-d8_512x512_20k_voc12aug_20200617_102345-c7ff3d56.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r101-d8_512x512_20k_voc12aug/deeplabv3plus_r101-d8_512x512_20k_voc12aug_20200617_102345.log.json) | +| DeepLabV3+ | R-50-D8 | 512x512 | 40000 | - | - | V100 | 76.81 | 77.57 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/deeplabv3plus/deeplabv3plus_r50-d8_4xb4-40k_voc12aug-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r50-d8_512x512_40k_voc12aug/deeplabv3plus_r50-d8_512x512_40k_voc12aug_20200613_161759-e1b43aa9.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r50-d8_512x512_40k_voc12aug/deeplabv3plus_r50-d8_512x512_40k_voc12aug_20200613_161759.log.json) | +| DeepLabV3+ | R-101-D8 | 512x512 | 40000 | - | - | V100 | 78.62 | 79.53 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/deeplabv3plus/deeplabv3plus_r101-d8_4xb4-40k_voc12aug-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r101-d8_512x512_40k_voc12aug/deeplabv3plus_r101-d8_512x512_40k_voc12aug_20200613_205333-faf03387.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r101-d8_512x512_40k_voc12aug/deeplabv3plus_r101-d8_512x512_40k_voc12aug_20200613_205333.log.json) | ### Pascal Context -| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | mIoU | mIoU(ms+flip) | config | download | -| ---------- | -------- | --------- | ------: | -------- | -------------- | ----: | ------------: | ------------------------------------------------------------------------------------------------------------------------------------------------- | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | -| DeepLabV3+ | R-101-D8 | 480x480 | 40000 | - | 9.09 | 47.30 | 48.47 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/deeplabv3plus/deeplabv3plus_r50-d8_4xb4-40k_pascal-context-480x480.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r101-d8_480x480_40k_pascal_context/deeplabv3plus_r101-d8_480x480_40k_pascal_context_20200911_165459-d3c8a29e.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r101-d8_480x480_40k_pascal_context/deeplabv3plus_r101-d8_480x480_40k_pascal_context-20200911_165459.log.json) | -| DeepLabV3+ | R-101-D8 | 480x480 | 80000 | - | - | 47.23 | 48.26 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/deeplabv3plus/deeplabv3plus_r50-d8_4xb4-80k_pascal-context-480x480.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r101-d8_480x480_80k_pascal_context/deeplabv3plus_r101-d8_480x480_80k_pascal_context_20200911_155322-145d3ee8.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r101-d8_480x480_80k_pascal_context/deeplabv3plus_r101-d8_480x480_80k_pascal_context-20200911_155322.log.json) | +| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | Device | mIoU | mIoU(ms+flip) | config | download | +| ---------- | -------- | --------- | ------: | -------- | -------------- | ------ | ----: | ------------: | ------------------------------------------------------------------------------------------------------------------------------------------------- | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | +| DeepLabV3+ | R-101-D8 | 480x480 | 40000 | - | 9.09 | V100 | 47.30 | 48.47 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/deeplabv3plus/deeplabv3plus_r50-d8_4xb4-40k_pascal-context-480x480.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r101-d8_480x480_40k_pascal_context/deeplabv3plus_r101-d8_480x480_40k_pascal_context_20200911_165459-d3c8a29e.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r101-d8_480x480_40k_pascal_context/deeplabv3plus_r101-d8_480x480_40k_pascal_context-20200911_165459.log.json) | +| DeepLabV3+ | R-101-D8 | 480x480 | 80000 | - | - | V100 | 47.23 | 48.26 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/deeplabv3plus/deeplabv3plus_r50-d8_4xb4-80k_pascal-context-480x480.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r101-d8_480x480_80k_pascal_context/deeplabv3plus_r101-d8_480x480_80k_pascal_context_20200911_155322-145d3ee8.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r101-d8_480x480_80k_pascal_context/deeplabv3plus_r101-d8_480x480_80k_pascal_context-20200911_155322.log.json) | ### Pascal Context 59 -| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | mIoU | mIoU(ms+flip) | config | download | -| ---------- | -------- | --------- | ------: | -------- | -------------- | ----: | ------------: | ----------------------------------------------------------------------------------------------------------------------------------------------------- | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | -| DeepLabV3+ | R-101-D8 | 480x480 | 40000 | - | - | 52.86 | 54.54 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/deeplabv3plus/deeplabv3plus_r101-d8_4xb4-40k_pascal-context-59-480x480.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r101-d8_480x480_40k_pascal_context_59/deeplabv3plus_r101-d8_480x480_40k_pascal_context_59_20210416_111233-ed937f15.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r101-d8_480x480_40k_pascal_context_59/deeplabv3plus_r101-d8_480x480_40k_pascal_context_59-20210416_111233.log.json) | -| DeepLabV3+ | R-101-D8 | 480x480 | 80000 | - | - | 53.2 | 54.67 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/deeplabv3plus/deeplabv3plus_r101-d8_4xb4-80k_pascal-context-59-480x480.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r101-d8_480x480_80k_pascal_context_59/deeplabv3plus_r101-d8_480x480_80k_pascal_context_59_20210416_111127-7ca0331d.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r101-d8_480x480_80k_pascal_context_59/deeplabv3plus_r101-d8_480x480_80k_pascal_context_59-20210416_111127.log.json) | +| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | Device | mIoU | mIoU(ms+flip) | config | download | +| ---------- | -------- | --------- | ------: | -------- | -------------- | ------ | ----: | ------------: | ----------------------------------------------------------------------------------------------------------------------------------------------------- | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | +| DeepLabV3+ | R-101-D8 | 480x480 | 40000 | - | - | V100 | 52.86 | 54.54 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/deeplabv3plus/deeplabv3plus_r101-d8_4xb4-40k_pascal-context-59-480x480.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r101-d8_480x480_40k_pascal_context_59/deeplabv3plus_r101-d8_480x480_40k_pascal_context_59_20210416_111233-ed937f15.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r101-d8_480x480_40k_pascal_context_59/deeplabv3plus_r101-d8_480x480_40k_pascal_context_59-20210416_111233.log.json) | +| DeepLabV3+ | R-101-D8 | 480x480 | 80000 | - | - | V100 | 53.2 | 54.67 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/deeplabv3plus/deeplabv3plus_r101-d8_4xb4-80k_pascal-context-59-480x480.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r101-d8_480x480_80k_pascal_context_59/deeplabv3plus_r101-d8_480x480_80k_pascal_context_59_20210416_111127-7ca0331d.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r101-d8_480x480_80k_pascal_context_59/deeplabv3plus_r101-d8_480x480_80k_pascal_context_59-20210416_111127.log.json) | ### LoveDA -| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | mIoU | mIoU(ms+flip) | config | download | -| ---------- | -------- | --------- | ------: | -------- | -------------- | ----: | ------------: | ------------------------------------------------------------------------------------------------------------------------------------------ | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ | -| DeepLabV3+ | R-18-D8 | 512x512 | 80000 | 1.93 | 25.57 | 50.28 | 50.47 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/deeplabv3plus/deeplabv3plus_r18-d8_4xb4-80k_loveda-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r18-d8_512x512_80k_loveda/deeplabv3plus_r18-d8_512x512_80k_loveda_20211104_132800-ce0fa0ca.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r18-d8_512x512_80k_loveda/deeplabv3plus_r18-d8_512x512_80k_loveda_20211104_132800.log.json) | -| DeepLabV3+ | R-50-D8 | 512x512 | 80000 | 7.37 | 6.00 | 50.99 | 50.65 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/deeplabv3plus/deeplabv3plus_r50-d8_4xb4-80k_loveda-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r50-d8_512x512_80k_loveda/deeplabv3plus_r50-d8_512x512_80k_loveda_20211105_080442-f0720392.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r50-d8_512x512_80k_loveda/deeplabv3plus_r50-d8_512x512_80k_loveda_20211105_080442.log.json) | -| DeepLabV3+ | R-101-D8 | 512x512 | 80000 | 10.84 | 4.33 | 51.47 | 51.32 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/deeplabv3plus/deeplabv3plus_r101-d8_4xb4-80k_loveda-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r101-d8_512x512_80k_loveda/deeplabv3plus_r101-d8_512x512_80k_loveda_20211105_110759-4c1f297e.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r101-d8_512x512_80k_loveda/deeplabv3plus_r101-d8_512x512_80k_loveda_20211105_110759.log.json) | +| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | Device | mIoU | mIoU(ms+flip) | config | download | +| ---------- | -------- | --------- | ------: | -------- | -------------- | ------ | ----: | ------------: | ------------------------------------------------------------------------------------------------------------------------------------------ | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ | +| DeepLabV3+ | R-18-D8 | 512x512 | 80000 | 1.93 | 25.57 | V100 | 50.28 | 50.47 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/deeplabv3plus/deeplabv3plus_r18-d8_4xb4-80k_loveda-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r18-d8_512x512_80k_loveda/deeplabv3plus_r18-d8_512x512_80k_loveda_20211104_132800-ce0fa0ca.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r18-d8_512x512_80k_loveda/deeplabv3plus_r18-d8_512x512_80k_loveda_20211104_132800.log.json) | +| DeepLabV3+ | R-50-D8 | 512x512 | 80000 | 7.37 | 6.00 | V100 | 50.99 | 50.65 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/deeplabv3plus/deeplabv3plus_r50-d8_4xb4-80k_loveda-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r50-d8_512x512_80k_loveda/deeplabv3plus_r50-d8_512x512_80k_loveda_20211105_080442-f0720392.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r50-d8_512x512_80k_loveda/deeplabv3plus_r50-d8_512x512_80k_loveda_20211105_080442.log.json) | +| DeepLabV3+ | R-101-D8 | 512x512 | 80000 | 10.84 | 4.33 | V100 | 51.47 | 51.32 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/deeplabv3plus/deeplabv3plus_r101-d8_4xb4-80k_loveda-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r101-d8_512x512_80k_loveda/deeplabv3plus_r101-d8_512x512_80k_loveda_20211105_110759-4c1f297e.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r101-d8_512x512_80k_loveda/deeplabv3plus_r101-d8_512x512_80k_loveda_20211105_110759.log.json) | ### Potsdam -| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | mIoU | mIoU(ms+flip) | config | download | -| ---------- | -------- | --------- | ------: | -------- | -------------- | ----: | ------------: | ------------------------------------------------------------------------------------------------------------------------------------------- | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | -| DeepLabV3+ | R-18-D8 | 512x512 | 80000 | 1.91 | 81.68 | 77.09 | 78.44 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/deeplabv3plus/deeplabv3plus_r18-d8_4xb4-80k_potsdam-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r18-d8_512x512_80k_potsdam/deeplabv3plus_r18-d8_512x512_80k_potsdam_20211219_020601-75fd5bc3.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r18-d8_512x512_80k_potsdam/deeplabv3plus_r18-d8_512x512_80k_potsdam_20211219_020601.log.json) | -| DeepLabV3+ | R-50-D8 | 512x512 | 80000 | 7.36 | 26.44 | 78.33 | 79.27 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/deeplabv3plus/deeplabv3plus_r50-d8_4xb4-80k_potsdam-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r50-d8_512x512_80k_potsdam/deeplabv3plus_r50-d8_512x512_80k_potsdam_20211219_031508-7e7a2b24.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r50-d8_512x512_80k_potsdam/deeplabv3plus_r50-d8_512x512_80k_potsdam_20211219_031508.log.json) | -| DeepLabV3+ | R-101-D8 | 512x512 | 80000 | 10.83 | 17.56 | 78.7 | 79.47 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/deeplabv3plus/deeplabv3plus_r101-d8_4xb4-80k_potsdam-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r101-d8_512x512_80k_potsdam/deeplabv3plus_r101-d8_512x512_80k_potsdam_20211219_031508-8b112708.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r101-d8_512x512_80k_potsdam/deeplabv3plus_r101-d8_512x512_80k_potsdam_20211219_031508.log.json) | +| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | Device | mIoU | mIoU(ms+flip) | config | download | +| ---------- | -------- | --------- | ------: | -------- | -------------- | ------ | ----: | ------------: | ------------------------------------------------------------------------------------------------------------------------------------------- | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | +| DeepLabV3+ | R-18-D8 | 512x512 | 80000 | 1.91 | 81.68 | V100 | 77.09 | 78.44 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/deeplabv3plus/deeplabv3plus_r18-d8_4xb4-80k_potsdam-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r18-d8_512x512_80k_potsdam/deeplabv3plus_r18-d8_512x512_80k_potsdam_20211219_020601-75fd5bc3.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r18-d8_512x512_80k_potsdam/deeplabv3plus_r18-d8_512x512_80k_potsdam_20211219_020601.log.json) | +| DeepLabV3+ | R-50-D8 | 512x512 | 80000 | 7.36 | 26.44 | V100 | 78.33 | 79.27 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/deeplabv3plus/deeplabv3plus_r50-d8_4xb4-80k_potsdam-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r50-d8_512x512_80k_potsdam/deeplabv3plus_r50-d8_512x512_80k_potsdam_20211219_031508-7e7a2b24.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r50-d8_512x512_80k_potsdam/deeplabv3plus_r50-d8_512x512_80k_potsdam_20211219_031508.log.json) | +| DeepLabV3+ | R-101-D8 | 512x512 | 80000 | 10.83 | 17.56 | V100 | 78.7 | 79.47 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/deeplabv3plus/deeplabv3plus_r101-d8_4xb4-80k_potsdam-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r101-d8_512x512_80k_potsdam/deeplabv3plus_r101-d8_512x512_80k_potsdam_20211219_031508-8b112708.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r101-d8_512x512_80k_potsdam/deeplabv3plus_r101-d8_512x512_80k_potsdam_20211219_031508.log.json) | ### Vaihingen -| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | mIoU | mIoU(ms+flip) | config | download | -| ---------- | -------- | --------- | ------: | -------- | -------------- | ----: | ------------: | --------------------------------------------------------------------------------------------------------------------------------------------- | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | -| DeepLabV3+ | R-18-D8 | 512x512 | 80000 | 1.91 | 72.79 | 72.50 | 74.13 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/deeplabv3plus/deeplabv3plus_r18-d8_4xb4-80k_vaihingen-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r18-d8_4x4_512x512_80k_vaihingen/deeplabv3plus_r18-d8_4x4_512x512_80k_vaihingen_20211231_230805-7626a263.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r18-d8_4x4_512x512_80k_vaihingen/deeplabv3plus_r18-d8_4x4_512x512_80k_vaihingen_20211231_230805.log.json) | -| DeepLabV3+ | R-50-D8 | 512x512 | 80000 | 7.36 | 26.91 | 73.97 | 75.05 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/deeplabv3plus/deeplabv3plus_r50-d8_4xb4-80k_vaihingen-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r50-d8_4x4_512x512_80k_vaihingen/deeplabv3plus_r50-d8_4x4_512x512_80k_vaihingen_20211231_230816-5040938d.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r50-d8_4x4_512x512_80k_vaihingen/deeplabv3plus_r50-d8_4x4_512x512_80k_vaihingen_20211231_230816.log.json) | -| DeepLabV3+ | R-101-D8 | 512x512 | 80000 | 10.83 | 18.59 | 73.06 | 74.14 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/deeplabv3plus/deeplabv3plus_r101-d8_4xb4-80k_vaihingen-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r101-d8_4x4_512x512_80k_vaihingen/deeplabv3plus_r101-d8_4x4_512x512_80k_vaihingen_20211231_230816-8a095afa.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r101-d8_4x4_512x512_80k_vaihingen/deeplabv3plus_r101-d8_4x4_512x512_80k_vaihingen_20211231_230816.log.json) | +| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | Device | mIoU | mIoU(ms+flip) | config | download | +| ---------- | -------- | --------- | ------: | -------- | -------------- | ------ | ----: | ------------: | --------------------------------------------------------------------------------------------------------------------------------------------- | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | +| DeepLabV3+ | R-18-D8 | 512x512 | 80000 | 1.91 | 72.79 | V100 | 72.50 | 74.13 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/deeplabv3plus/deeplabv3plus_r18-d8_4xb4-80k_vaihingen-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r18-d8_4x4_512x512_80k_vaihingen/deeplabv3plus_r18-d8_4x4_512x512_80k_vaihingen_20211231_230805-7626a263.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r18-d8_4x4_512x512_80k_vaihingen/deeplabv3plus_r18-d8_4x4_512x512_80k_vaihingen_20211231_230805.log.json) | +| DeepLabV3+ | R-50-D8 | 512x512 | 80000 | 7.36 | 26.91 | V100 | 73.97 | 75.05 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/deeplabv3plus/deeplabv3plus_r50-d8_4xb4-80k_vaihingen-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r50-d8_4x4_512x512_80k_vaihingen/deeplabv3plus_r50-d8_4x4_512x512_80k_vaihingen_20211231_230816-5040938d.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r50-d8_4x4_512x512_80k_vaihingen/deeplabv3plus_r50-d8_4x4_512x512_80k_vaihingen_20211231_230816.log.json) | +| DeepLabV3+ | R-101-D8 | 512x512 | 80000 | 10.83 | 18.59 | V100 | 73.06 | 74.14 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/deeplabv3plus/deeplabv3plus_r101-d8_4xb4-80k_vaihingen-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r101-d8_4x4_512x512_80k_vaihingen/deeplabv3plus_r101-d8_4x4_512x512_80k_vaihingen_20211231_230816-8a095afa.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r101-d8_4x4_512x512_80k_vaihingen/deeplabv3plus_r101-d8_4x4_512x512_80k_vaihingen_20211231_230816.log.json) | ### iSAID -| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | mIoU | mIoU(ms+flip) | config | download | -| ---------- | -------- | --------- | ------: | -------- | -------------- | ----: | ------------: | ---------------------------------------------------------------------------------------------------------------------------------------- | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | -| DeepLabV3+ | R-18-D8 | 896x896 | 80000 | 6.19 | 24.81 | 61.35 | 62.61 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/deeplabv3plus/deeplabv3plus_r18-d8_4xb4-80k_isaid-896x896.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r18-d8_4x4_896x896_80k_isaid/deeplabv3plus_r18-d8_4x4_896x896_80k_isaid_20220110_180526-7059991d.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r18-d8_4x4_896x896_80k_isaid/deeplabv3plus_r18-d8_4x4_896x896_80k_isaid_20220110_180526.log.json) | -| DeepLabV3+ | R-50-D8 | 896x896 | 80000 | 21.45 | 8.42 | 67.06 | 68.02 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/deeplabv3plus/deeplabv3plus_r50-d8_4xb4-80k_isaid-896x896.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r50-d8_4x4_896x896_80k_isaid/deeplabv3plus_r50-d8_4x4_896x896_80k_isaid_20220110_180526-598be439.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r50-d8_4x4_896x896_80k_isaid/deeplabv3plus_r50-d8_4x4_896x896_80k_isaid_20220110_180526.log.json) | +| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | Device | mIoU | mIoU(ms+flip) | config | download | +| ---------- | -------- | --------- | ------: | -------- | -------------- | ------ | ----: | ------------: | ---------------------------------------------------------------------------------------------------------------------------------------- | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | +| DeepLabV3+ | R-18-D8 | 896x896 | 80000 | 6.19 | 24.81 | V100 | 61.35 | 62.61 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/deeplabv3plus/deeplabv3plus_r18-d8_4xb4-80k_isaid-896x896.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r18-d8_4x4_896x896_80k_isaid/deeplabv3plus_r18-d8_4x4_896x896_80k_isaid_20220110_180526-7059991d.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r18-d8_4x4_896x896_80k_isaid/deeplabv3plus_r18-d8_4x4_896x896_80k_isaid_20220110_180526.log.json) | +| DeepLabV3+ | R-50-D8 | 896x896 | 80000 | 21.45 | 8.42 | V100 | 67.06 | 68.02 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/deeplabv3plus/deeplabv3plus_r50-d8_4xb4-80k_isaid-896x896.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r50-d8_4x4_896x896_80k_isaid/deeplabv3plus_r50-d8_4x4_896x896_80k_isaid_20220110_180526-598be439.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r50-d8_4x4_896x896_80k_isaid/deeplabv3plus_r50-d8_4x4_896x896_80k_isaid_20220110_180526.log.json) | ### Mapillary Vistas v1.2 @@ -136,3 +125,14 @@ Note: - `MG-124` stands for multi-grid dilation in the last stage of ResNet. - `FP16` means Mixed Precision (FP16) is adopted in training. - `896x896` is the Crop Size of iSAID dataset, which is followed by the implementation of [PointFlow: Flowing Semantics Through Points for Aerial Image Segmentation](https://arxiv.org/pdf/2103.06564.pdf) + +## Citation + +```bibtex +@inproceedings{deeplabv3plus2018, + title={Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation}, + author={Liang-Chieh Chen and Yukun Zhu and George Papandreou and Florian Schroff and Hartwig Adam}, + booktitle={ECCV}, + year={2018} +} +``` diff --git a/configs/deeplabv3plus/deeplabv3plus.yml b/configs/deeplabv3plus/deeplabv3plus.yml deleted file mode 100644 index 949cbcecc0..0000000000 --- a/configs/deeplabv3plus/deeplabv3plus.yml +++ /dev/null @@ -1,872 +0,0 @@ -Collections: -- Name: DeepLabV3+ - Metadata: - Training Data: - - Cityscapes - - ADE20K - - Pascal VOC 2012 + Aug - - Pascal Context - - Pascal Context 59 - - LoveDA - - Potsdam - - Vaihingen - - iSAID - - Mapillary Vistas v1.2 - Paper: - URL: https://arxiv.org/abs/1802.02611 - Title: Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation - README: configs/deeplabv3plus/README.md - Code: - URL: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/sep_aspp_head.py#L30 - Version: v0.17.0 - Converted From: - Code: https://github.com/tensorflow/models/tree/master/research/deeplab -Models: -- Name: deeplabv3plus_r50-d8_4xb2-40k_cityscapes-512x1024 - In Collection: DeepLabV3+ - Metadata: - backbone: R-50-D8 - crop size: (512,1024) - lr schd: 40000 - inference time (ms/im): - - value: 253.81 - hardware: V100 - backend: PyTorch - batch size: 1 - mode: FP32 - resolution: (512,1024) - Training Memory (GB): 7.5 - Results: - - Task: Semantic Segmentation - Dataset: Cityscapes - Metrics: - mIoU: 79.61 - mIoU(ms+flip): 81.01 - Config: configs/deeplabv3plus/deeplabv3plus_r50-d8_4xb2-40k_cityscapes-512x1024.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r50-d8_512x1024_40k_cityscapes/deeplabv3plus_r50-d8_512x1024_40k_cityscapes_20200605_094610-d222ffcd.pth -- Name: deeplabv3plus_r101-d8_4xb2-40k_cityscapes-512x1024 - In Collection: DeepLabV3+ - Metadata: - backbone: R-101-D8 - crop size: (512,1024) - lr schd: 40000 - inference time (ms/im): - - value: 384.62 - hardware: V100 - backend: PyTorch - batch size: 1 - mode: FP32 - resolution: (512,1024) - Training Memory (GB): 11.0 - Results: - - Task: Semantic Segmentation - Dataset: Cityscapes - Metrics: - mIoU: 80.21 - mIoU(ms+flip): 81.82 - Config: configs/deeplabv3plus/deeplabv3plus_r101-d8_4xb2-40k_cityscapes-512x1024.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r101-d8_512x1024_40k_cityscapes/deeplabv3plus_r101-d8_512x1024_40k_cityscapes_20200605_094614-3769eecf.pth -- Name: deeplabv3plus_r50-d8_4xb2-40k_cityscapes-769x769 - In Collection: DeepLabV3+ - Metadata: - backbone: R-50-D8 - crop size: (769,769) - lr schd: 40000 - inference time (ms/im): - - value: 581.4 - hardware: V100 - backend: PyTorch - batch size: 1 - mode: FP32 - resolution: (769,769) - Training Memory (GB): 8.5 - Results: - - Task: Semantic Segmentation - Dataset: Cityscapes - Metrics: - mIoU: 78.97 - mIoU(ms+flip): 80.46 - Config: configs/deeplabv3plus/deeplabv3plus_r50-d8_4xb2-40k_cityscapes-769x769.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r50-d8_769x769_40k_cityscapes/deeplabv3plus_r50-d8_769x769_40k_cityscapes_20200606_114143-1dcb0e3c.pth -- Name: deeplabv3plus_r101-d8_4xb2-40k_cityscapes-769x769 - In Collection: DeepLabV3+ - Metadata: - backbone: R-101-D8 - crop size: (769,769) - lr schd: 40000 - inference time (ms/im): - - value: 869.57 - hardware: V100 - backend: PyTorch - batch size: 1 - mode: FP32 - resolution: (769,769) - Training Memory (GB): 12.5 - Results: - - Task: Semantic Segmentation - Dataset: Cityscapes - Metrics: - mIoU: 79.46 - mIoU(ms+flip): 80.5 - Config: configs/deeplabv3plus/deeplabv3plus_r101-d8_4xb2-40k_cityscapes-769x769.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r101-d8_769x769_40k_cityscapes/deeplabv3plus_r101-d8_769x769_40k_cityscapes_20200606_114304-ff414b9e.pth -- Name: deeplabv3plus_r18-d8_4xb2-80k_cityscapes-512x1024 - In Collection: DeepLabV3+ - Metadata: - backbone: R-18-D8 - crop size: (512,1024) - lr schd: 80000 - inference time (ms/im): - - value: 70.08 - hardware: V100 - backend: PyTorch - batch size: 1 - mode: FP32 - resolution: (512,1024) - Training Memory (GB): 2.2 - Results: - - Task: Semantic Segmentation - Dataset: Cityscapes - Metrics: - mIoU: 76.89 - mIoU(ms+flip): 78.76 - Config: configs/deeplabv3plus/deeplabv3plus_r18-d8_4xb2-80k_cityscapes-512x1024.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r18-d8_512x1024_80k_cityscapes/deeplabv3plus_r18-d8_512x1024_80k_cityscapes_20201226_080942-cff257fe.pth -- Name: deeplabv3plus_r50-d8_4xb2-80k_cityscapes-512x1024 - In Collection: DeepLabV3+ - Metadata: - backbone: R-50-D8 - crop size: (512,1024) - lr schd: 80000 - Results: - - Task: Semantic Segmentation - Dataset: Cityscapes - Metrics: - mIoU: 80.09 - mIoU(ms+flip): 81.13 - Config: configs/deeplabv3plus/deeplabv3plus_r50-d8_4xb2-80k_cityscapes-512x1024.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r50-d8_512x1024_80k_cityscapes/deeplabv3plus_r50-d8_512x1024_80k_cityscapes_20200606_114049-f9fb496d.pth -- Name: deeplabv3plus_r101-d8_4xb2-80k_cityscapes-512x1024 - In Collection: DeepLabV3+ - Metadata: - backbone: R-101-D8 - crop size: (512,1024) - lr schd: 80000 - Results: - - Task: Semantic Segmentation - Dataset: Cityscapes - Metrics: - mIoU: 80.97 - mIoU(ms+flip): 82.03 - Config: configs/deeplabv3plus/deeplabv3plus_r101-d8_4xb2-80k_cityscapes-512x1024.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r101-d8_512x1024_80k_cityscapes/deeplabv3plus_r101-d8_512x1024_80k_cityscapes_20200606_114143-068fcfe9.pth -- Name: deeplabv3plus_r101-d8_4xb2-amp-80k_cityscapes-512x1024 - In Collection: DeepLabV3+ - Metadata: - backbone: R-101-D8 - crop size: (512,1024) - lr schd: 80000 - inference time (ms/im): - - value: 127.06 - hardware: V100 - backend: PyTorch - batch size: 1 - mode: AMP - resolution: (512,1024) - Training Memory (GB): 6.35 - Results: - - Task: Semantic Segmentation - Dataset: Cityscapes - Metrics: - mIoU: 80.46 - Config: configs/deeplabv3plus/deeplabv3plus_r101-d8_4xb2-amp-80k_cityscapes-512x1024.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r101-d8_fp16_512x1024_80k_cityscapes/deeplabv3plus_r101-d8_fp16_512x1024_80k_cityscapes_20200717_230920-f1104f4b.pth -- Name: deeplabv3plus_r18-d8_4xb2-80k_cityscapes-769x769 - In Collection: DeepLabV3+ - Metadata: - backbone: R-18-D8 - crop size: (769,769) - lr schd: 80000 - inference time (ms/im): - - value: 174.22 - hardware: V100 - backend: PyTorch - batch size: 1 - mode: FP32 - resolution: (769,769) - Training Memory (GB): 2.5 - Results: - - Task: Semantic Segmentation - Dataset: Cityscapes - Metrics: - mIoU: 76.26 - mIoU(ms+flip): 77.91 - Config: configs/deeplabv3plus/deeplabv3plus_r18-d8_4xb2-80k_cityscapes-769x769.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r18-d8_769x769_80k_cityscapes/deeplabv3plus_r18-d8_769x769_80k_cityscapes_20201226_083346-f326e06a.pth -- Name: deeplabv3plus_r50-d8_4xb2-80k_cityscapes-769x769 - In Collection: DeepLabV3+ - Metadata: - backbone: R-50-D8 - crop size: (769,769) - lr schd: 80000 - Results: - - Task: Semantic Segmentation - Dataset: Cityscapes - Metrics: - mIoU: 79.83 - mIoU(ms+flip): 81.48 - Config: configs/deeplabv3plus/deeplabv3plus_r50-d8_4xb2-80k_cityscapes-769x769.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r50-d8_769x769_80k_cityscapes/deeplabv3plus_r50-d8_769x769_80k_cityscapes_20200606_210233-0e9dfdc4.pth -- Name: deeplabv3plus_r101-d8_4xb2-80k_cityscapes-769x769 - In Collection: DeepLabV3+ - Metadata: - backbone: R-101-D8 - crop size: (769,769) - lr schd: 80000 - Results: - - Task: Semantic Segmentation - Dataset: Cityscapes - Metrics: - mIoU: 80.65 - mIoU(ms+flip): 81.47 - Config: configs/deeplabv3plus/deeplabv3plus_r101-d8_4xb2-80k_cityscapes-769x769.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r101-d8_769x769_80k_cityscapes/deeplabv3plus_r101-d8_769x769_80k_cityscapes_20220406_154720-dfcc0b68.pth -- Name: deeplabv3plus_r101-d16-mg124_4xb2-40k_cityscapes-512x1024 - In Collection: DeepLabV3+ - Metadata: - backbone: R-101-D16-MG124 - crop size: (512,1024) - lr schd: 40000 - inference time (ms/im): - - value: 133.69 - hardware: V100 - backend: PyTorch - batch size: 1 - mode: FP32 - resolution: (512,1024) - Training Memory (GB): 5.8 - Results: - - Task: Semantic Segmentation - Dataset: Cityscapes - Metrics: - mIoU: 79.09 - mIoU(ms+flip): 80.36 - Config: configs/deeplabv3plus/deeplabv3plus_r101-d16-mg124_4xb2-40k_cityscapes-512x1024.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r101-d16-mg124_512x1024_40k_cityscapes/deeplabv3plus_r101-d16-mg124_512x1024_40k_cityscapes_20200908_005644-cf9ce186.pth -- Name: deeplabv3plus_r101-d16-mg124_4xb2-80k_cityscapes-512x1024 - In Collection: DeepLabV3+ - Metadata: - backbone: R-101-D16-MG124 - crop size: (512,1024) - lr schd: 80000 - Training Memory (GB): 9.9 - Results: - - Task: Semantic Segmentation - Dataset: Cityscapes - Metrics: - mIoU: 79.9 - mIoU(ms+flip): 81.33 - Config: configs/deeplabv3plus/deeplabv3plus_r101-d16-mg124_4xb2-80k_cityscapes-512x1024.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r101-d16-mg124_512x1024_80k_cityscapes/deeplabv3plus_r101-d16-mg124_512x1024_80k_cityscapes_20200908_005644-ee6158e0.pth -- Name: deeplabv3plus_r18b-d8_4xb2-80k_cityscapes-512x1024 - In Collection: DeepLabV3+ - Metadata: - backbone: R-18b-D8 - crop size: (512,1024) - lr schd: 80000 - inference time (ms/im): - - value: 66.89 - hardware: V100 - backend: PyTorch - batch size: 1 - mode: FP32 - resolution: (512,1024) - Training Memory (GB): 2.1 - Results: - - Task: Semantic Segmentation - Dataset: Cityscapes - Metrics: - mIoU: 75.87 - mIoU(ms+flip): 77.52 - Config: configs/deeplabv3plus/deeplabv3plus_r18b-d8_4xb2-80k_cityscapes-512x1024.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r18b-d8_512x1024_80k_cityscapes/deeplabv3plus_r18b-d8_512x1024_80k_cityscapes_20201226_090828-e451abd9.pth -- Name: deeplabv3plus_r50b-d8_4xb2-80k_cityscapes-512x1024 - In Collection: DeepLabV3+ - Metadata: - backbone: R-50b-D8 - crop size: (512,1024) - lr schd: 80000 - inference time (ms/im): - - value: 253.81 - hardware: V100 - backend: PyTorch - batch size: 1 - mode: FP32 - resolution: (512,1024) - Training Memory (GB): 7.4 - Results: - - Task: Semantic Segmentation - Dataset: Cityscapes - Metrics: - mIoU: 80.28 - mIoU(ms+flip): 81.44 - Config: configs/deeplabv3plus/deeplabv3plus_r50b-d8_4xb2-80k_cityscapes-512x1024.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r50b-d8_512x1024_80k_cityscapes/deeplabv3plus_r50b-d8_512x1024_80k_cityscapes_20201225_213645-a97e4e43.pth -- Name: deeplabv3plus_r101b-d8_4xb2-80k_cityscapes-512x1024 - In Collection: DeepLabV3+ - Metadata: - backbone: R-101b-D8 - crop size: (512,1024) - lr schd: 80000 - inference time (ms/im): - - value: 384.62 - hardware: V100 - backend: PyTorch - batch size: 1 - mode: FP32 - resolution: (512,1024) - Training Memory (GB): 10.9 - Results: - - Task: Semantic Segmentation - Dataset: Cityscapes - Metrics: - mIoU: 80.16 - mIoU(ms+flip): 81.41 - Config: configs/deeplabv3plus/deeplabv3plus_r101b-d8_4xb2-80k_cityscapes-512x1024.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r101b-d8_512x1024_80k_cityscapes/deeplabv3plus_r101b-d8_512x1024_80k_cityscapes_20201226_190843-9c3c93a4.pth -- Name: deeplabv3plus_r18b-d8_4xb2-80k_cityscapes-769x769 - In Collection: DeepLabV3+ - Metadata: - backbone: R-18b-D8 - crop size: (769,769) - lr schd: 80000 - inference time (ms/im): - - value: 167.79 - hardware: V100 - backend: PyTorch - batch size: 1 - mode: FP32 - resolution: (769,769) - Training Memory (GB): 2.4 - Results: - - Task: Semantic Segmentation - Dataset: Cityscapes - Metrics: - mIoU: 76.36 - mIoU(ms+flip): 78.24 - Config: configs/deeplabv3plus/deeplabv3plus_r18b-d8_4xb2-80k_cityscapes-769x769.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r18b-d8_769x769_80k_cityscapes/deeplabv3plus_r18b-d8_769x769_80k_cityscapes_20201226_151312-2c868aff.pth -- Name: deeplabv3plus_r50b-d8_4xb2-80k_cityscapes-769x769 - In Collection: DeepLabV3+ - Metadata: - backbone: R-50b-D8 - crop size: (769,769) - lr schd: 80000 - inference time (ms/im): - - value: 581.4 - hardware: V100 - backend: PyTorch - batch size: 1 - mode: FP32 - resolution: (769,769) - Training Memory (GB): 8.4 - Results: - - Task: Semantic Segmentation - Dataset: Cityscapes - Metrics: - mIoU: 79.41 - mIoU(ms+flip): 80.56 - Config: configs/deeplabv3plus/deeplabv3plus_r50b-d8_4xb2-80k_cityscapes-769x769.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r50b-d8_769x769_80k_cityscapes/deeplabv3plus_r50b-d8_769x769_80k_cityscapes_20201225_224655-8b596d1c.pth -- Name: deeplabv3plus_r101b-d8_4xb2-80k_cityscapes-769x769 - In Collection: DeepLabV3+ - Metadata: - backbone: R-101b-D8 - crop size: (769,769) - lr schd: 80000 - inference time (ms/im): - - value: 909.09 - hardware: V100 - backend: PyTorch - batch size: 1 - mode: FP32 - resolution: (769,769) - Training Memory (GB): 12.3 - Results: - - Task: Semantic Segmentation - Dataset: Cityscapes - Metrics: - mIoU: 79.88 - mIoU(ms+flip): 81.46 - Config: configs/deeplabv3plus/deeplabv3plus_r101b-d8_4xb2-80k_cityscapes-769x769.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r101b-d8_769x769_80k_cityscapes/deeplabv3plus_r101b-d8_769x769_80k_cityscapes_20201226_205041-227cdf7c.pth -- Name: deeplabv3plus_r50-d8_4xb4-80k_ade20k-512x512 - In Collection: DeepLabV3+ - Metadata: - backbone: R-50-D8 - crop size: (512,512) - lr schd: 80000 - inference time (ms/im): - - value: 47.6 - hardware: V100 - backend: PyTorch - batch size: 1 - mode: FP32 - resolution: (512,512) - Training Memory (GB): 10.6 - Results: - - Task: Semantic Segmentation - Dataset: ADE20K - Metrics: - mIoU: 42.72 - mIoU(ms+flip): 43.75 - Config: configs/deeplabv3plus/deeplabv3plus_r50-d8_4xb4-80k_ade20k-512x512.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r50-d8_512x512_80k_ade20k/deeplabv3plus_r50-d8_512x512_80k_ade20k_20200614_185028-bf1400d8.pth -- Name: deeplabv3plus_r101-d8_4xb4-160k_ade20k-512x512 - In Collection: DeepLabV3+ - Metadata: - backbone: R-101-D8 - crop size: (512,512) - lr schd: 80000 - inference time (ms/im): - - value: 70.62 - hardware: V100 - backend: PyTorch - batch size: 1 - mode: FP32 - resolution: (512,512) - Training Memory (GB): 14.1 - Results: - - Task: Semantic Segmentation - Dataset: ADE20K - Metrics: - mIoU: 44.6 - mIoU(ms+flip): 46.06 - Config: configs/deeplabv3plus/deeplabv3plus_r101-d8_4xb4-160k_ade20k-512x512.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r101-d8_512x512_80k_ade20k/deeplabv3plus_r101-d8_512x512_80k_ade20k_20200615_014139-d5730af7.pth -- Name: deeplabv3plus_r50-d8_4xb4-160k_ade20k-512x512 - In Collection: DeepLabV3+ - Metadata: - backbone: R-50-D8 - crop size: (512,512) - lr schd: 160000 - Results: - - Task: Semantic Segmentation - Dataset: ADE20K - Metrics: - mIoU: 43.95 - mIoU(ms+flip): 44.93 - Config: configs/deeplabv3plus/deeplabv3plus_r50-d8_4xb4-160k_ade20k-512x512.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r50-d8_512x512_160k_ade20k/deeplabv3plus_r50-d8_512x512_160k_ade20k_20200615_124504-6135c7e0.pth -- Name: deeplabv3plus_r101-d8_4xb4-160k_ade20k-512x512 - In Collection: DeepLabV3+ - Metadata: - backbone: R-101-D8 - crop size: (512,512) - lr schd: 160000 - Results: - - Task: Semantic Segmentation - Dataset: ADE20K - Metrics: - mIoU: 45.47 - mIoU(ms+flip): 46.35 - Config: configs/deeplabv3plus/deeplabv3plus_r101-d8_4xb4-160k_ade20k-512x512.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r101-d8_512x512_160k_ade20k/deeplabv3plus_r101-d8_512x512_160k_ade20k_20200615_123232-38ed86bb.pth -- Name: deeplabv3plus_r50-d8_4xb4-20k_voc12aug-512x512 - In Collection: DeepLabV3+ - Metadata: - backbone: R-50-D8 - crop size: (512,512) - lr schd: 20000 - inference time (ms/im): - - value: 47.62 - hardware: V100 - backend: PyTorch - batch size: 1 - mode: FP32 - resolution: (512,512) - Training Memory (GB): 7.6 - Results: - - Task: Semantic Segmentation - Dataset: Pascal VOC 2012 + Aug - Metrics: - mIoU: 75.93 - mIoU(ms+flip): 77.5 - Config: configs/deeplabv3plus/deeplabv3plus_r50-d8_4xb4-20k_voc12aug-512x512.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r50-d8_512x512_20k_voc12aug/deeplabv3plus_r50-d8_512x512_20k_voc12aug_20200617_102323-aad58ef1.pth -- Name: deeplabv3plus_r101-d8_4xb4-20k_voc12aug-512x512 - In Collection: DeepLabV3+ - Metadata: - backbone: R-101-D8 - crop size: (512,512) - lr schd: 20000 - inference time (ms/im): - - value: 72.05 - hardware: V100 - backend: PyTorch - batch size: 1 - mode: FP32 - resolution: (512,512) - Training Memory (GB): 11.0 - Results: - - Task: Semantic Segmentation - Dataset: Pascal VOC 2012 + Aug - Metrics: - mIoU: 77.22 - mIoU(ms+flip): 78.59 - Config: configs/deeplabv3plus/deeplabv3plus_r101-d8_4xb4-20k_voc12aug-512x512.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r101-d8_512x512_20k_voc12aug/deeplabv3plus_r101-d8_512x512_20k_voc12aug_20200617_102345-c7ff3d56.pth -- Name: deeplabv3plus_r50-d8_4xb4-40k_voc12aug-512x512 - In Collection: DeepLabV3+ - Metadata: - backbone: R-50-D8 - crop size: (512,512) - lr schd: 40000 - Results: - - Task: Semantic Segmentation - Dataset: Pascal VOC 2012 + Aug - Metrics: - mIoU: 76.81 - mIoU(ms+flip): 77.57 - Config: configs/deeplabv3plus/deeplabv3plus_r50-d8_4xb4-40k_voc12aug-512x512.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r50-d8_512x512_40k_voc12aug/deeplabv3plus_r50-d8_512x512_40k_voc12aug_20200613_161759-e1b43aa9.pth -- Name: deeplabv3plus_r101-d8_4xb4-40k_voc12aug-512x512 - In Collection: DeepLabV3+ - Metadata: - backbone: R-101-D8 - crop size: (512,512) - lr schd: 40000 - Results: - - Task: Semantic Segmentation - Dataset: Pascal VOC 2012 + Aug - Metrics: - mIoU: 78.62 - mIoU(ms+flip): 79.53 - Config: configs/deeplabv3plus/deeplabv3plus_r101-d8_4xb4-40k_voc12aug-512x512.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r101-d8_512x512_40k_voc12aug/deeplabv3plus_r101-d8_512x512_40k_voc12aug_20200613_205333-faf03387.pth -- Name: deeplabv3plus_r50-d8_4xb4-40k_pascal-context-480x480 - In Collection: DeepLabV3+ - Metadata: - backbone: R-101-D8 - crop size: (480,480) - lr schd: 40000 - inference time (ms/im): - - value: 110.01 - hardware: V100 - backend: PyTorch - batch size: 1 - mode: FP32 - resolution: (480,480) - Results: - - Task: Semantic Segmentation - Dataset: Pascal Context - Metrics: - mIoU: 47.3 - mIoU(ms+flip): 48.47 - Config: configs/deeplabv3plus/deeplabv3plus_r50-d8_4xb4-40k_pascal-context-480x480.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r101-d8_480x480_40k_pascal_context/deeplabv3plus_r101-d8_480x480_40k_pascal_context_20200911_165459-d3c8a29e.pth -- Name: deeplabv3plus_r50-d8_4xb4-80k_pascal-context-480x480 - In Collection: DeepLabV3+ - Metadata: - backbone: R-101-D8 - crop size: (480,480) - lr schd: 80000 - Results: - - Task: Semantic Segmentation - Dataset: Pascal Context - Metrics: - mIoU: 47.23 - mIoU(ms+flip): 48.26 - Config: configs/deeplabv3plus/deeplabv3plus_r50-d8_4xb4-80k_pascal-context-480x480.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r101-d8_480x480_80k_pascal_context/deeplabv3plus_r101-d8_480x480_80k_pascal_context_20200911_155322-145d3ee8.pth -- Name: deeplabv3plus_r101-d8_4xb4-40k_pascal-context-59-480x480 - In Collection: DeepLabV3+ - Metadata: - backbone: R-101-D8 - crop size: (480,480) - lr schd: 40000 - Results: - - Task: Semantic Segmentation - Dataset: Pascal Context 59 - Metrics: - mIoU: 52.86 - mIoU(ms+flip): 54.54 - Config: configs/deeplabv3plus/deeplabv3plus_r101-d8_4xb4-40k_pascal-context-59-480x480.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r101-d8_480x480_40k_pascal_context_59/deeplabv3plus_r101-d8_480x480_40k_pascal_context_59_20210416_111233-ed937f15.pth -- Name: deeplabv3plus_r101-d8_4xb4-80k_pascal-context-59-480x480 - In Collection: DeepLabV3+ - Metadata: - backbone: R-101-D8 - crop size: (480,480) - lr schd: 80000 - Results: - - Task: Semantic Segmentation - Dataset: Pascal Context 59 - Metrics: - mIoU: 53.2 - mIoU(ms+flip): 54.67 - Config: configs/deeplabv3plus/deeplabv3plus_r101-d8_4xb4-80k_pascal-context-59-480x480.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r101-d8_480x480_80k_pascal_context_59/deeplabv3plus_r101-d8_480x480_80k_pascal_context_59_20210416_111127-7ca0331d.pth -- Name: deeplabv3plus_r18-d8_4xb4-80k_loveda-512x512 - In Collection: DeepLabV3+ - Metadata: - backbone: R-18-D8 - crop size: (512,512) - lr schd: 80000 - inference time (ms/im): - - value: 39.11 - hardware: V100 - backend: PyTorch - batch size: 1 - mode: FP32 - resolution: (512,512) - Training Memory (GB): 1.93 - Results: - - Task: Semantic Segmentation - Dataset: LoveDA - Metrics: - mIoU: 50.28 - mIoU(ms+flip): 50.47 - Config: configs/deeplabv3plus/deeplabv3plus_r18-d8_4xb4-80k_loveda-512x512.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r18-d8_512x512_80k_loveda/deeplabv3plus_r18-d8_512x512_80k_loveda_20211104_132800-ce0fa0ca.pth -- Name: deeplabv3plus_r50-d8_4xb4-80k_loveda-512x512 - In Collection: DeepLabV3+ - Metadata: - backbone: R-50-D8 - crop size: (512,512) - lr schd: 80000 - inference time (ms/im): - - value: 166.67 - hardware: V100 - backend: PyTorch - batch size: 1 - mode: FP32 - resolution: (512,512) - Training Memory (GB): 7.37 - Results: - - Task: Semantic Segmentation - Dataset: LoveDA - Metrics: - mIoU: 50.99 - mIoU(ms+flip): 50.65 - Config: configs/deeplabv3plus/deeplabv3plus_r50-d8_4xb4-80k_loveda-512x512.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r50-d8_512x512_80k_loveda/deeplabv3plus_r50-d8_512x512_80k_loveda_20211105_080442-f0720392.pth -- Name: deeplabv3plus_r101-d8_4xb4-80k_loveda-512x512 - In Collection: DeepLabV3+ - Metadata: - backbone: R-101-D8 - crop size: (512,512) - lr schd: 80000 - inference time (ms/im): - - value: 230.95 - hardware: V100 - backend: PyTorch - batch size: 1 - mode: FP32 - resolution: (512,512) - Training Memory (GB): 10.84 - Results: - - Task: Semantic Segmentation - Dataset: LoveDA - Metrics: - mIoU: 51.47 - mIoU(ms+flip): 51.32 - Config: configs/deeplabv3plus/deeplabv3plus_r101-d8_4xb4-80k_loveda-512x512.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r101-d8_512x512_80k_loveda/deeplabv3plus_r101-d8_512x512_80k_loveda_20211105_110759-4c1f297e.pth -- Name: deeplabv3plus_r18-d8_4xb4-80k_potsdam-512x512 - In Collection: DeepLabV3+ - Metadata: - backbone: R-18-D8 - crop size: (512,512) - lr schd: 80000 - inference time (ms/im): - - value: 12.24 - hardware: V100 - backend: PyTorch - batch size: 1 - mode: FP32 - resolution: (512,512) - Training Memory (GB): 1.91 - Results: - - Task: Semantic Segmentation - Dataset: Potsdam - Metrics: - mIoU: 77.09 - mIoU(ms+flip): 78.44 - Config: configs/deeplabv3plus/deeplabv3plus_r18-d8_4xb4-80k_potsdam-512x512.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r18-d8_512x512_80k_potsdam/deeplabv3plus_r18-d8_512x512_80k_potsdam_20211219_020601-75fd5bc3.pth -- Name: deeplabv3plus_r50-d8_4xb4-80k_potsdam-512x512 - In Collection: DeepLabV3+ - Metadata: - backbone: R-50-D8 - crop size: (512,512) - lr schd: 80000 - inference time (ms/im): - - value: 37.82 - hardware: V100 - backend: PyTorch - batch size: 1 - mode: FP32 - resolution: (512,512) - Training Memory (GB): 7.36 - Results: - - Task: Semantic Segmentation - Dataset: Potsdam - Metrics: - mIoU: 78.33 - mIoU(ms+flip): 79.27 - Config: configs/deeplabv3plus/deeplabv3plus_r50-d8_4xb4-80k_potsdam-512x512.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r50-d8_512x512_80k_potsdam/deeplabv3plus_r50-d8_512x512_80k_potsdam_20211219_031508-7e7a2b24.pth -- Name: deeplabv3plus_r101-d8_4xb4-80k_potsdam-512x512 - In Collection: DeepLabV3+ - Metadata: - backbone: R-101-D8 - crop size: (512,512) - lr schd: 80000 - inference time (ms/im): - - value: 56.95 - hardware: V100 - backend: PyTorch - batch size: 1 - mode: FP32 - resolution: (512,512) - Training Memory (GB): 10.83 - Results: - - Task: Semantic Segmentation - Dataset: Potsdam - Metrics: - mIoU: 78.7 - mIoU(ms+flip): 79.47 - Config: configs/deeplabv3plus/deeplabv3plus_r101-d8_4xb4-80k_potsdam-512x512.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r101-d8_512x512_80k_potsdam/deeplabv3plus_r101-d8_512x512_80k_potsdam_20211219_031508-8b112708.pth -- Name: deeplabv3plus_r18-d8_4xb4-80k_vaihingen-512x512 - In Collection: DeepLabV3+ - Metadata: - backbone: R-18-D8 - crop size: (512,512) - lr schd: 80000 - inference time (ms/im): - - value: 13.74 - hardware: V100 - backend: PyTorch - batch size: 1 - mode: FP32 - resolution: (512,512) - Training Memory (GB): 1.91 - Results: - - Task: Semantic Segmentation - Dataset: Vaihingen - Metrics: - mIoU: 72.5 - mIoU(ms+flip): 74.13 - Config: configs/deeplabv3plus/deeplabv3plus_r18-d8_4xb4-80k_vaihingen-512x512.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r18-d8_4x4_512x512_80k_vaihingen/deeplabv3plus_r18-d8_4x4_512x512_80k_vaihingen_20211231_230805-7626a263.pth -- Name: deeplabv3plus_r50-d8_4xb4-80k_vaihingen-512x512 - In Collection: DeepLabV3+ - Metadata: - backbone: R-50-D8 - crop size: (512,512) - lr schd: 80000 - inference time (ms/im): - - value: 37.16 - hardware: V100 - backend: PyTorch - batch size: 1 - mode: FP32 - resolution: (512,512) - Training Memory (GB): 7.36 - Results: - - Task: Semantic Segmentation - Dataset: Vaihingen - Metrics: - mIoU: 73.97 - mIoU(ms+flip): 75.05 - Config: configs/deeplabv3plus/deeplabv3plus_r50-d8_4xb4-80k_vaihingen-512x512.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r50-d8_4x4_512x512_80k_vaihingen/deeplabv3plus_r50-d8_4x4_512x512_80k_vaihingen_20211231_230816-5040938d.pth -- Name: deeplabv3plus_r101-d8_4xb4-80k_vaihingen-512x512 - In Collection: DeepLabV3+ - Metadata: - backbone: R-101-D8 - crop size: (512,512) - lr schd: 80000 - inference time (ms/im): - - value: 53.79 - hardware: V100 - backend: PyTorch - batch size: 1 - mode: FP32 - resolution: (512,512) - Training Memory (GB): 10.83 - Results: - - Task: Semantic Segmentation - Dataset: Vaihingen - Metrics: - mIoU: 73.06 - mIoU(ms+flip): 74.14 - Config: configs/deeplabv3plus/deeplabv3plus_r101-d8_4xb4-80k_vaihingen-512x512.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r101-d8_4x4_512x512_80k_vaihingen/deeplabv3plus_r101-d8_4x4_512x512_80k_vaihingen_20211231_230816-8a095afa.pth -- Name: deeplabv3plus_r18-d8_4xb4-80k_isaid-896x896 - In Collection: DeepLabV3+ - Metadata: - backbone: R-18-D8 - crop size: (896,896) - lr schd: 80000 - inference time (ms/im): - - value: 40.31 - hardware: V100 - backend: PyTorch - batch size: 1 - mode: FP32 - resolution: (896,896) - Training Memory (GB): 6.19 - Results: - - Task: Semantic Segmentation - Dataset: iSAID - Metrics: - mIoU: 61.35 - mIoU(ms+flip): 62.61 - Config: configs/deeplabv3plus/deeplabv3plus_r18-d8_4xb4-80k_isaid-896x896.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r18-d8_4x4_896x896_80k_isaid/deeplabv3plus_r18-d8_4x4_896x896_80k_isaid_20220110_180526-7059991d.pth -- Name: deeplabv3plus_r50-d8_4xb4-80k_isaid-896x896 - In Collection: DeepLabV3+ - Metadata: - backbone: R-50-D8 - crop size: (896,896) - lr schd: 80000 - inference time (ms/im): - - value: 118.76 - hardware: V100 - backend: PyTorch - batch size: 1 - mode: FP32 - resolution: (896,896) - Training Memory (GB): 21.45 - Results: - - Task: Semantic Segmentation - Dataset: iSAID - Metrics: - mIoU: 67.06 - mIoU(ms+flip): 68.02 - Config: configs/deeplabv3plus/deeplabv3plus_r50-d8_4xb4-80k_isaid-896x896.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r50-d8_4x4_896x896_80k_isaid/deeplabv3plus_r50-d8_4x4_896x896_80k_isaid_20220110_180526-598be439.pth -- Name: deeplabv3plus_r50-d8_4xb2-300k_mapillay_v1_65-1280x1280 - In Collection: DeepLabV3+ - Metadata: - backbone: R-50-D8 - crop size: (1280,1280) - lr schd: 300000 - inference time (ms/im): - - value: 55.8 - hardware: V100 - backend: PyTorch - batch size: 1 - mode: FP32 - resolution: (1280,1280) - Training Memory (GB): 24.04 - Results: - - Task: Semantic Segmentation - Dataset: Mapillary Vistas v1.2 - Metrics: - mIoU: 47.35 - Config: configs/deeplabv3plus/deeplabv3plus_r50-d8_4xb2-300k_mapillay_v1_65-1280x1280.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r50-d8_4xb2-300k_mapillay_v1_65-1280x1280/deeplabv3plus_r50-d8_4xb2-300k_mapillay_v1_65-1280x1280_20230301_110504-655f8e43.pth diff --git a/configs/deeplabv3plus/metafile.yaml b/configs/deeplabv3plus/metafile.yaml new file mode 100644 index 0000000000..b41de4dee2 --- /dev/null +++ b/configs/deeplabv3plus/metafile.yaml @@ -0,0 +1,1041 @@ +Collections: +- Name: DeepLabV3+ + License: Apache License 2.0 + Metadata: + Training Data: + - Cityscapes + - ADE20K + - Pascal VOC 2012 + Aug + - Pascal Context + - Pascal Context 59 + - LoveDA + - Potsdam + - Vaihingen + - iSAID + - Mapillary Vistas v1.2 + Paper: + Title: Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation + URL: https://arxiv.org/abs/1802.02611 + README: configs/deeplabv3plus/README.md + Frameworks: + - PyTorch +Models: +- Name: deeplabv3plus_r50-d8_4xb2-40k_cityscapes-512x1024 + In Collection: DeepLabV3+ + Results: + Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 79.61 + mIoU(ms+flip): 81.01 + Config: configs/deeplabv3plus/deeplabv3plus_r50-d8_4xb2-40k_cityscapes-512x1024.py + Metadata: + Training Data: Cityscapes + Batch Size: 8 + Architecture: + - R-50-D8 + - DeepLabV3+ + Training Resources: 4x V100 GPUS + Memory (GB): 7.5 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r50-d8_512x1024_40k_cityscapes/deeplabv3plus_r50-d8_512x1024_40k_cityscapes_20200605_094610-d222ffcd.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r50-d8_512x1024_40k_cityscapes/deeplabv3plus_r50-d8_512x1024_40k_cityscapes_20200605_094610.log.json + Paper: + Title: Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation + URL: https://arxiv.org/abs/1802.02611 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/sep_aspp_head.py#L30 + Framework: PyTorch +- Name: deeplabv3plus_r101-d8_4xb2-40k_cityscapes-512x1024 + In Collection: DeepLabV3+ + Results: + Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 80.21 + mIoU(ms+flip): 81.82 + Config: configs/deeplabv3plus/deeplabv3plus_r101-d8_4xb2-40k_cityscapes-512x1024.py + Metadata: + Training Data: Cityscapes + Batch Size: 8 + Architecture: + - R-101-D8 + - DeepLabV3+ + Training Resources: 4x V100 GPUS + Memory (GB): 11.0 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r101-d8_512x1024_40k_cityscapes/deeplabv3plus_r101-d8_512x1024_40k_cityscapes_20200605_094614-3769eecf.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r101-d8_512x1024_40k_cityscapes/deeplabv3plus_r101-d8_512x1024_40k_cityscapes_20200605_094614.log.json + Paper: + Title: Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation + URL: https://arxiv.org/abs/1802.02611 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/sep_aspp_head.py#L30 + Framework: PyTorch +- Name: deeplabv3plus_r50-d8_4xb2-40k_cityscapes-769x769 + In Collection: DeepLabV3+ + Results: + Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 78.97 + mIoU(ms+flip): 80.46 + Config: configs/deeplabv3plus/deeplabv3plus_r50-d8_4xb2-40k_cityscapes-769x769.py + Metadata: + Training Data: Cityscapes + Batch Size: 8 + Architecture: + - R-50-D8 + - DeepLabV3+ + Training Resources: 4x V100 GPUS + Memory (GB): 8.5 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r50-d8_769x769_40k_cityscapes/deeplabv3plus_r50-d8_769x769_40k_cityscapes_20200606_114143-1dcb0e3c.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r50-d8_769x769_40k_cityscapes/deeplabv3plus_r50-d8_769x769_40k_cityscapes_20200606_114143.log.json + Paper: + Title: Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation + URL: https://arxiv.org/abs/1802.02611 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/sep_aspp_head.py#L30 + Framework: PyTorch +- Name: deeplabv3plus_r101-d8_4xb2-40k_cityscapes-769x769 + In Collection: DeepLabV3+ + Results: + Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 79.46 + mIoU(ms+flip): 80.5 + Config: configs/deeplabv3plus/deeplabv3plus_r101-d8_4xb2-40k_cityscapes-769x769.py + Metadata: + Training Data: Cityscapes + Batch Size: 8 + Architecture: + - R-101-D8 + - DeepLabV3+ + Training Resources: 4x V100 GPUS + Memory (GB): 12.5 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r101-d8_769x769_40k_cityscapes/deeplabv3plus_r101-d8_769x769_40k_cityscapes_20200606_114304-ff414b9e.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r101-d8_769x769_40k_cityscapes/deeplabv3plus_r101-d8_769x769_40k_cityscapes_20200606_114304.log.json + Paper: + Title: Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation + URL: https://arxiv.org/abs/1802.02611 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/sep_aspp_head.py#L30 + Framework: PyTorch +- Name: deeplabv3plus_r18-d8_4xb2-80k_cityscapes-512x1024 + In Collection: DeepLabV3+ + Results: + Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 76.89 + mIoU(ms+flip): 78.76 + Config: configs/deeplabv3plus/deeplabv3plus_r18-d8_4xb2-80k_cityscapes-512x1024.py + Metadata: + Training Data: Cityscapes + Batch Size: 8 + Architecture: + - R-18-D8 + - DeepLabV3+ + Training Resources: 4x V100 GPUS + Memory (GB): 2.2 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r18-d8_512x1024_80k_cityscapes/deeplabv3plus_r18-d8_512x1024_80k_cityscapes_20201226_080942-cff257fe.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r18-d8_512x1024_80k_cityscapes/deeplabv3plus_r18-d8_512x1024_80k_cityscapes-20201226_080942.log.json + Paper: + Title: Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation + URL: https://arxiv.org/abs/1802.02611 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/sep_aspp_head.py#L30 + Framework: PyTorch +- Name: deeplabv3plus_r50-d8_4xb2-80k_cityscapes-512x1024 + In Collection: DeepLabV3+ + Results: + Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 80.09 + mIoU(ms+flip): 81.13 + Config: configs/deeplabv3plus/deeplabv3plus_r50-d8_4xb2-80k_cityscapes-512x1024.py + Metadata: + Training Data: Cityscapes + Batch Size: 8 + Architecture: + - R-50-D8 + - DeepLabV3+ + Training Resources: 4x V100 GPUS + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r50-d8_512x1024_80k_cityscapes/deeplabv3plus_r50-d8_512x1024_80k_cityscapes_20200606_114049-f9fb496d.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r50-d8_512x1024_80k_cityscapes/deeplabv3plus_r50-d8_512x1024_80k_cityscapes_20200606_114049.log.json + Paper: + Title: Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation + URL: https://arxiv.org/abs/1802.02611 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/sep_aspp_head.py#L30 + Framework: PyTorch +- Name: deeplabv3plus_r101-d8_4xb2-80k_cityscapes-512x1024 + In Collection: DeepLabV3+ + Results: + Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 80.97 + mIoU(ms+flip): 82.03 + Config: configs/deeplabv3plus/deeplabv3plus_r101-d8_4xb2-80k_cityscapes-512x1024.py + Metadata: + Training Data: Cityscapes + Batch Size: 8 + Architecture: + - R-101-D8 + - DeepLabV3+ + Training Resources: 4x V100 GPUS + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r101-d8_512x1024_80k_cityscapes/deeplabv3plus_r101-d8_512x1024_80k_cityscapes_20200606_114143-068fcfe9.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r101-d8_512x1024_80k_cityscapes/deeplabv3plus_r101-d8_512x1024_80k_cityscapes_20200606_114143.log.json + Paper: + Title: Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation + URL: https://arxiv.org/abs/1802.02611 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/sep_aspp_head.py#L30 + Framework: PyTorch +- Name: deeplabv3plus_r101-d8_4xb2-amp-80k_cityscapes-512x1024 + In Collection: DeepLabV3+ + Results: + Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 80.46 + Config: configs/deeplabv3plus/deeplabv3plus_r101-d8_4xb2-amp-80k_cityscapes-512x1024.py + Metadata: + Training Data: Cityscapes + Batch Size: 8 + Architecture: + - R-101-D8 + - DeepLabV3+ + - (FP16) + Training Resources: 4x V100 GPUS + Memory (GB): 6.35 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r101-d8_fp16_512x1024_80k_cityscapes/deeplabv3plus_r101-d8_fp16_512x1024_80k_cityscapes_20200717_230920-f1104f4b.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r101-d8_fp16_512x1024_80k_cityscapes/deeplabv3plus_r101-d8_fp16_512x1024_80k_cityscapes_20200717_230920.log.json + Paper: + Title: Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation + URL: https://arxiv.org/abs/1802.02611 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/sep_aspp_head.py#L30 + Framework: PyTorch +- Name: deeplabv3plus_r18-d8_4xb2-80k_cityscapes-769x769 + In Collection: DeepLabV3+ + Results: + Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 76.26 + mIoU(ms+flip): 77.91 + Config: configs/deeplabv3plus/deeplabv3plus_r18-d8_4xb2-80k_cityscapes-769x769.py + Metadata: + Training Data: Cityscapes + Batch Size: 8 + Architecture: + - R-18-D8 + - DeepLabV3+ + Training Resources: 4x V100 GPUS + Memory (GB): 2.5 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r18-d8_769x769_80k_cityscapes/deeplabv3plus_r18-d8_769x769_80k_cityscapes_20201226_083346-f326e06a.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r18-d8_769x769_80k_cityscapes/deeplabv3plus_r18-d8_769x769_80k_cityscapes-20201226_083346.log.json + Paper: + Title: Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation + URL: https://arxiv.org/abs/1802.02611 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/sep_aspp_head.py#L30 + Framework: PyTorch +- Name: deeplabv3plus_r50-d8_4xb2-80k_cityscapes-769x769 + In Collection: DeepLabV3+ + Results: + Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 79.83 + mIoU(ms+flip): 81.48 + Config: configs/deeplabv3plus/deeplabv3plus_r50-d8_4xb2-80k_cityscapes-769x769.py + Metadata: + Training Data: Cityscapes + Batch Size: 8 + Architecture: + - R-50-D8 + - DeepLabV3+ + Training Resources: 4x V100 GPUS + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r50-d8_769x769_80k_cityscapes/deeplabv3plus_r50-d8_769x769_80k_cityscapes_20200606_210233-0e9dfdc4.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r50-d8_769x769_80k_cityscapes/deeplabv3plus_r50-d8_769x769_80k_cityscapes_20200606_210233.log.json + Paper: + Title: Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation + URL: https://arxiv.org/abs/1802.02611 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/sep_aspp_head.py#L30 + Framework: PyTorch +- Name: deeplabv3plus_r101-d8_4xb2-80k_cityscapes-769x769 + In Collection: DeepLabV3+ + Results: + Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 80.65 + mIoU(ms+flip): 81.47 + Config: configs/deeplabv3plus/deeplabv3plus_r101-d8_4xb2-80k_cityscapes-769x769.py + Metadata: + Training Data: Cityscapes + Batch Size: 8 + Architecture: + - R-101-D8 + - DeepLabV3+ + Training Resources: 4x V100 GPUS + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r101-d8_769x769_80k_cityscapes/deeplabv3plus_r101-d8_769x769_80k_cityscapes_20220406_154720-dfcc0b68.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r101-d8_769x769_80k_cityscapes/deeplabv3plus_r101-d8_769x769_80k_cityscapes_20220406_154720.log.json + Paper: + Title: Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation + URL: https://arxiv.org/abs/1802.02611 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/sep_aspp_head.py#L30 + Framework: PyTorch +- Name: ddeeplabv3plus_r101-d16-mg124_4xb2-40k_cityscapes-512x1024 + In Collection: DeepLabV3+ + Results: + Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 79.09 + mIoU(ms+flip): 80.36 + Config: configs/deeplabv3plus/ddeeplabv3plus_r101-d16-mg124_4xb2-40k_cityscapes-512x1024.py + Metadata: + Training Data: Cityscapes + Batch Size: 8 + Architecture: + - R-101-D16-MG124 + - DeepLabV3+ + Training Resources: 4x V100 GPUS + Memory (GB): 5.8 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r101-d16-mg124_512x1024_40k_cityscapes/deeplabv3plus_r101-d16-mg124_512x1024_40k_cityscapes_20200908_005644-cf9ce186.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r101-d16-mg124_512x1024_40k_cityscapes/deeplabv3plus_r101-d16-mg124_512x1024_40k_cityscapes-20200908_005644.log.json + Paper: + Title: Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation + URL: https://arxiv.org/abs/1802.02611 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/sep_aspp_head.py#L30 + Framework: PyTorch +- Name: deeplabv3plus_r101-d16-mg124_4xb2-80k_cityscapes-512x1024 + In Collection: DeepLabV3+ + Results: + Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 79.9 + mIoU(ms+flip): 81.33 + Config: configs/deeplabv3plus/deeplabv3plus_r101-d16-mg124_4xb2-80k_cityscapes-512x1024.py + Metadata: + Training Data: Cityscapes + Batch Size: 8 + Architecture: + - R-101-D16-MG124 + - DeepLabV3+ + Training Resources: 4x V100 GPUS + Memory (GB): 9.9 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r101-d16-mg124_512x1024_80k_cityscapes/deeplabv3plus_r101-d16-mg124_512x1024_80k_cityscapes_20200908_005644-ee6158e0.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r101-d16-mg124_512x1024_80k_cityscapes/deeplabv3plus_r101-d16-mg124_512x1024_80k_cityscapes-20200908_005644.log.json + Paper: + Title: Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation + URL: https://arxiv.org/abs/1802.02611 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/sep_aspp_head.py#L30 + Framework: PyTorch +- Name: deeplabv3plus_r18b-d8_4xb2-80k_cityscapes-512x1024 + In Collection: DeepLabV3+ + Results: + Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 75.87 + mIoU(ms+flip): 77.52 + Config: configs/deeplabv3plus/deeplabv3plus_r18b-d8_4xb2-80k_cityscapes-512x1024.py + Metadata: + Training Data: Cityscapes + Batch Size: 8 + Architecture: + - R-18b-D8 + - DeepLabV3+ + Training Resources: 4x V100 GPUS + Memory (GB): 2.1 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r18b-d8_512x1024_80k_cityscapes/deeplabv3plus_r18b-d8_512x1024_80k_cityscapes_20201226_090828-e451abd9.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r18b-d8_512x1024_80k_cityscapes/deeplabv3plus_r18b-d8_512x1024_80k_cityscapes-20201226_090828.log.json + Paper: + Title: Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation + URL: https://arxiv.org/abs/1802.02611 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/sep_aspp_head.py#L30 + Framework: PyTorch +- Name: deeplabv3plus_r50b-d8_4xb2-80k_cityscapes-512x1024 + In Collection: DeepLabV3+ + Results: + Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 80.28 + mIoU(ms+flip): 81.44 + Config: configs/deeplabv3plus/deeplabv3plus_r50b-d8_4xb2-80k_cityscapes-512x1024.py + Metadata: + Training Data: Cityscapes + Batch Size: 8 + Architecture: + - R-50b-D8 + - DeepLabV3+ + Training Resources: 4x V100 GPUS + Memory (GB): 7.4 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r50b-d8_512x1024_80k_cityscapes/deeplabv3plus_r50b-d8_512x1024_80k_cityscapes_20201225_213645-a97e4e43.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r50b-d8_512x1024_80k_cityscapes/deeplabv3plus_r50b-d8_512x1024_80k_cityscapes-20201225_213645.log.json + Paper: + Title: Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation + URL: https://arxiv.org/abs/1802.02611 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/sep_aspp_head.py#L30 + Framework: PyTorch +- Name: deeplabv3plus_r101b-d8_4xb2-80k_cityscapes-512x1024 + In Collection: DeepLabV3+ + Results: + Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 80.16 + mIoU(ms+flip): 81.41 + Config: configs/deeplabv3plus/deeplabv3plus_r101b-d8_4xb2-80k_cityscapes-512x1024.py + Metadata: + Training Data: Cityscapes + Batch Size: 8 + Architecture: + - R-101b-D8 + - DeepLabV3+ + Training Resources: 4x V100 GPUS + Memory (GB): 10.9 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r101b-d8_512x1024_80k_cityscapes/deeplabv3plus_r101b-d8_512x1024_80k_cityscapes_20201226_190843-9c3c93a4.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r101b-d8_512x1024_80k_cityscapes/deeplabv3plus_r101b-d8_512x1024_80k_cityscapes-20201226_190843.log.json + Paper: + Title: Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation + URL: https://arxiv.org/abs/1802.02611 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/sep_aspp_head.py#L30 + Framework: PyTorch +- Name: deeplabv3plus_r18b-d8_4xb2-80k_cityscapes-769x769 + In Collection: DeepLabV3+ + Results: + Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 76.36 + mIoU(ms+flip): 78.24 + Config: configs/deeplabv3plus/deeplabv3plus_r18b-d8_4xb2-80k_cityscapes-769x769.py + Metadata: + Training Data: Cityscapes + Batch Size: 8 + Architecture: + - R-18b-D8 + - DeepLabV3+ + Training Resources: 4x V100 GPUS + Memory (GB): 2.4 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r18b-d8_769x769_80k_cityscapes/deeplabv3plus_r18b-d8_769x769_80k_cityscapes_20201226_151312-2c868aff.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r18b-d8_769x769_80k_cityscapes/deeplabv3plus_r18b-d8_769x769_80k_cityscapes-20201226_151312.log.json + Paper: + Title: Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation + URL: https://arxiv.org/abs/1802.02611 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/sep_aspp_head.py#L30 + Framework: PyTorch +- Name: deeplabv3plus_r50b-d8_4xb2-80k_cityscapes-769x769 + In Collection: DeepLabV3+ + Results: + Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 79.41 + mIoU(ms+flip): 80.56 + Config: configs/deeplabv3plus/deeplabv3plus_r50b-d8_4xb2-80k_cityscapes-769x769.py + Metadata: + Training Data: Cityscapes + Batch Size: 8 + Architecture: + - R-50b-D8 + - DeepLabV3+ + Training Resources: 4x V100 GPUS + Memory (GB): 8.4 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r50b-d8_769x769_80k_cityscapes/deeplabv3plus_r50b-d8_769x769_80k_cityscapes_20201225_224655-8b596d1c.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r50b-d8_769x769_80k_cityscapes/deeplabv3plus_r50b-d8_769x769_80k_cityscapes-20201225_224655.log.json + Paper: + Title: Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation + URL: https://arxiv.org/abs/1802.02611 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/sep_aspp_head.py#L30 + Framework: PyTorch +- Name: deeplabv3plus_r101b-d8_4xb2-80k_cityscapes-769x769 + In Collection: DeepLabV3+ + Results: + Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 79.88 + mIoU(ms+flip): 81.46 + Config: configs/deeplabv3plus/deeplabv3plus_r101b-d8_4xb2-80k_cityscapes-769x769.py + Metadata: + Training Data: Cityscapes + Batch Size: 8 + Architecture: + - R-101b-D8 + - DeepLabV3+ + Training Resources: 4x V100 GPUS + Memory (GB): 12.3 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r101b-d8_769x769_80k_cityscapes/deeplabv3plus_r101b-d8_769x769_80k_cityscapes_20201226_205041-227cdf7c.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r101b-d8_769x769_80k_cityscapes/deeplabv3plus_r101b-d8_769x769_80k_cityscapes-20201226_205041.log.json + Paper: + Title: Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation + URL: https://arxiv.org/abs/1802.02611 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/sep_aspp_head.py#L30 + Framework: PyTorch +- Name: deeplabv3plus_r50-d8_4xb4-80k_ade20k-512x512 + In Collection: DeepLabV3+ + Results: + Task: Semantic Segmentation + Dataset: ADE20K + Metrics: + mIoU: 42.72 + mIoU(ms+flip): 43.75 + Config: configs/deeplabv3plus/deeplabv3plus_r50-d8_4xb4-80k_ade20k-512x512.py + Metadata: + Training Data: ADE20K + Batch Size: 16 + Architecture: + - R-50-D8 + - DeepLabV3+ + Training Resources: 4x V100 GPUS + Memory (GB): 10.6 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r50-d8_512x512_80k_ade20k/deeplabv3plus_r50-d8_512x512_80k_ade20k_20200614_185028-bf1400d8.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r50-d8_512x512_80k_ade20k/deeplabv3plus_r50-d8_512x512_80k_ade20k_20200614_185028.log.json + Paper: + Title: Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation + URL: https://arxiv.org/abs/1802.02611 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/sep_aspp_head.py#L30 + Framework: PyTorch +- Name: deeplabv3plus_r101-d8_4xb4-160k_ade20k-512x512 + In Collection: DeepLabV3+ + Results: + Task: Semantic Segmentation + Dataset: ADE20K + Metrics: + mIoU: 44.6 + mIoU(ms+flip): 46.06 + Config: configs/deeplabv3plus/deeplabv3plus_r101-d8_4xb4-160k_ade20k-512x512.py + Metadata: + Training Data: ADE20K + Batch Size: 16 + Architecture: + - R-101-D8 + - DeepLabV3+ + Training Resources: 4x V100 GPUS + Memory (GB): 14.1 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r101-d8_512x512_80k_ade20k/deeplabv3plus_r101-d8_512x512_80k_ade20k_20200615_014139-d5730af7.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r101-d8_512x512_80k_ade20k/deeplabv3plus_r101-d8_512x512_80k_ade20k_20200615_014139.log.json + Paper: + Title: Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation + URL: https://arxiv.org/abs/1802.02611 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/sep_aspp_head.py#L30 + Framework: PyTorch +- Name: deeplabv3plus_r50-d8_4xb4-160k_ade20k-512x512 + In Collection: DeepLabV3+ + Results: + Task: Semantic Segmentation + Dataset: ADE20K + Metrics: + mIoU: 43.95 + mIoU(ms+flip): 44.93 + Config: configs/deeplabv3plus/deeplabv3plus_r50-d8_4xb4-160k_ade20k-512x512.py + Metadata: + Training Data: ADE20K + Batch Size: 16 + Architecture: + - R-50-D8 + - DeepLabV3+ + Training Resources: 4x V100 GPUS + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r50-d8_512x512_160k_ade20k/deeplabv3plus_r50-d8_512x512_160k_ade20k_20200615_124504-6135c7e0.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r50-d8_512x512_160k_ade20k/deeplabv3plus_r50-d8_512x512_160k_ade20k_20200615_124504.log.json + Paper: + Title: Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation + URL: https://arxiv.org/abs/1802.02611 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/sep_aspp_head.py#L30 + Framework: PyTorch +- Name: deeplabv3plus_r101-d8_4xb4-160k_ade20k-512x512 + In Collection: DeepLabV3+ + Results: + Task: Semantic Segmentation + Dataset: ADE20K + Metrics: + mIoU: 45.47 + mIoU(ms+flip): 46.35 + Config: configs/deeplabv3plus/deeplabv3plus_r101-d8_4xb4-160k_ade20k-512x512.py + Metadata: + Training Data: ADE20K + Batch Size: 16 + Architecture: + - R-101-D8 + - DeepLabV3+ + Training Resources: 4x V100 GPUS + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r101-d8_512x512_160k_ade20k/deeplabv3plus_r101-d8_512x512_160k_ade20k_20200615_123232-38ed86bb.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r101-d8_512x512_160k_ade20k/deeplabv3plus_r101-d8_512x512_160k_ade20k_20200615_123232.log.json + Paper: + Title: Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation + URL: https://arxiv.org/abs/1802.02611 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/sep_aspp_head.py#L30 + Framework: PyTorch +- Name: deeplabv3plus_r50-d8_4xb4-20k_voc12aug-512x512 + In Collection: DeepLabV3+ + Results: + Task: Semantic Segmentation + Dataset: Pascal VOC 2012 + Aug + Metrics: + mIoU: 75.93 + mIoU(ms+flip): 77.5 + Config: configs/deeplabv3plus/deeplabv3plus_r50-d8_4xb4-20k_voc12aug-512x512.py + Metadata: + Training Data: Pascal VOC 2012 + Aug + Batch Size: 16 + Architecture: + - R-50-D8 + - DeepLabV3+ + Training Resources: 4x V100 GPUS + Memory (GB): 7.6 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r50-d8_512x512_20k_voc12aug/deeplabv3plus_r50-d8_512x512_20k_voc12aug_20200617_102323-aad58ef1.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r50-d8_512x512_20k_voc12aug/deeplabv3plus_r50-d8_512x512_20k_voc12aug_20200617_102323.log.json + Paper: + Title: Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation + URL: https://arxiv.org/abs/1802.02611 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/sep_aspp_head.py#L30 + Framework: PyTorch +- Name: deeplabv3plus_r101-d8_4xb4-20k_voc12aug-512x512 + In Collection: DeepLabV3+ + Results: + Task: Semantic Segmentation + Dataset: Pascal VOC 2012 + Aug + Metrics: + mIoU: 77.22 + mIoU(ms+flip): 78.59 + Config: configs/deeplabv3plus/deeplabv3plus_r101-d8_4xb4-20k_voc12aug-512x512.py + Metadata: + Training Data: Pascal VOC 2012 + Aug + Batch Size: 16 + Architecture: + - R-101-D8 + - DeepLabV3+ + Training Resources: 4x V100 GPUS + Memory (GB): 11.0 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r101-d8_512x512_20k_voc12aug/deeplabv3plus_r101-d8_512x512_20k_voc12aug_20200617_102345-c7ff3d56.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r101-d8_512x512_20k_voc12aug/deeplabv3plus_r101-d8_512x512_20k_voc12aug_20200617_102345.log.json + Paper: + Title: Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation + URL: https://arxiv.org/abs/1802.02611 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/sep_aspp_head.py#L30 + Framework: PyTorch +- Name: deeplabv3plus_r50-d8_4xb4-40k_voc12aug-512x512 + In Collection: DeepLabV3+ + Results: + Task: Semantic Segmentation + Dataset: Pascal VOC 2012 + Aug + Metrics: + mIoU: 76.81 + mIoU(ms+flip): 77.57 + Config: configs/deeplabv3plus/deeplabv3plus_r50-d8_4xb4-40k_voc12aug-512x512.py + Metadata: + Training Data: Pascal VOC 2012 + Aug + Batch Size: 16 + Architecture: + - R-50-D8 + - DeepLabV3+ + Training Resources: 4x V100 GPUS + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r50-d8_512x512_40k_voc12aug/deeplabv3plus_r50-d8_512x512_40k_voc12aug_20200613_161759-e1b43aa9.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r50-d8_512x512_40k_voc12aug/deeplabv3plus_r50-d8_512x512_40k_voc12aug_20200613_161759.log.json + Paper: + Title: Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation + URL: https://arxiv.org/abs/1802.02611 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/sep_aspp_head.py#L30 + Framework: PyTorch +- Name: deeplabv3plus_r101-d8_4xb4-40k_voc12aug-512x512 + In Collection: DeepLabV3+ + Results: + Task: Semantic Segmentation + Dataset: Pascal VOC 2012 + Aug + Metrics: + mIoU: 78.62 + mIoU(ms+flip): 79.53 + Config: configs/deeplabv3plus/deeplabv3plus_r101-d8_4xb4-40k_voc12aug-512x512.py + Metadata: + Training Data: Pascal VOC 2012 + Aug + Batch Size: 16 + Architecture: + - R-101-D8 + - DeepLabV3+ + Training Resources: 4x V100 GPUS + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r101-d8_512x512_40k_voc12aug/deeplabv3plus_r101-d8_512x512_40k_voc12aug_20200613_205333-faf03387.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r101-d8_512x512_40k_voc12aug/deeplabv3plus_r101-d8_512x512_40k_voc12aug_20200613_205333.log.json + Paper: + Title: Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation + URL: https://arxiv.org/abs/1802.02611 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/sep_aspp_head.py#L30 + Framework: PyTorch +- Name: deeplabv3plus_r50-d8_4xb4-40k_pascal-context-480x480 + In Collection: DeepLabV3+ + Results: + Task: Semantic Segmentation + Dataset: Pascal Context + Metrics: + mIoU: 47.3 + mIoU(ms+flip): 48.47 + Config: configs/deeplabv3plus/deeplabv3plus_r50-d8_4xb4-40k_pascal-context-480x480.py + Metadata: + Training Data: Pascal Context + Batch Size: 16 + Architecture: + - R-101-D8 + - DeepLabV3+ + Training Resources: 4x V100 GPUS + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r101-d8_480x480_40k_pascal_context/deeplabv3plus_r101-d8_480x480_40k_pascal_context_20200911_165459-d3c8a29e.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r101-d8_480x480_40k_pascal_context/deeplabv3plus_r101-d8_480x480_40k_pascal_context-20200911_165459.log.json + Paper: + Title: Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation + URL: https://arxiv.org/abs/1802.02611 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/sep_aspp_head.py#L30 + Framework: PyTorch +- Name: deeplabv3plus_r50-d8_4xb4-80k_pascal-context-480x480 + In Collection: DeepLabV3+ + Results: + Task: Semantic Segmentation + Dataset: Pascal Context + Metrics: + mIoU: 47.23 + mIoU(ms+flip): 48.26 + Config: configs/deeplabv3plus/deeplabv3plus_r50-d8_4xb4-80k_pascal-context-480x480.py + Metadata: + Training Data: Pascal Context + Batch Size: 16 + Architecture: + - R-101-D8 + - DeepLabV3+ + Training Resources: 4x V100 GPUS + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r101-d8_480x480_80k_pascal_context/deeplabv3plus_r101-d8_480x480_80k_pascal_context_20200911_155322-145d3ee8.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r101-d8_480x480_80k_pascal_context/deeplabv3plus_r101-d8_480x480_80k_pascal_context-20200911_155322.log.json + Paper: + Title: Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation + URL: https://arxiv.org/abs/1802.02611 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/sep_aspp_head.py#L30 + Framework: PyTorch +- Name: deeplabv3plus_r101-d8_4xb4-40k_pascal-context-59-480x480 + In Collection: DeepLabV3+ + Results: + Task: Semantic Segmentation + Dataset: Pascal Context 59 + Metrics: + mIoU: 52.86 + mIoU(ms+flip): 54.54 + Config: configs/deeplabv3plus/deeplabv3plus_r101-d8_4xb4-40k_pascal-context-59-480x480.py + Metadata: + Training Data: Pascal Context 59 + Batch Size: 16 + Architecture: + - R-101-D8 + - DeepLabV3+ + Training Resources: 4x V100 GPUS + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r101-d8_480x480_40k_pascal_context_59/deeplabv3plus_r101-d8_480x480_40k_pascal_context_59_20210416_111233-ed937f15.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r101-d8_480x480_40k_pascal_context_59/deeplabv3plus_r101-d8_480x480_40k_pascal_context_59-20210416_111233.log.json + Paper: + Title: Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation + URL: https://arxiv.org/abs/1802.02611 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/sep_aspp_head.py#L30 + Framework: PyTorch +- Name: deeplabv3plus_r101-d8_4xb4-80k_pascal-context-59-480x480 + In Collection: DeepLabV3+ + Results: + Task: Semantic Segmentation + Dataset: Pascal Context 59 + Metrics: + mIoU: 53.2 + mIoU(ms+flip): 54.67 + Config: configs/deeplabv3plus/deeplabv3plus_r101-d8_4xb4-80k_pascal-context-59-480x480.py + Metadata: + Training Data: Pascal Context 59 + Batch Size: 16 + Architecture: + - R-101-D8 + - DeepLabV3+ + Training Resources: 4x V100 GPUS + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r101-d8_480x480_80k_pascal_context_59/deeplabv3plus_r101-d8_480x480_80k_pascal_context_59_20210416_111127-7ca0331d.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r101-d8_480x480_80k_pascal_context_59/deeplabv3plus_r101-d8_480x480_80k_pascal_context_59-20210416_111127.log.json + Paper: + Title: Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation + URL: https://arxiv.org/abs/1802.02611 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/sep_aspp_head.py#L30 + Framework: PyTorch +- Name: deeplabv3plus_r18-d8_4xb4-80k_loveda-512x512 + In Collection: DeepLabV3+ + Results: + Task: Semantic Segmentation + Dataset: LoveDA + Metrics: + mIoU: 50.28 + mIoU(ms+flip): 50.47 + Config: configs/deeplabv3plus/deeplabv3plus_r18-d8_4xb4-80k_loveda-512x512.py + Metadata: + Training Data: LoveDA + Batch Size: 16 + Architecture: + - R-18-D8 + - DeepLabV3+ + Training Resources: 4x V100 GPUS + Memory (GB): 1.93 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r18-d8_512x512_80k_loveda/deeplabv3plus_r18-d8_512x512_80k_loveda_20211104_132800-ce0fa0ca.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r18-d8_512x512_80k_loveda/deeplabv3plus_r18-d8_512x512_80k_loveda_20211104_132800.log.json + Paper: + Title: Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation + URL: https://arxiv.org/abs/1802.02611 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/sep_aspp_head.py#L30 + Framework: PyTorch +- Name: deeplabv3plus_r50-d8_4xb4-80k_loveda-512x512 + In Collection: DeepLabV3+ + Results: + Task: Semantic Segmentation + Dataset: LoveDA + Metrics: + mIoU: 50.99 + mIoU(ms+flip): 50.65 + Config: configs/deeplabv3plus/deeplabv3plus_r50-d8_4xb4-80k_loveda-512x512.py + Metadata: + Training Data: LoveDA + Batch Size: 16 + Architecture: + - R-50-D8 + - DeepLabV3+ + Training Resources: 4x V100 GPUS + Memory (GB): 7.37 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r50-d8_512x512_80k_loveda/deeplabv3plus_r50-d8_512x512_80k_loveda_20211105_080442-f0720392.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r50-d8_512x512_80k_loveda/deeplabv3plus_r50-d8_512x512_80k_loveda_20211105_080442.log.json + Paper: + Title: Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation + URL: https://arxiv.org/abs/1802.02611 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/sep_aspp_head.py#L30 + Framework: PyTorch +- Name: deeplabv3plus_r101-d8_4xb4-80k_loveda-512x512 + In Collection: DeepLabV3+ + Results: + Task: Semantic Segmentation + Dataset: LoveDA + Metrics: + mIoU: 51.47 + mIoU(ms+flip): 51.32 + Config: configs/deeplabv3plus/deeplabv3plus_r101-d8_4xb4-80k_loveda-512x512.py + Metadata: + Training Data: LoveDA + Batch Size: 16 + Architecture: + - R-101-D8 + - DeepLabV3+ + Training Resources: 4x V100 GPUS + Memory (GB): 10.84 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r101-d8_512x512_80k_loveda/deeplabv3plus_r101-d8_512x512_80k_loveda_20211105_110759-4c1f297e.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r101-d8_512x512_80k_loveda/deeplabv3plus_r101-d8_512x512_80k_loveda_20211105_110759.log.json + Paper: + Title: Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation + URL: https://arxiv.org/abs/1802.02611 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/sep_aspp_head.py#L30 + Framework: PyTorch +- Name: deeplabv3plus_r18-d8_4xb4-80k_potsdam-512x512 + In Collection: DeepLabV3+ + Results: + Task: Semantic Segmentation + Dataset: Potsdam + Metrics: + mIoU: 77.09 + mIoU(ms+flip): 78.44 + Config: configs/deeplabv3plus/deeplabv3plus_r18-d8_4xb4-80k_potsdam-512x512.py + Metadata: + Training Data: Potsdam + Batch Size: 16 + Architecture: + - R-18-D8 + - DeepLabV3+ + Training Resources: 4x V100 GPUS + Memory (GB): 1.91 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r18-d8_512x512_80k_potsdam/deeplabv3plus_r18-d8_512x512_80k_potsdam_20211219_020601-75fd5bc3.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r18-d8_512x512_80k_potsdam/deeplabv3plus_r18-d8_512x512_80k_potsdam_20211219_020601.log.json + Paper: + Title: Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation + URL: https://arxiv.org/abs/1802.02611 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/sep_aspp_head.py#L30 + Framework: PyTorch +- Name: deeplabv3plus_r50-d8_4xb4-80k_potsdam-512x512 + In Collection: DeepLabV3+ + Results: + Task: Semantic Segmentation + Dataset: Potsdam + Metrics: + mIoU: 78.33 + mIoU(ms+flip): 79.27 + Config: configs/deeplabv3plus/deeplabv3plus_r50-d8_4xb4-80k_potsdam-512x512.py + Metadata: + Training Data: Potsdam + Batch Size: 16 + Architecture: + - R-50-D8 + - DeepLabV3+ + Training Resources: 4x V100 GPUS + Memory (GB): 7.36 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r50-d8_512x512_80k_potsdam/deeplabv3plus_r50-d8_512x512_80k_potsdam_20211219_031508-7e7a2b24.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r50-d8_512x512_80k_potsdam/deeplabv3plus_r50-d8_512x512_80k_potsdam_20211219_031508.log.json + Paper: + Title: Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation + URL: https://arxiv.org/abs/1802.02611 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/sep_aspp_head.py#L30 + Framework: PyTorch +- Name: deeplabv3plus_r101-d8_4xb4-80k_potsdam-512x512 + In Collection: DeepLabV3+ + Results: + Task: Semantic Segmentation + Dataset: Potsdam + Metrics: + mIoU: 78.7 + mIoU(ms+flip): 79.47 + Config: configs/deeplabv3plus/deeplabv3plus_r101-d8_4xb4-80k_potsdam-512x512.py + Metadata: + Training Data: Potsdam + Batch Size: 16 + Architecture: + - R-101-D8 + - DeepLabV3+ + Training Resources: 4x V100 GPUS + Memory (GB): 10.83 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r101-d8_512x512_80k_potsdam/deeplabv3plus_r101-d8_512x512_80k_potsdam_20211219_031508-8b112708.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r101-d8_512x512_80k_potsdam/deeplabv3plus_r101-d8_512x512_80k_potsdam_20211219_031508.log.json + Paper: + Title: Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation + URL: https://arxiv.org/abs/1802.02611 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/sep_aspp_head.py#L30 + Framework: PyTorch +- Name: deeplabv3plus_r18-d8_4xb4-80k_vaihingen-512x512 + In Collection: DeepLabV3+ + Results: + Task: Semantic Segmentation + Dataset: Vaihingen + Metrics: + mIoU: 72.5 + mIoU(ms+flip): 74.13 + Config: configs/deeplabv3plus/deeplabv3plus_r18-d8_4xb4-80k_vaihingen-512x512.py + Metadata: + Training Data: Vaihingen + Batch Size: 16 + Architecture: + - R-18-D8 + - DeepLabV3+ + Training Resources: 4x V100 GPUS + Memory (GB): 1.91 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r18-d8_4x4_512x512_80k_vaihingen/deeplabv3plus_r18-d8_4x4_512x512_80k_vaihingen_20211231_230805-7626a263.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r18-d8_4x4_512x512_80k_vaihingen/deeplabv3plus_r18-d8_4x4_512x512_80k_vaihingen_20211231_230805.log.json + Paper: + Title: Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation + URL: https://arxiv.org/abs/1802.02611 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/sep_aspp_head.py#L30 + Framework: PyTorch +- Name: deeplabv3plus_r50-d8_4xb4-80k_vaihingen-512x512 + In Collection: DeepLabV3+ + Results: + Task: Semantic Segmentation + Dataset: Vaihingen + Metrics: + mIoU: 73.97 + mIoU(ms+flip): 75.05 + Config: configs/deeplabv3plus/deeplabv3plus_r50-d8_4xb4-80k_vaihingen-512x512.py + Metadata: + Training Data: Vaihingen + Batch Size: 16 + Architecture: + - R-50-D8 + - DeepLabV3+ + Training Resources: 4x V100 GPUS + Memory (GB): 7.36 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r50-d8_4x4_512x512_80k_vaihingen/deeplabv3plus_r50-d8_4x4_512x512_80k_vaihingen_20211231_230816-5040938d.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r50-d8_4x4_512x512_80k_vaihingen/deeplabv3plus_r50-d8_4x4_512x512_80k_vaihingen_20211231_230816.log.json + Paper: + Title: Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation + URL: https://arxiv.org/abs/1802.02611 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/sep_aspp_head.py#L30 + Framework: PyTorch +- Name: deeplabv3plus_r101-d8_4xb4-80k_vaihingen-512x512 + In Collection: DeepLabV3+ + Results: + Task: Semantic Segmentation + Dataset: Vaihingen + Metrics: + mIoU: 73.06 + mIoU(ms+flip): 74.14 + Config: configs/deeplabv3plus/deeplabv3plus_r101-d8_4xb4-80k_vaihingen-512x512.py + Metadata: + Training Data: Vaihingen + Batch Size: 16 + Architecture: + - R-101-D8 + - DeepLabV3+ + Training Resources: 4x V100 GPUS + Memory (GB): 10.83 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r101-d8_4x4_512x512_80k_vaihingen/deeplabv3plus_r101-d8_4x4_512x512_80k_vaihingen_20211231_230816-8a095afa.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r101-d8_4x4_512x512_80k_vaihingen/deeplabv3plus_r101-d8_4x4_512x512_80k_vaihingen_20211231_230816.log.json + Paper: + Title: Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation + URL: https://arxiv.org/abs/1802.02611 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/sep_aspp_head.py#L30 + Framework: PyTorch +- Name: deeplabv3plus_r18-d8_4xb4-80k_isaid-896x896 + In Collection: DeepLabV3+ + Results: + Task: Semantic Segmentation + Dataset: iSAID + Metrics: + mIoU: 61.35 + mIoU(ms+flip): 62.61 + Config: configs/deeplabv3plus/deeplabv3plus_r18-d8_4xb4-80k_isaid-896x896.py + Metadata: + Training Data: iSAID + Batch Size: 16 + Architecture: + - R-18-D8 + - DeepLabV3+ + Training Resources: 4x V100 GPUS + Memory (GB): 6.19 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r18-d8_4x4_896x896_80k_isaid/deeplabv3plus_r18-d8_4x4_896x896_80k_isaid_20220110_180526-7059991d.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r18-d8_4x4_896x896_80k_isaid/deeplabv3plus_r18-d8_4x4_896x896_80k_isaid_20220110_180526.log.json + Paper: + Title: Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation + URL: https://arxiv.org/abs/1802.02611 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/sep_aspp_head.py#L30 + Framework: PyTorch +- Name: deeplabv3plus_r50-d8_4xb4-80k_isaid-896x896 + In Collection: DeepLabV3+ + Results: + Task: Semantic Segmentation + Dataset: iSAID + Metrics: + mIoU: 67.06 + mIoU(ms+flip): 68.02 + Config: configs/deeplabv3plus/deeplabv3plus_r50-d8_4xb4-80k_isaid-896x896.py + Metadata: + Training Data: iSAID + Batch Size: 16 + Architecture: + - R-50-D8 + - DeepLabV3+ + Training Resources: 4x V100 GPUS + Memory (GB): 21.45 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r50-d8_4x4_896x896_80k_isaid/deeplabv3plus_r50-d8_4x4_896x896_80k_isaid_20220110_180526-598be439.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r50-d8_4x4_896x896_80k_isaid/deeplabv3plus_r50-d8_4x4_896x896_80k_isaid_20220110_180526.log.json + Paper: + Title: Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation + URL: https://arxiv.org/abs/1802.02611 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/sep_aspp_head.py#L30 + Framework: PyTorch +- Name: deeplabv3plus_r50-d8_4xb2-300k_mapillay_v1_65-1280x1280 + In Collection: DeepLabV3+ + Results: + Task: Semantic Segmentation + Dataset: Mapillary Vistas v1.2 + Metrics: + mIoU: 47.35 + Config: configs/deeplabv3plus/deeplabv3plus_r50-d8_4xb2-300k_mapillay_v1_65-1280x1280.py + Metadata: + Training Data: Mapillary Vistas v1.2 + Batch Size: 8 + Architecture: + - R-50-D8 + - DeepLabV3+ + Training Resources: 4x A100 GPUS + Memory (GB): 24.04 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r50-d8_4xb2-300k_mapillay_v1_65-1280x1280/deeplabv3plus_r50-d8_4xb2-300k_mapillay_v1_65-1280x1280_20230301_110504-655f8e43.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r50-d8_4xb2-300k_mapillay_v1_65-1280x1280/deeplabv3plus_r50-d8_4xb2-300k_mapillay_v1_65-1280x1280_20230301_110504.json + Paper: + Title: Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation + URL: https://arxiv.org/abs/1802.02611 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/sep_aspp_head.py#L30 + Framework: PyTorch diff --git a/configs/dmnet/README.md b/configs/dmnet/README.md index 535740ddd3..6004c06ccb 100644 --- a/configs/dmnet/README.md +++ b/configs/dmnet/README.md @@ -1,6 +1,6 @@ # DMNet -[Dynamic Multi-scale Filters for Semantic Segmentation](https://openaccess.thecvf.com/content_ICCV_2019/papers/He_Dynamic_Multi-Scale_Filters_for_Semantic_Segmentation_ICCV_2019_paper.pdf) +> [Dynamic Multi-scale Filters for Semantic Segmentation](https://openaccess.thecvf.com/content_ICCV_2019/papers/He_Dynamic_Multi-Scale_Filters_for_Semantic_Segmentation_ICCV_2019_paper.pdf) ## Introduction @@ -22,6 +22,30 @@ Multi-scale representation provides an effective way toaddress scale variation o +## Results and models + +### Cityscapes + +| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | Device | mIoU | mIoU(ms+flip) | config | download | +| ------ | -------- | --------- | ------: | -------- | -------------- | ------ | ----: | ------------: | ------------------------------------------------------------------------------------------------------------------------------- | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | +| DMNet | R-50-D8 | 512x1024 | 40000 | 7.0 | 3.66 | V100 | 77.78 | 79.14 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/dmnet/dmnet_r50-d8_4xb2-40k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/dmnet/dmnet_r50-d8_512x1024_40k_cityscapes/dmnet_r50-d8_512x1024_40k_cityscapes_20201215_042326-615373cf.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/dmnet/dmnet_r50-d8_512x1024_40k_cityscapes/dmnet_r50-d8_512x1024_40k_cityscapes-20201215_042326.log.json) | +| DMNet | R-101-D8 | 512x1024 | 40000 | 10.6 | 2.54 | V100 | 78.37 | 79.72 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/dmnet/dmnet_r101-d8_4xb2-40k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/dmnet/dmnet_r101-d8_512x1024_40k_cityscapes/dmnet_r101-d8_512x1024_40k_cityscapes_20201215_043100-8291e976.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/dmnet/dmnet_r101-d8_512x1024_40k_cityscapes/dmnet_r101-d8_512x1024_40k_cityscapes-20201215_043100.log.json) | +| DMNet | R-50-D8 | 769x769 | 40000 | 7.9 | 1.57 | V100 | 78.49 | 80.27 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/dmnet/dmnet_r50-d8_4xb2-40k_cityscapes-769x769.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/dmnet/dmnet_r50-d8_769x769_40k_cityscapes/dmnet_r50-d8_769x769_40k_cityscapes_20201215_093706-e7f0e23e.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/dmnet/dmnet_r50-d8_769x769_40k_cityscapes/dmnet_r50-d8_769x769_40k_cityscapes-20201215_093706.log.json) | +| DMNet | R-101-D8 | 769x769 | 40000 | 12.0 | 1.01 | V100 | 77.62 | 78.94 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/dmnet/dmnet_r101-d8_4xb2-40k_cityscapes-769x769.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/dmnet/dmnet_r101-d8_769x769_40k_cityscapes/dmnet_r101-d8_769x769_40k_cityscapes_20201215_081348-a74261f6.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/dmnet/dmnet_r101-d8_769x769_40k_cityscapes/dmnet_r101-d8_769x769_40k_cityscapes-20201215_081348.log.json) | +| DMNet | R-50-D8 | 512x1024 | 80000 | - | - | V100 | 79.07 | 80.22 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/dmnet/dmnet_r50-d8_4xb2-80k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/dmnet/dmnet_r50-d8_512x1024_80k_cityscapes/dmnet_r50-d8_512x1024_80k_cityscapes_20201215_053728-3c8893b9.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/dmnet/dmnet_r50-d8_512x1024_80k_cityscapes/dmnet_r50-d8_512x1024_80k_cityscapes-20201215_053728.log.json) | +| DMNet | R-101-D8 | 512x1024 | 80000 | - | - | V100 | 79.64 | 80.67 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/dmnet/dmnet_r101-d8_4xb2-80k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/dmnet/dmnet_r101-d8_512x1024_80k_cityscapes/dmnet_r101-d8_512x1024_80k_cityscapes_20201215_031718-fa081cb8.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/dmnet/dmnet_r101-d8_512x1024_80k_cityscapes/dmnet_r101-d8_512x1024_80k_cityscapes-20201215_031718.log.json) | +| DMNet | R-50-D8 | 769x769 | 80000 | - | - | V100 | 79.22 | 80.55 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/dmnet/dmnet_r50-d8_4xb2-80k_cityscapes-769x769.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/dmnet/dmnet_r50-d8_769x769_80k_cityscapes/dmnet_r50-d8_769x769_80k_cityscapes_20201215_034006-6060840e.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/dmnet/dmnet_r50-d8_769x769_80k_cityscapes/dmnet_r50-d8_769x769_80k_cityscapes-20201215_034006.log.json) | +| DMNet | R-101-D8 | 769x769 | 80000 | - | - | V100 | 79.19 | 80.65 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/dmnet/dmnet_r101-d8_4xb2-80k_cityscapes-769x769.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/dmnet/dmnet_r101-d8_769x769_80k_cityscapes/dmnet_r101-d8_769x769_80k_cityscapes_20201215_082810-7f0de59a.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/dmnet/dmnet_r101-d8_769x769_80k_cityscapes/dmnet_r101-d8_769x769_80k_cityscapes-20201215_082810.log.json) | + +### ADE20K + +| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | Device | mIoU | mIoU(ms+flip) | config | download | +| ------ | -------- | --------- | ------: | -------- | -------------- | ------ | ----: | ------------: | --------------------------------------------------------------------------------------------------------------------------- | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | +| DMNet | R-50-D8 | 512x512 | 80000 | 9.4 | 20.95 | V100 | 42.37 | 43.62 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/dmnet/dmnet_r50-d8_4xb4-80k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/dmnet/dmnet_r50-d8_512x512_80k_ade20k/dmnet_r50-d8_512x512_80k_ade20k_20201215_144744-f89092a6.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/dmnet/dmnet_r50-d8_512x512_80k_ade20k/dmnet_r50-d8_512x512_80k_ade20k-20201215_144744.log.json) | +| DMNet | R-101-D8 | 512x512 | 80000 | 13.0 | 13.88 | V100 | 45.34 | 46.13 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/dmnet/dmnet_r101-d8_4xb4-80k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/dmnet/dmnet_r101-d8_512x512_80k_ade20k/dmnet_r101-d8_512x512_80k_ade20k_20201215_104812-bfa45311.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/dmnet/dmnet_r101-d8_512x512_80k_ade20k/dmnet_r101-d8_512x512_80k_ade20k-20201215_104812.log.json) | +| DMNet | R-50-D8 | 512x512 | 160000 | - | - | V100 | 43.15 | 44.17 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/dmnet/dmnet_r50-d8_4xb4-160k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/dmnet/dmnet_r50-d8_512x512_160k_ade20k/dmnet_r50-d8_512x512_160k_ade20k_20201215_115313-025ab3f9.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/dmnet/dmnet_r50-d8_512x512_160k_ade20k/dmnet_r50-d8_512x512_160k_ade20k-20201215_115313.log.json) | +| DMNet | R-101-D8 | 512x512 | 160000 | - | - | V100 | 45.42 | 46.76 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/dmnet/dmnet_r101-d8_4xb4-160k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/dmnet/dmnet_r101-d8_512x512_160k_ade20k/dmnet_r101-d8_512x512_160k_ade20k_20201215_111145-a0bc02ef.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/dmnet/dmnet_r101-d8_512x512_160k_ade20k/dmnet_r101-d8_512x512_160k_ade20k-20201215_111145.log.json) | + ## Citation ```bibtex @@ -33,27 +57,3 @@ month = {October}, year = {2019} } ``` - -## Results and models - -### Cityscapes - -| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | mIoU | mIoU(ms+flip) | config | download | -| ------ | -------- | --------- | ------: | -------- | -------------- | ----: | ------------: | ------------------------------------------------------------------------------------------------------------------------------- | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | -| DMNet | R-50-D8 | 512x1024 | 40000 | 7.0 | 3.66 | 77.78 | 79.14 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/dmnet/dmnet_r50-d8_4xb2-40k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/dmnet/dmnet_r50-d8_512x1024_40k_cityscapes/dmnet_r50-d8_512x1024_40k_cityscapes_20201215_042326-615373cf.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/dmnet/dmnet_r50-d8_512x1024_40k_cityscapes/dmnet_r50-d8_512x1024_40k_cityscapes-20201215_042326.log.json) | -| DMNet | R-101-D8 | 512x1024 | 40000 | 10.6 | 2.54 | 78.37 | 79.72 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/dmnet/dmnet_r101-d8_4xb2-40k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/dmnet/dmnet_r101-d8_512x1024_40k_cityscapes/dmnet_r101-d8_512x1024_40k_cityscapes_20201215_043100-8291e976.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/dmnet/dmnet_r101-d8_512x1024_40k_cityscapes/dmnet_r101-d8_512x1024_40k_cityscapes-20201215_043100.log.json) | -| DMNet | R-50-D8 | 769x769 | 40000 | 7.9 | 1.57 | 78.49 | 80.27 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/dmnet/dmnet_r50-d8_4xb2-40k_cityscapes-769x769.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/dmnet/dmnet_r50-d8_769x769_40k_cityscapes/dmnet_r50-d8_769x769_40k_cityscapes_20201215_093706-e7f0e23e.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/dmnet/dmnet_r50-d8_769x769_40k_cityscapes/dmnet_r50-d8_769x769_40k_cityscapes-20201215_093706.log.json) | -| DMNet | R-101-D8 | 769x769 | 40000 | 12.0 | 1.01 | 77.62 | 78.94 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/dmnet/dmnet_r101-d8_4xb2-40k_cityscapes-769x769.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/dmnet/dmnet_r101-d8_769x769_40k_cityscapes/dmnet_r101-d8_769x769_40k_cityscapes_20201215_081348-a74261f6.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/dmnet/dmnet_r101-d8_769x769_40k_cityscapes/dmnet_r101-d8_769x769_40k_cityscapes-20201215_081348.log.json) | -| DMNet | R-50-D8 | 512x1024 | 80000 | - | - | 79.07 | 80.22 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/dmnet/dmnet_r50-d8_4xb2-80k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/dmnet/dmnet_r50-d8_512x1024_80k_cityscapes/dmnet_r50-d8_512x1024_80k_cityscapes_20201215_053728-3c8893b9.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/dmnet/dmnet_r50-d8_512x1024_80k_cityscapes/dmnet_r50-d8_512x1024_80k_cityscapes-20201215_053728.log.json) | -| DMNet | R-101-D8 | 512x1024 | 80000 | - | - | 79.64 | 80.67 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/dmnet/dmnet_r101-d8_4xb2-80k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/dmnet/dmnet_r101-d8_512x1024_80k_cityscapes/dmnet_r101-d8_512x1024_80k_cityscapes_20201215_031718-fa081cb8.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/dmnet/dmnet_r101-d8_512x1024_80k_cityscapes/dmnet_r101-d8_512x1024_80k_cityscapes-20201215_031718.log.json) | -| DMNet | R-50-D8 | 769x769 | 80000 | - | - | 79.22 | 80.55 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/dmnet/dmnet_r50-d8_4xb2-80k_cityscapes-769x769.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/dmnet/dmnet_r50-d8_769x769_80k_cityscapes/dmnet_r50-d8_769x769_80k_cityscapes_20201215_034006-6060840e.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/dmnet/dmnet_r50-d8_769x769_80k_cityscapes/dmnet_r50-d8_769x769_80k_cityscapes-20201215_034006.log.json) | -| DMNet | R-101-D8 | 769x769 | 80000 | - | - | 79.19 | 80.65 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/dmnet/dmnet_r101-d8_4xb2-80k_cityscapes-769x769.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/dmnet/dmnet_r101-d8_769x769_80k_cityscapes/dmnet_r101-d8_769x769_80k_cityscapes_20201215_082810-7f0de59a.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/dmnet/dmnet_r101-d8_769x769_80k_cityscapes/dmnet_r101-d8_769x769_80k_cityscapes-20201215_082810.log.json) | - -### ADE20K - -| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | mIoU | mIoU(ms+flip) | config | download | -| ------ | -------- | --------- | ------: | -------- | -------------- | ----: | ------------: | --------------------------------------------------------------------------------------------------------------------------- | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | -| DMNet | R-50-D8 | 512x512 | 80000 | 9.4 | 20.95 | 42.37 | 43.62 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/dmnet/dmnet_r50-d8_4xb4-80k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/dmnet/dmnet_r50-d8_512x512_80k_ade20k/dmnet_r50-d8_512x512_80k_ade20k_20201215_144744-f89092a6.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/dmnet/dmnet_r50-d8_512x512_80k_ade20k/dmnet_r50-d8_512x512_80k_ade20k-20201215_144744.log.json) | -| DMNet | R-101-D8 | 512x512 | 80000 | 13.0 | 13.88 | 45.34 | 46.13 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/dmnet/dmnet_r101-d8_4xb4-80k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/dmnet/dmnet_r101-d8_512x512_80k_ade20k/dmnet_r101-d8_512x512_80k_ade20k_20201215_104812-bfa45311.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/dmnet/dmnet_r101-d8_512x512_80k_ade20k/dmnet_r101-d8_512x512_80k_ade20k-20201215_104812.log.json) | -| DMNet | R-50-D8 | 512x512 | 160000 | - | - | 43.15 | 44.17 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/dmnet/dmnet_r50-d8_4xb4-160k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/dmnet/dmnet_r50-d8_512x512_160k_ade20k/dmnet_r50-d8_512x512_160k_ade20k_20201215_115313-025ab3f9.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/dmnet/dmnet_r50-d8_512x512_160k_ade20k/dmnet_r50-d8_512x512_160k_ade20k-20201215_115313.log.json) | -| DMNet | R-101-D8 | 512x512 | 160000 | - | - | 45.42 | 46.76 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/dmnet/dmnet_r101-d8_4xb4-160k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/dmnet/dmnet_r101-d8_512x512_160k_ade20k/dmnet_r101-d8_512x512_160k_ade20k_20201215_111145-a0bc02ef.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/dmnet/dmnet_r101-d8_512x512_160k_ade20k/dmnet_r101-d8_512x512_160k_ade20k-20201215_111145.log.json) | diff --git a/configs/dmnet/dmnet.yml b/configs/dmnet/dmnet.yml deleted file mode 100644 index dfb80ba7e1..0000000000 --- a/configs/dmnet/dmnet.yml +++ /dev/null @@ -1,232 +0,0 @@ -Collections: -- Name: DMNet - Metadata: - Training Data: - - Cityscapes - - ADE20K - Paper: - URL: https://openaccess.thecvf.com/content_ICCV_2019/papers/He_Dynamic_Multi-Scale_Filters_for_Semantic_Segmentation_ICCV_2019_paper.pdf - Title: Dynamic Multi-scale Filters for Semantic Segmentation - README: configs/dmnet/README.md - Code: - URL: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/dm_head.py#L93 - Version: v0.17.0 - Converted From: - Code: https://github.com/Junjun2016/DMNet -Models: -- Name: dmnet_r50-d8_4xb2-40k_cityscapes-512x1024 - In Collection: DMNet - Metadata: - backbone: R-50-D8 - crop size: (512,1024) - lr schd: 40000 - inference time (ms/im): - - value: 273.22 - hardware: V100 - backend: PyTorch - batch size: 1 - mode: FP32 - resolution: (512,1024) - Training Memory (GB): 7.0 - Results: - - Task: Semantic Segmentation - Dataset: Cityscapes - Metrics: - mIoU: 77.78 - mIoU(ms+flip): 79.14 - Config: configs/dmnet/dmnet_r50-d8_4xb2-40k_cityscapes-512x1024.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/dmnet/dmnet_r50-d8_512x1024_40k_cityscapes/dmnet_r50-d8_512x1024_40k_cityscapes_20201215_042326-615373cf.pth -- Name: dmnet_r101-d8_4xb2-40k_cityscapes-512x1024 - In Collection: DMNet - Metadata: - backbone: R-101-D8 - crop size: (512,1024) - lr schd: 40000 - inference time (ms/im): - - value: 393.7 - hardware: V100 - backend: PyTorch - batch size: 1 - mode: FP32 - resolution: (512,1024) - Training Memory (GB): 10.6 - Results: - - Task: Semantic Segmentation - Dataset: Cityscapes - Metrics: - mIoU: 78.37 - mIoU(ms+flip): 79.72 - Config: configs/dmnet/dmnet_r101-d8_4xb2-40k_cityscapes-512x1024.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/dmnet/dmnet_r101-d8_512x1024_40k_cityscapes/dmnet_r101-d8_512x1024_40k_cityscapes_20201215_043100-8291e976.pth -- Name: dmnet_r50-d8_4xb2-40k_cityscapes-769x769 - In Collection: DMNet - Metadata: - backbone: R-50-D8 - crop size: (769,769) - lr schd: 40000 - inference time (ms/im): - - value: 636.94 - hardware: V100 - backend: PyTorch - batch size: 1 - mode: FP32 - resolution: (769,769) - Training Memory (GB): 7.9 - Results: - - Task: Semantic Segmentation - Dataset: Cityscapes - Metrics: - mIoU: 78.49 - mIoU(ms+flip): 80.27 - Config: configs/dmnet/dmnet_r50-d8_4xb2-40k_cityscapes-769x769.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/dmnet/dmnet_r50-d8_769x769_40k_cityscapes/dmnet_r50-d8_769x769_40k_cityscapes_20201215_093706-e7f0e23e.pth -- Name: dmnet_r101-d8_4xb2-40k_cityscapes-769x769 - In Collection: DMNet - Metadata: - backbone: R-101-D8 - crop size: (769,769) - lr schd: 40000 - inference time (ms/im): - - value: 990.1 - hardware: V100 - backend: PyTorch - batch size: 1 - mode: FP32 - resolution: (769,769) - Training Memory (GB): 12.0 - Results: - - Task: Semantic Segmentation - Dataset: Cityscapes - Metrics: - mIoU: 77.62 - mIoU(ms+flip): 78.94 - Config: configs/dmnet/dmnet_r101-d8_4xb2-40k_cityscapes-769x769.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/dmnet/dmnet_r101-d8_769x769_40k_cityscapes/dmnet_r101-d8_769x769_40k_cityscapes_20201215_081348-a74261f6.pth -- Name: dmnet_r50-d8_4xb2-80k_cityscapes-512x1024 - In Collection: DMNet - Metadata: - backbone: R-50-D8 - crop size: (512,1024) - lr schd: 80000 - Results: - - Task: Semantic Segmentation - Dataset: Cityscapes - Metrics: - mIoU: 79.07 - mIoU(ms+flip): 80.22 - Config: configs/dmnet/dmnet_r50-d8_4xb2-80k_cityscapes-512x1024.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/dmnet/dmnet_r50-d8_512x1024_80k_cityscapes/dmnet_r50-d8_512x1024_80k_cityscapes_20201215_053728-3c8893b9.pth -- Name: dmnet_r101-d8_4xb2-80k_cityscapes-512x1024 - In Collection: DMNet - Metadata: - backbone: R-101-D8 - crop size: (512,1024) - lr schd: 80000 - Results: - - Task: Semantic Segmentation - Dataset: Cityscapes - Metrics: - mIoU: 79.64 - mIoU(ms+flip): 80.67 - Config: configs/dmnet/dmnet_r101-d8_4xb2-80k_cityscapes-512x1024.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/dmnet/dmnet_r101-d8_512x1024_80k_cityscapes/dmnet_r101-d8_512x1024_80k_cityscapes_20201215_031718-fa081cb8.pth -- Name: dmnet_r50-d8_4xb2-80k_cityscapes-769x769 - In Collection: DMNet - Metadata: - backbone: R-50-D8 - crop size: (769,769) - lr schd: 80000 - Results: - - Task: Semantic Segmentation - Dataset: Cityscapes - Metrics: - mIoU: 79.22 - mIoU(ms+flip): 80.55 - Config: configs/dmnet/dmnet_r50-d8_4xb2-80k_cityscapes-769x769.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/dmnet/dmnet_r50-d8_769x769_80k_cityscapes/dmnet_r50-d8_769x769_80k_cityscapes_20201215_034006-6060840e.pth -- Name: dmnet_r101-d8_4xb2-80k_cityscapes-769x769 - In Collection: DMNet - Metadata: - backbone: R-101-D8 - crop size: (769,769) - lr schd: 80000 - Results: - - Task: Semantic Segmentation - Dataset: Cityscapes - Metrics: - mIoU: 79.19 - mIoU(ms+flip): 80.65 - Config: configs/dmnet/dmnet_r101-d8_4xb2-80k_cityscapes-769x769.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/dmnet/dmnet_r101-d8_769x769_80k_cityscapes/dmnet_r101-d8_769x769_80k_cityscapes_20201215_082810-7f0de59a.pth -- Name: dmnet_r50-d8_4xb4-80k_ade20k-512x512 - In Collection: DMNet - Metadata: - backbone: R-50-D8 - crop size: (512,512) - lr schd: 80000 - inference time (ms/im): - - value: 47.73 - hardware: V100 - backend: PyTorch - batch size: 1 - mode: FP32 - resolution: (512,512) - Training Memory (GB): 9.4 - Results: - - Task: Semantic Segmentation - Dataset: ADE20K - Metrics: - mIoU: 42.37 - mIoU(ms+flip): 43.62 - Config: configs/dmnet/dmnet_r50-d8_4xb4-80k_ade20k-512x512.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/dmnet/dmnet_r50-d8_512x512_80k_ade20k/dmnet_r50-d8_512x512_80k_ade20k_20201215_144744-f89092a6.pth -- Name: dmnet_r101-d8_4xb4-80k_ade20k-512x512 - In Collection: DMNet - Metadata: - backbone: R-101-D8 - crop size: (512,512) - lr schd: 80000 - inference time (ms/im): - - value: 72.05 - hardware: V100 - backend: PyTorch - batch size: 1 - mode: FP32 - resolution: (512,512) - Training Memory (GB): 13.0 - Results: - - Task: Semantic Segmentation - Dataset: ADE20K - Metrics: - mIoU: 45.34 - mIoU(ms+flip): 46.13 - Config: configs/dmnet/dmnet_r101-d8_4xb4-80k_ade20k-512x512.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/dmnet/dmnet_r101-d8_512x512_80k_ade20k/dmnet_r101-d8_512x512_80k_ade20k_20201215_104812-bfa45311.pth -- Name: dmnet_r50-d8_4xb4-160k_ade20k-512x512 - In Collection: DMNet - Metadata: - backbone: R-50-D8 - crop size: (512,512) - lr schd: 160000 - Results: - - Task: Semantic Segmentation - Dataset: ADE20K - Metrics: - mIoU: 43.15 - mIoU(ms+flip): 44.17 - Config: configs/dmnet/dmnet_r50-d8_4xb4-160k_ade20k-512x512.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/dmnet/dmnet_r50-d8_512x512_160k_ade20k/dmnet_r50-d8_512x512_160k_ade20k_20201215_115313-025ab3f9.pth -- Name: dmnet_r101-d8_4xb4-160k_ade20k-512x512 - In Collection: DMNet - Metadata: - backbone: R-101-D8 - crop size: (512,512) - lr schd: 160000 - Results: - - Task: Semantic Segmentation - Dataset: ADE20K - Metrics: - mIoU: 45.42 - mIoU(ms+flip): 46.76 - Config: configs/dmnet/dmnet_r101-d8_4xb4-160k_ade20k-512x512.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/dmnet/dmnet_r101-d8_512x512_160k_ade20k/dmnet_r101-d8_512x512_160k_ade20k_20201215_111145-a0bc02ef.pth diff --git a/configs/dmnet/metafile.yaml b/configs/dmnet/metafile.yaml new file mode 100644 index 0000000000..7f5e536753 --- /dev/null +++ b/configs/dmnet/metafile.yaml @@ -0,0 +1,296 @@ +Collections: +- Name: DMNet + License: Apache License 2.0 + Metadata: + Training Data: + - Cityscapes + - ADE20K + Paper: + Title: Dynamic Multi-scale Filters for Semantic Segmentation + URL: https://openaccess.thecvf.com/content_ICCV_2019/papers/He_Dynamic_Multi-Scale_Filters_for_Semantic_Segmentation_ICCV_2019_paper.pdf + README: configs/dmnet/README.md + Frameworks: + - PyTorch +Models: +- Name: dmnet_r50-d8_4xb2-40k_cityscapes-512x1024 + In Collection: DMNet + Results: + Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 77.78 + mIoU(ms+flip): 79.14 + Config: configs/dmnet/dmnet_r50-d8_4xb2-40k_cityscapes-512x1024.py + Metadata: + Training Data: Cityscapes + Batch Size: 8 + Architecture: + - R-50-D8 + - DMNet + Training Resources: 4x V100 GPUS + Memory (GB): 7.0 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/dmnet/dmnet_r50-d8_512x1024_40k_cityscapes/dmnet_r50-d8_512x1024_40k_cityscapes_20201215_042326-615373cf.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/dmnet/dmnet_r50-d8_512x1024_40k_cityscapes/dmnet_r50-d8_512x1024_40k_cityscapes-20201215_042326.log.json + Paper: + Title: Dynamic Multi-scale Filters for Semantic Segmentation + URL: https://openaccess.thecvf.com/content_ICCV_2019/papers/He_Dynamic_Multi-Scale_Filters_for_Semantic_Segmentation_ICCV_2019_paper.pdf + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/dm_head.py#L93 + Framework: PyTorch +- Name: dmnet_r101-d8_4xb2-40k_cityscapes-512x1024 + In Collection: DMNet + Results: + Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 78.37 + mIoU(ms+flip): 79.72 + Config: configs/dmnet/dmnet_r101-d8_4xb2-40k_cityscapes-512x1024.py + Metadata: + Training Data: Cityscapes + Batch Size: 8 + Architecture: + - R-101-D8 + - DMNet + Training Resources: 4x V100 GPUS + Memory (GB): 10.6 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/dmnet/dmnet_r101-d8_512x1024_40k_cityscapes/dmnet_r101-d8_512x1024_40k_cityscapes_20201215_043100-8291e976.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/dmnet/dmnet_r101-d8_512x1024_40k_cityscapes/dmnet_r101-d8_512x1024_40k_cityscapes-20201215_043100.log.json + Paper: + Title: Dynamic Multi-scale Filters for Semantic Segmentation + URL: https://openaccess.thecvf.com/content_ICCV_2019/papers/He_Dynamic_Multi-Scale_Filters_for_Semantic_Segmentation_ICCV_2019_paper.pdf + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/dm_head.py#L93 + Framework: PyTorch +- Name: dmnet_r50-d8_4xb2-40k_cityscapes-769x769 + In Collection: DMNet + Results: + Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 78.49 + mIoU(ms+flip): 80.27 + Config: configs/dmnet/dmnet_r50-d8_4xb2-40k_cityscapes-769x769.py + Metadata: + Training Data: Cityscapes + Batch Size: 8 + Architecture: + - R-50-D8 + - DMNet + Training Resources: 4x V100 GPUS + Memory (GB): 7.9 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/dmnet/dmnet_r50-d8_769x769_40k_cityscapes/dmnet_r50-d8_769x769_40k_cityscapes_20201215_093706-e7f0e23e.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/dmnet/dmnet_r50-d8_769x769_40k_cityscapes/dmnet_r50-d8_769x769_40k_cityscapes-20201215_093706.log.json + Paper: + Title: Dynamic Multi-scale Filters for Semantic Segmentation + URL: https://openaccess.thecvf.com/content_ICCV_2019/papers/He_Dynamic_Multi-Scale_Filters_for_Semantic_Segmentation_ICCV_2019_paper.pdf + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/dm_head.py#L93 + Framework: PyTorch +- Name: dmnet_r101-d8_4xb2-40k_cityscapes-769x769 + In Collection: DMNet + Results: + Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 77.62 + mIoU(ms+flip): 78.94 + Config: configs/dmnet/dmnet_r101-d8_4xb2-40k_cityscapes-769x769.py + Metadata: + Training Data: Cityscapes + Batch Size: 8 + Architecture: + - R-101-D8 + - DMNet + Training Resources: 4x V100 GPUS + Memory (GB): 12.0 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/dmnet/dmnet_r101-d8_769x769_40k_cityscapes/dmnet_r101-d8_769x769_40k_cityscapes_20201215_081348-a74261f6.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/dmnet/dmnet_r101-d8_769x769_40k_cityscapes/dmnet_r101-d8_769x769_40k_cityscapes-20201215_081348.log.json + Paper: + Title: Dynamic Multi-scale Filters for Semantic Segmentation + URL: https://openaccess.thecvf.com/content_ICCV_2019/papers/He_Dynamic_Multi-Scale_Filters_for_Semantic_Segmentation_ICCV_2019_paper.pdf + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/dm_head.py#L93 + Framework: PyTorch +- Name: dmnet_r50-d8_4xb2-80k_cityscapes-512x1024 + In Collection: DMNet + Results: + Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 79.07 + mIoU(ms+flip): 80.22 + Config: configs/dmnet/dmnet_r50-d8_4xb2-80k_cityscapes-512x1024.py + Metadata: + Training Data: Cityscapes + Batch Size: 8 + Architecture: + - R-50-D8 + - DMNet + Training Resources: 4x V100 GPUS + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/dmnet/dmnet_r50-d8_512x1024_80k_cityscapes/dmnet_r50-d8_512x1024_80k_cityscapes_20201215_053728-3c8893b9.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/dmnet/dmnet_r50-d8_512x1024_80k_cityscapes/dmnet_r50-d8_512x1024_80k_cityscapes-20201215_053728.log.json + Paper: + Title: Dynamic Multi-scale Filters for Semantic Segmentation + URL: https://openaccess.thecvf.com/content_ICCV_2019/papers/He_Dynamic_Multi-Scale_Filters_for_Semantic_Segmentation_ICCV_2019_paper.pdf + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/dm_head.py#L93 + Framework: PyTorch +- Name: dmnet_r101-d8_4xb2-80k_cityscapes-512x1024 + In Collection: DMNet + Results: + Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 79.64 + mIoU(ms+flip): 80.67 + Config: configs/dmnet/dmnet_r101-d8_4xb2-80k_cityscapes-512x1024.py + Metadata: + Training Data: Cityscapes + Batch Size: 8 + Architecture: + - R-101-D8 + - DMNet + Training Resources: 4x V100 GPUS + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/dmnet/dmnet_r101-d8_512x1024_80k_cityscapes/dmnet_r101-d8_512x1024_80k_cityscapes_20201215_031718-fa081cb8.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/dmnet/dmnet_r101-d8_512x1024_80k_cityscapes/dmnet_r101-d8_512x1024_80k_cityscapes-20201215_031718.log.json + Paper: + Title: Dynamic Multi-scale Filters for Semantic Segmentation + URL: https://openaccess.thecvf.com/content_ICCV_2019/papers/He_Dynamic_Multi-Scale_Filters_for_Semantic_Segmentation_ICCV_2019_paper.pdf + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/dm_head.py#L93 + Framework: PyTorch +- Name: dmnet_r50-d8_4xb2-80k_cityscapes-769x769 + In Collection: DMNet + Results: + Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 79.22 + mIoU(ms+flip): 80.55 + Config: configs/dmnet/dmnet_r50-d8_4xb2-80k_cityscapes-769x769.py + Metadata: + Training Data: Cityscapes + Batch Size: 8 + Architecture: + - R-50-D8 + - DMNet + Training Resources: 4x V100 GPUS + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/dmnet/dmnet_r50-d8_769x769_80k_cityscapes/dmnet_r50-d8_769x769_80k_cityscapes_20201215_034006-6060840e.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/dmnet/dmnet_r50-d8_769x769_80k_cityscapes/dmnet_r50-d8_769x769_80k_cityscapes-20201215_034006.log.json + Paper: + Title: Dynamic Multi-scale Filters for Semantic Segmentation + URL: https://openaccess.thecvf.com/content_ICCV_2019/papers/He_Dynamic_Multi-Scale_Filters_for_Semantic_Segmentation_ICCV_2019_paper.pdf + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/dm_head.py#L93 + Framework: PyTorch +- Name: dmnet_r101-d8_4xb2-80k_cityscapes-769x769 + In Collection: DMNet + Results: + Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 79.19 + mIoU(ms+flip): 80.65 + Config: configs/dmnet/dmnet_r101-d8_4xb2-80k_cityscapes-769x769.py + Metadata: + Training Data: Cityscapes + Batch Size: 8 + Architecture: + - R-101-D8 + - DMNet + Training Resources: 4x V100 GPUS + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/dmnet/dmnet_r101-d8_769x769_80k_cityscapes/dmnet_r101-d8_769x769_80k_cityscapes_20201215_082810-7f0de59a.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/dmnet/dmnet_r101-d8_769x769_80k_cityscapes/dmnet_r101-d8_769x769_80k_cityscapes-20201215_082810.log.json + Paper: + Title: Dynamic Multi-scale Filters for Semantic Segmentation + URL: https://openaccess.thecvf.com/content_ICCV_2019/papers/He_Dynamic_Multi-Scale_Filters_for_Semantic_Segmentation_ICCV_2019_paper.pdf + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/dm_head.py#L93 + Framework: PyTorch +- Name: dmnet_r50-d8_4xb4-80k_ade20k-512x512 + In Collection: DMNet + Results: + Task: Semantic Segmentation + Dataset: ADE20K + Metrics: + mIoU: 42.37 + mIoU(ms+flip): 43.62 + Config: configs/dmnet/dmnet_r50-d8_4xb4-80k_ade20k-512x512.py + Metadata: + Training Data: ADE20K + Batch Size: 16 + Architecture: + - R-50-D8 + - DMNet + Training Resources: 4x V100 GPUS + Memory (GB): 9.4 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/dmnet/dmnet_r50-d8_512x512_80k_ade20k/dmnet_r50-d8_512x512_80k_ade20k_20201215_144744-f89092a6.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/dmnet/dmnet_r50-d8_512x512_80k_ade20k/dmnet_r50-d8_512x512_80k_ade20k-20201215_144744.log.json + Paper: + Title: Dynamic Multi-scale Filters for Semantic Segmentation + URL: https://openaccess.thecvf.com/content_ICCV_2019/papers/He_Dynamic_Multi-Scale_Filters_for_Semantic_Segmentation_ICCV_2019_paper.pdf + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/dm_head.py#L93 + Framework: PyTorch +- Name: dmnet_r101-d8_4xb4-80k_ade20k-512x512 + In Collection: DMNet + Results: + Task: Semantic Segmentation + Dataset: ADE20K + Metrics: + mIoU: 45.34 + mIoU(ms+flip): 46.13 + Config: configs/dmnet/dmnet_r101-d8_4xb4-80k_ade20k-512x512.py + Metadata: + Training Data: ADE20K + Batch Size: 16 + Architecture: + - R-101-D8 + - DMNet + Training Resources: 4x V100 GPUS + Memory (GB): 13.0 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/dmnet/dmnet_r101-d8_512x512_80k_ade20k/dmnet_r101-d8_512x512_80k_ade20k_20201215_104812-bfa45311.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/dmnet/dmnet_r101-d8_512x512_80k_ade20k/dmnet_r101-d8_512x512_80k_ade20k-20201215_104812.log.json + Paper: + Title: Dynamic Multi-scale Filters for Semantic Segmentation + URL: https://openaccess.thecvf.com/content_ICCV_2019/papers/He_Dynamic_Multi-Scale_Filters_for_Semantic_Segmentation_ICCV_2019_paper.pdf + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/dm_head.py#L93 + Framework: PyTorch +- Name: dmnet_r50-d8_4xb4-160k_ade20k-512x512 + In Collection: DMNet + Results: + Task: Semantic Segmentation + Dataset: ADE20K + Metrics: + mIoU: 43.15 + mIoU(ms+flip): 44.17 + Config: configs/dmnet/dmnet_r50-d8_4xb4-160k_ade20k-512x512.py + Metadata: + Training Data: ADE20K + Batch Size: 16 + Architecture: + - R-50-D8 + - DMNet + Training Resources: 4x V100 GPUS + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/dmnet/dmnet_r50-d8_512x512_160k_ade20k/dmnet_r50-d8_512x512_160k_ade20k_20201215_115313-025ab3f9.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/dmnet/dmnet_r50-d8_512x512_160k_ade20k/dmnet_r50-d8_512x512_160k_ade20k-20201215_115313.log.json + Paper: + Title: Dynamic Multi-scale Filters for Semantic Segmentation + URL: https://openaccess.thecvf.com/content_ICCV_2019/papers/He_Dynamic_Multi-Scale_Filters_for_Semantic_Segmentation_ICCV_2019_paper.pdf + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/dm_head.py#L93 + Framework: PyTorch +- Name: dmnet_r101-d8_4xb4-160k_ade20k-512x512 + In Collection: DMNet + Results: + Task: Semantic Segmentation + Dataset: ADE20K + Metrics: + mIoU: 45.42 + mIoU(ms+flip): 46.76 + Config: configs/dmnet/dmnet_r101-d8_4xb4-160k_ade20k-512x512.py + Metadata: + Training Data: ADE20K + Batch Size: 16 + Architecture: + - R-101-D8 + - DMNet + Training Resources: 4x V100 GPUS + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/dmnet/dmnet_r101-d8_512x512_160k_ade20k/dmnet_r101-d8_512x512_160k_ade20k_20201215_111145-a0bc02ef.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/dmnet/dmnet_r101-d8_512x512_160k_ade20k/dmnet_r101-d8_512x512_160k_ade20k-20201215_111145.log.json + Paper: + Title: Dynamic Multi-scale Filters for Semantic Segmentation + URL: https://openaccess.thecvf.com/content_ICCV_2019/papers/He_Dynamic_Multi-Scale_Filters_for_Semantic_Segmentation_ICCV_2019_paper.pdf + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/dm_head.py#L93 + Framework: PyTorch diff --git a/configs/dnlnet/README.md b/configs/dnlnet/README.md index ab24549ed6..12338c730c 100644 --- a/configs/dnlnet/README.md +++ b/configs/dnlnet/README.md @@ -1,6 +1,6 @@ # DNLNet -[Disentangled Non-Local Neural Networks](https://arxiv.org/abs/2006.06668) +> [Disentangled Non-Local Neural Networks](https://arxiv.org/abs/2006.06668) ## Introduction @@ -22,7 +22,31 @@ The non-local block is a popular module for strengthening the context modeling a -## Citation +## Results and models (in progress) + +### Cityscapes + +| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | Device | mIoU | mIoU(ms+flip) | config | download | +| ------ | -------- | --------- | ------: | -------: | -------------- | ------ | ----: | ------------- | ------------------------------------------------------------------------------------------------------------------------------ | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | +| DNLNet | R-50-D8 | 512x1024 | 40000 | 7.3 | 2.56 | V100 | 78.61 | - | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/dnlnet/dnl_r50-d8_4xb2-40k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/dnlnet/dnl_r50-d8_512x1024_40k_cityscapes/dnl_r50-d8_512x1024_40k_cityscapes_20200904_233629-53d4ea93.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/dnlnet/dnl_r50-d8_512x1024_40k_cityscapes/dnl_r50-d8_512x1024_40k_cityscapes-20200904_233629.log.json) | +| DNLNet | R-101-D8 | 512x1024 | 40000 | 10.9 | 1.96 | V100 | 78.31 | - | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/dnlnet/dnl_r101-d8_4xb2-40k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/dnlnet/dnl_r101-d8_512x1024_40k_cityscapes/dnl_r101-d8_512x1024_40k_cityscapes_20200904_233629-9928ffef.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/dnlnet/dnl_r101-d8_512x1024_40k_cityscapes/dnl_r101-d8_512x1024_40k_cityscapes-20200904_233629.log.json) | +| DNLNet | R-50-D8 | 769x769 | 40000 | 9.2 | 1.50 | V100 | 78.44 | 80.27 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/dnlnet/dnl_r50-d8_4xb2-40k_cityscapes-769x769.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/dnlnet/dnl_r50-d8_769x769_40k_cityscapes/dnl_r50-d8_769x769_40k_cityscapes_20200820_232206-0f283785.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/dnlnet/dnl_r50-d8_769x769_40k_cityscapes/dnl_r50-d8_769x769_40k_cityscapes-20200820_232206.log.json) | +| DNLNet | R-101-D8 | 769x769 | 40000 | 12.6 | 1.02 | V100 | 76.39 | 77.77 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/dnlnet/dnl_r101-d8_4xb2-40k_cityscapes-769x769.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/dnlnet/dnl_r101-d8_769x769_40k_cityscapes/dnl_r101-d8_769x769_40k_cityscapes_20200820_171256-76c596df.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/dnlnet/dnl_r101-d8_769x769_40k_cityscapes/dnl_r101-d8_769x769_40k_cityscapes-20200820_171256.log.json) | +| DNLNet | R-50-D8 | 512x1024 | 80000 | - | - | V100 | 79.33 | - | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/dnlnet/dnl_r50-d8_4xb2-80k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/dnlnet/dnl_r50-d8_512x1024_80k_cityscapes/dnl_r50-d8_512x1024_80k_cityscapes_20200904_233629-58b2f778.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/dnlnet/dnl_r50-d8_512x1024_80k_cityscapes/dnl_r50-d8_512x1024_80k_cityscapes-20200904_233629.log.json) | +| DNLNet | R-101-D8 | 512x1024 | 80000 | - | - | V100 | 80.41 | - | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/dnlnet/dnl_r101-d8_4xb2-80k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/dnlnet/dnl_r101-d8_512x1024_80k_cityscapes/dnl_r101-d8_512x1024_80k_cityscapes_20200904_233629-758e2dd4.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/dnlnet/dnl_r101-d8_512x1024_80k_cityscapes/dnl_r101-d8_512x1024_80k_cityscapes-20200904_233629.log.json) | +| DNLNet | R-50-D8 | 769x769 | 80000 | - | - | V100 | 79.36 | 80.70 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/dnlnet/dnl_r50-d8_4xb2-80k_cityscapes-769x769.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/dnlnet/dnl_r50-d8_769x769_80k_cityscapes/dnl_r50-d8_769x769_80k_cityscapes_20200820_011925-366bc4c7.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/dnlnet/dnl_r50-d8_769x769_80k_cityscapes/dnl_r50-d8_769x769_80k_cityscapes-20200820_011925.log.json) | +| DNLNet | R-101-D8 | 769x769 | 80000 | - | - | V100 | 79.41 | 80.68 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/dnlnet/dnl_r101-d8_4xb2-80k_cityscapes-769x769.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/dnlnet/dnl_r101-d8_769x769_80k_cityscapes/dnl_r101-d8_769x769_80k_cityscapes_20200821_051111-95ff84ab.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/dnlnet/dnl_r101-d8_769x769_80k_cityscapes/dnl_r101-d8_769x769_80k_cityscapes-20200821_051111.log.json) | + +### ADE20K + +| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | Device | mIoU | mIoU(ms+flip) | config | download | +| ------ | -------- | --------- | ------: | -------: | -------------- | ------ | ----: | ------------- | -------------------------------------------------------------------------------------------------------------------------- | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | +| DNLNet | R-50-D8 | 512x512 | 80000 | 8.8 | 20.66 | V100 | 41.76 | 42.99 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/dnlnet/dnl_r50-d8_4xb4-80k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/dnlnet/dnl_r50-d8_512x512_80k_ade20k/dnl_r50-d8_512x512_80k_ade20k_20200826_183354-1cf6e0c1.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/dnlnet/dnl_r50-d8_512x512_80k_ade20k/dnl_r50-d8_512x512_80k_ade20k-20200826_183354.log.json) | +| DNLNet | R-101-D8 | 512x512 | 80000 | 12.8 | 12.54 | V100 | 43.76 | 44.91 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/dnlnet/dnl_r101-d8_4xb4-80k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/dnlnet/dnl_r101-d8_512x512_80k_ade20k/dnl_r101-d8_512x512_80k_ade20k_20200826_183354-d820d6ea.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/dnlnet/dnl_r101-d8_512x512_80k_ade20k/dnl_r101-d8_512x512_80k_ade20k-20200826_183354.log.json) | +| DNLNet | R-50-D8 | 512x512 | 160000 | - | - | V100 | 41.87 | 43.01 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/dnlnet/dnl_r50-d8_4xb4-160k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/dnlnet/dnl_r50-d8_512x512_160k_ade20k/dnl_r50-d8_512x512_160k_ade20k_20200826_183350-37837798.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/dnlnet/dnl_r50-d8_512x512_160k_ade20k/dnl_r50-d8_512x512_160k_ade20k-20200826_183350.log.json) | +| DNLNet | R-101-D8 | 512x512 | 160000 | - | - | V100 | 44.25 | 45.78 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/dnlnet/dnl_r101-d8_4xb4-160k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/dnlnet/dnl_r101-d8_512x512_160k_ade20k/dnl_r101-d8_512x512_160k_ade20k_20200826_183350-ed522c61.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/dnlnet/dnl_r101-d8_512x512_160k_ade20k/dnl_r101-d8_512x512_160k_ade20k-20200826_183350.log.json) | + +## Notes This example is to reproduce ["Disentangled Non-Local Neural Networks"](https://arxiv.org/abs/2006.06668) for semantic segmentation. It is still in progress. @@ -36,27 +60,3 @@ This example is to reproduce ["Disentangled Non-Local Neural Networks"](https:// booktitle={ECCV} } ``` - -## Results and models (in progress) - -### Cityscapes - -| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | mIoU | mIoU(ms+flip) | config | download | -| ------ | -------- | --------- | ------: | -------: | -------------- | ----: | ------------- | ------------------------------------------------------------------------------------------------------------------------------ | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | -| DNLNet | R-50-D8 | 512x1024 | 40000 | 7.3 | 2.56 | 78.61 | - | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/dnlnet/dnl_r50-d8_4xb2-40k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/dnlnet/dnl_r50-d8_512x1024_40k_cityscapes/dnl_r50-d8_512x1024_40k_cityscapes_20200904_233629-53d4ea93.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/dnlnet/dnl_r50-d8_512x1024_40k_cityscapes/dnl_r50-d8_512x1024_40k_cityscapes-20200904_233629.log.json) | -| DNLNet | R-101-D8 | 512x1024 | 40000 | 10.9 | 1.96 | 78.31 | - | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/dnlnet/dnl_r101-d8_4xb2-40k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/dnlnet/dnl_r101-d8_512x1024_40k_cityscapes/dnl_r101-d8_512x1024_40k_cityscapes_20200904_233629-9928ffef.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/dnlnet/dnl_r101-d8_512x1024_40k_cityscapes/dnl_r101-d8_512x1024_40k_cityscapes-20200904_233629.log.json) | -| DNLNet | R-50-D8 | 769x769 | 40000 | 9.2 | 1.50 | 78.44 | 80.27 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/dnlnet/dnl_r50-d8_4xb2-40k_cityscapes-769x769.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/dnlnet/dnl_r50-d8_769x769_40k_cityscapes/dnl_r50-d8_769x769_40k_cityscapes_20200820_232206-0f283785.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/dnlnet/dnl_r50-d8_769x769_40k_cityscapes/dnl_r50-d8_769x769_40k_cityscapes-20200820_232206.log.json) | -| DNLNet | R-101-D8 | 769x769 | 40000 | 12.6 | 1.02 | 76.39 | 77.77 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/dnlnet/dnl_r101-d8_4xb2-40k_cityscapes-769x769.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/dnlnet/dnl_r101-d8_769x769_40k_cityscapes/dnl_r101-d8_769x769_40k_cityscapes_20200820_171256-76c596df.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/dnlnet/dnl_r101-d8_769x769_40k_cityscapes/dnl_r101-d8_769x769_40k_cityscapes-20200820_171256.log.json) | -| DNLNet | R-50-D8 | 512x1024 | 80000 | - | - | 79.33 | - | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/dnlnet/dnl_r50-d8_4xb2-80k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/dnlnet/dnl_r50-d8_512x1024_80k_cityscapes/dnl_r50-d8_512x1024_80k_cityscapes_20200904_233629-58b2f778.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/dnlnet/dnl_r50-d8_512x1024_80k_cityscapes/dnl_r50-d8_512x1024_80k_cityscapes-20200904_233629.log.json) | -| DNLNet | R-101-D8 | 512x1024 | 80000 | - | - | 80.41 | - | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/dnlnet/dnl_r101-d8_4xb2-80k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/dnlnet/dnl_r101-d8_512x1024_80k_cityscapes/dnl_r101-d8_512x1024_80k_cityscapes_20200904_233629-758e2dd4.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/dnlnet/dnl_r101-d8_512x1024_80k_cityscapes/dnl_r101-d8_512x1024_80k_cityscapes-20200904_233629.log.json) | -| DNLNet | R-50-D8 | 769x769 | 80000 | - | - | 79.36 | 80.70 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/dnlnet/dnl_r50-d8_4xb2-80k_cityscapes-769x769.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/dnlnet/dnl_r50-d8_769x769_80k_cityscapes/dnl_r50-d8_769x769_80k_cityscapes_20200820_011925-366bc4c7.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/dnlnet/dnl_r50-d8_769x769_80k_cityscapes/dnl_r50-d8_769x769_80k_cityscapes-20200820_011925.log.json) | -| DNLNet | R-101-D8 | 769x769 | 80000 | - | - | 79.41 | 80.68 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/dnlnet/dnl_r101-d8_4xb2-80k_cityscapes-769x769.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/dnlnet/dnl_r101-d8_769x769_80k_cityscapes/dnl_r101-d8_769x769_80k_cityscapes_20200821_051111-95ff84ab.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/dnlnet/dnl_r101-d8_769x769_80k_cityscapes/dnl_r101-d8_769x769_80k_cityscapes-20200821_051111.log.json) | - -### ADE20K - -| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | mIoU | mIoU(ms+flip) | config | download | -| ------ | -------- | --------- | ------: | -------: | -------------- | ----: | ------------- | -------------------------------------------------------------------------------------------------------------------------- | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | -| DNLNet | R-50-D8 | 512x512 | 80000 | 8.8 | 20.66 | 41.76 | 42.99 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/dnlnet/dnl_r50-d8_4xb4-80k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/dnlnet/dnl_r50-d8_512x512_80k_ade20k/dnl_r50-d8_512x512_80k_ade20k_20200826_183354-1cf6e0c1.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/dnlnet/dnl_r50-d8_512x512_80k_ade20k/dnl_r50-d8_512x512_80k_ade20k-20200826_183354.log.json) | -| DNLNet | R-101-D8 | 512x512 | 80000 | 12.8 | 12.54 | 43.76 | 44.91 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/dnlnet/dnl_r101-d8_4xb4-80k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/dnlnet/dnl_r101-d8_512x512_80k_ade20k/dnl_r101-d8_512x512_80k_ade20k_20200826_183354-d820d6ea.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/dnlnet/dnl_r101-d8_512x512_80k_ade20k/dnl_r101-d8_512x512_80k_ade20k-20200826_183354.log.json) | -| DNLNet | R-50-D8 | 512x512 | 160000 | - | - | 41.87 | 43.01 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/dnlnet/dnl_r50-d8_4xb4-160k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/dnlnet/dnl_r50-d8_512x512_160k_ade20k/dnl_r50-d8_512x512_160k_ade20k_20200826_183350-37837798.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/dnlnet/dnl_r50-d8_512x512_160k_ade20k/dnl_r50-d8_512x512_160k_ade20k-20200826_183350.log.json) | -| DNLNet | R-101-D8 | 512x512 | 160000 | - | - | 44.25 | 45.78 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/dnlnet/dnl_r101-d8_4xb4-160k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/dnlnet/dnl_r101-d8_512x512_160k_ade20k/dnl_r101-d8_512x512_160k_ade20k_20200826_183350-ed522c61.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/dnlnet/dnl_r101-d8_512x512_160k_ade20k/dnl_r101-d8_512x512_160k_ade20k-20200826_183350.log.json) | diff --git a/configs/dnlnet/dnlnet.yml b/configs/dnlnet/dnlnet.yml deleted file mode 100644 index ae65dbbaca..0000000000 --- a/configs/dnlnet/dnlnet.yml +++ /dev/null @@ -1,228 +0,0 @@ -Collections: -- Name: DNLNet - Metadata: - Training Data: - - Cityscapes - - ADE20K - Paper: - URL: https://arxiv.org/abs/2006.06668 - Title: Disentangled Non-Local Neural Networks - README: configs/dnlnet/README.md - Code: - URL: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/dnl_head.py#L88 - Version: v0.17.0 - Converted From: - Code: https://github.com/yinmh17/DNL-Semantic-Segmentation -Models: -- Name: dnl_r50-d8_4xb2-40k_cityscapes-512x1024 - In Collection: DNLNet - Metadata: - backbone: R-50-D8 - crop size: (512,1024) - lr schd: 40000 - inference time (ms/im): - - value: 390.62 - hardware: V100 - backend: PyTorch - batch size: 1 - mode: FP32 - resolution: (512,1024) - Training Memory (GB): 7.3 - Results: - - Task: Semantic Segmentation - Dataset: Cityscapes - Metrics: - mIoU: 78.61 - Config: configs/dnlnet/dnl_r50-d8_4xb2-40k_cityscapes-512x1024.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/dnlnet/dnl_r50-d8_512x1024_40k_cityscapes/dnl_r50-d8_512x1024_40k_cityscapes_20200904_233629-53d4ea93.pth -- Name: dnl_r101-d8_4xb2-40k_cityscapes-512x1024 - In Collection: DNLNet - Metadata: - backbone: R-101-D8 - crop size: (512,1024) - lr schd: 40000 - inference time (ms/im): - - value: 510.2 - hardware: V100 - backend: PyTorch - batch size: 1 - mode: FP32 - resolution: (512,1024) - Training Memory (GB): 10.9 - Results: - - Task: Semantic Segmentation - Dataset: Cityscapes - Metrics: - mIoU: 78.31 - Config: configs/dnlnet/dnl_r101-d8_4xb2-40k_cityscapes-512x1024.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/dnlnet/dnl_r101-d8_512x1024_40k_cityscapes/dnl_r101-d8_512x1024_40k_cityscapes_20200904_233629-9928ffef.pth -- Name: dnl_r50-d8_4xb2-40k_cityscapes-769x769 - In Collection: DNLNet - Metadata: - backbone: R-50-D8 - crop size: (769,769) - lr schd: 40000 - inference time (ms/im): - - value: 666.67 - hardware: V100 - backend: PyTorch - batch size: 1 - mode: FP32 - resolution: (769,769) - Training Memory (GB): 9.2 - Results: - - Task: Semantic Segmentation - Dataset: Cityscapes - Metrics: - mIoU: 78.44 - mIoU(ms+flip): 80.27 - Config: configs/dnlnet/dnl_r50-d8_4xb2-40k_cityscapes-769x769.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/dnlnet/dnl_r50-d8_769x769_40k_cityscapes/dnl_r50-d8_769x769_40k_cityscapes_20200820_232206-0f283785.pth -- Name: dnl_r101-d8_4xb2-40k_cityscapes-769x769 - In Collection: DNLNet - Metadata: - backbone: R-101-D8 - crop size: (769,769) - lr schd: 40000 - inference time (ms/im): - - value: 980.39 - hardware: V100 - backend: PyTorch - batch size: 1 - mode: FP32 - resolution: (769,769) - Training Memory (GB): 12.6 - Results: - - Task: Semantic Segmentation - Dataset: Cityscapes - Metrics: - mIoU: 76.39 - mIoU(ms+flip): 77.77 - Config: configs/dnlnet/dnl_r101-d8_4xb2-40k_cityscapes-769x769.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/dnlnet/dnl_r101-d8_769x769_40k_cityscapes/dnl_r101-d8_769x769_40k_cityscapes_20200820_171256-76c596df.pth -- Name: dnl_r50-d8_4xb2-80k_cityscapes-512x1024 - In Collection: DNLNet - Metadata: - backbone: R-50-D8 - crop size: (512,1024) - lr schd: 80000 - Results: - - Task: Semantic Segmentation - Dataset: Cityscapes - Metrics: - mIoU: 79.33 - Config: configs/dnlnet/dnl_r50-d8_4xb2-80k_cityscapes-512x1024.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/dnlnet/dnl_r50-d8_512x1024_80k_cityscapes/dnl_r50-d8_512x1024_80k_cityscapes_20200904_233629-58b2f778.pth -- Name: dnl_r101-d8_4xb2-80k_cityscapes-512x1024 - In Collection: DNLNet - Metadata: - backbone: R-101-D8 - crop size: (512,1024) - lr schd: 80000 - Results: - - Task: Semantic Segmentation - Dataset: Cityscapes - Metrics: - mIoU: 80.41 - Config: configs/dnlnet/dnl_r101-d8_4xb2-80k_cityscapes-512x1024.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/dnlnet/dnl_r101-d8_512x1024_80k_cityscapes/dnl_r101-d8_512x1024_80k_cityscapes_20200904_233629-758e2dd4.pth -- Name: dnl_r50-d8_4xb2-80k_cityscapes-769x769 - In Collection: DNLNet - Metadata: - backbone: R-50-D8 - crop size: (769,769) - lr schd: 80000 - Results: - - Task: Semantic Segmentation - Dataset: Cityscapes - Metrics: - mIoU: 79.36 - mIoU(ms+flip): 80.7 - Config: configs/dnlnet/dnl_r50-d8_4xb2-80k_cityscapes-769x769.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/dnlnet/dnl_r50-d8_769x769_80k_cityscapes/dnl_r50-d8_769x769_80k_cityscapes_20200820_011925-366bc4c7.pth -- Name: dnl_r101-d8_4xb2-80k_cityscapes-769x769 - In Collection: DNLNet - Metadata: - backbone: R-101-D8 - crop size: (769,769) - lr schd: 80000 - Results: - - Task: Semantic Segmentation - Dataset: Cityscapes - Metrics: - mIoU: 79.41 - mIoU(ms+flip): 80.68 - Config: configs/dnlnet/dnl_r101-d8_4xb2-80k_cityscapes-769x769.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/dnlnet/dnl_r101-d8_769x769_80k_cityscapes/dnl_r101-d8_769x769_80k_cityscapes_20200821_051111-95ff84ab.pth -- Name: dnl_r50-d8_4xb4-80k_ade20k-512x512 - In Collection: DNLNet - Metadata: - backbone: R-50-D8 - crop size: (512,512) - lr schd: 80000 - inference time (ms/im): - - value: 48.4 - hardware: V100 - backend: PyTorch - batch size: 1 - mode: FP32 - resolution: (512,512) - Training Memory (GB): 8.8 - Results: - - Task: Semantic Segmentation - Dataset: ADE20K - Metrics: - mIoU: 41.76 - mIoU(ms+flip): 42.99 - Config: configs/dnlnet/dnl_r50-d8_4xb4-80k_ade20k-512x512.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/dnlnet/dnl_r50-d8_512x512_80k_ade20k/dnl_r50-d8_512x512_80k_ade20k_20200826_183354-1cf6e0c1.pth -- Name: dnl_r101-d8_4xb4-80k_ade20k-512x512 - In Collection: DNLNet - Metadata: - backbone: R-101-D8 - crop size: (512,512) - lr schd: 80000 - inference time (ms/im): - - value: 79.74 - hardware: V100 - backend: PyTorch - batch size: 1 - mode: FP32 - resolution: (512,512) - Training Memory (GB): 12.8 - Results: - - Task: Semantic Segmentation - Dataset: ADE20K - Metrics: - mIoU: 43.76 - mIoU(ms+flip): 44.91 - Config: configs/dnlnet/dnl_r101-d8_4xb4-80k_ade20k-512x512.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/dnlnet/dnl_r101-d8_512x512_80k_ade20k/dnl_r101-d8_512x512_80k_ade20k_20200826_183354-d820d6ea.pth -- Name: dnl_r50-d8_4xb4-160k_ade20k-512x512 - In Collection: DNLNet - Metadata: - backbone: R-50-D8 - crop size: (512,512) - lr schd: 160000 - Results: - - Task: Semantic Segmentation - Dataset: ADE20K - Metrics: - mIoU: 41.87 - mIoU(ms+flip): 43.01 - Config: configs/dnlnet/dnl_r50-d8_4xb4-160k_ade20k-512x512.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/dnlnet/dnl_r50-d8_512x512_160k_ade20k/dnl_r50-d8_512x512_160k_ade20k_20200826_183350-37837798.pth -- Name: dnl_r101-d8_4xb4-160k_ade20k-512x512 - In Collection: DNLNet - Metadata: - backbone: R-101-D8 - crop size: (512,512) - lr schd: 160000 - Results: - - Task: Semantic Segmentation - Dataset: ADE20K - Metrics: - mIoU: 44.25 - mIoU(ms+flip): 45.78 - Config: configs/dnlnet/dnl_r101-d8_4xb4-160k_ade20k-512x512.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/dnlnet/dnl_r101-d8_512x512_160k_ade20k/dnl_r101-d8_512x512_160k_ade20k_20200826_183350-ed522c61.pth diff --git a/configs/dnlnet/metafile.yaml b/configs/dnlnet/metafile.yaml new file mode 100644 index 0000000000..22e48d3dc5 --- /dev/null +++ b/configs/dnlnet/metafile.yaml @@ -0,0 +1,292 @@ +Collections: +- Name: DNLNet + License: Apache License 2.0 + Metadata: + Training Data: + - Cityscapes + - ADE20K + Paper: + Title: Disentangled Non-Local Neural Networks + URL: https://arxiv.org/abs/2006.06668 + README: configs/dnlnet/README.md + Frameworks: + - PyTorch +Models: +- Name: dnl_r50-d8_4xb2-40k_cityscapes-512x1024 + In Collection: DNLNet + Results: + Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 78.61 + Config: configs/dnlnet/dnl_r50-d8_4xb2-40k_cityscapes-512x1024.py + Metadata: + Training Data: Cityscapes + Batch Size: 8 + Architecture: + - R-50-D8 + - DNLNet + Training Resources: 4x V100 GPUS + Memory (GB): 7.3 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/dnlnet/dnl_r50-d8_512x1024_40k_cityscapes/dnl_r50-d8_512x1024_40k_cityscapes_20200904_233629-53d4ea93.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/dnlnet/dnl_r50-d8_512x1024_40k_cityscapes/dnl_r50-d8_512x1024_40k_cityscapes-20200904_233629.log.json + Paper: + Title: Disentangled Non-Local Neural Networks + URL: https://arxiv.org/abs/2006.06668 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/dnl_head.py#L88 + Framework: PyTorch +- Name: dnl_r101-d8_4xb2-40k_cityscapes-512x1024 + In Collection: DNLNet + Results: + Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 78.31 + Config: configs/dnlnet/dnl_r101-d8_4xb2-40k_cityscapes-512x1024.py + Metadata: + Training Data: Cityscapes + Batch Size: 8 + Architecture: + - R-101-D8 + - DNLNet + Training Resources: 4x V100 GPUS + Memory (GB): 10.9 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/dnlnet/dnl_r101-d8_512x1024_40k_cityscapes/dnl_r101-d8_512x1024_40k_cityscapes_20200904_233629-9928ffef.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/dnlnet/dnl_r101-d8_512x1024_40k_cityscapes/dnl_r101-d8_512x1024_40k_cityscapes-20200904_233629.log.json + Paper: + Title: Disentangled Non-Local Neural Networks + URL: https://arxiv.org/abs/2006.06668 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/dnl_head.py#L88 + Framework: PyTorch +- Name: dnl_r50-d8_4xb2-40k_cityscapes-769x769 + In Collection: DNLNet + Results: + Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 78.44 + mIoU(ms+flip): 80.27 + Config: configs/dnlnet/dnl_r50-d8_4xb2-40k_cityscapes-769x769.py + Metadata: + Training Data: Cityscapes + Batch Size: 8 + Architecture: + - R-50-D8 + - DNLNet + Training Resources: 4x V100 GPUS + Memory (GB): 9.2 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/dnlnet/dnl_r50-d8_769x769_40k_cityscapes/dnl_r50-d8_769x769_40k_cityscapes_20200820_232206-0f283785.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/dnlnet/dnl_r50-d8_769x769_40k_cityscapes/dnl_r50-d8_769x769_40k_cityscapes-20200820_232206.log.json + Paper: + Title: Disentangled Non-Local Neural Networks + URL: https://arxiv.org/abs/2006.06668 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/dnl_head.py#L88 + Framework: PyTorch +- Name: dnl_r101-d8_4xb2-40k_cityscapes-769x769 + In Collection: DNLNet + Results: + Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 76.39 + mIoU(ms+flip): 77.77 + Config: configs/dnlnet/dnl_r101-d8_4xb2-40k_cityscapes-769x769.py + Metadata: + Training Data: Cityscapes + Batch Size: 8 + Architecture: + - R-101-D8 + - DNLNet + Training Resources: 4x V100 GPUS + Memory (GB): 12.6 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/dnlnet/dnl_r101-d8_769x769_40k_cityscapes/dnl_r101-d8_769x769_40k_cityscapes_20200820_171256-76c596df.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/dnlnet/dnl_r101-d8_769x769_40k_cityscapes/dnl_r101-d8_769x769_40k_cityscapes-20200820_171256.log.json + Paper: + Title: Disentangled Non-Local Neural Networks + URL: https://arxiv.org/abs/2006.06668 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/dnl_head.py#L88 + Framework: PyTorch +- Name: dnl_r50-d8_4xb2-80k_cityscapes-512x1024 + In Collection: DNLNet + Results: + Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 79.33 + Config: configs/dnlnet/dnl_r50-d8_4xb2-80k_cityscapes-512x1024.py + Metadata: + Training Data: Cityscapes + Batch Size: 8 + Architecture: + - R-50-D8 + - DNLNet + Training Resources: 4x V100 GPUS + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/dnlnet/dnl_r50-d8_512x1024_80k_cityscapes/dnl_r50-d8_512x1024_80k_cityscapes_20200904_233629-58b2f778.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/dnlnet/dnl_r50-d8_512x1024_80k_cityscapes/dnl_r50-d8_512x1024_80k_cityscapes-20200904_233629.log.json + Paper: + Title: Disentangled Non-Local Neural Networks + URL: https://arxiv.org/abs/2006.06668 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/dnl_head.py#L88 + Framework: PyTorch +- Name: dnl_r101-d8_4xb2-80k_cityscapes-512x1024 + In Collection: DNLNet + Results: + Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 80.41 + Config: configs/dnlnet/dnl_r101-d8_4xb2-80k_cityscapes-512x1024.py + Metadata: + Training Data: Cityscapes + Batch Size: 8 + Architecture: + - R-101-D8 + - DNLNet + Training Resources: 4x V100 GPUS + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/dnlnet/dnl_r101-d8_512x1024_80k_cityscapes/dnl_r101-d8_512x1024_80k_cityscapes_20200904_233629-758e2dd4.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/dnlnet/dnl_r101-d8_512x1024_80k_cityscapes/dnl_r101-d8_512x1024_80k_cityscapes-20200904_233629.log.json + Paper: + Title: Disentangled Non-Local Neural Networks + URL: https://arxiv.org/abs/2006.06668 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/dnl_head.py#L88 + Framework: PyTorch +- Name: dnl_r50-d8_4xb2-80k_cityscapes-769x769 + In Collection: DNLNet + Results: + Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 79.36 + mIoU(ms+flip): 80.7 + Config: configs/dnlnet/dnl_r50-d8_4xb2-80k_cityscapes-769x769.py + Metadata: + Training Data: Cityscapes + Batch Size: 8 + Architecture: + - R-50-D8 + - DNLNet + Training Resources: 4x V100 GPUS + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/dnlnet/dnl_r50-d8_769x769_80k_cityscapes/dnl_r50-d8_769x769_80k_cityscapes_20200820_011925-366bc4c7.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/dnlnet/dnl_r50-d8_769x769_80k_cityscapes/dnl_r50-d8_769x769_80k_cityscapes-20200820_011925.log.json + Paper: + Title: Disentangled Non-Local Neural Networks + URL: https://arxiv.org/abs/2006.06668 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/dnl_head.py#L88 + Framework: PyTorch +- Name: dnl_r101-d8_4xb2-80k_cityscapes-769x769 + In Collection: DNLNet + Results: + Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 79.41 + mIoU(ms+flip): 80.68 + Config: configs/dnlnet/dnl_r101-d8_4xb2-80k_cityscapes-769x769.py + Metadata: + Training Data: Cityscapes + Batch Size: 8 + Architecture: + - R-101-D8 + - DNLNet + Training Resources: 4x V100 GPUS + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/dnlnet/dnl_r101-d8_769x769_80k_cityscapes/dnl_r101-d8_769x769_80k_cityscapes_20200821_051111-95ff84ab.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/dnlnet/dnl_r101-d8_769x769_80k_cityscapes/dnl_r101-d8_769x769_80k_cityscapes-20200821_051111.log.json + Paper: + Title: Disentangled Non-Local Neural Networks + URL: https://arxiv.org/abs/2006.06668 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/dnl_head.py#L88 + Framework: PyTorch +- Name: dnl_r50-d8_4xb4-80k_ade20k-512x512 + In Collection: DNLNet + Results: + Task: Semantic Segmentation + Dataset: ADE20K + Metrics: + mIoU: 41.76 + mIoU(ms+flip): 42.99 + Config: configs/dnlnet/dnl_r50-d8_4xb4-80k_ade20k-512x512.py + Metadata: + Training Data: ADE20K + Batch Size: 16 + Architecture: + - R-50-D8 + - DNLNet + Training Resources: 4x V100 GPUS + Memory (GB): 8.8 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/dnlnet/dnl_r50-d8_512x512_80k_ade20k/dnl_r50-d8_512x512_80k_ade20k_20200826_183354-1cf6e0c1.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/dnlnet/dnl_r50-d8_512x512_80k_ade20k/dnl_r50-d8_512x512_80k_ade20k-20200826_183354.log.json + Paper: + Title: Disentangled Non-Local Neural Networks + URL: https://arxiv.org/abs/2006.06668 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/dnl_head.py#L88 + Framework: PyTorch +- Name: dnl_r101-d8_4xb4-80k_ade20k-512x512 + In Collection: DNLNet + Results: + Task: Semantic Segmentation + Dataset: ADE20K + Metrics: + mIoU: 43.76 + mIoU(ms+flip): 44.91 + Config: configs/dnlnet/dnl_r101-d8_4xb4-80k_ade20k-512x512.py + Metadata: + Training Data: ADE20K + Batch Size: 16 + Architecture: + - R-101-D8 + - DNLNet + Training Resources: 4x V100 GPUS + Memory (GB): 12.8 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/dnlnet/dnl_r101-d8_512x512_80k_ade20k/dnl_r101-d8_512x512_80k_ade20k_20200826_183354-d820d6ea.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/dnlnet/dnl_r101-d8_512x512_80k_ade20k/dnl_r101-d8_512x512_80k_ade20k-20200826_183354.log.json + Paper: + Title: Disentangled Non-Local Neural Networks + URL: https://arxiv.org/abs/2006.06668 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/dnl_head.py#L88 + Framework: PyTorch +- Name: dnl_r50-d8_4xb4-160k_ade20k-512x512 + In Collection: DNLNet + Results: + Task: Semantic Segmentation + Dataset: ADE20K + Metrics: + mIoU: 41.87 + mIoU(ms+flip): 43.01 + Config: configs/dnlnet/dnl_r50-d8_4xb4-160k_ade20k-512x512.py + Metadata: + Training Data: ADE20K + Batch Size: 16 + Architecture: + - R-50-D8 + - DNLNet + Training Resources: 4x V100 GPUS + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/dnlnet/dnl_r50-d8_512x512_160k_ade20k/dnl_r50-d8_512x512_160k_ade20k_20200826_183350-37837798.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/dnlnet/dnl_r50-d8_512x512_160k_ade20k/dnl_r50-d8_512x512_160k_ade20k-20200826_183350.log.json + Paper: + Title: Disentangled Non-Local Neural Networks + URL: https://arxiv.org/abs/2006.06668 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/dnl_head.py#L88 + Framework: PyTorch +- Name: dnl_r101-d8_4xb4-160k_ade20k-512x512 + In Collection: DNLNet + Results: + Task: Semantic Segmentation + Dataset: ADE20K + Metrics: + mIoU: 44.25 + mIoU(ms+flip): 45.78 + Config: configs/dnlnet/dnl_r101-d8_4xb4-160k_ade20k-512x512.py + Metadata: + Training Data: ADE20K + Batch Size: 16 + Architecture: + - R-101-D8 + - DNLNet + Training Resources: 4x V100 GPUS + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/dnlnet/dnl_r101-d8_512x512_160k_ade20k/dnl_r101-d8_512x512_160k_ade20k_20200826_183350-ed522c61.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/dnlnet/dnl_r101-d8_512x512_160k_ade20k/dnl_r101-d8_512x512_160k_ade20k-20200826_183350.log.json + Paper: + Title: Disentangled Non-Local Neural Networks + URL: https://arxiv.org/abs/2006.06668 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/dnl_head.py#L88 + Framework: PyTorch diff --git a/configs/dpt/README.md b/configs/dpt/README.md index 41d73ea57a..432d1dd226 100644 --- a/configs/dpt/README.md +++ b/configs/dpt/README.md @@ -1,6 +1,6 @@ # DPT -[Vision Transformer for Dense Prediction](https://arxiv.org/abs/2103.13413) +> [Vision Transformer for Dense Prediction](https://arxiv.org/abs/2103.13413) ## Introduction @@ -22,24 +22,6 @@ We introduce dense vision transformers, an architecture that leverages vision tr -## Citation - -```bibtex -@article{dosoViTskiy2020, - title={An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale}, - author={DosoViTskiy, Alexey and Beyer, Lucas and Kolesnikov, Alexander and Weissenborn, Dirk and Zhai, Xiaohua and Unterthiner, Thomas and Dehghani, Mostafa and Minderer, Matthias and Heigold, Georg and Gelly, Sylvain and Uszkoreit, Jakob and Houlsby, Neil}, - journal={arXiv preprint arXiv:2010.11929}, - year={2020} -} - -@article{Ranftl2021, - author = {Ren\'{e} Ranftl and Alexey Bochkovskiy and Vladlen Koltun}, - title = {Vision Transformers for Dense Prediction}, - journal = {ArXiv preprint}, - year = {2021}, -} -``` - ## Usage To use other repositories' pre-trained models, it is necessary to convert keys. @@ -62,6 +44,24 @@ This script convert model from `PRETRAIN_PATH` and store the converted model in ### ADE20K -| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | mIoU | mIoU(ms+flip) | config | download | -| ------ | -------- | --------- | ------: | -------- | -------------- | ----: | ------------: | ----------------------------------------------------------------------------------------------------------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ | -| DPT | ViT-B | 512x512 | 160000 | 8.09 | 10.41 | 46.97 | 48.34 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/dpt/dpt_vit-b16_8xb2-160k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/dpt/dpt_vit-b16_512x512_160k_ade20k/dpt_vit-b16_512x512_160k_ade20k-db31cf52.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/dpt/dpt_vit-b16_512x512_160k_ade20k/dpt_vit-b16_512x512_160k_ade20k-20210809_172025.log.json) | +| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | Device | mIoU | mIoU(ms+flip) | config | download | +| ------ | -------- | --------- | ------: | -------- | -------------- | ------ | ----: | ------------: | ----------------------------------------------------------------------------------------------------------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ | +| DPT | ViT-B | 512x512 | 160000 | 8.09 | 10.41 | V100 | 46.97 | 48.34 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/dpt/dpt_vit-b16_8xb2-160k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/dpt/dpt_vit-b16_512x512_160k_ade20k/dpt_vit-b16_512x512_160k_ade20k-db31cf52.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/dpt/dpt_vit-b16_512x512_160k_ade20k/dpt_vit-b16_512x512_160k_ade20k-20210809_172025.log.json) | + +## Citation + +```bibtex +@article{dosoViTskiy2020, + title={An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale}, + author={DosoViTskiy, Alexey and Beyer, Lucas and Kolesnikov, Alexander and Weissenborn, Dirk and Zhai, Xiaohua and Unterthiner, Thomas and Dehghani, Mostafa and Minderer, Matthias and Heigold, Georg and Gelly, Sylvain and Uszkoreit, Jakob and Houlsby, Neil}, + journal={arXiv preprint arXiv:2010.11929}, + year={2020} +} + +@article{Ranftl2021, + author = {Ren\'{e} Ranftl and Alexey Bochkovskiy and Vladlen Koltun}, + title = {Vision Transformers for Dense Prediction}, + journal = {ArXiv preprint}, + year = {2021}, +} +``` diff --git a/configs/dpt/dpt.yml b/configs/dpt/dpt.yml deleted file mode 100644 index 32324d3459..0000000000 --- a/configs/dpt/dpt.yml +++ /dev/null @@ -1,37 +0,0 @@ -Collections: -- Name: DPT - Metadata: - Training Data: - - ADE20K - Paper: - URL: https://arxiv.org/abs/2103.13413 - Title: Vision Transformer for Dense Prediction - README: configs/dpt/README.md - Code: - URL: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/dpt_head.py#L215 - Version: v0.17.0 - Converted From: - Code: https://github.com/isl-org/DPT -Models: -- Name: dpt_vit-b16_8xb2-160k_ade20k-512x512 - In Collection: DPT - Metadata: - backbone: ViT-B - crop size: (512,512) - lr schd: 160000 - inference time (ms/im): - - value: 96.06 - hardware: V100 - backend: PyTorch - batch size: 1 - mode: FP32 - resolution: (512,512) - Training Memory (GB): 8.09 - Results: - - Task: Semantic Segmentation - Dataset: ADE20K - Metrics: - mIoU: 46.97 - mIoU(ms+flip): 48.34 - Config: configs/dpt/dpt_vit-b16_8xb2-160k_ade20k-512x512.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/dpt/dpt_vit-b16_512x512_160k_ade20k/dpt_vit-b16_512x512_160k_ade20k-db31cf52.pth diff --git a/configs/dpt/metafile.yaml b/configs/dpt/metafile.yaml new file mode 100644 index 0000000000..b721e041b6 --- /dev/null +++ b/configs/dpt/metafile.yaml @@ -0,0 +1,37 @@ +Collections: +- Name: DPT + License: Apache License 2.0 + Metadata: + Training Data: + - ADE20K + Paper: + Title: Vision Transformer for Dense Prediction + URL: https://arxiv.org/abs/2103.13413 + README: configs/dpt/README.md + Frameworks: + - PyTorch +Models: +- Name: dpt_vit-b16_8xb2-160k_ade20k-512x512 + In Collection: DPT + Results: + Task: Semantic Segmentation + Dataset: ADE20K + Metrics: + mIoU: 46.97 + mIoU(ms+flip): 48.34 + Config: configs/dpt/dpt_vit-b16_8xb2-160k_ade20k-512x512.py + Metadata: + Training Data: ADE20K + Batch Size: 16 + Architecture: + - ViT-B + - DPT + Training Resources: 8x V100 GPUS + Memory (GB): 8.09 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/dpt/dpt_vit-b16_512x512_160k_ade20k/dpt_vit-b16_512x512_160k_ade20k-db31cf52.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/dpt/dpt_vit-b16_512x512_160k_ade20k/dpt_vit-b16_512x512_160k_ade20k-20210809_172025.log.json + Paper: + Title: Vision Transformer for Dense Prediction + URL: https://arxiv.org/abs/2103.13413 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/dpt_head.py#L215 + Framework: PyTorch diff --git a/configs/emanet/README.md b/configs/emanet/README.md index 5a9bfc326a..8ffaf471ca 100644 --- a/configs/emanet/README.md +++ b/configs/emanet/README.md @@ -1,6 +1,6 @@ # EMANet -[Expectation-Maximization Attention Networks for Semantic Segmentation](https://arxiv.org/abs/1907.13426) +> [Expectation-Maximization Attention Networks for Semantic Segmentation](https://arxiv.org/abs/1907.13426) ## Introduction @@ -22,6 +22,17 @@ Self-attention mechanism has been widely used for various tasks. It is designed +## Results and models + +### Cityscapes + +| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | Device | mIoU | mIoU(ms+flip) | config | download | +| ------ | -------- | --------- | ------: | -------: | -------------- | ------ | ----: | ------------- | -------------------------------------------------------------------------------------------------------------------------------- | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | +| EMANet | R-50-D8 | 512x1024 | 80000 | 5.4 | 4.58 | V100 | 77.59 | 79.44 | [config](https://github.com/open-mmlab/mmsegmentation/blob/master/configs/emanet/eemanet_r50-d8_4xb2-80k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/emanet/emanet_r50-d8_512x1024_80k_cityscapes/emanet_r50-d8_512x1024_80k_cityscapes_20200901_100301-c43fcef1.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/emanet/emanet_r50-d8_512x1024_80k_cityscapes/emanet_r50-d8_512x1024_80k_cityscapes-20200901_100301.log.json) | +| EMANet | R-101-D8 | 512x1024 | 80000 | 6.2 | 2.87 | V100 | 79.10 | 81.21 | [config](https://github.com/open-mmlab/mmsegmentation/blob/master/configs/emanet/emanet_r101-d8_4xb2-80k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/emanet/emanet_r101-d8_512x1024_80k_cityscapes/emanet_r101-d8_512x1024_80k_cityscapes_20200901_100301-2d970745.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/emanet/emanet_r101-d8_512x1024_80k_cityscapes/emanet_r101-d8_512x1024_80k_cityscapes-20200901_100301.log.json) | +| EMANet | R-50-D8 | 769x769 | 80000 | 8.9 | 1.97 | V100 | 79.33 | 80.49 | [config](https://github.com/open-mmlab/mmsegmentation/blob/master/configs/emanet/emanet_r50-d8_4xb2-80k_cityscapes-769x769.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/emanet/emanet_r50-d8_769x769_80k_cityscapes/emanet_r50-d8_769x769_80k_cityscapes_20200901_100301-16f8de52.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/emanet/emanet_r50-d8_769x769_80k_cityscapes/emanet_r50-d8_769x769_80k_cityscapes-20200901_100301.log.json) | +| EMANet | R-101-D8 | 769x769 | 80000 | 10.1 | 1.22 | V100 | 79.62 | 81.00 | [config](https://github.com/open-mmlab/mmsegmentation/blob/master/configs/emanet/emanet_r101-d8_4xb2-80k_cityscapes-769x769.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/emanet/emanet_r101-d8_769x769_80k_cityscapes/emanet_r101-d8_769x769_80k_cityscapes_20200901_100301-47a324ce.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/emanet/emanet_r101-d8_769x769_80k_cityscapes/emanet_r101-d8_769x769_80k_cityscapes-20200901_100301.log.json) | + ## Citation ```bibtex @@ -33,14 +44,3 @@ Self-attention mechanism has been widely used for various tasks. It is designed year={2019} } ``` - -## Results and models - -### Cityscapes - -| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | mIoU | mIoU(ms+flip) | config | download | -| ------ | -------- | --------- | ------: | -------: | -------------- | ----: | ------------- | -------------------------------------------------------------------------------------------------------------------------------- | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | -| EMANet | R-50-D8 | 512x1024 | 80000 | 5.4 | 4.58 | 77.59 | 79.44 | [config](https://github.com/open-mmlab/mmsegmentation/blob/master/configs/emanet/eemanet_r50-d8_4xb2-80k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/emanet/emanet_r50-d8_512x1024_80k_cityscapes/emanet_r50-d8_512x1024_80k_cityscapes_20200901_100301-c43fcef1.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/emanet/emanet_r50-d8_512x1024_80k_cityscapes/emanet_r50-d8_512x1024_80k_cityscapes-20200901_100301.log.json) | -| EMANet | R-101-D8 | 512x1024 | 80000 | 6.2 | 2.87 | 79.10 | 81.21 | [config](https://github.com/open-mmlab/mmsegmentation/blob/master/configs/emanet/emanet_r101-d8_4xb2-80k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/emanet/emanet_r101-d8_512x1024_80k_cityscapes/emanet_r101-d8_512x1024_80k_cityscapes_20200901_100301-2d970745.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/emanet/emanet_r101-d8_512x1024_80k_cityscapes/emanet_r101-d8_512x1024_80k_cityscapes-20200901_100301.log.json) | -| EMANet | R-50-D8 | 769x769 | 80000 | 8.9 | 1.97 | 79.33 | 80.49 | [config](https://github.com/open-mmlab/mmsegmentation/blob/master/configs/emanet/emanet_r50-d8_4xb2-80k_cityscapes-769x769.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/emanet/emanet_r50-d8_769x769_80k_cityscapes/emanet_r50-d8_769x769_80k_cityscapes_20200901_100301-16f8de52.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/emanet/emanet_r50-d8_769x769_80k_cityscapes/emanet_r50-d8_769x769_80k_cityscapes-20200901_100301.log.json) | -| EMANet | R-101-D8 | 769x769 | 80000 | 10.1 | 1.22 | 79.62 | 81.00 | [config](https://github.com/open-mmlab/mmsegmentation/blob/master/configs/emanet/emanet_r101-d8_4xb2-80k_cityscapes-769x769.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/emanet/emanet_r101-d8_769x769_80k_cityscapes/emanet_r101-d8_769x769_80k_cityscapes_20200901_100301-47a324ce.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/emanet/emanet_r101-d8_769x769_80k_cityscapes/emanet_r101-d8_769x769_80k_cityscapes-20200901_100301.log.json) | diff --git a/configs/emanet/emanet.yml b/configs/emanet/emanet.yml deleted file mode 100644 index ac194f2a0f..0000000000 --- a/configs/emanet/emanet.yml +++ /dev/null @@ -1,103 +0,0 @@ -Collections: -- Name: EMANet - Metadata: - Training Data: - - Cityscapes - Paper: - URL: https://arxiv.org/abs/1907.13426 - Title: Expectation-Maximization Attention Networks for Semantic Segmentation - README: configs/emanet/README.md - Code: - URL: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/ema_head.py#L80 - Version: v0.17.0 - Converted From: - Code: https://xialipku.github.io/EMANet -Models: -- Name: emanet_r50-d8_4xb2-80k_cityscapes-512x1024 - In Collection: EMANet - Metadata: - backbone: R-50-D8 - crop size: (512,1024) - lr schd: 80000 - inference time (ms/im): - - value: 218.34 - hardware: V100 - backend: PyTorch - batch size: 1 - mode: FP32 - resolution: (512,1024) - Training Memory (GB): 5.4 - Results: - - Task: Semantic Segmentation - Dataset: Cityscapes - Metrics: - mIoU: 77.59 - mIoU(ms+flip): 79.44 - Config: configs/emanet/emanet_r50-d8_4xb2-80k_cityscapes-512x1024.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/emanet/emanet_r50-d8_512x1024_80k_cityscapes/emanet_r50-d8_512x1024_80k_cityscapes_20200901_100301-c43fcef1.pth -- Name: emanet_r101-d8_4xb2-80k_cityscapes-512x1024 - In Collection: EMANet - Metadata: - backbone: R-101-D8 - crop size: (512,1024) - lr schd: 80000 - inference time (ms/im): - - value: 348.43 - hardware: V100 - backend: PyTorch - batch size: 1 - mode: FP32 - resolution: (512,1024) - Training Memory (GB): 6.2 - Results: - - Task: Semantic Segmentation - Dataset: Cityscapes - Metrics: - mIoU: 79.1 - mIoU(ms+flip): 81.21 - Config: configs/emanet/emanet_r101-d8_4xb2-80k_cityscapes-512x1024.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/emanet/emanet_r101-d8_512x1024_80k_cityscapes/emanet_r101-d8_512x1024_80k_cityscapes_20200901_100301-2d970745.pth -- Name: emanet_r50-d8_4xb2-80k_cityscapes-769x769 - In Collection: EMANet - Metadata: - backbone: R-50-D8 - crop size: (769,769) - lr schd: 80000 - inference time (ms/im): - - value: 507.61 - hardware: V100 - backend: PyTorch - batch size: 1 - mode: FP32 - resolution: (769,769) - Training Memory (GB): 8.9 - Results: - - Task: Semantic Segmentation - Dataset: Cityscapes - Metrics: - mIoU: 79.33 - mIoU(ms+flip): 80.49 - Config: configs/emanet/emanet_r50-d8_4xb2-80k_cityscapes-769x769.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/emanet/emanet_r50-d8_769x769_80k_cityscapes/emanet_r50-d8_769x769_80k_cityscapes_20200901_100301-16f8de52.pth -- Name: emanet_r101-d8_4xb2-80k_cityscapes-769x769 - In Collection: EMANet - Metadata: - backbone: R-101-D8 - crop size: (769,769) - lr schd: 80000 - inference time (ms/im): - - value: 819.67 - hardware: V100 - backend: PyTorch - batch size: 1 - mode: FP32 - resolution: (769,769) - Training Memory (GB): 10.1 - Results: - - Task: Semantic Segmentation - Dataset: Cityscapes - Metrics: - mIoU: 79.62 - mIoU(ms+flip): 81.0 - Config: configs/emanet/emanet_r101-d8_4xb2-80k_cityscapes-769x769.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/emanet/emanet_r101-d8_769x769_80k_cityscapes/emanet_r101-d8_769x769_80k_cityscapes_20200901_100301-47a324ce.pth diff --git a/configs/emanet/metafile.yaml b/configs/emanet/metafile.yaml new file mode 100644 index 0000000000..b2a6b09ed7 --- /dev/null +++ b/configs/emanet/metafile.yaml @@ -0,0 +1,109 @@ +Collections: +- Name: EMANet + License: Apache License 2.0 + Metadata: + Training Data: + - Cityscapes + Paper: + Title: Expectation-Maximization Attention Networks for Semantic Segmentation + URL: https://arxiv.org/abs/1907.13426 + README: configs/emanet/README.md + Frameworks: + - PyTorch +Models: +- Name: eemanet_r50-d8_4xb2-80k_cityscapes-512x1024 + In Collection: EMANet + Results: + Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 77.59 + mIoU(ms+flip): 79.44 + Config: configs/emanet/eemanet_r50-d8_4xb2-80k_cityscapes-512x1024.py + Metadata: + Training Data: Cityscapes + Batch Size: 8 + Architecture: + - R-50-D8 + - EMANet + Training Resources: 4x V100 GPUS + Memory (GB): 5.4 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/emanet/emanet_r50-d8_512x1024_80k_cityscapes/emanet_r50-d8_512x1024_80k_cityscapes_20200901_100301-c43fcef1.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/emanet/emanet_r50-d8_512x1024_80k_cityscapes/emanet_r50-d8_512x1024_80k_cityscapes-20200901_100301.log.json + Paper: + Title: Expectation-Maximization Attention Networks for Semantic Segmentation + URL: https://arxiv.org/abs/1907.13426 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/ema_head.py#L80 + Framework: PyTorch +- Name: emanet_r101-d8_4xb2-80k_cityscapes-512x1024 + In Collection: EMANet + Results: + Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 79.1 + mIoU(ms+flip): 81.21 + Config: configs/emanet/emanet_r101-d8_4xb2-80k_cityscapes-512x1024.py + Metadata: + Training Data: Cityscapes + Batch Size: 8 + Architecture: + - R-101-D8 + - EMANet + Training Resources: 4x V100 GPUS + Memory (GB): 6.2 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/emanet/emanet_r101-d8_512x1024_80k_cityscapes/emanet_r101-d8_512x1024_80k_cityscapes_20200901_100301-2d970745.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/emanet/emanet_r101-d8_512x1024_80k_cityscapes/emanet_r101-d8_512x1024_80k_cityscapes-20200901_100301.log.json + Paper: + Title: Expectation-Maximization Attention Networks for Semantic Segmentation + URL: https://arxiv.org/abs/1907.13426 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/ema_head.py#L80 + Framework: PyTorch +- Name: emanet_r50-d8_4xb2-80k_cityscapes-769x769 + In Collection: EMANet + Results: + Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 79.33 + mIoU(ms+flip): 80.49 + Config: configs/emanet/emanet_r50-d8_4xb2-80k_cityscapes-769x769.py + Metadata: + Training Data: Cityscapes + Batch Size: 8 + Architecture: + - R-50-D8 + - EMANet + Training Resources: 4x V100 GPUS + Memory (GB): 8.9 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/emanet/emanet_r50-d8_769x769_80k_cityscapes/emanet_r50-d8_769x769_80k_cityscapes_20200901_100301-16f8de52.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/emanet/emanet_r50-d8_769x769_80k_cityscapes/emanet_r50-d8_769x769_80k_cityscapes-20200901_100301.log.json + Paper: + Title: Expectation-Maximization Attention Networks for Semantic Segmentation + URL: https://arxiv.org/abs/1907.13426 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/ema_head.py#L80 + Framework: PyTorch +- Name: emanet_r101-d8_4xb2-80k_cityscapes-769x769 + In Collection: EMANet + Results: + Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 79.62 + mIoU(ms+flip): 81.0 + Config: configs/emanet/emanet_r101-d8_4xb2-80k_cityscapes-769x769.py + Metadata: + Training Data: Cityscapes + Batch Size: 8 + Architecture: + - R-101-D8 + - EMANet + Training Resources: 4x V100 GPUS + Memory (GB): 10.1 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/emanet/emanet_r101-d8_769x769_80k_cityscapes/emanet_r101-d8_769x769_80k_cityscapes_20200901_100301-47a324ce.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/emanet/emanet_r101-d8_769x769_80k_cityscapes/emanet_r101-d8_769x769_80k_cityscapes-20200901_100301.log.json + Paper: + Title: Expectation-Maximization Attention Networks for Semantic Segmentation + URL: https://arxiv.org/abs/1907.13426 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/ema_head.py#L80 + Framework: PyTorch diff --git a/configs/encnet/README.md b/configs/encnet/README.md index 7be0c6d926..31bbd98c6b 100644 --- a/configs/encnet/README.md +++ b/configs/encnet/README.md @@ -1,6 +1,6 @@ # EncNet -[Context Encoding for Semantic Segmentation](https://arxiv.org/abs/1803.08904) +> [Context Encoding for Semantic Segmentation](https://arxiv.org/abs/1803.08904) ## Introduction @@ -22,6 +22,30 @@ Recent work has made significant progress in improving spatial resolution for pi +## Results and models + +### Cityscapes + +| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | Device | mIoU | mIoU(ms+flip) | config | download | +| ------ | -------- | --------- | ------: | -------- | -------------- | ------ | ----: | ------------: | --------------------------------------------------------------------------------------------------------------------------------- | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | +| EncNet | R-50-D8 | 512x1024 | 40000 | 8.6 | 4.58 | V100 | 75.67 | 77.08 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/encnet/encnet_r50-d8_4xb2-40k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/encnet/encnet_r50-d8_512x1024_40k_cityscapes/encnet_r50-d8_512x1024_40k_cityscapes_20200621_220958-68638a47.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/encnet/encnet_r50-d8_512x1024_40k_cityscapes/encnet_r50-d8_512x1024_40k_cityscapes-20200621_220958.log.json) | +| EncNet | R-101-D8 | 512x1024 | 40000 | 12.1 | 2.66 | V100 | 75.81 | 77.21 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/encnet/encnet_r101-d8_4xb2-40k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/encnet/encnet_r101-d8_512x1024_40k_cityscapes/encnet_r101-d8_512x1024_40k_cityscapes_20200621_220933-35e0a3e8.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/encnet/encnet_r101-d8_512x1024_40k_cityscapes/encnet_r101-d8_512x1024_40k_cityscapes-20200621_220933.log.json) | +| EncNet | R-50-D8 | 769x769 | 40000 | 9.8 | 1.82 | V100 | 76.24 | 77.85 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/encnet/encnet_r50-d8_4xb2-40k_cityscapes-769x769.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/encnet/encnet_r50-d8_769x769_40k_cityscapes/encnet_r50-d8_769x769_40k_cityscapes_20200621_220958-3bcd2884.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/encnet/encnet_r50-d8_769x769_40k_cityscapes/encnet_r50-d8_769x769_40k_cityscapes-20200621_220958.log.json) | +| EncNet | R-101-D8 | 769x769 | 40000 | 13.7 | 1.26 | V100 | 74.25 | 76.25 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/encnet/encnet_r101-d8_4xb2-40k_cityscapes-769x769.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/encnet/encnet_r101-d8_769x769_40k_cityscapes/encnet_r101-d8_769x769_40k_cityscapes_20200621_220933-2fafed55.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/encnet/encnet_r101-d8_769x769_40k_cityscapes/encnet_r101-d8_769x769_40k_cityscapes-20200621_220933.log.json) | +| EncNet | R-50-D8 | 512x1024 | 80000 | - | - | V100 | 77.94 | 79.13 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/encnet/encnet_r50-d8_4xb2-80k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/encnet/encnet_r50-d8_512x1024_80k_cityscapes/encnet_r50-d8_512x1024_80k_cityscapes_20200622_003554-fc5c5624.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/encnet/encnet_r50-d8_512x1024_80k_cityscapes/encnet_r50-d8_512x1024_80k_cityscapes-20200622_003554.log.json) | +| EncNet | R-101-D8 | 512x1024 | 80000 | - | - | V100 | 78.55 | 79.47 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/encnet/encnet_r101-d8_4xb2-80k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/encnet/encnet_r101-d8_512x1024_80k_cityscapes/encnet_r101-d8_512x1024_80k_cityscapes_20200622_003555-1de64bec.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/encnet/encnet_r101-d8_512x1024_80k_cityscapes/encnet_r101-d8_512x1024_80k_cityscapes-20200622_003555.log.json) | +| EncNet | R-50-D8 | 769x769 | 80000 | - | - | V100 | 77.44 | 78.72 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/encnet/encnet_r50-d8_4xb2-80k_cityscapes-769x769.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/encnet/encnet_r50-d8_769x769_80k_cityscapes/encnet_r50-d8_769x769_80k_cityscapes_20200622_003554-55096dcb.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/encnet/encnet_r50-d8_769x769_80k_cityscapes/encnet_r50-d8_769x769_80k_cityscapes-20200622_003554.log.json) | +| EncNet | R-101-D8 | 769x769 | 80000 | - | - | V100 | 76.10 | 76.97 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/encnet/encnet_r101-d8_4xb2-80k_cityscapes-769x769.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/encnet/encnet_r101-d8_769x769_80k_cityscapes/encnet_r101-d8_769x769_80k_cityscapes_20200622_003555-470ef79d.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/encnet/encnet_r101-d8_769x769_80k_cityscapes/encnet_r101-d8_769x769_80k_cityscapes-20200622_003555.log.json) | + +### ADE20K + +| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | Device | mIoU | mIoU(ms+flip) | config | download | +| ------ | -------- | --------- | ------: | -------- | -------------- | ------ | ----: | ------------: | ----------------------------------------------------------------------------------------------------------------------------- | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | +| EncNet | R-50-D8 | 512x512 | 80000 | 10.1 | 22.81 | V100 | 39.53 | 41.17 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/encnet/encnet_r50-d8_4xb4-80k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/encnet/encnet_r50-d8_512x512_80k_ade20k/encnet_r50-d8_512x512_80k_ade20k_20200622_042412-44b46b04.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/encnet/encnet_r50-d8_512x512_80k_ade20k/encnet_r50-d8_512x512_80k_ade20k-20200622_042412.log.json) | +| EncNet | R-101-D8 | 512x512 | 80000 | 13.6 | 14.87 | V100 | 42.11 | 43.61 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/encnet/encnet_r101-d8_4xb4-80k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/encnet/encnet_r101-d8_512x512_80k_ade20k/encnet_r101-d8_512x512_80k_ade20k_20200622_101128-dd35e237.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/encnet/encnet_r101-d8_512x512_80k_ade20k/encnet_r101-d8_512x512_80k_ade20k-20200622_101128.log.json) | +| EncNet | R-50-D8 | 512x512 | 160000 | - | - | V100 | 40.10 | 41.71 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/encnet/encnet_r50-d8_4xb4-160k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/encnet/encnet_r50-d8_512x512_160k_ade20k/encnet_r50-d8_512x512_160k_ade20k_20200622_101059-b2db95e0.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/encnet/encnet_r50-d8_512x512_160k_ade20k/encnet_r50-d8_512x512_160k_ade20k-20200622_101059.log.json) | +| EncNet | R-101-D8 | 512x512 | 160000 | - | - | V100 | 42.61 | 44.01 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/encnet/encnet_r101-d8_4xb4-160k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/encnet/encnet_r101-d8_512x512_160k_ade20k/encnet_r101-d8_512x512_160k_ade20k_20200622_073348-7989641f.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/encnet/encnet_r101-d8_512x512_160k_ade20k/encnet_r101-d8_512x512_160k_ade20k-20200622_073348.log.json) | + ## Citation ```bibtex @@ -33,27 +57,3 @@ month = {June}, year = {2018} } ``` - -## Results and models - -### Cityscapes - -| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | mIoU | mIoU(ms+flip) | config | download | -| ------ | -------- | --------- | ------: | -------- | -------------- | ----: | ------------: | --------------------------------------------------------------------------------------------------------------------------------- | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | -| EncNet | R-50-D8 | 512x1024 | 40000 | 8.6 | 4.58 | 75.67 | 77.08 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/encnet/encnet_r50-d8_4xb2-40k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/encnet/encnet_r50-d8_512x1024_40k_cityscapes/encnet_r50-d8_512x1024_40k_cityscapes_20200621_220958-68638a47.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/encnet/encnet_r50-d8_512x1024_40k_cityscapes/encnet_r50-d8_512x1024_40k_cityscapes-20200621_220958.log.json) | -| EncNet | R-101-D8 | 512x1024 | 40000 | 12.1 | 2.66 | 75.81 | 77.21 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/encnet/encnet_r101-d8_4xb2-40k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/encnet/encnet_r101-d8_512x1024_40k_cityscapes/encnet_r101-d8_512x1024_40k_cityscapes_20200621_220933-35e0a3e8.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/encnet/encnet_r101-d8_512x1024_40k_cityscapes/encnet_r101-d8_512x1024_40k_cityscapes-20200621_220933.log.json) | -| EncNet | R-50-D8 | 769x769 | 40000 | 9.8 | 1.82 | 76.24 | 77.85 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/encnet/encnet_r50-d8_4xb2-40k_cityscapes-769x769.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/encnet/encnet_r50-d8_769x769_40k_cityscapes/encnet_r50-d8_769x769_40k_cityscapes_20200621_220958-3bcd2884.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/encnet/encnet_r50-d8_769x769_40k_cityscapes/encnet_r50-d8_769x769_40k_cityscapes-20200621_220958.log.json) | -| EncNet | R-101-D8 | 769x769 | 40000 | 13.7 | 1.26 | 74.25 | 76.25 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/encnet/encnet_r101-d8_4xb2-40k_cityscapes-769x769.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/encnet/encnet_r101-d8_769x769_40k_cityscapes/encnet_r101-d8_769x769_40k_cityscapes_20200621_220933-2fafed55.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/encnet/encnet_r101-d8_769x769_40k_cityscapes/encnet_r101-d8_769x769_40k_cityscapes-20200621_220933.log.json) | -| EncNet | R-50-D8 | 512x1024 | 80000 | - | - | 77.94 | 79.13 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/encnet/encnet_r50-d8_4xb2-80k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/encnet/encnet_r50-d8_512x1024_80k_cityscapes/encnet_r50-d8_512x1024_80k_cityscapes_20200622_003554-fc5c5624.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/encnet/encnet_r50-d8_512x1024_80k_cityscapes/encnet_r50-d8_512x1024_80k_cityscapes-20200622_003554.log.json) | -| EncNet | R-101-D8 | 512x1024 | 80000 | - | - | 78.55 | 79.47 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/encnet/encnet_r101-d8_4xb2-80k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/encnet/encnet_r101-d8_512x1024_80k_cityscapes/encnet_r101-d8_512x1024_80k_cityscapes_20200622_003555-1de64bec.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/encnet/encnet_r101-d8_512x1024_80k_cityscapes/encnet_r101-d8_512x1024_80k_cityscapes-20200622_003555.log.json) | -| EncNet | R-50-D8 | 769x769 | 80000 | - | - | 77.44 | 78.72 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/encnet/encnet_r50-d8_4xb2-80k_cityscapes-769x769.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/encnet/encnet_r50-d8_769x769_80k_cityscapes/encnet_r50-d8_769x769_80k_cityscapes_20200622_003554-55096dcb.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/encnet/encnet_r50-d8_769x769_80k_cityscapes/encnet_r50-d8_769x769_80k_cityscapes-20200622_003554.log.json) | -| EncNet | R-101-D8 | 769x769 | 80000 | - | - | 76.10 | 76.97 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/encnet/encnet_r101-d8_4xb2-80k_cityscapes-769x769.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/encnet/encnet_r101-d8_769x769_80k_cityscapes/encnet_r101-d8_769x769_80k_cityscapes_20200622_003555-470ef79d.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/encnet/encnet_r101-d8_769x769_80k_cityscapes/encnet_r101-d8_769x769_80k_cityscapes-20200622_003555.log.json) | - -### ADE20K - -| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | mIoU | mIoU(ms+flip) | config | download | -| ------ | -------- | --------- | ------: | -------- | -------------- | ----: | ------------: | ----------------------------------------------------------------------------------------------------------------------------- | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | -| EncNet | R-50-D8 | 512x512 | 80000 | 10.1 | 22.81 | 39.53 | 41.17 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/encnet/encnet_r50-d8_4xb4-80k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/encnet/encnet_r50-d8_512x512_80k_ade20k/encnet_r50-d8_512x512_80k_ade20k_20200622_042412-44b46b04.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/encnet/encnet_r50-d8_512x512_80k_ade20k/encnet_r50-d8_512x512_80k_ade20k-20200622_042412.log.json) | -| EncNet | R-101-D8 | 512x512 | 80000 | 13.6 | 14.87 | 42.11 | 43.61 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/encnet/encnet_r101-d8_4xb4-80k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/encnet/encnet_r101-d8_512x512_80k_ade20k/encnet_r101-d8_512x512_80k_ade20k_20200622_101128-dd35e237.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/encnet/encnet_r101-d8_512x512_80k_ade20k/encnet_r101-d8_512x512_80k_ade20k-20200622_101128.log.json) | -| EncNet | R-50-D8 | 512x512 | 160000 | - | - | 40.10 | 41.71 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/encnet/encnet_r50-d8_4xb4-160k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/encnet/encnet_r50-d8_512x512_160k_ade20k/encnet_r50-d8_512x512_160k_ade20k_20200622_101059-b2db95e0.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/encnet/encnet_r50-d8_512x512_160k_ade20k/encnet_r50-d8_512x512_160k_ade20k-20200622_101059.log.json) | -| EncNet | R-101-D8 | 512x512 | 160000 | - | - | 42.61 | 44.01 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/encnet/encnet_r101-d8_4xb4-160k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/encnet/encnet_r101-d8_512x512_160k_ade20k/encnet_r101-d8_512x512_160k_ade20k_20200622_073348-7989641f.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/encnet/encnet_r101-d8_512x512_160k_ade20k/encnet_r101-d8_512x512_160k_ade20k-20200622_073348.log.json) | diff --git a/configs/encnet/encnet.yml b/configs/encnet/encnet.yml deleted file mode 100644 index bea147b286..0000000000 --- a/configs/encnet/encnet.yml +++ /dev/null @@ -1,232 +0,0 @@ -Collections: -- Name: EncNet - Metadata: - Training Data: - - Cityscapes - - ADE20K - Paper: - URL: https://arxiv.org/abs/1803.08904 - Title: Context Encoding for Semantic Segmentation - README: configs/encnet/README.md - Code: - URL: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/enc_head.py#L63 - Version: v0.17.0 - Converted From: - Code: https://github.com/zhanghang1989/PyTorch-Encoding -Models: -- Name: encnet_r50-d8_4xb2-40k_cityscapes-512x1024 - In Collection: EncNet - Metadata: - backbone: R-50-D8 - crop size: (512,1024) - lr schd: 40000 - inference time (ms/im): - - value: 218.34 - hardware: V100 - backend: PyTorch - batch size: 1 - mode: FP32 - resolution: (512,1024) - Training Memory (GB): 8.6 - Results: - - Task: Semantic Segmentation - Dataset: Cityscapes - Metrics: - mIoU: 75.67 - mIoU(ms+flip): 77.08 - Config: configs/encnet/encnet_r50-d8_4xb2-40k_cityscapes-512x1024.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/encnet/encnet_r50-d8_512x1024_40k_cityscapes/encnet_r50-d8_512x1024_40k_cityscapes_20200621_220958-68638a47.pth -- Name: encnet_r101-d8_4xb2-40k_cityscapes-512x1024 - In Collection: EncNet - Metadata: - backbone: R-101-D8 - crop size: (512,1024) - lr schd: 40000 - inference time (ms/im): - - value: 375.94 - hardware: V100 - backend: PyTorch - batch size: 1 - mode: FP32 - resolution: (512,1024) - Training Memory (GB): 12.1 - Results: - - Task: Semantic Segmentation - Dataset: Cityscapes - Metrics: - mIoU: 75.81 - mIoU(ms+flip): 77.21 - Config: configs/encnet/encnet_r101-d8_4xb2-40k_cityscapes-512x1024.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/encnet/encnet_r101-d8_512x1024_40k_cityscapes/encnet_r101-d8_512x1024_40k_cityscapes_20200621_220933-35e0a3e8.pth -- Name: encnet_r50-d8_4xb2-40k_cityscapes-769x769 - In Collection: EncNet - Metadata: - backbone: R-50-D8 - crop size: (769,769) - lr schd: 40000 - inference time (ms/im): - - value: 549.45 - hardware: V100 - backend: PyTorch - batch size: 1 - mode: FP32 - resolution: (769,769) - Training Memory (GB): 9.8 - Results: - - Task: Semantic Segmentation - Dataset: Cityscapes - Metrics: - mIoU: 76.24 - mIoU(ms+flip): 77.85 - Config: configs/encnet/encnet_r50-d8_4xb2-40k_cityscapes-769x769.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/encnet/encnet_r50-d8_769x769_40k_cityscapes/encnet_r50-d8_769x769_40k_cityscapes_20200621_220958-3bcd2884.pth -- Name: encnet_r101-d8_4xb2-40k_cityscapes-769x769 - In Collection: EncNet - Metadata: - backbone: R-101-D8 - crop size: (769,769) - lr schd: 40000 - inference time (ms/im): - - value: 793.65 - hardware: V100 - backend: PyTorch - batch size: 1 - mode: FP32 - resolution: (769,769) - Training Memory (GB): 13.7 - Results: - - Task: Semantic Segmentation - Dataset: Cityscapes - Metrics: - mIoU: 74.25 - mIoU(ms+flip): 76.25 - Config: configs/encnet/encnet_r101-d8_4xb2-40k_cityscapes-769x769.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/encnet/encnet_r101-d8_769x769_40k_cityscapes/encnet_r101-d8_769x769_40k_cityscapes_20200621_220933-2fafed55.pth -- Name: encnet_r50-d8_4xb2-80k_cityscapes-512x1024 - In Collection: EncNet - Metadata: - backbone: R-50-D8 - crop size: (512,1024) - lr schd: 80000 - Results: - - Task: Semantic Segmentation - Dataset: Cityscapes - Metrics: - mIoU: 77.94 - mIoU(ms+flip): 79.13 - Config: configs/encnet/encnet_r50-d8_4xb2-80k_cityscapes-512x1024.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/encnet/encnet_r50-d8_512x1024_80k_cityscapes/encnet_r50-d8_512x1024_80k_cityscapes_20200622_003554-fc5c5624.pth -- Name: encnet_r101-d8_4xb2-80k_cityscapes-512x1024 - In Collection: EncNet - Metadata: - backbone: R-101-D8 - crop size: (512,1024) - lr schd: 80000 - Results: - - Task: Semantic Segmentation - Dataset: Cityscapes - Metrics: - mIoU: 78.55 - mIoU(ms+flip): 79.47 - Config: configs/encnet/encnet_r101-d8_4xb2-80k_cityscapes-512x1024.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/encnet/encnet_r101-d8_512x1024_80k_cityscapes/encnet_r101-d8_512x1024_80k_cityscapes_20200622_003555-1de64bec.pth -- Name: encnet_r50-d8_4xb2-80k_cityscapes-769x769 - In Collection: EncNet - Metadata: - backbone: R-50-D8 - crop size: (769,769) - lr schd: 80000 - Results: - - Task: Semantic Segmentation - Dataset: Cityscapes - Metrics: - mIoU: 77.44 - mIoU(ms+flip): 78.72 - Config: configs/encnet/encnet_r50-d8_4xb2-80k_cityscapes-769x769.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/encnet/encnet_r50-d8_769x769_80k_cityscapes/encnet_r50-d8_769x769_80k_cityscapes_20200622_003554-55096dcb.pth -- Name: encnet_r101-d8_4xb2-80k_cityscapes-769x769 - In Collection: EncNet - Metadata: - backbone: R-101-D8 - crop size: (769,769) - lr schd: 80000 - Results: - - Task: Semantic Segmentation - Dataset: Cityscapes - Metrics: - mIoU: 76.1 - mIoU(ms+flip): 76.97 - Config: configs/encnet/encnet_r101-d8_4xb2-80k_cityscapes-769x769.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/encnet/encnet_r101-d8_769x769_80k_cityscapes/encnet_r101-d8_769x769_80k_cityscapes_20200622_003555-470ef79d.pth -- Name: encnet_r50-d8_4xb4-80k_ade20k-512x512 - In Collection: EncNet - Metadata: - backbone: R-50-D8 - crop size: (512,512) - lr schd: 80000 - inference time (ms/im): - - value: 43.84 - hardware: V100 - backend: PyTorch - batch size: 1 - mode: FP32 - resolution: (512,512) - Training Memory (GB): 10.1 - Results: - - Task: Semantic Segmentation - Dataset: ADE20K - Metrics: - mIoU: 39.53 - mIoU(ms+flip): 41.17 - Config: configs/encnet/encnet_r50-d8_4xb4-80k_ade20k-512x512.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/encnet/encnet_r50-d8_512x512_80k_ade20k/encnet_r50-d8_512x512_80k_ade20k_20200622_042412-44b46b04.pth -- Name: encnet_r101-d8_4xb4-80k_ade20k-512x512 - In Collection: EncNet - Metadata: - backbone: R-101-D8 - crop size: (512,512) - lr schd: 80000 - inference time (ms/im): - - value: 67.25 - hardware: V100 - backend: PyTorch - batch size: 1 - mode: FP32 - resolution: (512,512) - Training Memory (GB): 13.6 - Results: - - Task: Semantic Segmentation - Dataset: ADE20K - Metrics: - mIoU: 42.11 - mIoU(ms+flip): 43.61 - Config: configs/encnet/encnet_r101-d8_4xb4-80k_ade20k-512x512.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/encnet/encnet_r101-d8_512x512_80k_ade20k/encnet_r101-d8_512x512_80k_ade20k_20200622_101128-dd35e237.pth -- Name: encnet_r50-d8_4xb4-160k_ade20k-512x512 - In Collection: EncNet - Metadata: - backbone: R-50-D8 - crop size: (512,512) - lr schd: 160000 - Results: - - Task: Semantic Segmentation - Dataset: ADE20K - Metrics: - mIoU: 40.1 - mIoU(ms+flip): 41.71 - Config: configs/encnet/encnet_r50-d8_4xb4-160k_ade20k-512x512.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/encnet/encnet_r50-d8_512x512_160k_ade20k/encnet_r50-d8_512x512_160k_ade20k_20200622_101059-b2db95e0.pth -- Name: encnet_r101-d8_4xb4-160k_ade20k-512x512 - In Collection: EncNet - Metadata: - backbone: R-101-D8 - crop size: (512,512) - lr schd: 160000 - Results: - - Task: Semantic Segmentation - Dataset: ADE20K - Metrics: - mIoU: 42.61 - mIoU(ms+flip): 44.01 - Config: configs/encnet/encnet_r101-d8_4xb4-160k_ade20k-512x512.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/encnet/encnet_r101-d8_512x512_160k_ade20k/encnet_r101-d8_512x512_160k_ade20k_20200622_073348-7989641f.pth diff --git a/configs/encnet/metafile.yaml b/configs/encnet/metafile.yaml new file mode 100644 index 0000000000..0dbdcfaab3 --- /dev/null +++ b/configs/encnet/metafile.yaml @@ -0,0 +1,296 @@ +Collections: +- Name: EncNet + License: Apache License 2.0 + Metadata: + Training Data: + - Cityscapes + - ADE20K + Paper: + Title: Context Encoding for Semantic Segmentation + URL: https://arxiv.org/abs/1803.08904 + README: configs/encnet/README.md + Frameworks: + - PyTorch +Models: +- Name: encnet_r50-d8_4xb2-40k_cityscapes-512x1024 + In Collection: EncNet + Results: + Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 75.67 + mIoU(ms+flip): 77.08 + Config: configs/encnet/encnet_r50-d8_4xb2-40k_cityscapes-512x1024.py + Metadata: + Training Data: Cityscapes + Batch Size: 8 + Architecture: + - R-50-D8 + - EncNet + Training Resources: 4x V100 GPUS + Memory (GB): 8.6 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/encnet/encnet_r50-d8_512x1024_40k_cityscapes/encnet_r50-d8_512x1024_40k_cityscapes_20200621_220958-68638a47.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/encnet/encnet_r50-d8_512x1024_40k_cityscapes/encnet_r50-d8_512x1024_40k_cityscapes-20200621_220958.log.json + Paper: + Title: Context Encoding for Semantic Segmentation + URL: https://arxiv.org/abs/1803.08904 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/enc_head.py#L63 + Framework: PyTorch +- Name: encnet_r101-d8_4xb2-40k_cityscapes-512x1024 + In Collection: EncNet + Results: + Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 75.81 + mIoU(ms+flip): 77.21 + Config: configs/encnet/encnet_r101-d8_4xb2-40k_cityscapes-512x1024.py + Metadata: + Training Data: Cityscapes + Batch Size: 8 + Architecture: + - R-101-D8 + - EncNet + Training Resources: 4x V100 GPUS + Memory (GB): 12.1 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/encnet/encnet_r101-d8_512x1024_40k_cityscapes/encnet_r101-d8_512x1024_40k_cityscapes_20200621_220933-35e0a3e8.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/encnet/encnet_r101-d8_512x1024_40k_cityscapes/encnet_r101-d8_512x1024_40k_cityscapes-20200621_220933.log.json + Paper: + Title: Context Encoding for Semantic Segmentation + URL: https://arxiv.org/abs/1803.08904 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/enc_head.py#L63 + Framework: PyTorch +- Name: encnet_r50-d8_4xb2-40k_cityscapes-769x769 + In Collection: EncNet + Results: + Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 76.24 + mIoU(ms+flip): 77.85 + Config: configs/encnet/encnet_r50-d8_4xb2-40k_cityscapes-769x769.py + Metadata: + Training Data: Cityscapes + Batch Size: 8 + Architecture: + - R-50-D8 + - EncNet + Training Resources: 4x V100 GPUS + Memory (GB): 9.8 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/encnet/encnet_r50-d8_769x769_40k_cityscapes/encnet_r50-d8_769x769_40k_cityscapes_20200621_220958-3bcd2884.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/encnet/encnet_r50-d8_769x769_40k_cityscapes/encnet_r50-d8_769x769_40k_cityscapes-20200621_220958.log.json + Paper: + Title: Context Encoding for Semantic Segmentation + URL: https://arxiv.org/abs/1803.08904 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/enc_head.py#L63 + Framework: PyTorch +- Name: encnet_r101-d8_4xb2-40k_cityscapes-769x769 + In Collection: EncNet + Results: + Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 74.25 + mIoU(ms+flip): 76.25 + Config: configs/encnet/encnet_r101-d8_4xb2-40k_cityscapes-769x769.py + Metadata: + Training Data: Cityscapes + Batch Size: 8 + Architecture: + - R-101-D8 + - EncNet + Training Resources: 4x V100 GPUS + Memory (GB): 13.7 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/encnet/encnet_r101-d8_769x769_40k_cityscapes/encnet_r101-d8_769x769_40k_cityscapes_20200621_220933-2fafed55.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/encnet/encnet_r101-d8_769x769_40k_cityscapes/encnet_r101-d8_769x769_40k_cityscapes-20200621_220933.log.json + Paper: + Title: Context Encoding for Semantic Segmentation + URL: https://arxiv.org/abs/1803.08904 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/enc_head.py#L63 + Framework: PyTorch +- Name: encnet_r50-d8_4xb2-80k_cityscapes-512x1024 + In Collection: EncNet + Results: + Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 77.94 + mIoU(ms+flip): 79.13 + Config: configs/encnet/encnet_r50-d8_4xb2-80k_cityscapes-512x1024.py + Metadata: + Training Data: Cityscapes + Batch Size: 8 + Architecture: + - R-50-D8 + - EncNet + Training Resources: 4x V100 GPUS + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/encnet/encnet_r50-d8_512x1024_80k_cityscapes/encnet_r50-d8_512x1024_80k_cityscapes_20200622_003554-fc5c5624.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/encnet/encnet_r50-d8_512x1024_80k_cityscapes/encnet_r50-d8_512x1024_80k_cityscapes-20200622_003554.log.json + Paper: + Title: Context Encoding for Semantic Segmentation + URL: https://arxiv.org/abs/1803.08904 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/enc_head.py#L63 + Framework: PyTorch +- Name: encnet_r101-d8_4xb2-80k_cityscapes-512x1024 + In Collection: EncNet + Results: + Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 78.55 + mIoU(ms+flip): 79.47 + Config: configs/encnet/encnet_r101-d8_4xb2-80k_cityscapes-512x1024.py + Metadata: + Training Data: Cityscapes + Batch Size: 8 + Architecture: + - R-101-D8 + - EncNet + Training Resources: 4x V100 GPUS + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/encnet/encnet_r101-d8_512x1024_80k_cityscapes/encnet_r101-d8_512x1024_80k_cityscapes_20200622_003555-1de64bec.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/encnet/encnet_r101-d8_512x1024_80k_cityscapes/encnet_r101-d8_512x1024_80k_cityscapes-20200622_003555.log.json + Paper: + Title: Context Encoding for Semantic Segmentation + URL: https://arxiv.org/abs/1803.08904 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/enc_head.py#L63 + Framework: PyTorch +- Name: encnet_r50-d8_4xb2-80k_cityscapes-769x769 + In Collection: EncNet + Results: + Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 77.44 + mIoU(ms+flip): 78.72 + Config: configs/encnet/encnet_r50-d8_4xb2-80k_cityscapes-769x769.py + Metadata: + Training Data: Cityscapes + Batch Size: 8 + Architecture: + - R-50-D8 + - EncNet + Training Resources: 4x V100 GPUS + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/encnet/encnet_r50-d8_769x769_80k_cityscapes/encnet_r50-d8_769x769_80k_cityscapes_20200622_003554-55096dcb.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/encnet/encnet_r50-d8_769x769_80k_cityscapes/encnet_r50-d8_769x769_80k_cityscapes-20200622_003554.log.json + Paper: + Title: Context Encoding for Semantic Segmentation + URL: https://arxiv.org/abs/1803.08904 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/enc_head.py#L63 + Framework: PyTorch +- Name: encnet_r101-d8_4xb2-80k_cityscapes-769x769 + In Collection: EncNet + Results: + Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 76.1 + mIoU(ms+flip): 76.97 + Config: configs/encnet/encnet_r101-d8_4xb2-80k_cityscapes-769x769.py + Metadata: + Training Data: Cityscapes + Batch Size: 8 + Architecture: + - R-101-D8 + - EncNet + Training Resources: 4x V100 GPUS + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/encnet/encnet_r101-d8_769x769_80k_cityscapes/encnet_r101-d8_769x769_80k_cityscapes_20200622_003555-470ef79d.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/encnet/encnet_r101-d8_769x769_80k_cityscapes/encnet_r101-d8_769x769_80k_cityscapes-20200622_003555.log.json + Paper: + Title: Context Encoding for Semantic Segmentation + URL: https://arxiv.org/abs/1803.08904 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/enc_head.py#L63 + Framework: PyTorch +- Name: encnet_r50-d8_4xb4-80k_ade20k-512x512 + In Collection: EncNet + Results: + Task: Semantic Segmentation + Dataset: ADE20K + Metrics: + mIoU: 39.53 + mIoU(ms+flip): 41.17 + Config: configs/encnet/encnet_r50-d8_4xb4-80k_ade20k-512x512.py + Metadata: + Training Data: ADE20K + Batch Size: 16 + Architecture: + - R-50-D8 + - EncNet + Training Resources: 4x V100 GPUS + Memory (GB): 10.1 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/encnet/encnet_r50-d8_512x512_80k_ade20k/encnet_r50-d8_512x512_80k_ade20k_20200622_042412-44b46b04.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/encnet/encnet_r50-d8_512x512_80k_ade20k/encnet_r50-d8_512x512_80k_ade20k-20200622_042412.log.json + Paper: + Title: Context Encoding for Semantic Segmentation + URL: https://arxiv.org/abs/1803.08904 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/enc_head.py#L63 + Framework: PyTorch +- Name: encnet_r101-d8_4xb4-80k_ade20k-512x512 + In Collection: EncNet + Results: + Task: Semantic Segmentation + Dataset: ADE20K + Metrics: + mIoU: 42.11 + mIoU(ms+flip): 43.61 + Config: configs/encnet/encnet_r101-d8_4xb4-80k_ade20k-512x512.py + Metadata: + Training Data: ADE20K + Batch Size: 16 + Architecture: + - R-101-D8 + - EncNet + Training Resources: 4x V100 GPUS + Memory (GB): 13.6 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/encnet/encnet_r101-d8_512x512_80k_ade20k/encnet_r101-d8_512x512_80k_ade20k_20200622_101128-dd35e237.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/encnet/encnet_r101-d8_512x512_80k_ade20k/encnet_r101-d8_512x512_80k_ade20k-20200622_101128.log.json + Paper: + Title: Context Encoding for Semantic Segmentation + URL: https://arxiv.org/abs/1803.08904 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/enc_head.py#L63 + Framework: PyTorch +- Name: encnet_r50-d8_4xb4-160k_ade20k-512x512 + In Collection: EncNet + Results: + Task: Semantic Segmentation + Dataset: ADE20K + Metrics: + mIoU: 40.1 + mIoU(ms+flip): 41.71 + Config: configs/encnet/encnet_r50-d8_4xb4-160k_ade20k-512x512.py + Metadata: + Training Data: ADE20K + Batch Size: 16 + Architecture: + - R-50-D8 + - EncNet + Training Resources: 4x V100 GPUS + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/encnet/encnet_r50-d8_512x512_160k_ade20k/encnet_r50-d8_512x512_160k_ade20k_20200622_101059-b2db95e0.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/encnet/encnet_r50-d8_512x512_160k_ade20k/encnet_r50-d8_512x512_160k_ade20k-20200622_101059.log.json + Paper: + Title: Context Encoding for Semantic Segmentation + URL: https://arxiv.org/abs/1803.08904 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/enc_head.py#L63 + Framework: PyTorch +- Name: encnet_r101-d8_4xb4-160k_ade20k-512x512 + In Collection: EncNet + Results: + Task: Semantic Segmentation + Dataset: ADE20K + Metrics: + mIoU: 42.61 + mIoU(ms+flip): 44.01 + Config: configs/encnet/encnet_r101-d8_4xb4-160k_ade20k-512x512.py + Metadata: + Training Data: ADE20K + Batch Size: 16 + Architecture: + - R-101-D8 + - EncNet + Training Resources: 4x V100 GPUS + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/encnet/encnet_r101-d8_512x512_160k_ade20k/encnet_r101-d8_512x512_160k_ade20k_20200622_073348-7989641f.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/encnet/encnet_r101-d8_512x512_160k_ade20k/encnet_r101-d8_512x512_160k_ade20k-20200622_073348.log.json + Paper: + Title: Context Encoding for Semantic Segmentation + URL: https://arxiv.org/abs/1803.08904 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/enc_head.py#L63 + Framework: PyTorch diff --git a/configs/erfnet/README.md b/configs/erfnet/README.md index 4f7d21572a..e29afc485d 100644 --- a/configs/erfnet/README.md +++ b/configs/erfnet/README.md @@ -1,6 +1,6 @@ # ERFNet -[ERFNet: Efficient Residual Factorized ConvNet for Real-time Semantic Segmentation](http://www.robesafe.uah.es/personal/eduardo.romera/pdfs/Romera17tits.pdf) +> [ERFNet: Efficient Residual Factorized ConvNet for Real-time Semantic Segmentation](http://www.robesafe.uah.es/personal/eduardo.romera/pdfs/Romera17tits.pdf) ## Introduction @@ -22,6 +22,22 @@ Semantic segmentation is a challenging task that addresses most of the perceptio +## Results and models + +### Cityscapes + +| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | Device | mIoU | mIoU(ms+flip) | config | download | +| ------ | -------- | --------- | ------: | -------- | -------------- | ------ | ---: | ------------- | ------------------------------------------------------------------------------------------------------------------------------ | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ | +| ERFNet | ERFNet | 512x1024 | 160000 | 6.04 | 15.26 | V100 | 72.5 | 74.75 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/erfnet/erfnet_fcn_4xb4-160k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/erfnet/erfnet_fcn_4x4_512x1024_160k_cityscapes/erfnet_fcn_4x4_512x1024_160k_cityscapes_20220704_162145-dc90157a.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/erfnet/erfnet_fcn_4x4_512x1024_160k_cityscapes/erfnet_fcn_4x4_512x1024_160k_cityscapes_20220704_162145.log.json) | + +Note: + +- The model is trained from scratch. + +- Last deconvolution layer in the [original paper](https://github.com/Eromera/erfnet_pytorch/blob/master/train/erfnet.py#L123) is replaced by a naive `FCNHead` decoder head and a bilinear upsampling layer, found more effective and efficient. + +- This model performance is sensitive to the seed values used, please refer to the log file for the specific settings of the seed. If you choose a different seed, the results might differ from the table results. + ## Citation ```bibtex @@ -36,19 +52,3 @@ Semantic segmentation is a challenging task that addresses most of the perceptio publisher={IEEE} } ``` - -## Results and models - -### Cityscapes - -| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | mIoU | mIoU(ms+flip) | config | download | -| ------ | -------- | --------- | ------: | -------- | -------------- | ---: | ------------- | ------------------------------------------------------------------------------------------------------------------------------ | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ | -| ERFNet | ERFNet | 512x1024 | 160000 | 6.04 | 15.26 | 72.5 | 74.75 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/erfnet/erfnet_fcn_4xb4-160k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/erfnet/erfnet_fcn_4x4_512x1024_160k_cityscapes/erfnet_fcn_4x4_512x1024_160k_cityscapes_20220704_162145-dc90157a.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/erfnet/erfnet_fcn_4x4_512x1024_160k_cityscapes/erfnet_fcn_4x4_512x1024_160k_cityscapes_20220704_162145.log.json) | - -Note: - -- The model is trained from scratch. - -- Last deconvolution layer in the [original paper](https://github.com/Eromera/erfnet_pytorch/blob/master/train/erfnet.py#L123) is replaced by a naive `FCNHead` decoder head and a bilinear upsampling layer, found more effective and efficient. - -- This model performance is sensitive to the seed values used, please refer to the log file for the specific settings of the seed. If you choose a different seed, the results might differ from the table results. diff --git a/configs/erfnet/erfnet.yml b/configs/erfnet/erfnet.yml deleted file mode 100644 index 5f87f020cf..0000000000 --- a/configs/erfnet/erfnet.yml +++ /dev/null @@ -1,37 +0,0 @@ -Collections: -- Name: ERFNet - Metadata: - Training Data: - - Cityscapes - Paper: - URL: http://www.robesafe.uah.es/personal/eduardo.romera/pdfs/Romera17tits.pdf - Title: 'ERFNet: Efficient Residual Factorized ConvNet for Real-time Semantic Segmentation' - README: configs/erfnet/README.md - Code: - URL: https://github.com/open-mmlab/mmsegmentation/blob/v0.20.0/mmseg/models/backbones/erfnet.py#L321 - Version: v0.20.0 - Converted From: - Code: https://github.com/Eromera/erfnet_pytorch -Models: -- Name: erfnet_fcn_4xb4-160k_cityscapes-512x1024 - In Collection: ERFNet - Metadata: - backbone: ERFNet - crop size: (512,1024) - lr schd: 160000 - inference time (ms/im): - - value: 65.53 - hardware: V100 - backend: PyTorch - batch size: 1 - mode: FP32 - resolution: (512,1024) - Training Memory (GB): 6.04 - Results: - - Task: Semantic Segmentation - Dataset: Cityscapes - Metrics: - mIoU: 72.5 - mIoU(ms+flip): 74.75 - Config: configs/erfnet/erfnet_fcn_4xb4-160k_cityscapes-512x1024.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/erfnet/erfnet_fcn_4x4_512x1024_160k_cityscapes/erfnet_fcn_4x4_512x1024_160k_cityscapes_20220704_162145-dc90157a.pth diff --git a/configs/erfnet/metafile.yaml b/configs/erfnet/metafile.yaml new file mode 100644 index 0000000000..bf514124ee --- /dev/null +++ b/configs/erfnet/metafile.yaml @@ -0,0 +1,37 @@ +Collections: +- Name: ERFNet + License: Apache License 2.0 + Metadata: + Training Data: + - Cityscapes + Paper: + Title: 'ERFNet: Efficient Residual Factorized ConvNet for Real-time Semantic Segmentation' + URL: http://www.robesafe.uah.es/personal/eduardo.romera/pdfs/Romera17tits.pdf + README: configs/erfnet/README.md + Frameworks: + - PyTorch +Models: +- Name: erfnet_fcn_4xb4-160k_cityscapes-512x1024 + In Collection: ERFNet + Results: + Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 72.5 + mIoU(ms+flip): 74.75 + Config: configs/erfnet/erfnet_fcn_4xb4-160k_cityscapes-512x1024.py + Metadata: + Training Data: Cityscapes + Batch Size: 16 + Architecture: + - ERFNet + - ERFNet + Training Resources: 4x V100 GPUS + Memory (GB): 6.04 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/erfnet/erfnet_fcn_4x4_512x1024_160k_cityscapes/erfnet_fcn_4x4_512x1024_160k_cityscapes_20220704_162145-dc90157a.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/erfnet/erfnet_fcn_4x4_512x1024_160k_cityscapes/erfnet_fcn_4x4_512x1024_160k_cityscapes_20220704_162145.log.json + Paper: + Title: 'ERFNet: Efficient Residual Factorized ConvNet for Real-time Semantic Segmentation' + URL: http://www.robesafe.uah.es/personal/eduardo.romera/pdfs/Romera17tits.pdf + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.20.0/mmseg/models/backbones/erfnet.py#L321 + Framework: PyTorch diff --git a/configs/fastfcn/README.md b/configs/fastfcn/README.md index feedfa33a8..0b26a33edd 100644 --- a/configs/fastfcn/README.md +++ b/configs/fastfcn/README.md @@ -1,6 +1,6 @@ # FastFCN -[FastFCN: Rethinking Dilated Convolution in the Backbone for Semantic Segmentation](https://arxiv.org/abs/1903.11816) +> [FastFCN: Rethinking Dilated Convolution in the Backbone for Semantic Segmentation](https://arxiv.org/abs/1903.11816) ## Introduction @@ -22,42 +22,42 @@ Modern approaches for semantic segmentation usually employ dilated convolutions -## Citation - -```bibtex -@article{wu2019fastfcn, -title={Fastfcn: Rethinking dilated convolution in the backbone for semantic segmentation}, -author={Wu, Huikai and Zhang, Junge and Huang, Kaiqi and Liang, Kongming and Yu, Yizhou}, -journal={arXiv preprint arXiv:1903.11816}, -year={2019} -} -``` - ## Results and models ### Cityscapes -| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | mIoU | mIoU(ms+flip) | config | download | -| ------------------------- | -------- | --------- | ------: | -------- | -------------- | ----: | ------------- | -------------------------------------------------------------------------------------------------------------------------------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ | -| FastFCN + DeepLabV3 | R-50-D32 | 512x1024 | 80000 | 5.67 | 2.64 | 79.12 | 80.58 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/fastfcn/fastfcn_r50-d32_jpu_aspp_4xb2-80k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/fastfcn/fastfcn_r50-d32_jpu_aspp_512x1024_80k_cityscapes/fastfcn_r50-d32_jpu_aspp_512x1024_80k_cityscapes_20210928_053722-5d1a2648.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/fastfcn/fastfcn_r50-d32_jpu_aspp_512x1024_80k_cityscapes/fastfcn_r50-d32_jpu_aspp_512x1024_80k_cityscapes_20210928_053722.log.json) | -| FastFCN + DeepLabV3 (4x4) | R-50-D32 | 512x1024 | 80000 | 9.79 | - | 79.52 | 80.91 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/fastfcn/fastfcn_r50-d32_jpu_aspp_4xb2-80k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/fastfcn/fastfcn_r50-d32_jpu_aspp_4x4_512x1024_80k_cityscapes/fastfcn_r50-d32_jpu_aspp_4x4_512x1024_80k_cityscapes_20210924_214357-72220849.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/fastfcn/fastfcn_r50-d32_jpu_aspp_4x4_512x1024_80k_cityscapes/fastfcn_r50-d32_jpu_aspp_4x4_512x1024_80k_cityscapes_20210924_214357.log.json) | -| FastFCN + PSPNet | R-50-D32 | 512x1024 | 80000 | 5.67 | 4.40 | 79.26 | 80.86 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/fastfcn/fastfcn_r50-d32_jpu_psp_4xb2-80k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/fastfcn/fastfcn_r50-d32_jpu_psp_512x1024_80k_cityscapes/fastfcn_r50-d32_jpu_psp_512x1024_80k_cityscapes_20210928_053722-57749bed.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/fastfcn/fastfcn_r50-d32_jpu_psp_512x1024_80k_cityscapes/fastfcn_r50-d32_jpu_psp_512x1024_80k_cityscapes_20210928_053722.log.json) | -| FastFCN + PSPNet (4x4) | R-50-D32 | 512x1024 | 80000 | 9.94 | - | 78.76 | 80.03 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/fastfcn/fastfcn_r50-d32_jpu_psp_4xb2-80k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/fastfcn/fastfcn_r50-d32_jpu_psp_4x4_512x1024_80k_cityscapes/fastfcn_r50-d32_jpu_psp_4x4_512x1024_80k_cityscapes_20210925_061841-77e87b0a.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/fastfcn/fastfcn_r50-d32_jpu_psp_4x4_512x1024_80k_cityscapes/fastfcn_r50-d32_jpu_psp_4x4_512x1024_80k_cityscapes_20210925_061841.log.json) | -| FastFCN + EncNet | R-50-D32 | 512x1024 | 80000 | 8.15 | 4.77 | 77.97 | 79.92 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/fastfcn/fastfcn_r50-d32_jpu_enc_4xb2-80k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/fastfcn/fastfcn_r50-d32_jpu_enc_512x1024_80k_cityscapes/fastfcn_r50-d32_jpu_enc_512x1024_80k_cityscapes_20210928_030036-78da5046.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/fastfcn/fastfcn_r50-d32_jpu_enc_512x1024_80k_cityscapes/fastfcn_r50-d32_jpu_enc_512x1024_80k_cityscapes_20210928_030036.log.json) | -| FastFCN + EncNet (4x4) | R-50-D32 | 512x1024 | 80000 | 15.45 | - | 78.6 | 80.25 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/fastfcn/fastfcn_r50-d32_jpu_enc_4xb2-80k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/fastfcn/fastfcn_r50-d32_jpu_enc_4x4_512x1024_80k_cityscapes/fastfcn_r50-d32_jpu_enc_4x4_512x1024_80k_cityscapes_20210926_093217-e1eb6dbb.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/fastfcn/fastfcn_r50-d32_jpu_enc_4x4_512x1024_80k_cityscapes/fastfcn_r50-d32_jpu_enc_4x4_512x1024_80k_cityscapes_20210926_093217.log.json) | +| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | Device | mIoU | mIoU(ms+flip) | config | download | +| ------------------- | -------------- | --------- | ------: | -------- | -------------- | ------ | ----: | ------------- | -------------------------------------------------------------------------------------------------------------------------------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ | +| FastFCN + DeepLabV3 | R-50-D32 | 512x1024 | 80000 | 5.67 | 2.64 | V100 | 79.12 | 80.58 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/fastfcn/fastfcn_r50-d32_jpu_aspp_4xb2-80k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/fastfcn/fastfcn_r50-d32_jpu_aspp_512x1024_80k_cityscapes/fastfcn_r50-d32_jpu_aspp_512x1024_80k_cityscapes_20210928_053722-5d1a2648.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/fastfcn/fastfcn_r50-d32_jpu_aspp_512x1024_80k_cityscapes/fastfcn_r50-d32_jpu_aspp_512x1024_80k_cityscapes_20210928_053722.log.json) | +| FastFCN + DeepLabV3 | R-50-D32 (4x4) | 512x1024 | 80000 | 9.79 | - | V100 | 79.52 | 80.91 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/fastfcn/fastfcn_r50-d32_jpu_aspp_4xb2-80k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/fastfcn/fastfcn_r50-d32_jpu_aspp_4x4_512x1024_80k_cityscapes/fastfcn_r50-d32_jpu_aspp_4x4_512x1024_80k_cityscapes_20210924_214357-72220849.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/fastfcn/fastfcn_r50-d32_jpu_aspp_4x4_512x1024_80k_cityscapes/fastfcn_r50-d32_jpu_aspp_4x4_512x1024_80k_cityscapes_20210924_214357.log.json) | +| FastFCN + PSPNet | R-50-D32 | 512x1024 | 80000 | 5.67 | 4.40 | V100 | 79.26 | 80.86 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/fastfcn/fastfcn_r50-d32_jpu_psp_4xb2-80k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/fastfcn/fastfcn_r50-d32_jpu_psp_512x1024_80k_cityscapes/fastfcn_r50-d32_jpu_psp_512x1024_80k_cityscapes_20210928_053722-57749bed.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/fastfcn/fastfcn_r50-d32_jpu_psp_512x1024_80k_cityscapes/fastfcn_r50-d32_jpu_psp_512x1024_80k_cityscapes_20210928_053722.log.json) | +| FastFCN + PSPNet | R-50-D32 (4x4) | 512x1024 | 80000 | 9.94 | - | V100 | 78.76 | 80.03 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/fastfcn/fastfcn_r50-d32_jpu_psp_4xb2-80k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/fastfcn/fastfcn_r50-d32_jpu_psp_4x4_512x1024_80k_cityscapes/fastfcn_r50-d32_jpu_psp_4x4_512x1024_80k_cityscapes_20210925_061841-77e87b0a.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/fastfcn/fastfcn_r50-d32_jpu_psp_4x4_512x1024_80k_cityscapes/fastfcn_r50-d32_jpu_psp_4x4_512x1024_80k_cityscapes_20210925_061841.log.json) | +| FastFCN + EncNet | R-50-D32 | 512x1024 | 80000 | 8.15 | 4.77 | V100 | 77.97 | 79.92 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/fastfcn/fastfcn_r50-d32_jpu_enc_4xb2-80k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/fastfcn/fastfcn_r50-d32_jpu_enc_512x1024_80k_cityscapes/fastfcn_r50-d32_jpu_enc_512x1024_80k_cityscapes_20210928_030036-78da5046.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/fastfcn/fastfcn_r50-d32_jpu_enc_512x1024_80k_cityscapes/fastfcn_r50-d32_jpu_enc_512x1024_80k_cityscapes_20210928_030036.log.json) | +| FastFCN + EncNet | R-50-D32 (4x4) | 512x1024 | 80000 | 15.45 | - | V100 | 78.6 | 80.25 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/fastfcn/fastfcn_r50-d32_jpu_enc_4xb2-80k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/fastfcn/fastfcn_r50-d32_jpu_enc_4x4_512x1024_80k_cityscapes/fastfcn_r50-d32_jpu_enc_4x4_512x1024_80k_cityscapes_20210926_093217-e1eb6dbb.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/fastfcn/fastfcn_r50-d32_jpu_enc_4x4_512x1024_80k_cityscapes/fastfcn_r50-d32_jpu_enc_4x4_512x1024_80k_cityscapes_20210926_093217.log.json) | ### ADE20K -| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | mIoU | mIoU(ms+flip) | config | download | -| ------------------- | -------- | --------- | ------: | -------- | -------------- | ----: | ------------- | ---------------------------------------------------------------------------------------------------------------------------------------- | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | -| FastFCN + DeepLabV3 | R-50-D32 | 512x1024 | 80000 | 8.46 | 12.06 | 41.88 | 42.91 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/fastfcn/fastfcn_r50-d32_jpu_aspp_4xb4-80k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/fastfcn/fastfcn_r50-d32_jpu_aspp_512x512_80k_ade20k/fastfcn_r50-d32_jpu_aspp_512x512_80k_ade20k_20211013_190619-3aa40f2d.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/fastfcn/fastfcn_r50-d32_jpu_aspp_512x512_80k_ade20k/fastfcn_r50-d32_jpu_aspp_512x512_80k_ade20k_20211013_190619.log.json) | -| FastFCN + DeepLabV3 | R-50-D32 | 512x1024 | 160000 | - | - | 43.58 | 44.92 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/fastfcn/fastfcn_r50-d32_jpu_aspp_4xb4-160k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/fastfcn/fastfcn_r50-d32_jpu_aspp_512x512_160k_ade20k/fastfcn_r50-d32_jpu_aspp_512x512_160k_ade20k_20211008_152246-27036aee.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/fastfcn/fastfcn_r50-d32_jpu_aspp_512x512_160k_ade20k/fastfcn_r50-d32_jpu_aspp_512x512_160k_ade20k_20211008_152246.log.json) | -| FastFCN + PSPNet | R-50-D32 | 512x1024 | 80000 | 8.02 | 19.21 | 41.40 | 42.12 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/fastfcn/fastfcn_r50-d32_jpu_psp_4xb4-80k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/fastfcn/fastfcn_r50-d32_jpu_psp_512x512_80k_ade20k/fastfcn_r50-d32_jpu_psp_512x512_80k_ade20k_20210930_225137-993d07c8.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/fastfcn/fastfcn_r50-d32_jpu_psp_512x512_80k_ade20k/fastfcn_r50-d32_jpu_psp_512x512_80k_ade20k_20210930_225137.log.json) | -| FastFCN + PSPNet | R-50-D32 | 512x1024 | 160000 | - | - | 42.63 | 43.71 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/fastfcn/fastfcn_r50-d32_jpu_psp_4xb4-160k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/fastfcn/fastfcn_r50-d32_jpu_psp_512x512_160k_ade20k/fastfcn_r50-d32_jpu_psp_512x512_160k_ade20k_20211008_105455-e8f5a2fd.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/fastfcn/fastfcn_r50-d32_jpu_psp_512x512_160k_ade20k/fastfcn_r50-d32_jpu_psp_512x512_160k_ade20k_20211008_105455.log.json) | -| FastFCN + EncNet | R-50-D32 | 512x1024 | 80000 | 9.67 | 17.23 | 40.88 | 42.36 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/fastfcn/fastfcn_r50-d32_jpu_enc_4xb4-80k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/fastfcn/fastfcn_r50-d32_jpu_enc_512x512_80k_ade20k/fastfcn_r50-d32_jpu_enc_512x512_80k_ade20k_20210930_225214-65aef6dd.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/fastfcn/fastfcn_r50-d32_jpu_enc_512x512_80k_ade20k/fastfcn_r50-d32_jpu_enc_512x512_80k_ade20k_20210930_225214.log.json) | -| FastFCN + EncNet | R-50-D32 | 512x1024 | 160000 | - | - | 42.50 | 44.21 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/fastfcn/fastfcn_r50-d32_jpu_enc_4xb4-160k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/fastfcn/fastfcn_r50-d32_jpu_enc_512x512_160k_ade20k/fastfcn_r50-d32_jpu_enc_512x512_160k_ade20k_20211008_105456-d875ce3c.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/fastfcn/fastfcn_r50-d32_jpu_enc_512x512_160k_ade20k/fastfcn_r50-d32_jpu_enc_512x512_160k_ade20k_20211008_105456.log.json) | +| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | Device | mIoU | mIoU(ms+flip) | config | download | +| ------------------- | -------- | --------- | ------: | -------- | -------------- | ------ | ----: | ------------- | ---------------------------------------------------------------------------------------------------------------------------------------- | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | +| FastFCN + DeepLabV3 | R-50-D32 | 512x1024 | 80000 | 8.46 | 12.06 | V100 | 41.88 | 42.91 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/fastfcn/fastfcn_r50-d32_jpu_aspp_4xb4-80k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/fastfcn/fastfcn_r50-d32_jpu_aspp_512x512_80k_ade20k/fastfcn_r50-d32_jpu_aspp_512x512_80k_ade20k_20211013_190619-3aa40f2d.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/fastfcn/fastfcn_r50-d32_jpu_aspp_512x512_80k_ade20k/fastfcn_r50-d32_jpu_aspp_512x512_80k_ade20k_20211013_190619.log.json) | +| FastFCN + DeepLabV3 | R-50-D32 | 512x1024 | 160000 | - | - | V100 | 43.58 | 44.92 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/fastfcn/fastfcn_r50-d32_jpu_aspp_4xb4-160k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/fastfcn/fastfcn_r50-d32_jpu_aspp_512x512_160k_ade20k/fastfcn_r50-d32_jpu_aspp_512x512_160k_ade20k_20211008_152246-27036aee.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/fastfcn/fastfcn_r50-d32_jpu_aspp_512x512_160k_ade20k/fastfcn_r50-d32_jpu_aspp_512x512_160k_ade20k_20211008_152246.log.json) | +| FastFCN + PSPNet | R-50-D32 | 512x1024 | 80000 | 8.02 | 19.21 | V100 | 41.40 | 42.12 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/fastfcn/fastfcn_r50-d32_jpu_psp_4xb4-80k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/fastfcn/fastfcn_r50-d32_jpu_psp_512x512_80k_ade20k/fastfcn_r50-d32_jpu_psp_512x512_80k_ade20k_20210930_225137-993d07c8.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/fastfcn/fastfcn_r50-d32_jpu_psp_512x512_80k_ade20k/fastfcn_r50-d32_jpu_psp_512x512_80k_ade20k_20210930_225137.log.json) | +| FastFCN + PSPNet | R-50-D32 | 512x1024 | 160000 | - | - | V100 | 42.63 | 43.71 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/fastfcn/fastfcn_r50-d32_jpu_psp_4xb4-160k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/fastfcn/fastfcn_r50-d32_jpu_psp_512x512_160k_ade20k/fastfcn_r50-d32_jpu_psp_512x512_160k_ade20k_20211008_105455-e8f5a2fd.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/fastfcn/fastfcn_r50-d32_jpu_psp_512x512_160k_ade20k/fastfcn_r50-d32_jpu_psp_512x512_160k_ade20k_20211008_105455.log.json) | +| FastFCN + EncNet | R-50-D32 | 512x1024 | 80000 | 9.67 | 17.23 | V100 | 40.88 | 42.36 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/fastfcn/fastfcn_r50-d32_jpu_enc_4xb4-80k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/fastfcn/fastfcn_r50-d32_jpu_enc_512x512_80k_ade20k/fastfcn_r50-d32_jpu_enc_512x512_80k_ade20k_20210930_225214-65aef6dd.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/fastfcn/fastfcn_r50-d32_jpu_enc_512x512_80k_ade20k/fastfcn_r50-d32_jpu_enc_512x512_80k_ade20k_20210930_225214.log.json) | +| FastFCN + EncNet | R-50-D32 | 512x1024 | 160000 | - | - | V100 | 42.50 | 44.21 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/fastfcn/fastfcn_r50-d32_jpu_enc_4xb4-160k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/fastfcn/fastfcn_r50-d32_jpu_enc_512x512_160k_ade20k/fastfcn_r50-d32_jpu_enc_512x512_160k_ade20k_20211008_105456-d875ce3c.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/fastfcn/fastfcn_r50-d32_jpu_enc_512x512_160k_ade20k/fastfcn_r50-d32_jpu_enc_512x512_160k_ade20k_20211008_105456.log.json) | Note: - `4x4` means 4 GPUs with 4 samples per GPU in training, default setting is 4 GPUs with 2 samples per GPU in training. - Results of [DeepLabV3 (mIoU: 79.32)](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/deeplabv3), [PSPNet (mIoU: 78.55)](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/pspnet) and [ENCNet (mIoU: 77.94)](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/encnet) can be found in each original repository. + +## Citation + +```bibtex +@article{wu2019fastfcn, +title={Fastfcn: Rethinking dilated convolution in the backbone for semantic segmentation}, +author={Wu, Huikai and Zhang, Junge and Huang, Kaiqi and Liang, Kongming and Yu, Yizhou}, +journal={arXiv preprint arXiv:1903.11816}, +year={2019} +} +``` diff --git a/configs/fastfcn/fastfcn.yml b/configs/fastfcn/fastfcn.yml deleted file mode 100644 index 6b4d3bc121..0000000000 --- a/configs/fastfcn/fastfcn.yml +++ /dev/null @@ -1,235 +0,0 @@ -Collections: -- Name: FastFCN - Metadata: - Training Data: - - Cityscapes - - ADE20K - Paper: - URL: https://arxiv.org/abs/1903.11816 - Title: 'FastFCN: Rethinking Dilated Convolution in the Backbone for Semantic Segmentation' - README: configs/fastfcn/README.md - Code: - URL: https://github.com/open-mmlab/mmsegmentation/blob/v0.18.0/mmseg/models/necks/jpu.py#L12 - Version: v0.18.0 - Converted From: - Code: https://github.com/wuhuikai/FastFCN -Models: -- Name: fastfcn_r50-d32_jpu_aspp_4xb2-80k_cityscapes-512x1024 - In Collection: FastFCN - Metadata: - backbone: R-50-D32 - crop size: (512,1024) - lr schd: 80000 - inference time (ms/im): - - value: 378.79 - hardware: V100 - backend: PyTorch - batch size: 1 - mode: FP32 - resolution: (512,1024) - Training Memory (GB): 5.67 - Results: - - Task: Semantic Segmentation - Dataset: Cityscapes - Metrics: - mIoU: 79.12 - mIoU(ms+flip): 80.58 - Config: configs/fastfcn/fastfcn_r50-d32_jpu_aspp_4xb2-80k_cityscapes-512x1024.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fastfcn/fastfcn_r50-d32_jpu_aspp_512x1024_80k_cityscapes/fastfcn_r50-d32_jpu_aspp_512x1024_80k_cityscapes_20210928_053722-5d1a2648.pth -- Name: fastfcn_r50-d32_jpu_aspp_4xb2-80k_cityscapes-512x1024 - In Collection: FastFCN - Metadata: - backbone: R-50-D32 - crop size: (512,1024) - lr schd: 80000 - Training Memory (GB): 9.79 - Results: - - Task: Semantic Segmentation - Dataset: Cityscapes - Metrics: - mIoU: 79.52 - mIoU(ms+flip): 80.91 - Config: configs/fastfcn/fastfcn_r50-d32_jpu_aspp_4xb2-80k_cityscapes-512x1024.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fastfcn/fastfcn_r50-d32_jpu_aspp_4x4_512x1024_80k_cityscapes/fastfcn_r50-d32_jpu_aspp_4x4_512x1024_80k_cityscapes_20210924_214357-72220849.pth -- Name: fastfcn_r50-d32_jpu_psp_4xb2-80k_cityscapes-512x1024 - In Collection: FastFCN - Metadata: - backbone: R-50-D32 - crop size: (512,1024) - lr schd: 80000 - inference time (ms/im): - - value: 227.27 - hardware: V100 - backend: PyTorch - batch size: 1 - mode: FP32 - resolution: (512,1024) - Training Memory (GB): 5.67 - Results: - - Task: Semantic Segmentation - Dataset: Cityscapes - Metrics: - mIoU: 79.26 - mIoU(ms+flip): 80.86 - Config: configs/fastfcn/fastfcn_r50-d32_jpu_psp_4xb2-80k_cityscapes-512x1024.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fastfcn/fastfcn_r50-d32_jpu_psp_512x1024_80k_cityscapes/fastfcn_r50-d32_jpu_psp_512x1024_80k_cityscapes_20210928_053722-57749bed.pth -- Name: fastfcn_r50-d32_jpu_psp_4xb2-80k_cityscapes-512x1024 - In Collection: FastFCN - Metadata: - backbone: R-50-D32 - crop size: (512,1024) - lr schd: 80000 - Training Memory (GB): 9.94 - Results: - - Task: Semantic Segmentation - Dataset: Cityscapes - Metrics: - mIoU: 78.76 - mIoU(ms+flip): 80.03 - Config: configs/fastfcn/fastfcn_r50-d32_jpu_psp_4xb2-80k_cityscapes-512x1024.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fastfcn/fastfcn_r50-d32_jpu_psp_4x4_512x1024_80k_cityscapes/fastfcn_r50-d32_jpu_psp_4x4_512x1024_80k_cityscapes_20210925_061841-77e87b0a.pth -- Name: fastfcn_r50-d32_jpu_enc_4xb2-80k_cityscapes-512x1024 - In Collection: FastFCN - Metadata: - backbone: R-50-D32 - crop size: (512,1024) - lr schd: 80000 - inference time (ms/im): - - value: 209.64 - hardware: V100 - backend: PyTorch - batch size: 1 - mode: FP32 - resolution: (512,1024) - Training Memory (GB): 8.15 - Results: - - Task: Semantic Segmentation - Dataset: Cityscapes - Metrics: - mIoU: 77.97 - mIoU(ms+flip): 79.92 - Config: configs/fastfcn/fastfcn_r50-d32_jpu_enc_4xb2-80k_cityscapes-512x1024.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fastfcn/fastfcn_r50-d32_jpu_enc_512x1024_80k_cityscapes/fastfcn_r50-d32_jpu_enc_512x1024_80k_cityscapes_20210928_030036-78da5046.pth -- Name: fastfcn_r50-d32_jpu_enc_4xb2-80k_cityscapes-512x1024 - In Collection: FastFCN - Metadata: - backbone: R-50-D32 - crop size: (512,1024) - lr schd: 80000 - Training Memory (GB): 15.45 - Results: - - Task: Semantic Segmentation - Dataset: Cityscapes - Metrics: - mIoU: 78.6 - mIoU(ms+flip): 80.25 - Config: configs/fastfcn/fastfcn_r50-d32_jpu_enc_4xb2-80k_cityscapes-512x1024.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fastfcn/fastfcn_r50-d32_jpu_enc_4x4_512x1024_80k_cityscapes/fastfcn_r50-d32_jpu_enc_4x4_512x1024_80k_cityscapes_20210926_093217-e1eb6dbb.pth -- Name: fastfcn_r50-d32_jpu_aspp_4xb4-80k_ade20k-512x512 - In Collection: FastFCN - Metadata: - backbone: R-50-D32 - crop size: (512,1024) - lr schd: 80000 - inference time (ms/im): - - value: 82.92 - hardware: V100 - backend: PyTorch - batch size: 1 - mode: FP32 - resolution: (512,1024) - Training Memory (GB): 8.46 - Results: - - Task: Semantic Segmentation - Dataset: ADE20K - Metrics: - mIoU: 41.88 - mIoU(ms+flip): 42.91 - Config: configs/fastfcn/fastfcn_r50-d32_jpu_aspp_4xb4-80k_ade20k-512x512.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fastfcn/fastfcn_r50-d32_jpu_aspp_512x512_80k_ade20k/fastfcn_r50-d32_jpu_aspp_512x512_80k_ade20k_20211013_190619-3aa40f2d.pth -- Name: fastfcn_r50-d32_jpu_aspp_4xb4-160k_ade20k-512x512 - In Collection: FastFCN - Metadata: - backbone: R-50-D32 - crop size: (512,1024) - lr schd: 160000 - Results: - - Task: Semantic Segmentation - Dataset: ADE20K - Metrics: - mIoU: 43.58 - mIoU(ms+flip): 44.92 - Config: configs/fastfcn/fastfcn_r50-d32_jpu_aspp_4xb4-160k_ade20k-512x512.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fastfcn/fastfcn_r50-d32_jpu_aspp_512x512_160k_ade20k/fastfcn_r50-d32_jpu_aspp_512x512_160k_ade20k_20211008_152246-27036aee.pth -- Name: fastfcn_r50-d32_jpu_psp_4xb4-80k_ade20k-512x512 - In Collection: FastFCN - Metadata: - backbone: R-50-D32 - crop size: (512,1024) - lr schd: 80000 - inference time (ms/im): - - value: 52.06 - hardware: V100 - backend: PyTorch - batch size: 1 - mode: FP32 - resolution: (512,1024) - Training Memory (GB): 8.02 - Results: - - Task: Semantic Segmentation - Dataset: ADE20K - Metrics: - mIoU: 41.4 - mIoU(ms+flip): 42.12 - Config: configs/fastfcn/fastfcn_r50-d32_jpu_psp_4xb4-80k_ade20k-512x512.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fastfcn/fastfcn_r50-d32_jpu_psp_512x512_80k_ade20k/fastfcn_r50-d32_jpu_psp_512x512_80k_ade20k_20210930_225137-993d07c8.pth -- Name: fastfcn_r50-d32_jpu_psp_4xb4-160k_ade20k-512x512 - In Collection: FastFCN - Metadata: - backbone: R-50-D32 - crop size: (512,1024) - lr schd: 160000 - Results: - - Task: Semantic Segmentation - Dataset: ADE20K - Metrics: - mIoU: 42.63 - mIoU(ms+flip): 43.71 - Config: configs/fastfcn/fastfcn_r50-d32_jpu_psp_4xb4-160k_ade20k-512x512.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fastfcn/fastfcn_r50-d32_jpu_psp_512x512_160k_ade20k/fastfcn_r50-d32_jpu_psp_512x512_160k_ade20k_20211008_105455-e8f5a2fd.pth -- Name: fastfcn_r50-d32_jpu_enc_4xb4-80k_ade20k-512x512 - In Collection: FastFCN - Metadata: - backbone: R-50-D32 - crop size: (512,1024) - lr schd: 80000 - inference time (ms/im): - - value: 58.04 - hardware: V100 - backend: PyTorch - batch size: 1 - mode: FP32 - resolution: (512,1024) - Training Memory (GB): 9.67 - Results: - - Task: Semantic Segmentation - Dataset: ADE20K - Metrics: - mIoU: 40.88 - mIoU(ms+flip): 42.36 - Config: configs/fastfcn/fastfcn_r50-d32_jpu_enc_4xb4-80k_ade20k-512x512.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fastfcn/fastfcn_r50-d32_jpu_enc_512x512_80k_ade20k/fastfcn_r50-d32_jpu_enc_512x512_80k_ade20k_20210930_225214-65aef6dd.pth -- Name: fastfcn_r50-d32_jpu_enc_4xb4-160k_ade20k-512x512 - In Collection: FastFCN - Metadata: - backbone: R-50-D32 - crop size: (512,1024) - lr schd: 160000 - Results: - - Task: Semantic Segmentation - Dataset: ADE20K - Metrics: - mIoU: 42.5 - mIoU(ms+flip): 44.21 - Config: configs/fastfcn/fastfcn_r50-d32_jpu_enc_4xb4-160k_ade20k-512x512.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fastfcn/fastfcn_r50-d32_jpu_enc_512x512_160k_ade20k/fastfcn_r50-d32_jpu_enc_512x512_160k_ade20k_20211008_105456-d875ce3c.pth diff --git a/configs/fastfcn/metafile.yaml b/configs/fastfcn/metafile.yaml new file mode 100644 index 0000000000..f5fe03ca45 --- /dev/null +++ b/configs/fastfcn/metafile.yaml @@ -0,0 +1,311 @@ +Collections: +- Name: FastFCN + License: Apache License 2.0 + Metadata: + Training Data: + - Cityscapes + - ADE20K + Paper: + Title: 'FastFCN: Rethinking Dilated Convolution in the Backbone for Semantic Segmentation' + URL: https://arxiv.org/abs/1903.11816 + README: configs/fastfcn/README.md + Frameworks: + - PyTorch +Models: +- Name: fastfcn_r50-d32_jpu_aspp_4xb2-80k_cityscapes-512x1024 + In Collection: FastFCN + Results: + Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 79.12 + mIoU(ms+flip): 80.58 + Config: configs/fastfcn/fastfcn_r50-d32_jpu_aspp_4xb2-80k_cityscapes-512x1024.py + Metadata: + Training Data: Cityscapes + Batch Size: 8 + Architecture: + - R-50-D32 + - FastFCN + - DeepLabV3 + Training Resources: 4x V100 GPUS + Memory (GB): 5.67 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fastfcn/fastfcn_r50-d32_jpu_aspp_512x1024_80k_cityscapes/fastfcn_r50-d32_jpu_aspp_512x1024_80k_cityscapes_20210928_053722-5d1a2648.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/fastfcn/fastfcn_r50-d32_jpu_aspp_512x1024_80k_cityscapes/fastfcn_r50-d32_jpu_aspp_512x1024_80k_cityscapes_20210928_053722.log.json + Paper: + Title: 'FastFCN: Rethinking Dilated Convolution in the Backbone for Semantic Segmentation' + URL: https://arxiv.org/abs/1903.11816 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.18.0/mmseg/models/necks/jpu.py#L12 + Framework: PyTorch +- Name: fastfcn_r50-d32_jpu_aspp_4xb2-80k_cityscapes-512x1024 + In Collection: FastFCN + Results: + Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 79.52 + mIoU(ms+flip): 80.91 + Config: configs/fastfcn/fastfcn_r50-d32_jpu_aspp_4xb2-80k_cityscapes-512x1024.py + Metadata: + Training Data: Cityscapes + Batch Size: 8 + Architecture: + - R-50-D32 + - FastFCN + - DeepLabV3 + Training Resources: 4x V100 GPUS + Memory (GB): 9.79 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fastfcn/fastfcn_r50-d32_jpu_aspp_4x4_512x1024_80k_cityscapes/fastfcn_r50-d32_jpu_aspp_4x4_512x1024_80k_cityscapes_20210924_214357-72220849.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/fastfcn/fastfcn_r50-d32_jpu_aspp_4x4_512x1024_80k_cityscapes/fastfcn_r50-d32_jpu_aspp_4x4_512x1024_80k_cityscapes_20210924_214357.log.json + Paper: + Title: 'FastFCN: Rethinking Dilated Convolution in the Backbone for Semantic Segmentation' + URL: https://arxiv.org/abs/1903.11816 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.18.0/mmseg/models/necks/jpu.py#L12 + Framework: PyTorch +- Name: fastfcn_r50-d32_jpu_psp_4xb2-80k_cityscapes-512x1024 + In Collection: FastFCN + Results: + Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 79.26 + mIoU(ms+flip): 80.86 + Config: configs/fastfcn/fastfcn_r50-d32_jpu_psp_4xb2-80k_cityscapes-512x1024.py + Metadata: + Training Data: Cityscapes + Batch Size: 8 + Architecture: + - R-50-D32 + - FastFCN + - PSPNet + Training Resources: 4x V100 GPUS + Memory (GB): 5.67 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fastfcn/fastfcn_r50-d32_jpu_psp_512x1024_80k_cityscapes/fastfcn_r50-d32_jpu_psp_512x1024_80k_cityscapes_20210928_053722-57749bed.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/fastfcn/fastfcn_r50-d32_jpu_psp_512x1024_80k_cityscapes/fastfcn_r50-d32_jpu_psp_512x1024_80k_cityscapes_20210928_053722.log.json + Paper: + Title: 'FastFCN: Rethinking Dilated Convolution in the Backbone for Semantic Segmentation' + URL: https://arxiv.org/abs/1903.11816 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.18.0/mmseg/models/necks/jpu.py#L12 + Framework: PyTorch +- Name: fastfcn_r50-d32_jpu_psp_4xb2-80k_cityscapes-512x1024 + In Collection: FastFCN + Results: + Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 78.76 + mIoU(ms+flip): 80.03 + Config: configs/fastfcn/fastfcn_r50-d32_jpu_psp_4xb2-80k_cityscapes-512x1024.py + Metadata: + Training Data: Cityscapes + Batch Size: 8 + Architecture: + - R-50-D32 + - FastFCN + - PSPNet + Training Resources: 4x V100 GPUS + Memory (GB): 9.94 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fastfcn/fastfcn_r50-d32_jpu_psp_4x4_512x1024_80k_cityscapes/fastfcn_r50-d32_jpu_psp_4x4_512x1024_80k_cityscapes_20210925_061841-77e87b0a.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/fastfcn/fastfcn_r50-d32_jpu_psp_4x4_512x1024_80k_cityscapes/fastfcn_r50-d32_jpu_psp_4x4_512x1024_80k_cityscapes_20210925_061841.log.json + Paper: + Title: 'FastFCN: Rethinking Dilated Convolution in the Backbone for Semantic Segmentation' + URL: https://arxiv.org/abs/1903.11816 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.18.0/mmseg/models/necks/jpu.py#L12 + Framework: PyTorch +- Name: fastfcn_r50-d32_jpu_enc_4xb2-80k_cityscapes-512x1024 + In Collection: FastFCN + Results: + Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 77.97 + mIoU(ms+flip): 79.92 + Config: configs/fastfcn/fastfcn_r50-d32_jpu_enc_4xb2-80k_cityscapes-512x1024.py + Metadata: + Training Data: Cityscapes + Batch Size: 8 + Architecture: + - R-50-D32 + - FastFCN + - EncNet + Training Resources: 4x V100 GPUS + Memory (GB): 8.15 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fastfcn/fastfcn_r50-d32_jpu_enc_512x1024_80k_cityscapes/fastfcn_r50-d32_jpu_enc_512x1024_80k_cityscapes_20210928_030036-78da5046.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/fastfcn/fastfcn_r50-d32_jpu_enc_512x1024_80k_cityscapes/fastfcn_r50-d32_jpu_enc_512x1024_80k_cityscapes_20210928_030036.log.json + Paper: + Title: 'FastFCN: Rethinking Dilated Convolution in the Backbone for Semantic Segmentation' + URL: https://arxiv.org/abs/1903.11816 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.18.0/mmseg/models/necks/jpu.py#L12 + Framework: PyTorch +- Name: fastfcn_r50-d32_jpu_enc_4xb2-80k_cityscapes-512x1024 + In Collection: FastFCN + Results: + Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 78.6 + mIoU(ms+flip): 80.25 + Config: configs/fastfcn/fastfcn_r50-d32_jpu_enc_4xb2-80k_cityscapes-512x1024.py + Metadata: + Training Data: Cityscapes + Batch Size: 8 + Architecture: + - R-50-D32 + - FastFCN + - EncNet + Training Resources: 4x V100 GPUS + Memory (GB): 15.45 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fastfcn/fastfcn_r50-d32_jpu_enc_4x4_512x1024_80k_cityscapes/fastfcn_r50-d32_jpu_enc_4x4_512x1024_80k_cityscapes_20210926_093217-e1eb6dbb.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/fastfcn/fastfcn_r50-d32_jpu_enc_4x4_512x1024_80k_cityscapes/fastfcn_r50-d32_jpu_enc_4x4_512x1024_80k_cityscapes_20210926_093217.log.json + Paper: + Title: 'FastFCN: Rethinking Dilated Convolution in the Backbone for Semantic Segmentation' + URL: https://arxiv.org/abs/1903.11816 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.18.0/mmseg/models/necks/jpu.py#L12 + Framework: PyTorch +- Name: fastfcn_r50-d32_jpu_aspp_4xb4-80k_ade20k-512x512 + In Collection: FastFCN + Results: + Task: Semantic Segmentation + Dataset: ADE20K + Metrics: + mIoU: 41.88 + mIoU(ms+flip): 42.91 + Config: configs/fastfcn/fastfcn_r50-d32_jpu_aspp_4xb4-80k_ade20k-512x512.py + Metadata: + Training Data: ADE20K + Batch Size: 16 + Architecture: + - R-50-D32 + - FastFCN + - DeepLabV3 + Training Resources: 4x V100 GPUS + Memory (GB): 8.46 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fastfcn/fastfcn_r50-d32_jpu_aspp_512x512_80k_ade20k/fastfcn_r50-d32_jpu_aspp_512x512_80k_ade20k_20211013_190619-3aa40f2d.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/fastfcn/fastfcn_r50-d32_jpu_aspp_512x512_80k_ade20k/fastfcn_r50-d32_jpu_aspp_512x512_80k_ade20k_20211013_190619.log.json + Paper: + Title: 'FastFCN: Rethinking Dilated Convolution in the Backbone for Semantic Segmentation' + URL: https://arxiv.org/abs/1903.11816 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.18.0/mmseg/models/necks/jpu.py#L12 + Framework: PyTorch +- Name: fastfcn_r50-d32_jpu_aspp_4xb4-160k_ade20k-512x512 + In Collection: FastFCN + Results: + Task: Semantic Segmentation + Dataset: ADE20K + Metrics: + mIoU: 43.58 + mIoU(ms+flip): 44.92 + Config: configs/fastfcn/fastfcn_r50-d32_jpu_aspp_4xb4-160k_ade20k-512x512.py + Metadata: + Training Data: ADE20K + Batch Size: 16 + Architecture: + - R-50-D32 + - FastFCN + - DeepLabV3 + Training Resources: 4x V100 GPUS + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fastfcn/fastfcn_r50-d32_jpu_aspp_512x512_160k_ade20k/fastfcn_r50-d32_jpu_aspp_512x512_160k_ade20k_20211008_152246-27036aee.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/fastfcn/fastfcn_r50-d32_jpu_aspp_512x512_160k_ade20k/fastfcn_r50-d32_jpu_aspp_512x512_160k_ade20k_20211008_152246.log.json + Paper: + Title: 'FastFCN: Rethinking Dilated Convolution in the Backbone for Semantic Segmentation' + URL: https://arxiv.org/abs/1903.11816 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.18.0/mmseg/models/necks/jpu.py#L12 + Framework: PyTorch +- Name: fastfcn_r50-d32_jpu_psp_4xb4-80k_ade20k-512x512 + In Collection: FastFCN + Results: + Task: Semantic Segmentation + Dataset: ADE20K + Metrics: + mIoU: 41.4 + mIoU(ms+flip): 42.12 + Config: configs/fastfcn/fastfcn_r50-d32_jpu_psp_4xb4-80k_ade20k-512x512.py + Metadata: + Training Data: ADE20K + Batch Size: 16 + Architecture: + - R-50-D32 + - FastFCN + - PSPNet + Training Resources: 4x V100 GPUS + Memory (GB): 8.02 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fastfcn/fastfcn_r50-d32_jpu_psp_512x512_80k_ade20k/fastfcn_r50-d32_jpu_psp_512x512_80k_ade20k_20210930_225137-993d07c8.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/fastfcn/fastfcn_r50-d32_jpu_psp_512x512_80k_ade20k/fastfcn_r50-d32_jpu_psp_512x512_80k_ade20k_20210930_225137.log.json + Paper: + Title: 'FastFCN: Rethinking Dilated Convolution in the Backbone for Semantic Segmentation' + URL: https://arxiv.org/abs/1903.11816 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.18.0/mmseg/models/necks/jpu.py#L12 + Framework: PyTorch +- Name: fastfcn_r50-d32_jpu_psp_4xb4-160k_ade20k-512x512 + In Collection: FastFCN + Results: + Task: Semantic Segmentation + Dataset: ADE20K + Metrics: + mIoU: 42.63 + mIoU(ms+flip): 43.71 + Config: configs/fastfcn/fastfcn_r50-d32_jpu_psp_4xb4-160k_ade20k-512x512.py + Metadata: + Training Data: ADE20K + Batch Size: 16 + Architecture: + - R-50-D32 + - FastFCN + - PSPNet + Training Resources: 4x V100 GPUS + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fastfcn/fastfcn_r50-d32_jpu_psp_512x512_160k_ade20k/fastfcn_r50-d32_jpu_psp_512x512_160k_ade20k_20211008_105455-e8f5a2fd.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/fastfcn/fastfcn_r50-d32_jpu_psp_512x512_160k_ade20k/fastfcn_r50-d32_jpu_psp_512x512_160k_ade20k_20211008_105455.log.json + Paper: + Title: 'FastFCN: Rethinking Dilated Convolution in the Backbone for Semantic Segmentation' + URL: https://arxiv.org/abs/1903.11816 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.18.0/mmseg/models/necks/jpu.py#L12 + Framework: PyTorch +- Name: fastfcn_r50-d32_jpu_enc_4xb4-80k_ade20k-512x512 + In Collection: FastFCN + Results: + Task: Semantic Segmentation + Dataset: ADE20K + Metrics: + mIoU: 40.88 + mIoU(ms+flip): 42.36 + Config: configs/fastfcn/fastfcn_r50-d32_jpu_enc_4xb4-80k_ade20k-512x512.py + Metadata: + Training Data: ADE20K + Batch Size: 16 + Architecture: + - R-50-D32 + - FastFCN + - EncNet + Training Resources: 4x V100 GPUS + Memory (GB): 9.67 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fastfcn/fastfcn_r50-d32_jpu_enc_512x512_80k_ade20k/fastfcn_r50-d32_jpu_enc_512x512_80k_ade20k_20210930_225214-65aef6dd.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/fastfcn/fastfcn_r50-d32_jpu_enc_512x512_80k_ade20k/fastfcn_r50-d32_jpu_enc_512x512_80k_ade20k_20210930_225214.log.json + Paper: + Title: 'FastFCN: Rethinking Dilated Convolution in the Backbone for Semantic Segmentation' + URL: https://arxiv.org/abs/1903.11816 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.18.0/mmseg/models/necks/jpu.py#L12 + Framework: PyTorch +- Name: fastfcn_r50-d32_jpu_enc_4xb4-160k_ade20k-512x512 + In Collection: FastFCN + Results: + Task: Semantic Segmentation + Dataset: ADE20K + Metrics: + mIoU: 42.5 + mIoU(ms+flip): 44.21 + Config: configs/fastfcn/fastfcn_r50-d32_jpu_enc_4xb4-160k_ade20k-512x512.py + Metadata: + Training Data: ADE20K + Batch Size: 16 + Architecture: + - R-50-D32 + - FastFCN + - EncNet + Training Resources: 4x V100 GPUS + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fastfcn/fastfcn_r50-d32_jpu_enc_512x512_160k_ade20k/fastfcn_r50-d32_jpu_enc_512x512_160k_ade20k_20211008_105456-d875ce3c.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/fastfcn/fastfcn_r50-d32_jpu_enc_512x512_160k_ade20k/fastfcn_r50-d32_jpu_enc_512x512_160k_ade20k_20211008_105456.log.json + Paper: + Title: 'FastFCN: Rethinking Dilated Convolution in the Backbone for Semantic Segmentation' + URL: https://arxiv.org/abs/1903.11816 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.18.0/mmseg/models/necks/jpu.py#L12 + Framework: PyTorch diff --git a/configs/fastscnn/README.md b/configs/fastscnn/README.md index 3e06903ae5..ea3449fd2c 100644 --- a/configs/fastscnn/README.md +++ b/configs/fastscnn/README.md @@ -1,6 +1,6 @@ # Fast-SCNN -[Fast-SCNN for Semantic Segmentation](https://arxiv.org/abs/1902.04502) +> [Fast-SCNN for Semantic Segmentation](https://arxiv.org/abs/1902.04502) ## Introduction @@ -22,6 +22,14 @@ The encoder-decoder framework is state-of-the-art for offline semantic image seg +## Results and models + +### Cityscapes + +| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | Device | mIoU | mIoU(ms+flip) | config | download | +| -------- | -------- | --------- | ------: | -------- | -------------- | ------ | ----: | ------------- | ------------------------------------------------------------------------------------------------------------------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ | +| FastSCNN | FastSCNN | 512x1024 | 160000 | 3.3 | 56.45 | V100 | 70.96 | 72.65 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/fastscnn/fast_scnn_8xb4-160k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/fast_scnn/fast_scnn_lr0.12_8x4_160k_cityscapes/fast_scnn_lr0.12_8x4_160k_cityscapes_20210630_164853-0cec9937.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/fast_scnn/fast_scnn_lr0.12_8x4_160k_cityscapes/fast_scnn_lr0.12_8x4_160k_cityscapes_20210630_164853.log.json) | + ## Citation ```bibtex @@ -32,11 +40,3 @@ The encoder-decoder framework is state-of-the-art for offline semantic image seg year={2019} } ``` - -## Results and models - -### Cityscapes - -| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | mIoU | mIoU(ms+flip) | config | download | -| -------- | -------- | --------- | ------: | -------- | -------------- | ----: | ------------- | ------------------------------------------------------------------------------------------------------------------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ | -| FastSCNN | FastSCNN | 512x1024 | 160000 | 3.3 | 56.45 | 70.96 | 72.65 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/fastscnn/fast_scnn_8xb4-160k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/fast_scnn/fast_scnn_lr0.12_8x4_160k_cityscapes/fast_scnn_lr0.12_8x4_160k_cityscapes_20210630_164853-0cec9937.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/fast_scnn/fast_scnn_lr0.12_8x4_160k_cityscapes/fast_scnn_lr0.12_8x4_160k_cityscapes_20210630_164853.log.json) | diff --git a/configs/fastscnn/fastscnn.yml b/configs/fastscnn/metafile.yaml similarity index 50% rename from configs/fastscnn/fastscnn.yml rename to configs/fastscnn/metafile.yaml index 13215c2fb1..9e33c902db 100644 --- a/configs/fastscnn/fastscnn.yml +++ b/configs/fastscnn/metafile.yaml @@ -1,35 +1,37 @@ Collections: - Name: FastSCNN + License: Apache License 2.0 Metadata: Training Data: - Cityscapes Paper: - URL: https://arxiv.org/abs/1902.04502 Title: Fast-SCNN for Semantic Segmentation + URL: https://arxiv.org/abs/1902.04502 README: configs/fastscnn/README.md - Code: - URL: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/backbones/fast_scnn.py#L272 - Version: v0.17.0 + Frameworks: + - PyTorch Models: - Name: fast_scnn_8xb4-160k_cityscapes-512x1024 In Collection: FastSCNN - Metadata: - backbone: FastSCNN - crop size: (512,1024) - lr schd: 160000 - inference time (ms/im): - - value: 17.71 - hardware: V100 - backend: PyTorch - batch size: 1 - mode: FP32 - resolution: (512,1024) - Training Memory (GB): 3.3 Results: - - Task: Semantic Segmentation + Task: Semantic Segmentation Dataset: Cityscapes Metrics: mIoU: 70.96 mIoU(ms+flip): 72.65 Config: configs/fastscnn/fast_scnn_8xb4-160k_cityscapes-512x1024.py + Metadata: + Training Data: Cityscapes + Batch Size: 32 + Architecture: + - FastSCNN + - FastSCNN + Training Resources: 8x V100 GPUS + Memory (GB): 3.3 Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fast_scnn/fast_scnn_lr0.12_8x4_160k_cityscapes/fast_scnn_lr0.12_8x4_160k_cityscapes_20210630_164853-0cec9937.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/fast_scnn/fast_scnn_lr0.12_8x4_160k_cityscapes/fast_scnn_lr0.12_8x4_160k_cityscapes_20210630_164853.log.json + Paper: + Title: Fast-SCNN for Semantic Segmentation + URL: https://arxiv.org/abs/1902.04502 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/backbones/fast_scnn.py#L272 + Framework: PyTorch diff --git a/configs/fcn/README.md b/configs/fcn/README.md index 4b887f19e4..6134933710 100644 --- a/configs/fcn/README.md +++ b/configs/fcn/README.md @@ -1,6 +1,6 @@ # FCN -[Fully Convolutional Networks for Semantic Segmentation](https://arxiv.org/abs/1411.4038) +> [Fully Convolutional Networks for Semantic Segmentation](https://arxiv.org/abs/1411.4038) ## Introduction @@ -22,90 +22,90 @@ Convolutional networks are powerful visual models that yield hierarchies of feat -## Citation - -```bibtex -@article{shelhamer2017fully, - title={Fully convolutional networks for semantic segmentation}, - author={Shelhamer, Evan and Long, Jonathan and Darrell, Trevor}, - journal={IEEE transactions on pattern analysis and machine intelligence}, - volume={39}, - number={4}, - pages={640--651}, - year={2017}, - publisher={IEEE Trans Pattern Anal Mach Intell} -} -``` - ## Results and models ### Cityscapes -| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | mIoU | mIoU(ms+flip) | config | download | -| ---------- | ---------- | --------- | ------: | -------- | -------------- | ----: | ------------: | -------------------------------------------------------------------------------------------------------------------------------- | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | -| FCN | R-50-D8 | 512x1024 | 40000 | 5.7 | 4.17 | 72.25 | 73.36 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/fcn/fcn_r50-d8_4xb2-40k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r50-d8_512x1024_40k_cityscapes/fcn_r50-d8_512x1024_40k_cityscapes_20200604_192608-efe53f0d.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r50-d8_512x1024_40k_cityscapes/fcn_r50-d8_512x1024_40k_cityscapes_20200604_192608.log.json) | -| FCN | R-101-D8 | 512x1024 | 40000 | 9.2 | 2.66 | 75.45 | 76.58 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/fcn/fcn_r101-d8_4xb2-40k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r101-d8_512x1024_40k_cityscapes/fcn_r101-d8_512x1024_40k_cityscapes_20200604_181852-a883d3a1.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r101-d8_512x1024_40k_cityscapes/fcn_r101-d8_512x1024_40k_cityscapes_20200604_181852.log.json) | -| FCN | R-50-D8 | 769x769 | 40000 | 6.5 | 1.80 | 71.47 | 72.54 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/fcn/fcn_r50-d8_4xb2-40k_cityscapes-769x769.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r50-d8_769x769_40k_cityscapes/fcn_r50-d8_769x769_40k_cityscapes_20200606_113104-977b5d02.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r50-d8_769x769_40k_cityscapes/fcn_r50-d8_769x769_40k_cityscapes_20200606_113104.log.json) | -| FCN | R-101-D8 | 769x769 | 40000 | 10.4 | 1.19 | 73.93 | 75.14 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/fcn/fcn_r101-d8_4xb2-40k_cityscapes-769x769.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r101-d8_769x769_40k_cityscapes/fcn_r101-d8_769x769_40k_cityscapes_20200606_113208-7d4ab69c.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r101-d8_769x769_40k_cityscapes/fcn_r101-d8_769x769_40k_cityscapes_20200606_113208.log.json) | -| FCN | R-18-D8 | 512x1024 | 80000 | 1.7 | 14.65 | 71.11 | 72.91 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/fcn/fcn_r18-d8_4xb2-80k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r18-d8_512x1024_80k_cityscapes/fcn_r18-d8_512x1024_80k_cityscapes_20201225_021327-6c50f8b4.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r18-d8_512x1024_80k_cityscapes/fcn_r18-d8_512x1024_80k_cityscapes-20201225_021327.log.json) | -| FCN | R-50-D8 | 512x1024 | 80000 | - | | 73.61 | 74.24 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/fcn/fcn_r50-d8_4xb2-80k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r50-d8_512x1024_80k_cityscapes/fcn_r50-d8_512x1024_80k_cityscapes_20200606_113019-03aa804d.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r50-d8_512x1024_80k_cityscapes/fcn_r50-d8_512x1024_80k_cityscapes_20200606_113019.log.json) | -| FCN | R-101-D8 | 512x1024 | 80000 | - | - | 75.13 | 75.94 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/fcn/fcn_r101-d8_4xb2-80k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r101-d8_512x1024_80k_cityscapes/fcn_r101-d8_512x1024_80k_cityscapes_20200606_113038-3fb937eb.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r101-d8_512x1024_80k_cityscapes/fcn_r101-d8_512x1024_80k_cityscapes_20200606_113038.log.json) | -| FCN (FP16) | R-101-D8 | 512x1024 | 80000 | 5.37 | 8.64 | 76.80 | - | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/fcn/fcn_r101-d8_4xb2-amp-80k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r101-d8_fp16_512x1024_80k_cityscapes/fcn_r101-d8_fp16_512x1024_80k_cityscapes_20200717_230921-fb13e883.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r101-d8_fp16_512x1024_80k_cityscapes/fcn_r101-d8_fp16_512x1024_80k_cityscapes_20200717_230921.log.json) | -| FCN | R-18-D8 | 769x769 | 80000 | 1.9 | 6.40 | 70.80 | 73.16 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/fcn/fcn_r18-d8_4xb2-80k_cityscapes-769x769.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r18-d8_769x769_80k_cityscapes/fcn_r18-d8_769x769_80k_cityscapes_20201225_021451-9739d1b8.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r18-d8_769x769_80k_cityscapes/fcn_r18-d8_769x769_80k_cityscapes-20201225_021451.log.json) | -| FCN | R-50-D8 | 769x769 | 80000 | - | - | 72.64 | 73.32 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/fcn/fcn_r50-d8_4xb2-80k_cityscapes-769x769.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r50-d8_769x769_80k_cityscapes/fcn_r50-d8_769x769_80k_cityscapes_20200606_195749-f5caeabc.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r50-d8_769x769_80k_cityscapes/fcn_r50-d8_769x769_80k_cityscapes_20200606_195749.log.json) | -| FCN | R-101-D8 | 769x769 | 80000 | - | - | 75.52 | 76.61 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/fcn/fcn_r101-d8_4xb2-80k_cityscapes-769x769.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r101-d8_769x769_80k_cityscapes/fcn_r101-d8_769x769_80k_cityscapes_20200606_214354-45cbac68.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r101-d8_769x769_80k_cityscapes/fcn_r101-d8_769x769_80k_cityscapes_20200606_214354.log.json) | -| FCN | R-18b-D8 | 512x1024 | 80000 | 1.6 | 16.74 | 70.24 | 72.77 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/fcn/fcn_r18b-d8_4xb2-80k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r18b-d8_512x1024_80k_cityscapes/fcn_r18b-d8_512x1024_80k_cityscapes_20201225_230143-92c0f445.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r18b-d8_512x1024_80k_cityscapes/fcn_r18b-d8_512x1024_80k_cityscapes-20201225_230143.log.json) | -| FCN | R-50b-D8 | 512x1024 | 80000 | 5.6 | 4.20 | 75.65 | 77.59 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/fcn/fcn_r50b-d8_4xb2-80k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r50b-d8_512x1024_80k_cityscapes/fcn_r50b-d8_512x1024_80k_cityscapes_20201225_094221-82957416.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r50b-d8_512x1024_80k_cityscapes/fcn_r50b-d8_512x1024_80k_cityscapes-20201225_094221.log.json) | -| FCN | R-101b-D8 | 512x1024 | 80000 | 9.1 | 2.73 | 77.37 | 78.77 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/fcn/fcn_r101b-d8_4xb2-80k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r101b-d8_512x1024_80k_cityscapes/fcn_r101b-d8_512x1024_80k_cityscapes_20201226_160213-4543858f.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r101b-d8_512x1024_80k_cityscapes/fcn_r101b-d8_512x1024_80k_cityscapes-20201226_160213.log.json) | -| FCN | R-18b-D8 | 769x769 | 80000 | 1.7 | 6.70 | 69.66 | 72.07 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/fcn/fcn_r18b-d8_4xb2-80k_cityscapes-769x769.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r18b-d8_769x769_80k_cityscapes/fcn_r18b-d8_769x769_80k_cityscapes_20201226_004430-32d504e5.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r18b-d8_769x769_80k_cityscapes/fcn_r18b-d8_769x769_80k_cityscapes-20201226_004430.log.json) | -| FCN | R-50b-D8 | 769x769 | 80000 | 6.3 | 1.82 | 73.83 | 76.60 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/fcn/fcn_r50b-d8_4xb2-80k_cityscapes-769x769.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r50b-d8_769x769_80k_cityscapes/fcn_r50b-d8_769x769_80k_cityscapes_20201225_094223-94552d38.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r50b-d8_769x769_80k_cityscapes/fcn_r50b-d8_769x769_80k_cityscapes-20201225_094223.log.json) | -| FCN | R-101b-D8 | 769x769 | 80000 | 10.3 | 1.15 | 77.02 | 78.67 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/fcn/fcn_r101b-d8_4xb2-80k_cityscapes-769x769.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r101b-d8_769x769_80k_cityscapes/fcn_r101b-d8_769x769_80k_cityscapes_20201226_170012-82be37e2.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r101b-d8_769x769_80k_cityscapes/fcn_r101b-d8_769x769_80k_cityscapes-20201226_170012.log.json) | -| FCN (D6) | R-50-D16 | 512x1024 | 40000 | 3.4 | 10.22 | 77.06 | 78.85 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/fcn/fcn-d6_r50-d16_4xb2-40k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_d6_r50-d16_512x1024_40k_cityscapes/fcn_d6_r50-d16_512x1024_40k_cityscapes_20210305_130133-98d5d1bc.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_d6_r50-d16_512x1024_40k_cityscapes/fcn_d6_r50-d16_512x1024_40k_cityscapes-20210305_130133.log.json) | -| FCN (D6) | R-50-D16 | 512x1024 | 80000 | - | 10.35 | 77.27 | 78.88 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/fcn/fcn-d6_r50-d16_4xb2-80k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_d6_r50-d16_512x1024_80k_cityscapes/fcn_d6_r50-d16_512x1024_80k_cityscapes_20210306_115604-133c292f.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_d6_r50-d16_512x1024_80k_cityscapes/fcn_d6_r50-d16_512x1024_80k_cityscapes-20210306_115604.log.json) | -| FCN (D6) | R-50-D16 | 769x769 | 40000 | 3.7 | 4.17 | 76.82 | 78.22 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/fcn/fcn-d6_r50-d16_4xb2-40k_cityscapes-769x769.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_d6_r50-d16_769x769_40k_cityscapes/fcn_d6_r50-d16_769x769_40k_cityscapes_20210305_185744-1aab18ed.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_d6_r50-d16_769x769_40k_cityscapes/fcn_d6_r50-d16_769x769_40k_cityscapes-20210305_185744.log.json) | -| FCN (D6) | R-50-D16 | 769x769 | 80000 | - | 4.15 | 77.04 | 78.40 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/fcn/fcn-d6_r50-d16_4xb2-80k_cityscapes-769x769.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_d6_r50-d16_769x769_80k_cityscapes/fcn_d6_r50-d16_769x769_80k_cityscapes_20210305_200413-109d88eb.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_d6_r50-d16_769x769_80k_cityscapes/fcn_d6_r50-d16_769x769_80k_cityscapes-20210305_200413.log.json) | -| FCN (D6) | R-101-D16 | 512x1024 | 40000 | 4.5 | 8.04 | 77.36 | 79.18 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/fcn/fcn-d6_r101-d16_4xb2-40k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_d6_r101-d16_512x1024_40k_cityscapes/fcn_d6_r101-d16_512x1024_40k_cityscapes_20210305_130337-9cf2b450.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_d6_r101-d16_512x1024_40k_cityscapes/fcn_d6_r101-d16_512x1024_40k_cityscapes-20210305_130337.log.json) | -| FCN (D6) | R-101-D16 | 512x1024 | 80000 | - | 8.26 | 78.46 | 80.42 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/fcn/fcn-d6_r101-d16_4xb2-80k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_d6_r101-d16_512x1024_80k_cityscapes/fcn_d6_r101-d16_512x1024_80k_cityscapes_20210308_102747-cb336445.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_d6_r101-d16_512x1024_80k_cityscapes/fcn_d6_r101-d16_512x1024_80k_cityscapes-20210308_102747.log.json) | -| FCN (D6) | R-101-D16 | 769x769 | 40000 | 5.0 | 3.12 | 77.28 | 78.95 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/fcn/fcn-d6_r101-d16_4xb2-40k_cityscapes-769x769.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_d6_r101-d16_769x769_40k_cityscapes/fcn_d6_r101-d16_769x769_40k_cityscapes_20210308_102453-60b114e9.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_d6_r101-d16_769x769_40k_cityscapes/fcn_d6_r101-d16_769x769_40k_cityscapes-20210308_102453.log.json) | -| FCN (D6) | R-101-D16 | 769x769 | 80000 | - | 3.21 | 78.06 | 79.58 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/fcn/fcn-d6_r101-d16_4xb2-80k_cityscapes-769x769.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_d6_r101-d16_769x769_80k_cityscapes/fcn_d6_r101-d16_769x769_80k_cityscapes_20210306_120016-e33adc4f.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_d6_r101-d16_769x769_80k_cityscapes/fcn_d6_r101-d16_769x769_80k_cityscapes-20210306_120016.log.json) | -| FCN (D6) | R-50b-D16 | 512x1024 | 80000 | 3.2 | 10.16 | 76.99 | 79.03 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/fcn/fcn-d6_r50b-d16_4xb2-80k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_d6_r50b-d16_512x1024_80k_cityscapes/fcn_d6_r50b-d16_512x1024_80k_cityscapes_20210311_125550-6a0b62e9.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_d6_r50b_d16_512x1024_80k_cityscapes/fcn_d6_r50b_d16_512x1024_80k_cityscapes-20210311_125550.log.json) | -| FCN (D6) | R-50b-D16 | 769x769 | 80000 | 3.6 | 4.17 | 76.86 | 78.52 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/fcn/fcn-d6_r50b-d16_4xb2-80k_cityscapes-769x769.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_d6_r50b-d16_769x769_80k_cityscapes/fcn_d6_r50b-d16_769x769_80k_cityscapes_20210311_131012-d665f231.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_d6_r50b_d16_769x769_80k_cityscapes/fcn_d6_r50b_d16_769x769_80k_cityscapes-20210311_131012.log.json) | -| FCN (D6) | R-101b-D16 | 512x1024 | 80000 | 4.3 | 8.46 | 77.72 | 79.53 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/fcn/fcn-d6_r101b-d16_4xb2-80k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_d6_r101b-d16_512x1024_80k_cityscapes/fcn_d6_r101b-d16_512x1024_80k_cityscapes_20210311_144305-3f2eb5b4.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_d6_r101b_d16_512x1024_80k_cityscapes/fcn_d6_r101b_d16_512x1024_80k_cityscapes-20210311_144305.log.json) | -| FCN (D6) | R-101b-D16 | 769x769 | 80000 | 4.8 | 3.32 | 77.34 | 78.91 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/fcn/fcn-d6_r101b-d16_4xb2-80k_cityscapes-769x769.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_d6_r101b-d16_769x769_80k_cityscapes/fcn_d6_r101b-d16_769x769_80k_cityscapes_20210311_154527-c4d8bfbc.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_d6_r101b_d16_769x769_80k_cityscapes/fcn_d6_r101b_d16_769x769_80k_cityscapes-20210311_154527.log.json) | +| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | Device | mIoU | mIoU(ms+flip) | config | download | +| ---------- | ---------- | --------- | ------: | -------- | -------------- | -------- | ----: | ------------: | -------------------------------------------------------------------------------------------------------------------------------- | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | +| FCN | R-50-D8 | 512x1024 | 40000 | 5.7 | 4.17 | V100 | 72.25 | 73.36 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/fcn/fcn_r50-d8_4xb2-40k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r50-d8_512x1024_40k_cityscapes/fcn_r50-d8_512x1024_40k_cityscapes_20200604_192608-efe53f0d.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r50-d8_512x1024_40k_cityscapes/fcn_r50-d8_512x1024_40k_cityscapes_20200604_192608.log.json) | +| FCN | R-101-D8 | 512x1024 | 40000 | 9.2 | 2.66 | V100 | 75.45 | 76.58 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/fcn/fcn_r101-d8_4xb2-40k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r101-d8_512x1024_40k_cityscapes/fcn_r101-d8_512x1024_40k_cityscapes_20200604_181852-a883d3a1.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r101-d8_512x1024_40k_cityscapes/fcn_r101-d8_512x1024_40k_cityscapes_20200604_181852.log.json) | +| FCN | R-50-D8 | 769x769 | 40000 | 6.5 | 1.80 | V100 | 71.47 | 72.54 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/fcn/fcn_r50-d8_4xb2-40k_cityscapes-769x769.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r50-d8_769x769_40k_cityscapes/fcn_r50-d8_769x769_40k_cityscapes_20200606_113104-977b5d02.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r50-d8_769x769_40k_cityscapes/fcn_r50-d8_769x769_40k_cityscapes_20200606_113104.log.json) | +| FCN | R-101-D8 | 769x769 | 40000 | 10.4 | 1.19 | V100 | 73.93 | 75.14 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/fcn/fcn_r101-d8_4xb2-40k_cityscapes-769x769.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r101-d8_769x769_40k_cityscapes/fcn_r101-d8_769x769_40k_cityscapes_20200606_113208-7d4ab69c.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r101-d8_769x769_40k_cityscapes/fcn_r101-d8_769x769_40k_cityscapes_20200606_113208.log.json) | +| FCN | R-18-D8 | 512x1024 | 80000 | 1.7 | 14.65 | V100 | 71.11 | 72.91 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/fcn/fcn_r18-d8_4xb2-80k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r18-d8_512x1024_80k_cityscapes/fcn_r18-d8_512x1024_80k_cityscapes_20201225_021327-6c50f8b4.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r18-d8_512x1024_80k_cityscapes/fcn_r18-d8_512x1024_80k_cityscapes-20201225_021327.log.json) | +| FCN | R-50-D8 | 512x1024 | 80000 | - | | V100 | 73.61 | 74.24 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/fcn/fcn_r50-d8_4xb2-80k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r50-d8_512x1024_80k_cityscapes/fcn_r50-d8_512x1024_80k_cityscapes_20200606_113019-03aa804d.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r50-d8_512x1024_80k_cityscapes/fcn_r50-d8_512x1024_80k_cityscapes_20200606_113019.log.json) | +| FCN | R-101-D8 | 512x1024 | 80000 | - | - | V100 | 75.13 | 75.94 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/fcn/fcn_r101-d8_4xb2-80k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r101-d8_512x1024_80k_cityscapes/fcn_r101-d8_512x1024_80k_cityscapes_20200606_113038-3fb937eb.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r101-d8_512x1024_80k_cityscapes/fcn_r101-d8_512x1024_80k_cityscapes_20200606_113038.log.json) | +| FCN (FP16) | R-101-D8 | 512x1024 | 80000 | 5.37 | 8.64 | V100 | 76.80 | - | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/fcn/fcn_r101-d8_4xb2-amp-80k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r101-d8_fp16_512x1024_80k_cityscapes/fcn_r101-d8_fp16_512x1024_80k_cityscapes_20200717_230921-fb13e883.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r101-d8_fp16_512x1024_80k_cityscapes/fcn_r101-d8_fp16_512x1024_80k_cityscapes_20200717_230921.log.json) | +| FCN | R-18-D8 | 769x769 | 80000 | 1.9 | 6.40 | V100 | 70.80 | 73.16 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/fcn/fcn_r18-d8_4xb2-80k_cityscapes-769x769.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r18-d8_769x769_80k_cityscapes/fcn_r18-d8_769x769_80k_cityscapes_20201225_021451-9739d1b8.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r18-d8_769x769_80k_cityscapes/fcn_r18-d8_769x769_80k_cityscapes-20201225_021451.log.json) | +| FCN | R-50-D8 | 769x769 | 80000 | - | - | V100 | 72.64 | 73.32 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/fcn/fcn_r50-d8_4xb2-80k_cityscapes-769x769.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r50-d8_769x769_80k_cityscapes/fcn_r50-d8_769x769_80k_cityscapes_20200606_195749-f5caeabc.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r50-d8_769x769_80k_cityscapes/fcn_r50-d8_769x769_80k_cityscapes_20200606_195749.log.json) | +| FCN | R-101-D8 | 769x769 | 80000 | - | - | V100 | 75.52 | 76.61 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/fcn/fcn_r101-d8_4xb2-80k_cityscapes-769x769.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r101-d8_769x769_80k_cityscapes/fcn_r101-d8_769x769_80k_cityscapes_20200606_214354-45cbac68.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r101-d8_769x769_80k_cityscapes/fcn_r101-d8_769x769_80k_cityscapes_20200606_214354.log.json) | +| FCN | R-18b-D8 | 512x1024 | 80000 | 1.6 | 16.74 | V100 | 70.24 | 72.77 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/fcn/fcn_r18b-d8_4xb2-80k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r18b-d8_512x1024_80k_cityscapes/fcn_r18b-d8_512x1024_80k_cityscapes_20201225_230143-92c0f445.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r18b-d8_512x1024_80k_cityscapes/fcn_r18b-d8_512x1024_80k_cityscapes-20201225_230143.log.json) | +| FCN | R-50b-D8 | 512x1024 | 80000 | 5.6 | 4.20 | V100 | 75.65 | 77.59 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/fcn/fcn_r50b-d8_4xb2-80k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r50b-d8_512x1024_80k_cityscapes/fcn_r50b-d8_512x1024_80k_cityscapes_20201225_094221-82957416.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r50b-d8_512x1024_80k_cityscapes/fcn_r50b-d8_512x1024_80k_cityscapes-20201225_094221.log.json) | +| FCN | R-101b-D8 | 512x1024 | 80000 | 9.1 | 2.73 | V100 | 77.37 | 78.77 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/fcn/fcn_r101b-d8_4xb2-80k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r101b-d8_512x1024_80k_cityscapes/fcn_r101b-d8_512x1024_80k_cityscapes_20201226_160213-4543858f.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r101b-d8_512x1024_80k_cityscapes/fcn_r101b-d8_512x1024_80k_cityscapes-20201226_160213.log.json) | +| FCN | R-18b-D8 | 769x769 | 80000 | 1.7 | 6.70 | V100 | 69.66 | 72.07 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/fcn/fcn_r18b-d8_4xb2-80k_cityscapes-769x769.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r18b-d8_769x769_80k_cityscapes/fcn_r18b-d8_769x769_80k_cityscapes_20201226_004430-32d504e5.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r18b-d8_769x769_80k_cityscapes/fcn_r18b-d8_769x769_80k_cityscapes-20201226_004430.log.json) | +| FCN | R-50b-D8 | 769x769 | 80000 | 6.3 | 1.82 | V100 | 73.83 | 76.60 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/fcn/fcn_r50b-d8_4xb2-80k_cityscapes-769x769.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r50b-d8_769x769_80k_cityscapes/fcn_r50b-d8_769x769_80k_cityscapes_20201225_094223-94552d38.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r50b-d8_769x769_80k_cityscapes/fcn_r50b-d8_769x769_80k_cityscapes-20201225_094223.log.json) | +| FCN | R-101b-D8 | 769x769 | 80000 | 10.3 | 1.15 | V100 | 77.02 | 78.67 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/fcn/fcn_r101b-d8_4xb2-80k_cityscapes-769x769.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r101b-d8_769x769_80k_cityscapes/fcn_r101b-d8_769x769_80k_cityscapes_20201226_170012-82be37e2.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r101b-d8_769x769_80k_cityscapes/fcn_r101b-d8_769x769_80k_cityscapes-20201226_170012.log.json) | +| FCN (D6) | R-50-D16 | 512x1024 | 40000 | 3.4 | 10.22 | TITAN Xp | 77.06 | 78.85 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/fcn/fcn-d6_r50-d16_4xb2-40k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_d6_r50-d16_512x1024_40k_cityscapes/fcn_d6_r50-d16_512x1024_40k_cityscapes_20210305_130133-98d5d1bc.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_d6_r50-d16_512x1024_40k_cityscapes/fcn_d6_r50-d16_512x1024_40k_cityscapes-20210305_130133.log.json) | +| FCN (D6) | R-50-D16 | 512x1024 | 80000 | - | 10.35 | TITAN Xp | 77.27 | 78.88 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/fcn/fcn-d6_r50-d16_4xb2-80k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_d6_r50-d16_512x1024_80k_cityscapes/fcn_d6_r50-d16_512x1024_80k_cityscapes_20210306_115604-133c292f.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_d6_r50-d16_512x1024_80k_cityscapes/fcn_d6_r50-d16_512x1024_80k_cityscapes-20210306_115604.log.json) | +| FCN (D6) | R-50-D16 | 769x769 | 40000 | 3.7 | 4.17 | TITAN Xp | 76.82 | 78.22 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/fcn/fcn-d6_r50-d16_4xb2-40k_cityscapes-769x769.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_d6_r50-d16_769x769_40k_cityscapes/fcn_d6_r50-d16_769x769_40k_cityscapes_20210305_185744-1aab18ed.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_d6_r50-d16_769x769_40k_cityscapes/fcn_d6_r50-d16_769x769_40k_cityscapes-20210305_185744.log.json) | +| FCN (D6) | R-50-D16 | 769x769 | 80000 | - | 4.15 | TITAN Xp | 77.04 | 78.40 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/fcn/fcn-d6_r50-d16_4xb2-80k_cityscapes-769x769.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_d6_r50-d16_769x769_80k_cityscapes/fcn_d6_r50-d16_769x769_80k_cityscapes_20210305_200413-109d88eb.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_d6_r50-d16_769x769_80k_cityscapes/fcn_d6_r50-d16_769x769_80k_cityscapes-20210305_200413.log.json) | +| FCN (D6) | R-101-D16 | 512x1024 | 40000 | 4.5 | 8.04 | TITAN Xp | 77.36 | 79.18 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/fcn/fcn-d6_r101-d16_4xb2-40k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_d6_r101-d16_512x1024_40k_cityscapes/fcn_d6_r101-d16_512x1024_40k_cityscapes_20210305_130337-9cf2b450.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_d6_r101-d16_512x1024_40k_cityscapes/fcn_d6_r101-d16_512x1024_40k_cityscapes-20210305_130337.log.json) | +| FCN (D6) | R-101-D16 | 512x1024 | 80000 | - | 8.26 | TITAN Xp | 78.46 | 80.42 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/fcn/fcn-d6_r101-d16_4xb2-80k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_d6_r101-d16_512x1024_80k_cityscapes/fcn_d6_r101-d16_512x1024_80k_cityscapes_20210308_102747-cb336445.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_d6_r101-d16_512x1024_80k_cityscapes/fcn_d6_r101-d16_512x1024_80k_cityscapes-20210308_102747.log.json) | +| FCN (D6) | R-101-D16 | 769x769 | 40000 | 5.0 | 3.12 | TITAN Xp | 77.28 | 78.95 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/fcn/fcn-d6_r101-d16_4xb2-40k_cityscapes-769x769.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_d6_r101-d16_769x769_40k_cityscapes/fcn_d6_r101-d16_769x769_40k_cityscapes_20210308_102453-60b114e9.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_d6_r101-d16_769x769_40k_cityscapes/fcn_d6_r101-d16_769x769_40k_cityscapes-20210308_102453.log.json) | +| FCN (D6) | R-101-D16 | 769x769 | 80000 | - | 3.21 | TITAN Xp | 78.06 | 79.58 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/fcn/fcn-d6_r101-d16_4xb2-80k_cityscapes-769x769.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_d6_r101-d16_769x769_80k_cityscapes/fcn_d6_r101-d16_769x769_80k_cityscapes_20210306_120016-e33adc4f.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_d6_r101-d16_769x769_80k_cityscapes/fcn_d6_r101-d16_769x769_80k_cityscapes-20210306_120016.log.json) | +| FCN (D6) | R-50b-D16 | 512x1024 | 80000 | 3.2 | 10.16 | TITAN Xp | 76.99 | 79.03 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/fcn/fcn-d6_r50b-d16_4xb2-80k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_d6_r50b-d16_512x1024_80k_cityscapes/fcn_d6_r50b-d16_512x1024_80k_cityscapes_20210311_125550-6a0b62e9.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_d6_r50b_d16_512x1024_80k_cityscapes/fcn_d6_r50b_d16_512x1024_80k_cityscapes-20210311_125550.log.json) | +| FCN (D6) | R-50b-D16 | 769x769 | 80000 | 3.6 | 4.17 | TITAN Xp | 76.86 | 78.52 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/fcn/fcn-d6_r50b-d16_4xb2-80k_cityscapes-769x769.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_d6_r50b-d16_769x769_80k_cityscapes/fcn_d6_r50b-d16_769x769_80k_cityscapes_20210311_131012-d665f231.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_d6_r50b_d16_769x769_80k_cityscapes/fcn_d6_r50b_d16_769x769_80k_cityscapes-20210311_131012.log.json) | +| FCN (D6) | R-101b-D16 | 512x1024 | 80000 | 4.3 | 8.46 | TITAN Xp | 77.72 | 79.53 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/fcn/fcn-d6_r101b-d16_4xb2-80k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_d6_r101b-d16_512x1024_80k_cityscapes/fcn_d6_r101b-d16_512x1024_80k_cityscapes_20210311_144305-3f2eb5b4.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_d6_r101b_d16_512x1024_80k_cityscapes/fcn_d6_r101b_d16_512x1024_80k_cityscapes-20210311_144305.log.json) | +| FCN (D6) | R-101b-D16 | 769x769 | 80000 | 4.8 | 3.32 | TITAN Xp | 77.34 | 78.91 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/fcn/fcn-d6_r101b-d16_4xb2-80k_cityscapes-769x769.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_d6_r101b-d16_769x769_80k_cityscapes/fcn_d6_r101b-d16_769x769_80k_cityscapes_20210311_154527-c4d8bfbc.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_d6_r101b_d16_769x769_80k_cityscapes/fcn_d6_r101b_d16_769x769_80k_cityscapes-20210311_154527.log.json) | ### ADE20K -| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | mIoU | mIoU(ms+flip) | config | download | -| ------ | -------- | --------- | ------: | -------- | -------------- | ----: | ------------: | ----------------------------------------------------------------------------------------------------------------------- | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | -| FCN | R-50-D8 | 512x512 | 80000 | 8.5 | 23.49 | 35.94 | 37.94 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/fcn/fcn_r50-d8_4xb4-80k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r50-d8_512x512_80k_ade20k/fcn_r50-d8_512x512_80k_ade20k_20200614_144016-f8ac5082.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r50-d8_512x512_80k_ade20k/fcn_r50-d8_512x512_80k_ade20k_20200614_144016.log.json) | -| FCN | R-101-D8 | 512x512 | 80000 | 12 | 14.78 | 39.61 | 40.83 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/fcn/fcn_r101-d8_4xb4-80k_ade20k-512x512.pyy) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r101-d8_512x512_80k_ade20k/fcn_r101-d8_512x512_80k_ade20k_20200615_014143-bc1809f7.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r101-d8_512x512_80k_ade20k/fcn_r101-d8_512x512_80k_ade20k_20200615_014143.log.json) | -| FCN | R-50-D8 | 512x512 | 160000 | - | - | 36.10 | 38.08 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/fcn/fcn_r50-d8_4xb4-160k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r50-d8_512x512_160k_ade20k/fcn_r50-d8_512x512_160k_ade20k_20200615_100713-4edbc3b4.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r50-d8_512x512_160k_ade20k/fcn_r50-d8_512x512_160k_ade20k_20200615_100713.log.json) | -| FCN | R-101-D8 | 512x512 | 160000 | - | - | 39.91 | 41.40 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/fcn/fcn_r101-d8_4xb4-160k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r101-d8_512x512_160k_ade20k/fcn_r101-d8_512x512_160k_ade20k_20200615_105816-fd192bd5.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r101-d8_512x512_160k_ade20k/fcn_r101-d8_512x512_160k_ade20k_20200615_105816.log.json) | +| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | Device | mIoU | mIoU(ms+flip) | config | download | +| ------ | -------- | --------- | ------: | -------- | -------------- | ------ | ----: | ------------: | ----------------------------------------------------------------------------------------------------------------------- | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | +| FCN | R-50-D8 | 512x512 | 80000 | 8.5 | 23.49 | V100 | 35.94 | 37.94 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/fcn/fcn_r50-d8_4xb4-80k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r50-d8_512x512_80k_ade20k/fcn_r50-d8_512x512_80k_ade20k_20200614_144016-f8ac5082.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r50-d8_512x512_80k_ade20k/fcn_r50-d8_512x512_80k_ade20k_20200614_144016.log.json) | +| FCN | R-101-D8 | 512x512 | 80000 | 12 | 14.78 | V100 | 39.61 | 40.83 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/fcn/fcn_r101-d8_4xb4-80k_ade20k-512x512.pyy) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r101-d8_512x512_80k_ade20k/fcn_r101-d8_512x512_80k_ade20k_20200615_014143-bc1809f7.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r101-d8_512x512_80k_ade20k/fcn_r101-d8_512x512_80k_ade20k_20200615_014143.log.json) | +| FCN | R-50-D8 | 512x512 | 160000 | - | - | V100 | 36.10 | 38.08 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/fcn/fcn_r50-d8_4xb4-160k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r50-d8_512x512_160k_ade20k/fcn_r50-d8_512x512_160k_ade20k_20200615_100713-4edbc3b4.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r50-d8_512x512_160k_ade20k/fcn_r50-d8_512x512_160k_ade20k_20200615_100713.log.json) | +| FCN | R-101-D8 | 512x512 | 160000 | - | - | V100 | 39.91 | 41.40 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/fcn/fcn_r101-d8_4xb4-160k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r101-d8_512x512_160k_ade20k/fcn_r101-d8_512x512_160k_ade20k_20200615_105816-fd192bd5.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r101-d8_512x512_160k_ade20k/fcn_r101-d8_512x512_160k_ade20k_20200615_105816.log.json) | ### Pascal VOC 2012 + Aug -| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | mIoU | mIoU(ms+flip) | config | download | -| ------ | -------- | --------- | ------: | -------- | -------------- | ----: | ------------: | ------------------------------------------------------------------------------------------------------------------------ | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | -| FCN | R-50-D8 | 512x512 | 20000 | 5.7 | 23.28 | 67.08 | 69.94 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/fcn/fcn_r50-d8_4xb4-20k_voc12aug-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r50-d8_512x512_20k_voc12aug/fcn_r50-d8_512x512_20k_voc12aug_20200617_010715-52dc5306.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r50-d8_512x512_20k_voc12aug/fcn_r50-d8_512x512_20k_voc12aug_20200617_010715.log.json) | -| FCN | R-101-D8 | 512x512 | 20000 | 9.2 | 14.81 | 71.16 | 73.57 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/fcn/fcn_r101-d8_4xb4-20k_voc12aug-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r101-d8_512x512_20k_voc12aug/fcn_r101-d8_512x512_20k_voc12aug_20200617_010842-0bb4e798.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r101-d8_512x512_20k_voc12aug/fcn_r101-d8_512x512_20k_voc12aug_20200617_010842.log.json) | -| FCN | R-50-D8 | 512x512 | 40000 | - | - | 66.97 | 69.04 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/fcn/fcn_r50-d8_4xb4-40k_voc12aug-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r50-d8_512x512_40k_voc12aug/fcn_r50-d8_512x512_40k_voc12aug_20200613_161222-5e2dbf40.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r50-d8_512x512_40k_voc12aug/fcn_r50-d8_512x512_40k_voc12aug_20200613_161222.log.json) | -| FCN | R-101-D8 | 512x512 | 40000 | - | - | 69.91 | 72.38 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/fcn/fcn_r101-d8_4xb4-40k_voc12aug-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r101-d8_512x512_40k_voc12aug/fcn_r101-d8_512x512_40k_voc12aug_20200613_161240-4c8bcefd.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r101-d8_512x512_40k_voc12aug/fcn_r101-d8_512x512_40k_voc12aug_20200613_161240.log.json) | +| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | Device | mIoU | mIoU(ms+flip) | config | download | +| ------ | -------- | --------- | ------: | -------- | -------------- | ------ | ----: | ------------: | ------------------------------------------------------------------------------------------------------------------------ | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | +| FCN | R-50-D8 | 512x512 | 20000 | 5.7 | 23.28 | V100 | 67.08 | 69.94 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/fcn/fcn_r50-d8_4xb4-20k_voc12aug-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r50-d8_512x512_20k_voc12aug/fcn_r50-d8_512x512_20k_voc12aug_20200617_010715-52dc5306.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r50-d8_512x512_20k_voc12aug/fcn_r50-d8_512x512_20k_voc12aug_20200617_010715.log.json) | +| FCN | R-101-D8 | 512x512 | 20000 | 9.2 | 14.81 | V100 | 71.16 | 73.57 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/fcn/fcn_r101-d8_4xb4-20k_voc12aug-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r101-d8_512x512_20k_voc12aug/fcn_r101-d8_512x512_20k_voc12aug_20200617_010842-0bb4e798.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r101-d8_512x512_20k_voc12aug/fcn_r101-d8_512x512_20k_voc12aug_20200617_010842.log.json) | +| FCN | R-50-D8 | 512x512 | 40000 | - | - | V100 | 66.97 | 69.04 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/fcn/fcn_r50-d8_4xb4-40k_voc12aug-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r50-d8_512x512_40k_voc12aug/fcn_r50-d8_512x512_40k_voc12aug_20200613_161222-5e2dbf40.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r50-d8_512x512_40k_voc12aug/fcn_r50-d8_512x512_40k_voc12aug_20200613_161222.log.json) | +| FCN | R-101-D8 | 512x512 | 40000 | - | - | V100 | 69.91 | 72.38 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/fcn/fcn_r101-d8_4xb4-40k_voc12aug-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r101-d8_512x512_40k_voc12aug/fcn_r101-d8_512x512_40k_voc12aug_20200613_161240-4c8bcefd.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r101-d8_512x512_40k_voc12aug/fcn_r101-d8_512x512_40k_voc12aug_20200613_161240.log.json) | ### Pascal Context -| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | mIoU | mIoU(ms+flip) | config | download | -| ------ | -------- | --------- | ------: | -------- | -------------- | ----: | ------------: | ------------------------------------------------------------------------------------------------------------------------------ | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | -| FCN | R-101-D8 | 480x480 | 40000 | - | 9.93 | 44.43 | 45.63 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/fcn/fcn_r101-d8_4xb4-40k_pascal-context-480x480.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r101-d8_480x480_40k_pascal_context/fcn_r101-d8_480x480_40k_pascal_context_20210421_154757-b5e97937.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r101-d8_480x480_40k_pascal_context/fcn_r101-d8_480x480_40k_pascal_context-20210421_154757.log.json) | -| FCN | R-101-D8 | 480x480 | 80000 | - | - | 44.13 | 45.26 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/fcn/fcn_r101-d8_4xb4-80k_pascal-context-480x480.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r101-d8_480x480_80k_pascal_context/fcn_r101-d8_480x480_80k_pascal_context_20210421_163310-4711813f.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r101-d8_480x480_80k_pascal_context/fcn_r101-d8_480x480_80k_pascal_context-20210421_163310.log.json) | +| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | Device | mIoU | mIoU(ms+flip) | config | download | +| ------ | -------- | --------- | ------: | -------- | -------------- | ------ | ----: | ------------: | ------------------------------------------------------------------------------------------------------------------------------ | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | +| FCN | R-101-D8 | 480x480 | 40000 | - | 9.93 | V100 | 44.43 | 45.63 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/fcn/fcn_r101-d8_4xb4-40k_pascal-context-480x480.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r101-d8_480x480_40k_pascal_context/fcn_r101-d8_480x480_40k_pascal_context_20210421_154757-b5e97937.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r101-d8_480x480_40k_pascal_context/fcn_r101-d8_480x480_40k_pascal_context-20210421_154757.log.json) | +| FCN | R-101-D8 | 480x480 | 80000 | - | - | V100 | 44.13 | 45.26 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/fcn/fcn_r101-d8_4xb4-80k_pascal-context-480x480.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r101-d8_480x480_80k_pascal_context/fcn_r101-d8_480x480_80k_pascal_context_20210421_163310-4711813f.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r101-d8_480x480_80k_pascal_context/fcn_r101-d8_480x480_80k_pascal_context-20210421_163310.log.json) | ### Pascal Context 59 -| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | mIoU | mIoU(ms+flip) | config | download | -| ------ | -------- | --------- | ------: | -------- | -------------- | ----: | ------------: | --------------------------------------------------------------------------------------------------------------------------------- | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | -| FCN | R-101-D8 | 480x480 | 40000 | - | - | 48.42 | 50.4 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/fcn/fcn_r101-d8_4xb4-40k_pascal-context-59-480x480.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r101-d8_480x480_40k_pascal_context_59/fcn_r101-d8_480x480_40k_pascal_context_59_20210415_230724-8cf83682.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r101-d8_480x480_40k_pascal_context_59/fcn_r101-d8_480x480_40k_pascal_context_59-20210415_230724.log.json) | -| FCN | R-101-D8 | 480x480 | 80000 | - | - | 49.35 | 51.38 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/fcn/fcn_r101-d8_4xb4-80k_pascal-context-59-480x480.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r101-d8_480x480_80k_pascal_context_59/fcn_r101-d8_480x480_80k_pascal_context_59_20210416_110804-9a6f2c94.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r101-d8_480x480_80k_pascal_context_59/fcn_r101-d8_480x480_80k_pascal_context_59-20210416_110804.log.json) | +| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | Device | mIoU | mIoU(ms+flip) | config | download | +| ------ | -------- | --------- | ------: | -------- | -------------- | ------ | ----: | ------------: | --------------------------------------------------------------------------------------------------------------------------------- | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | +| FCN | R-101-D8 | 480x480 | 40000 | - | - | V100 | 48.42 | 50.4 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/fcn/fcn_r101-d8_4xb4-40k_pascal-context-59-480x480.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r101-d8_480x480_40k_pascal_context_59/fcn_r101-d8_480x480_40k_pascal_context_59_20210415_230724-8cf83682.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r101-d8_480x480_40k_pascal_context_59/fcn_r101-d8_480x480_40k_pascal_context_59-20210415_230724.log.json) | +| FCN | R-101-D8 | 480x480 | 80000 | - | - | V100 | 49.35 | 51.38 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/fcn/fcn_r101-d8_4xb4-80k_pascal-context-59-480x480.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r101-d8_480x480_80k_pascal_context_59/fcn_r101-d8_480x480_80k_pascal_context_59_20210416_110804-9a6f2c94.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r101-d8_480x480_80k_pascal_context_59/fcn_r101-d8_480x480_80k_pascal_context_59-20210416_110804.log.json) | Note: - `FP16` means Mixed Precision (FP16) is adopted in training. - `FCN D6` means dilation rate of convolution operator in FCN is 6. + +## Citation + +```bibtex +@article{shelhamer2017fully, + title={Fully convolutional networks for semantic segmentation}, + author={Shelhamer, Evan and Long, Jonathan and Darrell, Trevor}, + journal={IEEE transactions on pattern analysis and machine intelligence}, + volume={39}, + number={4}, + pages={640--651}, + year={2017}, + publisher={IEEE Trans Pattern Anal Mach Intell} +} +``` diff --git a/configs/fcn/fcn.yml b/configs/fcn/fcn.yml deleted file mode 100644 index 71c4b2d122..0000000000 --- a/configs/fcn/fcn.yml +++ /dev/null @@ -1,827 +0,0 @@ -Collections: -- Name: FCN - Metadata: - Training Data: - - Cityscapes - - ADE20K - - Pascal VOC 2012 + Aug - - Pascal Context - - Pascal Context 59 - Paper: - URL: https://arxiv.org/abs/1411.4038 - Title: Fully Convolutional Networks for Semantic Segmentation - README: configs/fcn/README.md - Code: - URL: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/fcn_head.py#L11 - Version: v0.17.0 - Converted From: - Code: https://github.com/BVLC/caffe/wiki/Model-Zoo#fcn -Models: -- Name: fcn_r50-d8_4xb2-40k_cityscapes-512x1024 - In Collection: FCN - Metadata: - backbone: R-50-D8 - crop size: (512,1024) - lr schd: 40000 - inference time (ms/im): - - value: 239.81 - hardware: V100 - backend: PyTorch - batch size: 1 - mode: FP32 - resolution: (512,1024) - Training Memory (GB): 5.7 - Results: - - Task: Semantic Segmentation - Dataset: Cityscapes - Metrics: - mIoU: 72.25 - mIoU(ms+flip): 73.36 - Config: configs/fcn/fcn_r50-d8_4xb2-40k_cityscapes-512x1024.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r50-d8_512x1024_40k_cityscapes/fcn_r50-d8_512x1024_40k_cityscapes_20200604_192608-efe53f0d.pth -- Name: fcn_r101-d8_4xb2-40k_cityscapes-512x1024 - In Collection: FCN - Metadata: - backbone: R-101-D8 - crop size: (512,1024) - lr schd: 40000 - inference time (ms/im): - - value: 375.94 - hardware: V100 - backend: PyTorch - batch size: 1 - mode: FP32 - resolution: (512,1024) - Training Memory (GB): 9.2 - Results: - - Task: Semantic Segmentation - Dataset: Cityscapes - Metrics: - mIoU: 75.45 - mIoU(ms+flip): 76.58 - Config: configs/fcn/fcn_r101-d8_4xb2-40k_cityscapes-512x1024.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r101-d8_512x1024_40k_cityscapes/fcn_r101-d8_512x1024_40k_cityscapes_20200604_181852-a883d3a1.pth -- Name: fcn_r50-d8_4xb2-40k_cityscapes-769x769 - In Collection: FCN - Metadata: - backbone: R-50-D8 - crop size: (769,769) - lr schd: 40000 - inference time (ms/im): - - value: 555.56 - hardware: V100 - backend: PyTorch - batch size: 1 - mode: FP32 - resolution: (769,769) - Training Memory (GB): 6.5 - Results: - - Task: Semantic Segmentation - Dataset: Cityscapes - Metrics: - mIoU: 71.47 - mIoU(ms+flip): 72.54 - Config: configs/fcn/fcn_r50-d8_4xb2-40k_cityscapes-769x769.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r50-d8_769x769_40k_cityscapes/fcn_r50-d8_769x769_40k_cityscapes_20200606_113104-977b5d02.pth -- Name: fcn_r101-d8_4xb2-40k_cityscapes-769x769 - In Collection: FCN - Metadata: - backbone: R-101-D8 - crop size: (769,769) - lr schd: 40000 - inference time (ms/im): - - value: 840.34 - hardware: V100 - backend: PyTorch - batch size: 1 - mode: FP32 - resolution: (769,769) - Training Memory (GB): 10.4 - Results: - - Task: Semantic Segmentation - Dataset: Cityscapes - Metrics: - mIoU: 73.93 - mIoU(ms+flip): 75.14 - Config: configs/fcn/fcn_r101-d8_4xb2-40k_cityscapes-769x769.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r101-d8_769x769_40k_cityscapes/fcn_r101-d8_769x769_40k_cityscapes_20200606_113208-7d4ab69c.pth -- Name: fcn_r18-d8_4xb2-80k_cityscapes-512x1024 - In Collection: FCN - Metadata: - backbone: R-18-D8 - crop size: (512,1024) - lr schd: 80000 - inference time (ms/im): - - value: 68.26 - hardware: V100 - backend: PyTorch - batch size: 1 - mode: FP32 - resolution: (512,1024) - Training Memory (GB): 1.7 - Results: - - Task: Semantic Segmentation - Dataset: Cityscapes - Metrics: - mIoU: 71.11 - mIoU(ms+flip): 72.91 - Config: configs/fcn/fcn_r18-d8_4xb2-80k_cityscapes-512x1024.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r18-d8_512x1024_80k_cityscapes/fcn_r18-d8_512x1024_80k_cityscapes_20201225_021327-6c50f8b4.pth -- Name: fcn_r50-d8_4xb2-80k_cityscapes-512x1024 - In Collection: FCN - Metadata: - backbone: R-50-D8 - crop size: (512,1024) - lr schd: 80000 - Results: - - Task: Semantic Segmentation - Dataset: Cityscapes - Metrics: - mIoU: 73.61 - mIoU(ms+flip): 74.24 - Config: configs/fcn/fcn_r50-d8_4xb2-80k_cityscapes-512x1024.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r50-d8_512x1024_80k_cityscapes/fcn_r50-d8_512x1024_80k_cityscapes_20200606_113019-03aa804d.pth -- Name: fcn_r101-d8_4xb2-80k_cityscapes-512x1024 - In Collection: FCN - Metadata: - backbone: R-101-D8 - crop size: (512,1024) - lr schd: 80000 - Results: - - Task: Semantic Segmentation - Dataset: Cityscapes - Metrics: - mIoU: 75.13 - mIoU(ms+flip): 75.94 - Config: configs/fcn/fcn_r101-d8_4xb2-80k_cityscapes-512x1024.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r101-d8_512x1024_80k_cityscapes/fcn_r101-d8_512x1024_80k_cityscapes_20200606_113038-3fb937eb.pth -- Name: fcn_r101-d8_4xb2-amp-80k_cityscapes-512x1024 - In Collection: FCN - Metadata: - backbone: R-101-D8 - crop size: (512,1024) - lr schd: 80000 - inference time (ms/im): - - value: 115.74 - hardware: V100 - backend: PyTorch - batch size: 1 - mode: AMP - resolution: (512,1024) - Training Memory (GB): 5.37 - Results: - - Task: Semantic Segmentation - Dataset: Cityscapes - Metrics: - mIoU: 76.8 - Config: configs/fcn/fcn_r101-d8_4xb2-amp-80k_cityscapes-512x1024.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r101-d8_fp16_512x1024_80k_cityscapes/fcn_r101-d8_fp16_512x1024_80k_cityscapes_20200717_230921-fb13e883.pth -- Name: fcn_r18-d8_4xb2-80k_cityscapes-769x769 - In Collection: FCN - Metadata: - backbone: R-18-D8 - crop size: (769,769) - lr schd: 80000 - inference time (ms/im): - - value: 156.25 - hardware: V100 - backend: PyTorch - batch size: 1 - mode: FP32 - resolution: (769,769) - Training Memory (GB): 1.9 - Results: - - Task: Semantic Segmentation - Dataset: Cityscapes - Metrics: - mIoU: 70.8 - mIoU(ms+flip): 73.16 - Config: configs/fcn/fcn_r18-d8_4xb2-80k_cityscapes-769x769.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r18-d8_769x769_80k_cityscapes/fcn_r18-d8_769x769_80k_cityscapes_20201225_021451-9739d1b8.pth -- Name: fcn_r50-d8_4xb2-80k_cityscapes-769x769 - In Collection: FCN - Metadata: - backbone: R-50-D8 - crop size: (769,769) - lr schd: 80000 - Results: - - Task: Semantic Segmentation - Dataset: Cityscapes - Metrics: - mIoU: 72.64 - mIoU(ms+flip): 73.32 - Config: configs/fcn/fcn_r50-d8_4xb2-80k_cityscapes-769x769.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r50-d8_769x769_80k_cityscapes/fcn_r50-d8_769x769_80k_cityscapes_20200606_195749-f5caeabc.pth -- Name: fcn_r101-d8_4xb2-80k_cityscapes-769x769 - In Collection: FCN - Metadata: - backbone: R-101-D8 - crop size: (769,769) - lr schd: 80000 - Results: - - Task: Semantic Segmentation - Dataset: Cityscapes - Metrics: - mIoU: 75.52 - mIoU(ms+flip): 76.61 - Config: configs/fcn/fcn_r101-d8_4xb2-80k_cityscapes-769x769.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r101-d8_769x769_80k_cityscapes/fcn_r101-d8_769x769_80k_cityscapes_20200606_214354-45cbac68.pth -- Name: fcn_r18b-d8_4xb2-80k_cityscapes-512x1024 - In Collection: FCN - Metadata: - backbone: R-18b-D8 - crop size: (512,1024) - lr schd: 80000 - inference time (ms/im): - - value: 59.74 - hardware: V100 - backend: PyTorch - batch size: 1 - mode: FP32 - resolution: (512,1024) - Training Memory (GB): 1.6 - Results: - - Task: Semantic Segmentation - Dataset: Cityscapes - Metrics: - mIoU: 70.24 - mIoU(ms+flip): 72.77 - Config: configs/fcn/fcn_r18b-d8_4xb2-80k_cityscapes-512x1024.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r18b-d8_512x1024_80k_cityscapes/fcn_r18b-d8_512x1024_80k_cityscapes_20201225_230143-92c0f445.pth -- Name: fcn_r50b-d8_4xb2-80k_cityscapes-512x1024 - In Collection: FCN - Metadata: - backbone: R-50b-D8 - crop size: (512,1024) - lr schd: 80000 - inference time (ms/im): - - value: 238.1 - hardware: V100 - backend: PyTorch - batch size: 1 - mode: FP32 - resolution: (512,1024) - Training Memory (GB): 5.6 - Results: - - Task: Semantic Segmentation - Dataset: Cityscapes - Metrics: - mIoU: 75.65 - mIoU(ms+flip): 77.59 - Config: configs/fcn/fcn_r50b-d8_4xb2-80k_cityscapes-512x1024.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r50b-d8_512x1024_80k_cityscapes/fcn_r50b-d8_512x1024_80k_cityscapes_20201225_094221-82957416.pth -- Name: fcn_r101b-d8_4xb2-80k_cityscapes-512x1024 - In Collection: FCN - Metadata: - backbone: R-101b-D8 - crop size: (512,1024) - lr schd: 80000 - inference time (ms/im): - - value: 366.3 - hardware: V100 - backend: PyTorch - batch size: 1 - mode: FP32 - resolution: (512,1024) - Training Memory (GB): 9.1 - Results: - - Task: Semantic Segmentation - Dataset: Cityscapes - Metrics: - mIoU: 77.37 - mIoU(ms+flip): 78.77 - Config: configs/fcn/fcn_r101b-d8_4xb2-80k_cityscapes-512x1024.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r101b-d8_512x1024_80k_cityscapes/fcn_r101b-d8_512x1024_80k_cityscapes_20201226_160213-4543858f.pth -- Name: fcn_r18b-d8_4xb2-80k_cityscapes-769x769 - In Collection: FCN - Metadata: - backbone: R-18b-D8 - crop size: (769,769) - lr schd: 80000 - inference time (ms/im): - - value: 149.25 - hardware: V100 - backend: PyTorch - batch size: 1 - mode: FP32 - resolution: (769,769) - Training Memory (GB): 1.7 - Results: - - Task: Semantic Segmentation - Dataset: Cityscapes - Metrics: - mIoU: 69.66 - mIoU(ms+flip): 72.07 - Config: configs/fcn/fcn_r18b-d8_4xb2-80k_cityscapes-769x769.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r18b-d8_769x769_80k_cityscapes/fcn_r18b-d8_769x769_80k_cityscapes_20201226_004430-32d504e5.pth -- Name: fcn_r50b-d8_4xb2-80k_cityscapes-769x769 - In Collection: FCN - Metadata: - backbone: R-50b-D8 - crop size: (769,769) - lr schd: 80000 - inference time (ms/im): - - value: 549.45 - hardware: V100 - backend: PyTorch - batch size: 1 - mode: FP32 - resolution: (769,769) - Training Memory (GB): 6.3 - Results: - - Task: Semantic Segmentation - Dataset: Cityscapes - Metrics: - mIoU: 73.83 - mIoU(ms+flip): 76.6 - Config: configs/fcn/fcn_r50b-d8_4xb2-80k_cityscapes-769x769.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r50b-d8_769x769_80k_cityscapes/fcn_r50b-d8_769x769_80k_cityscapes_20201225_094223-94552d38.pth -- Name: fcn_r101b-d8_4xb2-80k_cityscapes-769x769 - In Collection: FCN - Metadata: - backbone: R-101b-D8 - crop size: (769,769) - lr schd: 80000 - inference time (ms/im): - - value: 869.57 - hardware: V100 - backend: PyTorch - batch size: 1 - mode: FP32 - resolution: (769,769) - Training Memory (GB): 10.3 - Results: - - Task: Semantic Segmentation - Dataset: Cityscapes - Metrics: - mIoU: 77.02 - mIoU(ms+flip): 78.67 - Config: configs/fcn/fcn_r101b-d8_4xb2-80k_cityscapes-769x769.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r101b-d8_769x769_80k_cityscapes/fcn_r101b-d8_769x769_80k_cityscapes_20201226_170012-82be37e2.pth -- Name: fcn-d6_r50-d16_4xb2-40k_cityscapes-512x1024 - In Collection: FCN - Metadata: - backbone: R-50-D16 - crop size: (512,1024) - lr schd: 40000 - inference time (ms/im): - - value: 97.85 - hardware: V100 - backend: PyTorch - batch size: 1 - mode: FP32 - resolution: (512,1024) - Training Memory (GB): 3.4 - Results: - - Task: Semantic Segmentation - Dataset: Cityscapes - Metrics: - mIoU: 77.06 - mIoU(ms+flip): 78.85 - Config: configs/fcn/fcn-d6_r50-d16_4xb2-40k_cityscapes-512x1024.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_d6_r50-d16_512x1024_40k_cityscapes/fcn_d6_r50-d16_512x1024_40k_cityscapes_20210305_130133-98d5d1bc.pth -- Name: fcn-d6_r50-d16_4xb2-80k_cityscapes-512x1024 - In Collection: FCN - Metadata: - backbone: R-50-D16 - crop size: (512,1024) - lr schd: 80000 - inference time (ms/im): - - value: 96.62 - hardware: V100 - backend: PyTorch - batch size: 1 - mode: FP32 - resolution: (512,1024) - Results: - - Task: Semantic Segmentation - Dataset: Cityscapes - Metrics: - mIoU: 77.27 - mIoU(ms+flip): 78.88 - Config: configs/fcn/fcn-d6_r50-d16_4xb2-80k_cityscapes-512x1024.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_d6_r50-d16_512x1024_80k_cityscapes/fcn_d6_r50-d16_512x1024_80k_cityscapes_20210306_115604-133c292f.pth -- Name: fcn-d6_r50-d16_4xb2-40k_cityscapes-769x769 - In Collection: FCN - Metadata: - backbone: R-50-D16 - crop size: (769,769) - lr schd: 40000 - inference time (ms/im): - - value: 239.81 - hardware: V100 - backend: PyTorch - batch size: 1 - mode: FP32 - resolution: (769,769) - Training Memory (GB): 3.7 - Results: - - Task: Semantic Segmentation - Dataset: Cityscapes - Metrics: - mIoU: 76.82 - mIoU(ms+flip): 78.22 - Config: configs/fcn/fcn-d6_r50-d16_4xb2-40k_cityscapes-769x769.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_d6_r50-d16_769x769_40k_cityscapes/fcn_d6_r50-d16_769x769_40k_cityscapes_20210305_185744-1aab18ed.pth -- Name: fcn-d6_r50-d16_4xb2-80k_cityscapes-769x769 - In Collection: FCN - Metadata: - backbone: R-50-D16 - crop size: (769,769) - lr schd: 80000 - inference time (ms/im): - - value: 240.96 - hardware: V100 - backend: PyTorch - batch size: 1 - mode: FP32 - resolution: (769,769) - Results: - - Task: Semantic Segmentation - Dataset: Cityscapes - Metrics: - mIoU: 77.04 - mIoU(ms+flip): 78.4 - Config: configs/fcn/fcn-d6_r50-d16_4xb2-80k_cityscapes-769x769.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_d6_r50-d16_769x769_80k_cityscapes/fcn_d6_r50-d16_769x769_80k_cityscapes_20210305_200413-109d88eb.pth -- Name: fcn-d6_r101-d16_4xb2-40k_cityscapes-512x1024 - In Collection: FCN - Metadata: - backbone: R-101-D16 - crop size: (512,1024) - lr schd: 40000 - inference time (ms/im): - - value: 124.38 - hardware: V100 - backend: PyTorch - batch size: 1 - mode: FP32 - resolution: (512,1024) - Training Memory (GB): 4.5 - Results: - - Task: Semantic Segmentation - Dataset: Cityscapes - Metrics: - mIoU: 77.36 - mIoU(ms+flip): 79.18 - Config: configs/fcn/fcn-d6_r101-d16_4xb2-40k_cityscapes-512x1024.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_d6_r101-d16_512x1024_40k_cityscapes/fcn_d6_r101-d16_512x1024_40k_cityscapes_20210305_130337-9cf2b450.pth -- Name: fcn-d6_r101-d16_4xb2-80k_cityscapes-512x1024 - In Collection: FCN - Metadata: - backbone: R-101-D16 - crop size: (512,1024) - lr schd: 80000 - inference time (ms/im): - - value: 121.07 - hardware: V100 - backend: PyTorch - batch size: 1 - mode: FP32 - resolution: (512,1024) - Results: - - Task: Semantic Segmentation - Dataset: Cityscapes - Metrics: - mIoU: 78.46 - mIoU(ms+flip): 80.42 - Config: configs/fcn/fcn-d6_r101-d16_4xb2-80k_cityscapes-512x1024.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_d6_r101-d16_512x1024_80k_cityscapes/fcn_d6_r101-d16_512x1024_80k_cityscapes_20210308_102747-cb336445.pth -- Name: fcn-d6_r101-d16_4xb2-40k_cityscapes-769x769 - In Collection: FCN - Metadata: - backbone: R-101-D16 - crop size: (769,769) - lr schd: 40000 - inference time (ms/im): - - value: 320.51 - hardware: V100 - backend: PyTorch - batch size: 1 - mode: FP32 - resolution: (769,769) - Training Memory (GB): 5.0 - Results: - - Task: Semantic Segmentation - Dataset: Cityscapes - Metrics: - mIoU: 77.28 - mIoU(ms+flip): 78.95 - Config: configs/fcn/fcn-d6_r101-d16_4xb2-40k_cityscapes-769x769.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_d6_r101-d16_769x769_40k_cityscapes/fcn_d6_r101-d16_769x769_40k_cityscapes_20210308_102453-60b114e9.pth -- Name: fcn-d6_r101-d16_4xb2-80k_cityscapes-769x769 - In Collection: FCN - Metadata: - backbone: R-101-D16 - crop size: (769,769) - lr schd: 80000 - inference time (ms/im): - - value: 311.53 - hardware: V100 - backend: PyTorch - batch size: 1 - mode: FP32 - resolution: (769,769) - Results: - - Task: Semantic Segmentation - Dataset: Cityscapes - Metrics: - mIoU: 78.06 - mIoU(ms+flip): 79.58 - Config: configs/fcn/fcn-d6_r101-d16_4xb2-80k_cityscapes-769x769.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_d6_r101-d16_769x769_80k_cityscapes/fcn_d6_r101-d16_769x769_80k_cityscapes_20210306_120016-e33adc4f.pth -- Name: fcn-d6_r50b-d16_4xb2-80k_cityscapes-512x1024 - In Collection: FCN - Metadata: - backbone: R-50b-D16 - crop size: (512,1024) - lr schd: 80000 - inference time (ms/im): - - value: 98.43 - hardware: V100 - backend: PyTorch - batch size: 1 - mode: FP32 - resolution: (512,1024) - Training Memory (GB): 3.2 - Results: - - Task: Semantic Segmentation - Dataset: Cityscapes - Metrics: - mIoU: 76.99 - mIoU(ms+flip): 79.03 - Config: configs/fcn/fcn-d6_r50b-d16_4xb2-80k_cityscapes-512x1024.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_d6_r50b-d16_512x1024_80k_cityscapes/fcn_d6_r50b-d16_512x1024_80k_cityscapes_20210311_125550-6a0b62e9.pth -- Name: fcn-d6_r50b-d16_4xb2-80k_cityscapes-769x769 - In Collection: FCN - Metadata: - backbone: R-50b-D16 - crop size: (769,769) - lr schd: 80000 - inference time (ms/im): - - value: 239.81 - hardware: V100 - backend: PyTorch - batch size: 1 - mode: FP32 - resolution: (769,769) - Training Memory (GB): 3.6 - Results: - - Task: Semantic Segmentation - Dataset: Cityscapes - Metrics: - mIoU: 76.86 - mIoU(ms+flip): 78.52 - Config: configs/fcn/fcn-d6_r50b-d16_4xb2-80k_cityscapes-769x769.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_d6_r50b-d16_769x769_80k_cityscapes/fcn_d6_r50b-d16_769x769_80k_cityscapes_20210311_131012-d665f231.pth -- Name: fcn-d6_r101b-d16_4xb2-80k_cityscapes-512x1024 - In Collection: FCN - Metadata: - backbone: R-101b-D16 - crop size: (512,1024) - lr schd: 80000 - inference time (ms/im): - - value: 118.2 - hardware: V100 - backend: PyTorch - batch size: 1 - mode: FP32 - resolution: (512,1024) - Training Memory (GB): 4.3 - Results: - - Task: Semantic Segmentation - Dataset: Cityscapes - Metrics: - mIoU: 77.72 - mIoU(ms+flip): 79.53 - Config: configs/fcn/fcn-d6_r101b-d16_4xb2-80k_cityscapes-512x1024.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_d6_r101b-d16_512x1024_80k_cityscapes/fcn_d6_r101b-d16_512x1024_80k_cityscapes_20210311_144305-3f2eb5b4.pth -- Name: fcn-d6_r101b-d16_4xb2-80k_cityscapes-769x769 - In Collection: FCN - Metadata: - backbone: R-101b-D16 - crop size: (769,769) - lr schd: 80000 - inference time (ms/im): - - value: 301.2 - hardware: V100 - backend: PyTorch - batch size: 1 - mode: FP32 - resolution: (769,769) - Training Memory (GB): 4.8 - Results: - - Task: Semantic Segmentation - Dataset: Cityscapes - Metrics: - mIoU: 77.34 - mIoU(ms+flip): 78.91 - Config: configs/fcn/fcn-d6_r101b-d16_4xb2-80k_cityscapes-769x769.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_d6_r101b-d16_769x769_80k_cityscapes/fcn_d6_r101b-d16_769x769_80k_cityscapes_20210311_154527-c4d8bfbc.pth -- Name: fcn_r50-d8_4xb4-80k_ade20k-512x512 - In Collection: FCN - Metadata: - backbone: R-50-D8 - crop size: (512,512) - lr schd: 80000 - inference time (ms/im): - - value: 42.57 - hardware: V100 - backend: PyTorch - batch size: 1 - mode: FP32 - resolution: (512,512) - Training Memory (GB): 8.5 - Results: - - Task: Semantic Segmentation - Dataset: ADE20K - Metrics: - mIoU: 35.94 - mIoU(ms+flip): 37.94 - Config: configs/fcn/fcn_r50-d8_4xb4-80k_ade20k-512x512.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r50-d8_512x512_80k_ade20k/fcn_r50-d8_512x512_80k_ade20k_20200614_144016-f8ac5082.pth -- Name: fcn_r101-d8_4xb4-80k_ade20k-512x512 - In Collection: FCN - Metadata: - backbone: R-101-D8 - crop size: (512,512) - lr schd: 80000 - inference time (ms/im): - - value: 67.66 - hardware: V100 - backend: PyTorch - batch size: 1 - mode: FP32 - resolution: (512,512) - Training Memory (GB): 12.0 - Results: - - Task: Semantic Segmentation - Dataset: ADE20K - Metrics: - mIoU: 39.61 - mIoU(ms+flip): 40.83 - Config: configs/fcn/fcn_r101-d8_4xb4-80k_ade20k-512x512.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r101-d8_512x512_80k_ade20k/fcn_r101-d8_512x512_80k_ade20k_20200615_014143-bc1809f7.pth -- Name: fcn_r50-d8_4xb4-160k_ade20k-512x512 - In Collection: FCN - Metadata: - backbone: R-50-D8 - crop size: (512,512) - lr schd: 160000 - Results: - - Task: Semantic Segmentation - Dataset: ADE20K - Metrics: - mIoU: 36.1 - mIoU(ms+flip): 38.08 - Config: configs/fcn/fcn_r50-d8_4xb4-160k_ade20k-512x512.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r50-d8_512x512_160k_ade20k/fcn_r50-d8_512x512_160k_ade20k_20200615_100713-4edbc3b4.pth -- Name: fcn_r101-d8_4xb4-160k_ade20k-512x512 - In Collection: FCN - Metadata: - backbone: R-101-D8 - crop size: (512,512) - lr schd: 160000 - Results: - - Task: Semantic Segmentation - Dataset: ADE20K - Metrics: - mIoU: 39.91 - mIoU(ms+flip): 41.4 - Config: configs/fcn/fcn_r101-d8_4xb4-160k_ade20k-512x512.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r101-d8_512x512_160k_ade20k/fcn_r101-d8_512x512_160k_ade20k_20200615_105816-fd192bd5.pth -- Name: fcn_r50-d8_4xb4-20k_voc12aug-512x512 - In Collection: FCN - Metadata: - backbone: R-50-D8 - crop size: (512,512) - lr schd: 20000 - inference time (ms/im): - - value: 42.96 - hardware: V100 - backend: PyTorch - batch size: 1 - mode: FP32 - resolution: (512,512) - Training Memory (GB): 5.7 - Results: - - Task: Semantic Segmentation - Dataset: Pascal VOC 2012 + Aug - Metrics: - mIoU: 67.08 - mIoU(ms+flip): 69.94 - Config: configs/fcn/fcn_r50-d8_4xb4-20k_voc12aug-512x512.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r50-d8_512x512_20k_voc12aug/fcn_r50-d8_512x512_20k_voc12aug_20200617_010715-52dc5306.pth -- Name: fcn_r101-d8_4xb4-20k_voc12aug-512x512 - In Collection: FCN - Metadata: - backbone: R-101-D8 - crop size: (512,512) - lr schd: 20000 - inference time (ms/im): - - value: 67.52 - hardware: V100 - backend: PyTorch - batch size: 1 - mode: FP32 - resolution: (512,512) - Training Memory (GB): 9.2 - Results: - - Task: Semantic Segmentation - Dataset: Pascal VOC 2012 + Aug - Metrics: - mIoU: 71.16 - mIoU(ms+flip): 73.57 - Config: configs/fcn/fcn_r101-d8_4xb4-20k_voc12aug-512x512.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r101-d8_512x512_20k_voc12aug/fcn_r101-d8_512x512_20k_voc12aug_20200617_010842-0bb4e798.pth -- Name: fcn_r50-d8_4xb4-40k_voc12aug-512x512 - In Collection: FCN - Metadata: - backbone: R-50-D8 - crop size: (512,512) - lr schd: 40000 - Results: - - Task: Semantic Segmentation - Dataset: Pascal VOC 2012 + Aug - Metrics: - mIoU: 66.97 - mIoU(ms+flip): 69.04 - Config: configs/fcn/fcn_r50-d8_4xb4-40k_voc12aug-512x512.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r50-d8_512x512_40k_voc12aug/fcn_r50-d8_512x512_40k_voc12aug_20200613_161222-5e2dbf40.pth -- Name: fcn_r101-d8_4xb4-40k_voc12aug-512x512 - In Collection: FCN - Metadata: - backbone: R-101-D8 - crop size: (512,512) - lr schd: 40000 - Results: - - Task: Semantic Segmentation - Dataset: Pascal VOC 2012 + Aug - Metrics: - mIoU: 69.91 - mIoU(ms+flip): 72.38 - Config: configs/fcn/fcn_r101-d8_4xb4-40k_voc12aug-512x512.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r101-d8_512x512_40k_voc12aug/fcn_r101-d8_512x512_40k_voc12aug_20200613_161240-4c8bcefd.pth -- Name: fcn_r101-d8_4xb4-40k_pascal-context-480x480 - In Collection: FCN - Metadata: - backbone: R-101-D8 - crop size: (480,480) - lr schd: 40000 - inference time (ms/im): - - value: 100.7 - hardware: V100 - backend: PyTorch - batch size: 1 - mode: FP32 - resolution: (480,480) - Results: - - Task: Semantic Segmentation - Dataset: Pascal Context - Metrics: - mIoU: 44.43 - mIoU(ms+flip): 45.63 - Config: configs/fcn/fcn_r101-d8_4xb4-40k_pascal-context-480x480.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r101-d8_480x480_40k_pascal_context/fcn_r101-d8_480x480_40k_pascal_context_20210421_154757-b5e97937.pth -- Name: fcn_r101-d8_4xb4-80k_pascal-context-480x480 - In Collection: FCN - Metadata: - backbone: R-101-D8 - crop size: (480,480) - lr schd: 80000 - Results: - - Task: Semantic Segmentation - Dataset: Pascal Context - Metrics: - mIoU: 44.13 - mIoU(ms+flip): 45.26 - Config: configs/fcn/fcn_r101-d8_4xb4-80k_pascal-context-480x480.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r101-d8_480x480_80k_pascal_context/fcn_r101-d8_480x480_80k_pascal_context_20210421_163310-4711813f.pth -- Name: fcn_r101-d8_4xb4-40k_pascal-context-59-480x480 - In Collection: FCN - Metadata: - backbone: R-101-D8 - crop size: (480,480) - lr schd: 40000 - Results: - - Task: Semantic Segmentation - Dataset: Pascal Context 59 - Metrics: - mIoU: 48.42 - mIoU(ms+flip): 50.4 - Config: configs/fcn/fcn_r101-d8_4xb4-40k_pascal-context-59-480x480.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r101-d8_480x480_40k_pascal_context_59/fcn_r101-d8_480x480_40k_pascal_context_59_20210415_230724-8cf83682.pth -- Name: fcn_r101-d8_4xb4-80k_pascal-context-59-480x480 - In Collection: FCN - Metadata: - backbone: R-101-D8 - crop size: (480,480) - lr schd: 80000 - Results: - - Task: Semantic Segmentation - Dataset: Pascal Context 59 - Metrics: - mIoU: 49.35 - mIoU(ms+flip): 51.38 - Config: configs/fcn/fcn_r101-d8_4xb4-80k_pascal-context-59-480x480.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r101-d8_480x480_80k_pascal_context_59/fcn_r101-d8_480x480_80k_pascal_context_59_20210416_110804-9a6f2c94.pth diff --git a/configs/fcn/metafile.yaml b/configs/fcn/metafile.yaml new file mode 100644 index 0000000000..f3d80f652e --- /dev/null +++ b/configs/fcn/metafile.yaml @@ -0,0 +1,997 @@ +Collections: +- Name: FCN + License: Apache License 2.0 + Metadata: + Training Data: + - Cityscapes + - ADE20K + - Pascal VOC 2012 + Aug + - Pascal Context + - Pascal Context 59 + Paper: + Title: Fully Convolutional Networks for Semantic Segmentation + URL: https://arxiv.org/abs/1411.4038 + README: configs/fcn/README.md + Frameworks: + - PyTorch +Models: +- Name: fcn_r50-d8_4xb2-40k_cityscapes-512x1024 + In Collection: FCN + Results: + Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 72.25 + mIoU(ms+flip): 73.36 + Config: configs/fcn/fcn_r50-d8_4xb2-40k_cityscapes-512x1024.py + Metadata: + Training Data: Cityscapes + Batch Size: 8 + Architecture: + - R-50-D8 + - FCN + Training Resources: 4x V100 GPUS + Memory (GB): 5.7 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r50-d8_512x1024_40k_cityscapes/fcn_r50-d8_512x1024_40k_cityscapes_20200604_192608-efe53f0d.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r50-d8_512x1024_40k_cityscapes/fcn_r50-d8_512x1024_40k_cityscapes_20200604_192608.log.json + Paper: + Title: Fully Convolutional Networks for Semantic Segmentation + URL: https://arxiv.org/abs/1411.4038 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/fcn_head.py#L11 + Framework: PyTorch +- Name: fcn_r101-d8_4xb2-40k_cityscapes-512x1024 + In Collection: FCN + Results: + Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 75.45 + mIoU(ms+flip): 76.58 + Config: configs/fcn/fcn_r101-d8_4xb2-40k_cityscapes-512x1024.py + Metadata: + Training Data: Cityscapes + Batch Size: 8 + Architecture: + - R-101-D8 + - FCN + Training Resources: 4x V100 GPUS + Memory (GB): 9.2 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r101-d8_512x1024_40k_cityscapes/fcn_r101-d8_512x1024_40k_cityscapes_20200604_181852-a883d3a1.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r101-d8_512x1024_40k_cityscapes/fcn_r101-d8_512x1024_40k_cityscapes_20200604_181852.log.json + Paper: + Title: Fully Convolutional Networks for Semantic Segmentation + URL: https://arxiv.org/abs/1411.4038 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/fcn_head.py#L11 + Framework: PyTorch +- Name: fcn_r50-d8_4xb2-40k_cityscapes-769x769 + In Collection: FCN + Results: + Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 71.47 + mIoU(ms+flip): 72.54 + Config: configs/fcn/fcn_r50-d8_4xb2-40k_cityscapes-769x769.py + Metadata: + Training Data: Cityscapes + Batch Size: 8 + Architecture: + - R-50-D8 + - FCN + Training Resources: 4x V100 GPUS + Memory (GB): 6.5 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r50-d8_769x769_40k_cityscapes/fcn_r50-d8_769x769_40k_cityscapes_20200606_113104-977b5d02.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r50-d8_769x769_40k_cityscapes/fcn_r50-d8_769x769_40k_cityscapes_20200606_113104.log.json + Paper: + Title: Fully Convolutional Networks for Semantic Segmentation + URL: https://arxiv.org/abs/1411.4038 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/fcn_head.py#L11 + Framework: PyTorch +- Name: fcn_r101-d8_4xb2-40k_cityscapes-769x769 + In Collection: FCN + Results: + Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 73.93 + mIoU(ms+flip): 75.14 + Config: configs/fcn/fcn_r101-d8_4xb2-40k_cityscapes-769x769.py + Metadata: + Training Data: Cityscapes + Batch Size: 8 + Architecture: + - R-101-D8 + - FCN + Training Resources: 4x V100 GPUS + Memory (GB): 10.4 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r101-d8_769x769_40k_cityscapes/fcn_r101-d8_769x769_40k_cityscapes_20200606_113208-7d4ab69c.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r101-d8_769x769_40k_cityscapes/fcn_r101-d8_769x769_40k_cityscapes_20200606_113208.log.json + Paper: + Title: Fully Convolutional Networks for Semantic Segmentation + URL: https://arxiv.org/abs/1411.4038 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/fcn_head.py#L11 + Framework: PyTorch +- Name: fcn_r18-d8_4xb2-80k_cityscapes-512x1024 + In Collection: FCN + Results: + Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 71.11 + mIoU(ms+flip): 72.91 + Config: configs/fcn/fcn_r18-d8_4xb2-80k_cityscapes-512x1024.py + Metadata: + Training Data: Cityscapes + Batch Size: 8 + Architecture: + - R-18-D8 + - FCN + Training Resources: 4x V100 GPUS + Memory (GB): 1.7 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r18-d8_512x1024_80k_cityscapes/fcn_r18-d8_512x1024_80k_cityscapes_20201225_021327-6c50f8b4.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r18-d8_512x1024_80k_cityscapes/fcn_r18-d8_512x1024_80k_cityscapes-20201225_021327.log.json + Paper: + Title: Fully Convolutional Networks for Semantic Segmentation + URL: https://arxiv.org/abs/1411.4038 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/fcn_head.py#L11 + Framework: PyTorch +- Name: fcn_r50-d8_4xb2-80k_cityscapes-512x1024 + In Collection: FCN + Results: + Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 73.61 + mIoU(ms+flip): 74.24 + Config: configs/fcn/fcn_r50-d8_4xb2-80k_cityscapes-512x1024.py + Metadata: + Training Data: Cityscapes + Batch Size: 8 + Architecture: + - R-50-D8 + - FCN + Training Resources: 4x V100 GPUS + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r50-d8_512x1024_80k_cityscapes/fcn_r50-d8_512x1024_80k_cityscapes_20200606_113019-03aa804d.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r50-d8_512x1024_80k_cityscapes/fcn_r50-d8_512x1024_80k_cityscapes_20200606_113019.log.json + Paper: + Title: Fully Convolutional Networks for Semantic Segmentation + URL: https://arxiv.org/abs/1411.4038 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/fcn_head.py#L11 + Framework: PyTorch +- Name: fcn_r101-d8_4xb2-80k_cityscapes-512x1024 + In Collection: FCN + Results: + Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 75.13 + mIoU(ms+flip): 75.94 + Config: configs/fcn/fcn_r101-d8_4xb2-80k_cityscapes-512x1024.py + Metadata: + Training Data: Cityscapes + Batch Size: 8 + Architecture: + - R-101-D8 + - FCN + Training Resources: 4x V100 GPUS + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r101-d8_512x1024_80k_cityscapes/fcn_r101-d8_512x1024_80k_cityscapes_20200606_113038-3fb937eb.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r101-d8_512x1024_80k_cityscapes/fcn_r101-d8_512x1024_80k_cityscapes_20200606_113038.log.json + Paper: + Title: Fully Convolutional Networks for Semantic Segmentation + URL: https://arxiv.org/abs/1411.4038 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/fcn_head.py#L11 + Framework: PyTorch +- Name: fcn_r101-d8_4xb2-amp-80k_cityscapes-512x1024 + In Collection: FCN + Results: + Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 76.8 + Config: configs/fcn/fcn_r101-d8_4xb2-amp-80k_cityscapes-512x1024.py + Metadata: + Training Data: Cityscapes + Batch Size: 8 + Architecture: + - R-101-D8 + - FCN + - (FP16) + Training Resources: 4x V100 GPUS + Memory (GB): 5.37 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r101-d8_fp16_512x1024_80k_cityscapes/fcn_r101-d8_fp16_512x1024_80k_cityscapes_20200717_230921-fb13e883.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r101-d8_fp16_512x1024_80k_cityscapes/fcn_r101-d8_fp16_512x1024_80k_cityscapes_20200717_230921.log.json + Paper: + Title: Fully Convolutional Networks for Semantic Segmentation + URL: https://arxiv.org/abs/1411.4038 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/fcn_head.py#L11 + Framework: PyTorch +- Name: fcn_r18-d8_4xb2-80k_cityscapes-769x769 + In Collection: FCN + Results: + Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 70.8 + mIoU(ms+flip): 73.16 + Config: configs/fcn/fcn_r18-d8_4xb2-80k_cityscapes-769x769.py + Metadata: + Training Data: Cityscapes + Batch Size: 8 + Architecture: + - R-18-D8 + - FCN + Training Resources: 4x V100 GPUS + Memory (GB): 1.9 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r18-d8_769x769_80k_cityscapes/fcn_r18-d8_769x769_80k_cityscapes_20201225_021451-9739d1b8.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r18-d8_769x769_80k_cityscapes/fcn_r18-d8_769x769_80k_cityscapes-20201225_021451.log.json + Paper: + Title: Fully Convolutional Networks for Semantic Segmentation + URL: https://arxiv.org/abs/1411.4038 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/fcn_head.py#L11 + Framework: PyTorch +- Name: fcn_r50-d8_4xb2-80k_cityscapes-769x769 + In Collection: FCN + Results: + Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 72.64 + mIoU(ms+flip): 73.32 + Config: configs/fcn/fcn_r50-d8_4xb2-80k_cityscapes-769x769.py + Metadata: + Training Data: Cityscapes + Batch Size: 8 + Architecture: + - R-50-D8 + - FCN + Training Resources: 4x V100 GPUS + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r50-d8_769x769_80k_cityscapes/fcn_r50-d8_769x769_80k_cityscapes_20200606_195749-f5caeabc.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r50-d8_769x769_80k_cityscapes/fcn_r50-d8_769x769_80k_cityscapes_20200606_195749.log.json + Paper: + Title: Fully Convolutional Networks for Semantic Segmentation + URL: https://arxiv.org/abs/1411.4038 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/fcn_head.py#L11 + Framework: PyTorch +- Name: fcn_r101-d8_4xb2-80k_cityscapes-769x769 + In Collection: FCN + Results: + Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 75.52 + mIoU(ms+flip): 76.61 + Config: configs/fcn/fcn_r101-d8_4xb2-80k_cityscapes-769x769.py + Metadata: + Training Data: Cityscapes + Batch Size: 8 + Architecture: + - R-101-D8 + - FCN + Training Resources: 4x V100 GPUS + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r101-d8_769x769_80k_cityscapes/fcn_r101-d8_769x769_80k_cityscapes_20200606_214354-45cbac68.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r101-d8_769x769_80k_cityscapes/fcn_r101-d8_769x769_80k_cityscapes_20200606_214354.log.json + Paper: + Title: Fully Convolutional Networks for Semantic Segmentation + URL: https://arxiv.org/abs/1411.4038 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/fcn_head.py#L11 + Framework: PyTorch +- Name: fcn_r18b-d8_4xb2-80k_cityscapes-512x1024 + In Collection: FCN + Results: + Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 70.24 + mIoU(ms+flip): 72.77 + Config: configs/fcn/fcn_r18b-d8_4xb2-80k_cityscapes-512x1024.py + Metadata: + Training Data: Cityscapes + Batch Size: 8 + Architecture: + - R-18b-D8 + - FCN + Training Resources: 4x V100 GPUS + Memory (GB): 1.6 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r18b-d8_512x1024_80k_cityscapes/fcn_r18b-d8_512x1024_80k_cityscapes_20201225_230143-92c0f445.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r18b-d8_512x1024_80k_cityscapes/fcn_r18b-d8_512x1024_80k_cityscapes-20201225_230143.log.json + Paper: + Title: Fully Convolutional Networks for Semantic Segmentation + URL: https://arxiv.org/abs/1411.4038 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/fcn_head.py#L11 + Framework: PyTorch +- Name: fcn_r50b-d8_4xb2-80k_cityscapes-512x1024 + In Collection: FCN + Results: + Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 75.65 + mIoU(ms+flip): 77.59 + Config: configs/fcn/fcn_r50b-d8_4xb2-80k_cityscapes-512x1024.py + Metadata: + Training Data: Cityscapes + Batch Size: 8 + Architecture: + - R-50b-D8 + - FCN + Training Resources: 4x V100 GPUS + Memory (GB): 5.6 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r50b-d8_512x1024_80k_cityscapes/fcn_r50b-d8_512x1024_80k_cityscapes_20201225_094221-82957416.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r50b-d8_512x1024_80k_cityscapes/fcn_r50b-d8_512x1024_80k_cityscapes-20201225_094221.log.json + Paper: + Title: Fully Convolutional Networks for Semantic Segmentation + URL: https://arxiv.org/abs/1411.4038 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/fcn_head.py#L11 + Framework: PyTorch +- Name: fcn_r101b-d8_4xb2-80k_cityscapes-512x1024 + In Collection: FCN + Results: + Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 77.37 + mIoU(ms+flip): 78.77 + Config: configs/fcn/fcn_r101b-d8_4xb2-80k_cityscapes-512x1024.py + Metadata: + Training Data: Cityscapes + Batch Size: 8 + Architecture: + - R-101b-D8 + - FCN + Training Resources: 4x V100 GPUS + Memory (GB): 9.1 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r101b-d8_512x1024_80k_cityscapes/fcn_r101b-d8_512x1024_80k_cityscapes_20201226_160213-4543858f.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r101b-d8_512x1024_80k_cityscapes/fcn_r101b-d8_512x1024_80k_cityscapes-20201226_160213.log.json + Paper: + Title: Fully Convolutional Networks for Semantic Segmentation + URL: https://arxiv.org/abs/1411.4038 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/fcn_head.py#L11 + Framework: PyTorch +- Name: fcn_r18b-d8_4xb2-80k_cityscapes-769x769 + In Collection: FCN + Results: + Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 69.66 + mIoU(ms+flip): 72.07 + Config: configs/fcn/fcn_r18b-d8_4xb2-80k_cityscapes-769x769.py + Metadata: + Training Data: Cityscapes + Batch Size: 8 + Architecture: + - R-18b-D8 + - FCN + Training Resources: 4x V100 GPUS + Memory (GB): 1.7 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r18b-d8_769x769_80k_cityscapes/fcn_r18b-d8_769x769_80k_cityscapes_20201226_004430-32d504e5.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r18b-d8_769x769_80k_cityscapes/fcn_r18b-d8_769x769_80k_cityscapes-20201226_004430.log.json + Paper: + Title: Fully Convolutional Networks for Semantic Segmentation + URL: https://arxiv.org/abs/1411.4038 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/fcn_head.py#L11 + Framework: PyTorch +- Name: fcn_r50b-d8_4xb2-80k_cityscapes-769x769 + In Collection: FCN + Results: + Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 73.83 + mIoU(ms+flip): 76.6 + Config: configs/fcn/fcn_r50b-d8_4xb2-80k_cityscapes-769x769.py + Metadata: + Training Data: Cityscapes + Batch Size: 8 + Architecture: + - R-50b-D8 + - FCN + Training Resources: 4x V100 GPUS + Memory (GB): 6.3 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r50b-d8_769x769_80k_cityscapes/fcn_r50b-d8_769x769_80k_cityscapes_20201225_094223-94552d38.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r50b-d8_769x769_80k_cityscapes/fcn_r50b-d8_769x769_80k_cityscapes-20201225_094223.log.json + Paper: + Title: Fully Convolutional Networks for Semantic Segmentation + URL: https://arxiv.org/abs/1411.4038 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/fcn_head.py#L11 + Framework: PyTorch +- Name: fcn_r101b-d8_4xb2-80k_cityscapes-769x769 + In Collection: FCN + Results: + Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 77.02 + mIoU(ms+flip): 78.67 + Config: configs/fcn/fcn_r101b-d8_4xb2-80k_cityscapes-769x769.py + Metadata: + Training Data: Cityscapes + Batch Size: 8 + Architecture: + - R-101b-D8 + - FCN + Training Resources: 4x V100 GPUS + Memory (GB): 10.3 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r101b-d8_769x769_80k_cityscapes/fcn_r101b-d8_769x769_80k_cityscapes_20201226_170012-82be37e2.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r101b-d8_769x769_80k_cityscapes/fcn_r101b-d8_769x769_80k_cityscapes-20201226_170012.log.json + Paper: + Title: Fully Convolutional Networks for Semantic Segmentation + URL: https://arxiv.org/abs/1411.4038 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/fcn_head.py#L11 + Framework: PyTorch +- Name: fcn-d6_r50-d16_4xb2-40k_cityscapes-512x1024 + In Collection: FCN + Results: + Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 77.06 + mIoU(ms+flip): 78.85 + Config: configs/fcn/fcn-d6_r50-d16_4xb2-40k_cityscapes-512x1024.py + Metadata: + Training Data: Cityscapes + Batch Size: 8 + Architecture: + - R-50-D16 + - FCN + - (D6) + Training Resources: 4x TITAN Xp GPUS + Memory (GB): 3.4 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_d6_r50-d16_512x1024_40k_cityscapes/fcn_d6_r50-d16_512x1024_40k_cityscapes_20210305_130133-98d5d1bc.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_d6_r50-d16_512x1024_40k_cityscapes/fcn_d6_r50-d16_512x1024_40k_cityscapes-20210305_130133.log.json + Paper: + Title: Fully Convolutional Networks for Semantic Segmentation + URL: https://arxiv.org/abs/1411.4038 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/fcn_head.py#L11 + Framework: PyTorch +- Name: fcn-d6_r50-d16_4xb2-80k_cityscapes-512x1024 + In Collection: FCN + Results: + Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 77.27 + mIoU(ms+flip): 78.88 + Config: configs/fcn/fcn-d6_r50-d16_4xb2-80k_cityscapes-512x1024.py + Metadata: + Training Data: Cityscapes + Batch Size: 8 + Architecture: + - R-50-D16 + - FCN + - (D6) + Training Resources: 4x TITAN Xp GPUS + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_d6_r50-d16_512x1024_80k_cityscapes/fcn_d6_r50-d16_512x1024_80k_cityscapes_20210306_115604-133c292f.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_d6_r50-d16_512x1024_80k_cityscapes/fcn_d6_r50-d16_512x1024_80k_cityscapes-20210306_115604.log.json + Paper: + Title: Fully Convolutional Networks for Semantic Segmentation + URL: https://arxiv.org/abs/1411.4038 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/fcn_head.py#L11 + Framework: PyTorch +- Name: fcn-d6_r50-d16_4xb2-40k_cityscapes-769x769 + In Collection: FCN + Results: + Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 76.82 + mIoU(ms+flip): 78.22 + Config: configs/fcn/fcn-d6_r50-d16_4xb2-40k_cityscapes-769x769.py + Metadata: + Training Data: Cityscapes + Batch Size: 8 + Architecture: + - R-50-D16 + - FCN + - (D6) + Training Resources: 4x TITAN Xp GPUS + Memory (GB): 3.7 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_d6_r50-d16_769x769_40k_cityscapes/fcn_d6_r50-d16_769x769_40k_cityscapes_20210305_185744-1aab18ed.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_d6_r50-d16_769x769_40k_cityscapes/fcn_d6_r50-d16_769x769_40k_cityscapes-20210305_185744.log.json + Paper: + Title: Fully Convolutional Networks for Semantic Segmentation + URL: https://arxiv.org/abs/1411.4038 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/fcn_head.py#L11 + Framework: PyTorch +- Name: fcn-d6_r50-d16_4xb2-80k_cityscapes-769x769 + In Collection: FCN + Results: + Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 77.04 + mIoU(ms+flip): 78.4 + Config: configs/fcn/fcn-d6_r50-d16_4xb2-80k_cityscapes-769x769.py + Metadata: + Training Data: Cityscapes + Batch Size: 8 + Architecture: + - R-50-D16 + - FCN + - (D6) + Training Resources: 4x TITAN Xp GPUS + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_d6_r50-d16_769x769_80k_cityscapes/fcn_d6_r50-d16_769x769_80k_cityscapes_20210305_200413-109d88eb.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_d6_r50-d16_769x769_80k_cityscapes/fcn_d6_r50-d16_769x769_80k_cityscapes-20210305_200413.log.json + Paper: + Title: Fully Convolutional Networks for Semantic Segmentation + URL: https://arxiv.org/abs/1411.4038 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/fcn_head.py#L11 + Framework: PyTorch +- Name: fcn-d6_r101-d16_4xb2-40k_cityscapes-512x1024 + In Collection: FCN + Results: + Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 77.36 + mIoU(ms+flip): 79.18 + Config: configs/fcn/fcn-d6_r101-d16_4xb2-40k_cityscapes-512x1024.py + Metadata: + Training Data: Cityscapes + Batch Size: 8 + Architecture: + - R-101-D16 + - FCN + - (D6) + Training Resources: 4x TITAN Xp GPUS + Memory (GB): 4.5 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_d6_r101-d16_512x1024_40k_cityscapes/fcn_d6_r101-d16_512x1024_40k_cityscapes_20210305_130337-9cf2b450.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_d6_r101-d16_512x1024_40k_cityscapes/fcn_d6_r101-d16_512x1024_40k_cityscapes-20210305_130337.log.json + Paper: + Title: Fully Convolutional Networks for Semantic Segmentation + URL: https://arxiv.org/abs/1411.4038 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/fcn_head.py#L11 + Framework: PyTorch +- Name: fcn-d6_r101-d16_4xb2-80k_cityscapes-512x1024 + In Collection: FCN + Results: + Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 78.46 + mIoU(ms+flip): 80.42 + Config: configs/fcn/fcn-d6_r101-d16_4xb2-80k_cityscapes-512x1024.py + Metadata: + Training Data: Cityscapes + Batch Size: 8 + Architecture: + - R-101-D16 + - FCN + - (D6) + Training Resources: 4x TITAN Xp GPUS + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_d6_r101-d16_512x1024_80k_cityscapes/fcn_d6_r101-d16_512x1024_80k_cityscapes_20210308_102747-cb336445.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_d6_r101-d16_512x1024_80k_cityscapes/fcn_d6_r101-d16_512x1024_80k_cityscapes-20210308_102747.log.json + Paper: + Title: Fully Convolutional Networks for Semantic Segmentation + URL: https://arxiv.org/abs/1411.4038 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/fcn_head.py#L11 + Framework: PyTorch +- Name: fcn-d6_r101-d16_4xb2-40k_cityscapes-769x769 + In Collection: FCN + Results: + Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 77.28 + mIoU(ms+flip): 78.95 + Config: configs/fcn/fcn-d6_r101-d16_4xb2-40k_cityscapes-769x769.py + Metadata: + Training Data: Cityscapes + Batch Size: 8 + Architecture: + - R-101-D16 + - FCN + - (D6) + Training Resources: 4x TITAN Xp GPUS + Memory (GB): 5.0 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_d6_r101-d16_769x769_40k_cityscapes/fcn_d6_r101-d16_769x769_40k_cityscapes_20210308_102453-60b114e9.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_d6_r101-d16_769x769_40k_cityscapes/fcn_d6_r101-d16_769x769_40k_cityscapes-20210308_102453.log.json + Paper: + Title: Fully Convolutional Networks for Semantic Segmentation + URL: https://arxiv.org/abs/1411.4038 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/fcn_head.py#L11 + Framework: PyTorch +- Name: fcn-d6_r101-d16_4xb2-80k_cityscapes-769x769 + In Collection: FCN + Results: + Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 78.06 + mIoU(ms+flip): 79.58 + Config: configs/fcn/fcn-d6_r101-d16_4xb2-80k_cityscapes-769x769.py + Metadata: + Training Data: Cityscapes + Batch Size: 8 + Architecture: + - R-101-D16 + - FCN + - (D6) + Training Resources: 4x TITAN Xp GPUS + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_d6_r101-d16_769x769_80k_cityscapes/fcn_d6_r101-d16_769x769_80k_cityscapes_20210306_120016-e33adc4f.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_d6_r101-d16_769x769_80k_cityscapes/fcn_d6_r101-d16_769x769_80k_cityscapes-20210306_120016.log.json + Paper: + Title: Fully Convolutional Networks for Semantic Segmentation + URL: https://arxiv.org/abs/1411.4038 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/fcn_head.py#L11 + Framework: PyTorch +- Name: fcn-d6_r50b-d16_4xb2-80k_cityscapes-512x1024 + In Collection: FCN + Results: + Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 76.99 + mIoU(ms+flip): 79.03 + Config: configs/fcn/fcn-d6_r50b-d16_4xb2-80k_cityscapes-512x1024.py + Metadata: + Training Data: Cityscapes + Batch Size: 8 + Architecture: + - R-50b-D16 + - FCN + - (D6) + Training Resources: 4x TITAN Xp GPUS + Memory (GB): 3.2 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_d6_r50b-d16_512x1024_80k_cityscapes/fcn_d6_r50b-d16_512x1024_80k_cityscapes_20210311_125550-6a0b62e9.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_d6_r50b_d16_512x1024_80k_cityscapes/fcn_d6_r50b_d16_512x1024_80k_cityscapes-20210311_125550.log.json + Paper: + Title: Fully Convolutional Networks for Semantic Segmentation + URL: https://arxiv.org/abs/1411.4038 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/fcn_head.py#L11 + Framework: PyTorch +- Name: fcn-d6_r50b-d16_4xb2-80k_cityscapes-769x769 + In Collection: FCN + Results: + Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 76.86 + mIoU(ms+flip): 78.52 + Config: configs/fcn/fcn-d6_r50b-d16_4xb2-80k_cityscapes-769x769.py + Metadata: + Training Data: Cityscapes + Batch Size: 8 + Architecture: + - R-50b-D16 + - FCN + - (D6) + Training Resources: 4x TITAN Xp GPUS + Memory (GB): 3.6 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_d6_r50b-d16_769x769_80k_cityscapes/fcn_d6_r50b-d16_769x769_80k_cityscapes_20210311_131012-d665f231.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_d6_r50b_d16_769x769_80k_cityscapes/fcn_d6_r50b_d16_769x769_80k_cityscapes-20210311_131012.log.json + Paper: + Title: Fully Convolutional Networks for Semantic Segmentation + URL: https://arxiv.org/abs/1411.4038 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/fcn_head.py#L11 + Framework: PyTorch +- Name: fcn-d6_r101b-d16_4xb2-80k_cityscapes-512x1024 + In Collection: FCN + Results: + Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 77.72 + mIoU(ms+flip): 79.53 + Config: configs/fcn/fcn-d6_r101b-d16_4xb2-80k_cityscapes-512x1024.py + Metadata: + Training Data: Cityscapes + Batch Size: 8 + Architecture: + - R-101b-D16 + - FCN + - (D6) + Training Resources: 4x TITAN Xp GPUS + Memory (GB): 4.3 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_d6_r101b-d16_512x1024_80k_cityscapes/fcn_d6_r101b-d16_512x1024_80k_cityscapes_20210311_144305-3f2eb5b4.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_d6_r101b_d16_512x1024_80k_cityscapes/fcn_d6_r101b_d16_512x1024_80k_cityscapes-20210311_144305.log.json + Paper: + Title: Fully Convolutional Networks for Semantic Segmentation + URL: https://arxiv.org/abs/1411.4038 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/fcn_head.py#L11 + Framework: PyTorch +- Name: fcn-d6_r101b-d16_4xb2-80k_cityscapes-769x769 + In Collection: FCN + Results: + Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 77.34 + mIoU(ms+flip): 78.91 + Config: configs/fcn/fcn-d6_r101b-d16_4xb2-80k_cityscapes-769x769.py + Metadata: + Training Data: Cityscapes + Batch Size: 8 + Architecture: + - R-101b-D16 + - FCN + - (D6) + Training Resources: 4x TITAN Xp GPUS + Memory (GB): 4.8 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_d6_r101b-d16_769x769_80k_cityscapes/fcn_d6_r101b-d16_769x769_80k_cityscapes_20210311_154527-c4d8bfbc.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_d6_r101b_d16_769x769_80k_cityscapes/fcn_d6_r101b_d16_769x769_80k_cityscapes-20210311_154527.log.json + Paper: + Title: Fully Convolutional Networks for Semantic Segmentation + URL: https://arxiv.org/abs/1411.4038 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/fcn_head.py#L11 + Framework: PyTorch +- Name: fcn_r50-d8_4xb4-80k_ade20k-512x512 + In Collection: FCN + Results: + Task: Semantic Segmentation + Dataset: ADE20K + Metrics: + mIoU: 35.94 + mIoU(ms+flip): 37.94 + Config: configs/fcn/fcn_r50-d8_4xb4-80k_ade20k-512x512.py + Metadata: + Training Data: ADE20K + Batch Size: 16 + Architecture: + - R-50-D8 + - FCN + Training Resources: 4x V100 GPUS + Memory (GB): 8.5 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r50-d8_512x512_80k_ade20k/fcn_r50-d8_512x512_80k_ade20k_20200614_144016-f8ac5082.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r50-d8_512x512_80k_ade20k/fcn_r50-d8_512x512_80k_ade20k_20200614_144016.log.json + Paper: + Title: Fully Convolutional Networks for Semantic Segmentation + URL: https://arxiv.org/abs/1411.4038 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/fcn_head.py#L11 + Framework: PyTorch +- Name: fcn_r101-d8_4xb4-80k_ade20k-512x512 + In Collection: FCN + Results: + Task: Semantic Segmentation + Dataset: ADE20K + Metrics: + mIoU: 39.61 + mIoU(ms+flip): 40.83 + Config: configs/fcn/fcn_r101-d8_4xb4-80k_ade20k-512x512.py + Metadata: + Training Data: ADE20K + Batch Size: 16 + Architecture: + - R-101-D8 + - FCN + Training Resources: 4x V100 GPUS + Memory (GB): 12.0 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r101-d8_512x512_80k_ade20k/fcn_r101-d8_512x512_80k_ade20k_20200615_014143-bc1809f7.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r101-d8_512x512_80k_ade20k/fcn_r101-d8_512x512_80k_ade20k_20200615_014143.log.json + Paper: + Title: Fully Convolutional Networks for Semantic Segmentation + URL: https://arxiv.org/abs/1411.4038 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/fcn_head.py#L11 + Framework: PyTorch +- Name: fcn_r50-d8_4xb4-160k_ade20k-512x512 + In Collection: FCN + Results: + Task: Semantic Segmentation + Dataset: ADE20K + Metrics: + mIoU: 36.1 + mIoU(ms+flip): 38.08 + Config: configs/fcn/fcn_r50-d8_4xb4-160k_ade20k-512x512.py + Metadata: + Training Data: ADE20K + Batch Size: 16 + Architecture: + - R-50-D8 + - FCN + Training Resources: 4x V100 GPUS + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r50-d8_512x512_160k_ade20k/fcn_r50-d8_512x512_160k_ade20k_20200615_100713-4edbc3b4.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r50-d8_512x512_160k_ade20k/fcn_r50-d8_512x512_160k_ade20k_20200615_100713.log.json + Paper: + Title: Fully Convolutional Networks for Semantic Segmentation + URL: https://arxiv.org/abs/1411.4038 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/fcn_head.py#L11 + Framework: PyTorch +- Name: fcn_r101-d8_4xb4-160k_ade20k-512x512 + In Collection: FCN + Results: + Task: Semantic Segmentation + Dataset: ADE20K + Metrics: + mIoU: 39.91 + mIoU(ms+flip): 41.4 + Config: configs/fcn/fcn_r101-d8_4xb4-160k_ade20k-512x512.py + Metadata: + Training Data: ADE20K + Batch Size: 16 + Architecture: + - R-101-D8 + - FCN + Training Resources: 4x V100 GPUS + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r101-d8_512x512_160k_ade20k/fcn_r101-d8_512x512_160k_ade20k_20200615_105816-fd192bd5.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r101-d8_512x512_160k_ade20k/fcn_r101-d8_512x512_160k_ade20k_20200615_105816.log.json + Paper: + Title: Fully Convolutional Networks for Semantic Segmentation + URL: https://arxiv.org/abs/1411.4038 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/fcn_head.py#L11 + Framework: PyTorch +- Name: fcn_r50-d8_4xb4-20k_voc12aug-512x512 + In Collection: FCN + Results: + Task: Semantic Segmentation + Dataset: Pascal VOC 2012 + Aug + Metrics: + mIoU: 67.08 + mIoU(ms+flip): 69.94 + Config: configs/fcn/fcn_r50-d8_4xb4-20k_voc12aug-512x512.py + Metadata: + Training Data: Pascal VOC 2012 + Aug + Batch Size: 16 + Architecture: + - R-50-D8 + - FCN + Training Resources: 4x V100 GPUS + Memory (GB): 5.7 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r50-d8_512x512_20k_voc12aug/fcn_r50-d8_512x512_20k_voc12aug_20200617_010715-52dc5306.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r50-d8_512x512_20k_voc12aug/fcn_r50-d8_512x512_20k_voc12aug_20200617_010715.log.json + Paper: + Title: Fully Convolutional Networks for Semantic Segmentation + URL: https://arxiv.org/abs/1411.4038 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/fcn_head.py#L11 + Framework: PyTorch +- Name: fcn_r101-d8_4xb4-20k_voc12aug-512x512 + In Collection: FCN + Results: + Task: Semantic Segmentation + Dataset: Pascal VOC 2012 + Aug + Metrics: + mIoU: 71.16 + mIoU(ms+flip): 73.57 + Config: configs/fcn/fcn_r101-d8_4xb4-20k_voc12aug-512x512.py + Metadata: + Training Data: Pascal VOC 2012 + Aug + Batch Size: 16 + Architecture: + - R-101-D8 + - FCN + Training Resources: 4x V100 GPUS + Memory (GB): 9.2 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r101-d8_512x512_20k_voc12aug/fcn_r101-d8_512x512_20k_voc12aug_20200617_010842-0bb4e798.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r101-d8_512x512_20k_voc12aug/fcn_r101-d8_512x512_20k_voc12aug_20200617_010842.log.json + Paper: + Title: Fully Convolutional Networks for Semantic Segmentation + URL: https://arxiv.org/abs/1411.4038 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/fcn_head.py#L11 + Framework: PyTorch +- Name: fcn_r50-d8_4xb4-40k_voc12aug-512x512 + In Collection: FCN + Results: + Task: Semantic Segmentation + Dataset: Pascal VOC 2012 + Aug + Metrics: + mIoU: 66.97 + mIoU(ms+flip): 69.04 + Config: configs/fcn/fcn_r50-d8_4xb4-40k_voc12aug-512x512.py + Metadata: + Training Data: Pascal VOC 2012 + Aug + Batch Size: 16 + Architecture: + - R-50-D8 + - FCN + Training Resources: 4x V100 GPUS + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r50-d8_512x512_40k_voc12aug/fcn_r50-d8_512x512_40k_voc12aug_20200613_161222-5e2dbf40.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r50-d8_512x512_40k_voc12aug/fcn_r50-d8_512x512_40k_voc12aug_20200613_161222.log.json + Paper: + Title: Fully Convolutional Networks for Semantic Segmentation + URL: https://arxiv.org/abs/1411.4038 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/fcn_head.py#L11 + Framework: PyTorch +- Name: fcn_r101-d8_4xb4-40k_voc12aug-512x512 + In Collection: FCN + Results: + Task: Semantic Segmentation + Dataset: Pascal VOC 2012 + Aug + Metrics: + mIoU: 69.91 + mIoU(ms+flip): 72.38 + Config: configs/fcn/fcn_r101-d8_4xb4-40k_voc12aug-512x512.py + Metadata: + Training Data: Pascal VOC 2012 + Aug + Batch Size: 16 + Architecture: + - R-101-D8 + - FCN + Training Resources: 4x V100 GPUS + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r101-d8_512x512_40k_voc12aug/fcn_r101-d8_512x512_40k_voc12aug_20200613_161240-4c8bcefd.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r101-d8_512x512_40k_voc12aug/fcn_r101-d8_512x512_40k_voc12aug_20200613_161240.log.json + Paper: + Title: Fully Convolutional Networks for Semantic Segmentation + URL: https://arxiv.org/abs/1411.4038 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/fcn_head.py#L11 + Framework: PyTorch +- Name: fcn_r101-d8_4xb4-40k_pascal-context-480x480 + In Collection: FCN + Results: + Task: Semantic Segmentation + Dataset: Pascal Context + Metrics: + mIoU: 44.43 + mIoU(ms+flip): 45.63 + Config: configs/fcn/fcn_r101-d8_4xb4-40k_pascal-context-480x480.py + Metadata: + Training Data: Pascal Context + Batch Size: 16 + Architecture: + - R-101-D8 + - FCN + Training Resources: 4x V100 GPUS + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r101-d8_480x480_40k_pascal_context/fcn_r101-d8_480x480_40k_pascal_context_20210421_154757-b5e97937.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r101-d8_480x480_40k_pascal_context/fcn_r101-d8_480x480_40k_pascal_context-20210421_154757.log.json + Paper: + Title: Fully Convolutional Networks for Semantic Segmentation + URL: https://arxiv.org/abs/1411.4038 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/fcn_head.py#L11 + Framework: PyTorch +- Name: fcn_r101-d8_4xb4-80k_pascal-context-480x480 + In Collection: FCN + Results: + Task: Semantic Segmentation + Dataset: Pascal Context + Metrics: + mIoU: 44.13 + mIoU(ms+flip): 45.26 + Config: configs/fcn/fcn_r101-d8_4xb4-80k_pascal-context-480x480.py + Metadata: + Training Data: Pascal Context + Batch Size: 16 + Architecture: + - R-101-D8 + - FCN + Training Resources: 4x V100 GPUS + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r101-d8_480x480_80k_pascal_context/fcn_r101-d8_480x480_80k_pascal_context_20210421_163310-4711813f.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r101-d8_480x480_80k_pascal_context/fcn_r101-d8_480x480_80k_pascal_context-20210421_163310.log.json + Paper: + Title: Fully Convolutional Networks for Semantic Segmentation + URL: https://arxiv.org/abs/1411.4038 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/fcn_head.py#L11 + Framework: PyTorch +- Name: fcn_r101-d8_4xb4-40k_pascal-context-59-480x480 + In Collection: FCN + Results: + Task: Semantic Segmentation + Dataset: Pascal Context 59 + Metrics: + mIoU: 48.42 + mIoU(ms+flip): 50.4 + Config: configs/fcn/fcn_r101-d8_4xb4-40k_pascal-context-59-480x480.py + Metadata: + Training Data: Pascal Context 59 + Batch Size: 16 + Architecture: + - R-101-D8 + - FCN + Training Resources: 4x V100 GPUS + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r101-d8_480x480_40k_pascal_context_59/fcn_r101-d8_480x480_40k_pascal_context_59_20210415_230724-8cf83682.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r101-d8_480x480_40k_pascal_context_59/fcn_r101-d8_480x480_40k_pascal_context_59-20210415_230724.log.json + Paper: + Title: Fully Convolutional Networks for Semantic Segmentation + URL: https://arxiv.org/abs/1411.4038 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/fcn_head.py#L11 + Framework: PyTorch +- Name: fcn_r101-d8_4xb4-80k_pascal-context-59-480x480 + In Collection: FCN + Results: + Task: Semantic Segmentation + Dataset: Pascal Context 59 + Metrics: + mIoU: 49.35 + mIoU(ms+flip): 51.38 + Config: configs/fcn/fcn_r101-d8_4xb4-80k_pascal-context-59-480x480.py + Metadata: + Training Data: Pascal Context 59 + Batch Size: 16 + Architecture: + - R-101-D8 + - FCN + Training Resources: 4x V100 GPUS + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r101-d8_480x480_80k_pascal_context_59/fcn_r101-d8_480x480_80k_pascal_context_59_20210416_110804-9a6f2c94.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r101-d8_480x480_80k_pascal_context_59/fcn_r101-d8_480x480_80k_pascal_context_59-20210416_110804.log.json + Paper: + Title: Fully Convolutional Networks for Semantic Segmentation + URL: https://arxiv.org/abs/1411.4038 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/fcn_head.py#L11 + Framework: PyTorch diff --git a/configs/gcnet/README.md b/configs/gcnet/README.md index fa37f76468..26a478808f 100644 --- a/configs/gcnet/README.md +++ b/configs/gcnet/README.md @@ -1,6 +1,6 @@ # GCNet -[GCNet: Non-local Networks Meet Squeeze-Excitation Networks and Beyond](https://arxiv.org/abs/1904.11492) +> [GCNet: Non-local Networks Meet Squeeze-Excitation Networks and Beyond](https://arxiv.org/abs/1904.11492) ## Introduction @@ -22,6 +22,39 @@ The Non-Local Network (NLNet) presents a pioneering approach for capturing long- +## Results and models + +### Cityscapes + +| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | Device | mIoU | mIoU(ms+flip) | config | download | +| ------ | -------- | --------- | ------: | -------- | -------------- | ------ | ----: | ------------: | -------------------------------------------------------------------------------------------------------------------------------- | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | +| GCNet | R-50-D8 | 512x1024 | 40000 | 5.8 | 3.93 | V100 | 77.69 | 78.56 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/gcnet/gcnet_r50-d8_4xb2-40k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/gcnet/gcnet_r50-d8_512x1024_40k_cityscapes/gcnet_r50-d8_512x1024_40k_cityscapes_20200618_074436-4b0fd17b.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/gcnet/gcnet_r50-d8_512x1024_40k_cityscapes/gcnet_r50-d8_512x1024_40k_cityscapes_20200618_074436.log.json) | +| GCNet | R-101-D8 | 512x1024 | 40000 | 9.2 | 2.61 | V100 | 78.28 | 79.34 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/gcnet/gcnet_r101-d8_4xb2-40k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/gcnet/gcnet_r101-d8_512x1024_40k_cityscapes/gcnet_r101-d8_512x1024_40k_cityscapes_20200618_074436-5e62567f.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/gcnet/gcnet_r101-d8_512x1024_40k_cityscapes/gcnet_r101-d8_512x1024_40k_cityscapes_20200618_074436.log.json) | +| GCNet | R-50-D8 | 769x769 | 40000 | 6.5 | 1.67 | V100 | 78.12 | 80.09 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/gcnet/gcnet_r50-d8_4xb2-40k_cityscapes-769x769.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/gcnet/gcnet_r50-d8_769x769_40k_cityscapes/gcnet_r50-d8_769x769_40k_cityscapes_20200618_182814-a26f4471.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/gcnet/gcnet_r50-d8_769x769_40k_cityscapes/gcnet_r50-d8_769x769_40k_cityscapes_20200618_182814.log.json) | +| GCNet | R-101-D8 | 769x769 | 40000 | 10.5 | 1.13 | V100 | 78.95 | 80.71 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/gcnet/gcnet_r101-d8_4xb2-40k_cityscapes-769x769.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/gcnet/gcnet_r101-d8_769x769_40k_cityscapes/gcnet_r101-d8_769x769_40k_cityscapes_20200619_092550-ca4f0a84.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/gcnet/gcnet_r101-d8_769x769_40k_cityscapes/gcnet_r101-d8_769x769_40k_cityscapes_20200619_092550.log.json) | +| GCNet | R-50-D8 | 512x1024 | 80000 | - | - | V100 | 78.48 | 80.01 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/gcnet/gcnet_r50-d8_4xb2-80k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/gcnet/gcnet_r50-d8_512x1024_80k_cityscapes/gcnet_r50-d8_512x1024_80k_cityscapes_20200618_074450-ef8f069b.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/gcnet/gcnet_r50-d8_512x1024_80k_cityscapes/gcnet_r50-d8_512x1024_80k_cityscapes_20200618_074450.log.json) | +| GCNet | R-101-D8 | 512x1024 | 80000 | - | - | V100 | 79.03 | 79.84 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/gcnet/gcnet_r101-d8_4xb2-80k_cityscapes-512x1024.pyy) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/gcnet/gcnet_r101-d8_512x1024_80k_cityscapes/gcnet_r101-d8_512x1024_80k_cityscapes_20200618_074450-778ebf69.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/gcnet/gcnet_r101-d8_512x1024_80k_cityscapes/gcnet_r101-d8_512x1024_80k_cityscapes_20200618_074450.log.json) | +| GCNet | R-50-D8 | 769x769 | 80000 | - | - | V100 | 78.68 | 80.66 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/gcnet/gcnet_r50-d8_4xb2-80k_cityscapes-769x769.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/gcnet/gcnet_r50-d8_769x769_80k_cityscapes/gcnet_r50-d8_769x769_80k_cityscapes_20200619_092516-4839565b.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/gcnet/gcnet_r50-d8_769x769_80k_cityscapes/gcnet_r50-d8_769x769_80k_cityscapes_20200619_092516.log.json) | +| GCNet | R-101-D8 | 769x769 | 80000 | - | - | V100 | 79.18 | 80.71 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/gcnet/gcnet_r101-d8_4xb2-80k_cityscapes-769x769.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/gcnet/gcnet_r101-d8_769x769_80k_cityscapes/gcnet_r101-d8_769x769_80k_cityscapes_20200619_092628-8e043423.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/gcnet/gcnet_r101-d8_769x769_80k_cityscapes/gcnet_r101-d8_769x769_80k_cityscapes_20200619_092628.log.json) | + +### ADE20K + +| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | Device | mIoU | mIoU(ms+flip) | config | download | +| ------ | -------- | --------- | ------: | -------- | -------------- | ------ | ----: | ------------: | --------------------------------------------------------------------------------------------------------------------------- | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | +| GCNet | R-50-D8 | 512x512 | 80000 | 8.5 | 23.38 | V100 | 41.47 | 42.85 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/gcnet/gcnet_r50-d8_4xb4-80k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/gcnet/gcnet_r50-d8_512x512_80k_ade20k/gcnet_r50-d8_512x512_80k_ade20k_20200614_185146-91a6da41.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/gcnet/gcnet_r50-d8_512x512_80k_ade20k/gcnet_r50-d8_512x512_80k_ade20k_20200614_185146.log.json) | +| GCNet | R-101-D8 | 512x512 | 80000 | 12 | 15.20 | V100 | 42.82 | 44.54 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/gcnet/gcnet_r101-d8_4xb4-80k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/gcnet/gcnet_r101-d8_512x512_80k_ade20k/gcnet_r101-d8_512x512_80k_ade20k_20200615_020811-c3fcb6dd.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/gcnet/gcnet_r101-d8_512x512_80k_ade20k/gcnet_r101-d8_512x512_80k_ade20k_20200615_020811.log.json) | +| GCNet | R-50-D8 | 512x512 | 160000 | - | - | V100 | 42.37 | 43.52 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/gcnet/gcnet_r50-d8_4xb4-160k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/gcnet/gcnet_r50-d8_512x512_160k_ade20k/gcnet_r50-d8_512x512_160k_ade20k_20200615_224122-d95f3e1f.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/gcnet/gcnet_r50-d8_512x512_160k_ade20k/gcnet_r50-d8_512x512_160k_ade20k_20200615_224122.log.json) | +| GCNet | R-101-D8 | 512x512 | 160000 | - | - | V100 | 43.69 | 45.21 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/gcnet/gcnet_r101-d8_4xb4-160k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/gcnet/gcnet_r101-d8_512x512_160k_ade20k/gcnet_r101-d8_512x512_160k_ade20k_20200615_225406-615528d7.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/gcnet/gcnet_r101-d8_512x512_160k_ade20k/gcnet_r101-d8_512x512_160k_ade20k_20200615_225406.log.json) | + +### Pascal VOC 2012 + Aug + +| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | Device | mIoU | mIoU(ms+flip) | config | download | +| ------ | -------- | --------- | ------: | -------- | -------------- | ------ | ----: | ------------: | ---------------------------------------------------------------------------------------------------------------------------- | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | +| GCNet | R-50-D8 | 512x512 | 20000 | 5.8 | 23.35 | V100 | 76.42 | 77.51 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/gcnet/gcnet_r50-d8_4xb4-20k_voc12aug-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/gcnet/gcnet_r50-d8_512x512_20k_voc12aug/gcnet_r50-d8_512x512_20k_voc12aug_20200617_165701-3cbfdab1.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/gcnet/gcnet_r50-d8_512x512_20k_voc12aug/gcnet_r50-d8_512x512_20k_voc12aug_20200617_165701.log.json) | +| GCNet | R-101-D8 | 512x512 | 20000 | 9.2 | 14.80 | V100 | 77.41 | 78.56 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/gcnet/gcnet_r101-d8_4xb4-20k_voc12aug-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/gcnet/gcnet_r101-d8_512x512_20k_voc12aug/gcnet_r101-d8_512x512_20k_voc12aug_20200617_165713-6c720aa9.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/gcnet/gcnet_r101-d8_512x512_20k_voc12aug/gcnet_r101-d8_512x512_20k_voc12aug_20200617_165713.log.json) | +| GCNet | R-50-D8 | 512x512 | 40000 | - | - | V100 | 76.24 | 77.63 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/gcnet/gcnet_r50-d8_4xb4-40k_voc12aug-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/gcnet/gcnet_r50-d8_512x512_40k_voc12aug/gcnet_r50-d8_512x512_40k_voc12aug_20200613_195105-9797336d.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/gcnet/gcnet_r50-d8_512x512_40k_voc12aug/gcnet_r50-d8_512x512_40k_voc12aug_20200613_195105.log.json) | +| GCNet | R-101-D8 | 512x512 | 40000 | - | - | V100 | 77.84 | 78.59 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/gcnet/gcnet_r101-d8_4xb4-40k_voc12aug-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/gcnet/gcnet_r101-d8_512x512_40k_voc12aug/gcnet_r101-d8_512x512_40k_voc12aug_20200613_185806-1e38208d.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/gcnet/gcnet_r101-d8_512x512_40k_voc12aug/gcnet_r101-d8_512x512_40k_voc12aug_20200613_185806.log.json) | + ## Citation ```bibtex @@ -33,36 +66,3 @@ The Non-Local Network (NLNet) presents a pioneering approach for capturing long- year={2019} } ``` - -## Results and models - -### Cityscapes - -| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | mIoU | mIoU(ms+flip) | config | download | -| ------ | -------- | --------- | ------: | -------- | -------------- | ----: | ------------: | -------------------------------------------------------------------------------------------------------------------------------- | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | -| GCNet | R-50-D8 | 512x1024 | 40000 | 5.8 | 3.93 | 77.69 | 78.56 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/gcnet/gcnet_r50-d8_4xb2-40k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/gcnet/gcnet_r50-d8_512x1024_40k_cityscapes/gcnet_r50-d8_512x1024_40k_cityscapes_20200618_074436-4b0fd17b.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/gcnet/gcnet_r50-d8_512x1024_40k_cityscapes/gcnet_r50-d8_512x1024_40k_cityscapes_20200618_074436.log.json) | -| GCNet | R-101-D8 | 512x1024 | 40000 | 9.2 | 2.61 | 78.28 | 79.34 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/gcnet/gcnet_r101-d8_4xb2-40k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/gcnet/gcnet_r101-d8_512x1024_40k_cityscapes/gcnet_r101-d8_512x1024_40k_cityscapes_20200618_074436-5e62567f.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/gcnet/gcnet_r101-d8_512x1024_40k_cityscapes/gcnet_r101-d8_512x1024_40k_cityscapes_20200618_074436.log.json) | -| GCNet | R-50-D8 | 769x769 | 40000 | 6.5 | 1.67 | 78.12 | 80.09 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/gcnet/gcnet_r50-d8_4xb2-40k_cityscapes-769x769.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/gcnet/gcnet_r50-d8_769x769_40k_cityscapes/gcnet_r50-d8_769x769_40k_cityscapes_20200618_182814-a26f4471.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/gcnet/gcnet_r50-d8_769x769_40k_cityscapes/gcnet_r50-d8_769x769_40k_cityscapes_20200618_182814.log.json) | -| GCNet | R-101-D8 | 769x769 | 40000 | 10.5 | 1.13 | 78.95 | 80.71 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/gcnet/gcnet_r101-d8_4xb2-40k_cityscapes-769x769.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/gcnet/gcnet_r101-d8_769x769_40k_cityscapes/gcnet_r101-d8_769x769_40k_cityscapes_20200619_092550-ca4f0a84.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/gcnet/gcnet_r101-d8_769x769_40k_cityscapes/gcnet_r101-d8_769x769_40k_cityscapes_20200619_092550.log.json) | -| GCNet | R-50-D8 | 512x1024 | 80000 | - | - | 78.48 | 80.01 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/gcnet/gcnet_r50-d8_4xb2-80k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/gcnet/gcnet_r50-d8_512x1024_80k_cityscapes/gcnet_r50-d8_512x1024_80k_cityscapes_20200618_074450-ef8f069b.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/gcnet/gcnet_r50-d8_512x1024_80k_cityscapes/gcnet_r50-d8_512x1024_80k_cityscapes_20200618_074450.log.json) | -| GCNet | R-101-D8 | 512x1024 | 80000 | - | - | 79.03 | 79.84 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/gcnet/gcnet_r101-d8_4xb2-80k_cityscapes-512x1024.pyy) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/gcnet/gcnet_r101-d8_512x1024_80k_cityscapes/gcnet_r101-d8_512x1024_80k_cityscapes_20200618_074450-778ebf69.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/gcnet/gcnet_r101-d8_512x1024_80k_cityscapes/gcnet_r101-d8_512x1024_80k_cityscapes_20200618_074450.log.json) | -| GCNet | R-50-D8 | 769x769 | 80000 | - | - | 78.68 | 80.66 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/gcnet/gcnet_r50-d8_4xb2-80k_cityscapes-769x769.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/gcnet/gcnet_r50-d8_769x769_80k_cityscapes/gcnet_r50-d8_769x769_80k_cityscapes_20200619_092516-4839565b.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/gcnet/gcnet_r50-d8_769x769_80k_cityscapes/gcnet_r50-d8_769x769_80k_cityscapes_20200619_092516.log.json) | -| GCNet | R-101-D8 | 769x769 | 80000 | - | - | 79.18 | 80.71 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/gcnet/gcnet_r101-d8_4xb2-80k_cityscapes-769x769.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/gcnet/gcnet_r101-d8_769x769_80k_cityscapes/gcnet_r101-d8_769x769_80k_cityscapes_20200619_092628-8e043423.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/gcnet/gcnet_r101-d8_769x769_80k_cityscapes/gcnet_r101-d8_769x769_80k_cityscapes_20200619_092628.log.json) | - -### ADE20K - -| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | mIoU | mIoU(ms+flip) | config | download | -| ------ | -------- | --------- | ------: | -------- | -------------- | ----: | ------------: | --------------------------------------------------------------------------------------------------------------------------- | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | -| GCNet | R-50-D8 | 512x512 | 80000 | 8.5 | 23.38 | 41.47 | 42.85 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/gcnet/gcnet_r50-d8_4xb4-80k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/gcnet/gcnet_r50-d8_512x512_80k_ade20k/gcnet_r50-d8_512x512_80k_ade20k_20200614_185146-91a6da41.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/gcnet/gcnet_r50-d8_512x512_80k_ade20k/gcnet_r50-d8_512x512_80k_ade20k_20200614_185146.log.json) | -| GCNet | R-101-D8 | 512x512 | 80000 | 12 | 15.20 | 42.82 | 44.54 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/gcnet/gcnet_r101-d8_4xb4-80k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/gcnet/gcnet_r101-d8_512x512_80k_ade20k/gcnet_r101-d8_512x512_80k_ade20k_20200615_020811-c3fcb6dd.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/gcnet/gcnet_r101-d8_512x512_80k_ade20k/gcnet_r101-d8_512x512_80k_ade20k_20200615_020811.log.json) | -| GCNet | R-50-D8 | 512x512 | 160000 | - | - | 42.37 | 43.52 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/gcnet/gcnet_r50-d8_4xb4-160k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/gcnet/gcnet_r50-d8_512x512_160k_ade20k/gcnet_r50-d8_512x512_160k_ade20k_20200615_224122-d95f3e1f.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/gcnet/gcnet_r50-d8_512x512_160k_ade20k/gcnet_r50-d8_512x512_160k_ade20k_20200615_224122.log.json) | -| GCNet | R-101-D8 | 512x512 | 160000 | - | - | 43.69 | 45.21 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/gcnet/gcnet_r101-d8_4xb4-160k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/gcnet/gcnet_r101-d8_512x512_160k_ade20k/gcnet_r101-d8_512x512_160k_ade20k_20200615_225406-615528d7.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/gcnet/gcnet_r101-d8_512x512_160k_ade20k/gcnet_r101-d8_512x512_160k_ade20k_20200615_225406.log.json) | - -### Pascal VOC 2012 + Aug - -| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | mIoU | mIoU(ms+flip) | config | download | -| ------ | -------- | --------- | ------: | -------- | -------------- | ----: | ------------: | ---------------------------------------------------------------------------------------------------------------------------- | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | -| GCNet | R-50-D8 | 512x512 | 20000 | 5.8 | 23.35 | 76.42 | 77.51 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/gcnet/gcnet_r50-d8_4xb4-20k_voc12aug-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/gcnet/gcnet_r50-d8_512x512_20k_voc12aug/gcnet_r50-d8_512x512_20k_voc12aug_20200617_165701-3cbfdab1.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/gcnet/gcnet_r50-d8_512x512_20k_voc12aug/gcnet_r50-d8_512x512_20k_voc12aug_20200617_165701.log.json) | -| GCNet | R-101-D8 | 512x512 | 20000 | 9.2 | 14.80 | 77.41 | 78.56 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/gcnet/gcnet_r101-d8_4xb4-20k_voc12aug-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/gcnet/gcnet_r101-d8_512x512_20k_voc12aug/gcnet_r101-d8_512x512_20k_voc12aug_20200617_165713-6c720aa9.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/gcnet/gcnet_r101-d8_512x512_20k_voc12aug/gcnet_r101-d8_512x512_20k_voc12aug_20200617_165713.log.json) | -| GCNet | R-50-D8 | 512x512 | 40000 | - | - | 76.24 | 77.63 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/gcnet/gcnet_r50-d8_4xb4-40k_voc12aug-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/gcnet/gcnet_r50-d8_512x512_40k_voc12aug/gcnet_r50-d8_512x512_40k_voc12aug_20200613_195105-9797336d.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/gcnet/gcnet_r50-d8_512x512_40k_voc12aug/gcnet_r50-d8_512x512_40k_voc12aug_20200613_195105.log.json) | -| GCNet | R-101-D8 | 512x512 | 40000 | - | - | 77.84 | 78.59 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/gcnet/gcnet_r101-d8_4xb4-40k_voc12aug-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/gcnet/gcnet_r101-d8_512x512_40k_voc12aug/gcnet_r101-d8_512x512_40k_voc12aug_20200613_185806-1e38208d.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/gcnet/gcnet_r101-d8_512x512_40k_voc12aug/gcnet_r101-d8_512x512_40k_voc12aug_20200613_185806.log.json) | diff --git a/configs/gcnet/gcnet.yml b/configs/gcnet/gcnet.yml deleted file mode 100644 index dfd8cf56c4..0000000000 --- a/configs/gcnet/gcnet.yml +++ /dev/null @@ -1,305 +0,0 @@ -Collections: -- Name: GCNet - Metadata: - Training Data: - - Cityscapes - - ADE20K - - Pascal VOC 2012 + Aug - Paper: - URL: https://arxiv.org/abs/1904.11492 - Title: 'GCNet: Non-local Networks Meet Squeeze-Excitation Networks and Beyond' - README: configs/gcnet/README.md - Code: - URL: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/gc_head.py#L10 - Version: v0.17.0 - Converted From: - Code: https://github.com/xvjiarui/GCNet -Models: -- Name: gcnet_r50-d8_4xb2-40k_cityscapes-512x1024 - In Collection: GCNet - Metadata: - backbone: R-50-D8 - crop size: (512,1024) - lr schd: 40000 - inference time (ms/im): - - value: 254.45 - hardware: V100 - backend: PyTorch - batch size: 1 - mode: FP32 - resolution: (512,1024) - Training Memory (GB): 5.8 - Results: - - Task: Semantic Segmentation - Dataset: Cityscapes - Metrics: - mIoU: 77.69 - mIoU(ms+flip): 78.56 - Config: configs/gcnet/gcnet_r50-d8_4xb2-40k_cityscapes-512x1024.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/gcnet/gcnet_r50-d8_512x1024_40k_cityscapes/gcnet_r50-d8_512x1024_40k_cityscapes_20200618_074436-4b0fd17b.pth -- Name: gcnet_r101-d8_4xb2-40k_cityscapes-512x1024 - In Collection: GCNet - Metadata: - backbone: R-101-D8 - crop size: (512,1024) - lr schd: 40000 - inference time (ms/im): - - value: 383.14 - hardware: V100 - backend: PyTorch - batch size: 1 - mode: FP32 - resolution: (512,1024) - Training Memory (GB): 9.2 - Results: - - Task: Semantic Segmentation - Dataset: Cityscapes - Metrics: - mIoU: 78.28 - mIoU(ms+flip): 79.34 - Config: configs/gcnet/gcnet_r101-d8_4xb2-40k_cityscapes-512x1024.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/gcnet/gcnet_r101-d8_512x1024_40k_cityscapes/gcnet_r101-d8_512x1024_40k_cityscapes_20200618_074436-5e62567f.pth -- Name: gcnet_r50-d8_4xb2-40k_cityscapes-769x769 - In Collection: GCNet - Metadata: - backbone: R-50-D8 - crop size: (769,769) - lr schd: 40000 - inference time (ms/im): - - value: 598.8 - hardware: V100 - backend: PyTorch - batch size: 1 - mode: FP32 - resolution: (769,769) - Training Memory (GB): 6.5 - Results: - - Task: Semantic Segmentation - Dataset: Cityscapes - Metrics: - mIoU: 78.12 - mIoU(ms+flip): 80.09 - Config: configs/gcnet/gcnet_r50-d8_4xb2-40k_cityscapes-769x769.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/gcnet/gcnet_r50-d8_769x769_40k_cityscapes/gcnet_r50-d8_769x769_40k_cityscapes_20200618_182814-a26f4471.pth -- Name: gcnet_r101-d8_4xb2-40k_cityscapes-769x769 - In Collection: GCNet - Metadata: - backbone: R-101-D8 - crop size: (769,769) - lr schd: 40000 - inference time (ms/im): - - value: 884.96 - hardware: V100 - backend: PyTorch - batch size: 1 - mode: FP32 - resolution: (769,769) - Training Memory (GB): 10.5 - Results: - - Task: Semantic Segmentation - Dataset: Cityscapes - Metrics: - mIoU: 78.95 - mIoU(ms+flip): 80.71 - Config: configs/gcnet/gcnet_r101-d8_4xb2-40k_cityscapes-769x769.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/gcnet/gcnet_r101-d8_769x769_40k_cityscapes/gcnet_r101-d8_769x769_40k_cityscapes_20200619_092550-ca4f0a84.pth -- Name: gcnet_r50-d8_4xb2-80k_cityscapes-512x1024 - In Collection: GCNet - Metadata: - backbone: R-50-D8 - crop size: (512,1024) - lr schd: 80000 - Results: - - Task: Semantic Segmentation - Dataset: Cityscapes - Metrics: - mIoU: 78.48 - mIoU(ms+flip): 80.01 - Config: configs/gcnet/gcnet_r50-d8_4xb2-80k_cityscapes-512x1024.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/gcnet/gcnet_r50-d8_512x1024_80k_cityscapes/gcnet_r50-d8_512x1024_80k_cityscapes_20200618_074450-ef8f069b.pth -- Name: gcnet_r101-d8_4xb2-80k_cityscapes-512x1024 - In Collection: GCNet - Metadata: - backbone: R-101-D8 - crop size: (512,1024) - lr schd: 80000 - Results: - - Task: Semantic Segmentation - Dataset: Cityscapes - Metrics: - mIoU: 79.03 - mIoU(ms+flip): 79.84 - Config: configs/gcnet/gcnet_r101-d8_4xb2-80k_cityscapes-512x1024.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/gcnet/gcnet_r101-d8_512x1024_80k_cityscapes/gcnet_r101-d8_512x1024_80k_cityscapes_20200618_074450-778ebf69.pth -- Name: gcnet_r50-d8_4xb2-80k_cityscapes-769x769 - In Collection: GCNet - Metadata: - backbone: R-50-D8 - crop size: (769,769) - lr schd: 80000 - Results: - - Task: Semantic Segmentation - Dataset: Cityscapes - Metrics: - mIoU: 78.68 - mIoU(ms+flip): 80.66 - Config: configs/gcnet/gcnet_r50-d8_4xb2-80k_cityscapes-769x769.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/gcnet/gcnet_r50-d8_769x769_80k_cityscapes/gcnet_r50-d8_769x769_80k_cityscapes_20200619_092516-4839565b.pth -- Name: gcnet_r101-d8_4xb2-80k_cityscapes-769x769 - In Collection: GCNet - Metadata: - backbone: R-101-D8 - crop size: (769,769) - lr schd: 80000 - Results: - - Task: Semantic Segmentation - Dataset: Cityscapes - Metrics: - mIoU: 79.18 - mIoU(ms+flip): 80.71 - Config: configs/gcnet/gcnet_r101-d8_4xb2-80k_cityscapes-769x769.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/gcnet/gcnet_r101-d8_769x769_80k_cityscapes/gcnet_r101-d8_769x769_80k_cityscapes_20200619_092628-8e043423.pth -- Name: gcnet_r50-d8_4xb4-80k_ade20k-512x512 - In Collection: GCNet - Metadata: - backbone: R-50-D8 - crop size: (512,512) - lr schd: 80000 - inference time (ms/im): - - value: 42.77 - hardware: V100 - backend: PyTorch - batch size: 1 - mode: FP32 - resolution: (512,512) - Training Memory (GB): 8.5 - Results: - - Task: Semantic Segmentation - Dataset: ADE20K - Metrics: - mIoU: 41.47 - mIoU(ms+flip): 42.85 - Config: configs/gcnet/gcnet_r50-d8_4xb4-80k_ade20k-512x512.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/gcnet/gcnet_r50-d8_512x512_80k_ade20k/gcnet_r50-d8_512x512_80k_ade20k_20200614_185146-91a6da41.pth -- Name: gcnet_r101-d8_4xb4-80k_ade20k-512x512 - In Collection: GCNet - Metadata: - backbone: R-101-D8 - crop size: (512,512) - lr schd: 80000 - inference time (ms/im): - - value: 65.79 - hardware: V100 - backend: PyTorch - batch size: 1 - mode: FP32 - resolution: (512,512) - Training Memory (GB): 12.0 - Results: - - Task: Semantic Segmentation - Dataset: ADE20K - Metrics: - mIoU: 42.82 - mIoU(ms+flip): 44.54 - Config: configs/gcnet/gcnet_r101-d8_4xb4-80k_ade20k-512x512.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/gcnet/gcnet_r101-d8_512x512_80k_ade20k/gcnet_r101-d8_512x512_80k_ade20k_20200615_020811-c3fcb6dd.pth -- Name: gcnet_r50-d8_4xb4-160k_ade20k-512x512 - In Collection: GCNet - Metadata: - backbone: R-50-D8 - crop size: (512,512) - lr schd: 160000 - Results: - - Task: Semantic Segmentation - Dataset: ADE20K - Metrics: - mIoU: 42.37 - mIoU(ms+flip): 43.52 - Config: configs/gcnet/gcnet_r50-d8_4xb4-160k_ade20k-512x512.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/gcnet/gcnet_r50-d8_512x512_160k_ade20k/gcnet_r50-d8_512x512_160k_ade20k_20200615_224122-d95f3e1f.pth -- Name: gcnet_r101-d8_4xb4-160k_ade20k-512x512 - In Collection: GCNet - Metadata: - backbone: R-101-D8 - crop size: (512,512) - lr schd: 160000 - Results: - - Task: Semantic Segmentation - Dataset: ADE20K - Metrics: - mIoU: 43.69 - mIoU(ms+flip): 45.21 - Config: configs/gcnet/gcnet_r101-d8_4xb4-160k_ade20k-512x512.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/gcnet/gcnet_r101-d8_512x512_160k_ade20k/gcnet_r101-d8_512x512_160k_ade20k_20200615_225406-615528d7.pth -- Name: gcnet_r50-d8_4xb4-20k_voc12aug-512x512 - In Collection: GCNet - Metadata: - backbone: R-50-D8 - crop size: (512,512) - lr schd: 20000 - inference time (ms/im): - - value: 42.83 - hardware: V100 - backend: PyTorch - batch size: 1 - mode: FP32 - resolution: (512,512) - Training Memory (GB): 5.8 - Results: - - Task: Semantic Segmentation - Dataset: Pascal VOC 2012 + Aug - Metrics: - mIoU: 76.42 - mIoU(ms+flip): 77.51 - Config: configs/gcnet/gcnet_r50-d8_4xb4-20k_voc12aug-512x512.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/gcnet/gcnet_r50-d8_512x512_20k_voc12aug/gcnet_r50-d8_512x512_20k_voc12aug_20200617_165701-3cbfdab1.pth -- Name: gcnet_r101-d8_4xb4-20k_voc12aug-512x512 - In Collection: GCNet - Metadata: - backbone: R-101-D8 - crop size: (512,512) - lr schd: 20000 - inference time (ms/im): - - value: 67.57 - hardware: V100 - backend: PyTorch - batch size: 1 - mode: FP32 - resolution: (512,512) - Training Memory (GB): 9.2 - Results: - - Task: Semantic Segmentation - Dataset: Pascal VOC 2012 + Aug - Metrics: - mIoU: 77.41 - mIoU(ms+flip): 78.56 - Config: configs/gcnet/gcnet_r101-d8_4xb4-20k_voc12aug-512x512.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/gcnet/gcnet_r101-d8_512x512_20k_voc12aug/gcnet_r101-d8_512x512_20k_voc12aug_20200617_165713-6c720aa9.pth -- Name: gcnet_r50-d8_4xb4-40k_voc12aug-512x512 - In Collection: GCNet - Metadata: - backbone: R-50-D8 - crop size: (512,512) - lr schd: 40000 - Results: - - Task: Semantic Segmentation - Dataset: Pascal VOC 2012 + Aug - Metrics: - mIoU: 76.24 - mIoU(ms+flip): 77.63 - Config: configs/gcnet/gcnet_r50-d8_4xb4-40k_voc12aug-512x512.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/gcnet/gcnet_r50-d8_512x512_40k_voc12aug/gcnet_r50-d8_512x512_40k_voc12aug_20200613_195105-9797336d.pth -- Name: gcnet_r101-d8_4xb4-40k_voc12aug-512x512 - In Collection: GCNet - Metadata: - backbone: R-101-D8 - crop size: (512,512) - lr schd: 40000 - Results: - - Task: Semantic Segmentation - Dataset: Pascal VOC 2012 + Aug - Metrics: - mIoU: 77.84 - mIoU(ms+flip): 78.59 - Config: configs/gcnet/gcnet_r101-d8_4xb4-40k_voc12aug-512x512.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/gcnet/gcnet_r101-d8_512x512_40k_voc12aug/gcnet_r101-d8_512x512_40k_voc12aug_20200613_185806-1e38208d.pth diff --git a/configs/gcnet/metafile.yaml b/configs/gcnet/metafile.yaml new file mode 100644 index 0000000000..1f3c4623a0 --- /dev/null +++ b/configs/gcnet/metafile.yaml @@ -0,0 +1,391 @@ +Collections: +- Name: GCNet + License: Apache License 2.0 + Metadata: + Training Data: + - Cityscapes + - ADE20K + - Pascal VOC 2012 + Aug + Paper: + Title: 'GCNet: Non-local Networks Meet Squeeze-Excitation Networks and Beyond' + URL: https://arxiv.org/abs/1904.11492 + README: configs/gcnet/README.md + Frameworks: + - PyTorch +Models: +- Name: gcnet_r50-d8_4xb2-40k_cityscapes-512x1024 + In Collection: GCNet + Results: + Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 77.69 + mIoU(ms+flip): 78.56 + Config: configs/gcnet/gcnet_r50-d8_4xb2-40k_cityscapes-512x1024.py + Metadata: + Training Data: Cityscapes + Batch Size: 8 + Architecture: + - R-50-D8 + - GCNet + Training Resources: 4x V100 GPUS + Memory (GB): 5.8 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/gcnet/gcnet_r50-d8_512x1024_40k_cityscapes/gcnet_r50-d8_512x1024_40k_cityscapes_20200618_074436-4b0fd17b.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/gcnet/gcnet_r50-d8_512x1024_40k_cityscapes/gcnet_r50-d8_512x1024_40k_cityscapes_20200618_074436.log.json + Paper: + Title: 'GCNet: Non-local Networks Meet Squeeze-Excitation Networks and Beyond' + URL: https://arxiv.org/abs/1904.11492 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/gc_head.py#L10 + Framework: PyTorch +- Name: gcnet_r101-d8_4xb2-40k_cityscapes-512x1024 + In Collection: GCNet + Results: + Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 78.28 + mIoU(ms+flip): 79.34 + Config: configs/gcnet/gcnet_r101-d8_4xb2-40k_cityscapes-512x1024.py + Metadata: + Training Data: Cityscapes + Batch Size: 8 + Architecture: + - R-101-D8 + - GCNet + Training Resources: 4x V100 GPUS + Memory (GB): 9.2 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/gcnet/gcnet_r101-d8_512x1024_40k_cityscapes/gcnet_r101-d8_512x1024_40k_cityscapes_20200618_074436-5e62567f.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/gcnet/gcnet_r101-d8_512x1024_40k_cityscapes/gcnet_r101-d8_512x1024_40k_cityscapes_20200618_074436.log.json + Paper: + Title: 'GCNet: Non-local Networks Meet Squeeze-Excitation Networks and Beyond' + URL: https://arxiv.org/abs/1904.11492 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/gc_head.py#L10 + Framework: PyTorch +- Name: gcnet_r50-d8_4xb2-40k_cityscapes-769x769 + In Collection: GCNet + Results: + Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 78.12 + mIoU(ms+flip): 80.09 + Config: configs/gcnet/gcnet_r50-d8_4xb2-40k_cityscapes-769x769.py + Metadata: + Training Data: Cityscapes + Batch Size: 8 + Architecture: + - R-50-D8 + - GCNet + Training Resources: 4x V100 GPUS + Memory (GB): 6.5 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/gcnet/gcnet_r50-d8_769x769_40k_cityscapes/gcnet_r50-d8_769x769_40k_cityscapes_20200618_182814-a26f4471.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/gcnet/gcnet_r50-d8_769x769_40k_cityscapes/gcnet_r50-d8_769x769_40k_cityscapes_20200618_182814.log.json + Paper: + Title: 'GCNet: Non-local Networks Meet Squeeze-Excitation Networks and Beyond' + URL: https://arxiv.org/abs/1904.11492 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/gc_head.py#L10 + Framework: PyTorch +- Name: gcnet_r101-d8_4xb2-40k_cityscapes-769x769 + In Collection: GCNet + Results: + Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 78.95 + mIoU(ms+flip): 80.71 + Config: configs/gcnet/gcnet_r101-d8_4xb2-40k_cityscapes-769x769.py + Metadata: + Training Data: Cityscapes + Batch Size: 8 + Architecture: + - R-101-D8 + - GCNet + Training Resources: 4x V100 GPUS + Memory (GB): 10.5 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/gcnet/gcnet_r101-d8_769x769_40k_cityscapes/gcnet_r101-d8_769x769_40k_cityscapes_20200619_092550-ca4f0a84.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/gcnet/gcnet_r101-d8_769x769_40k_cityscapes/gcnet_r101-d8_769x769_40k_cityscapes_20200619_092550.log.json + Paper: + Title: 'GCNet: Non-local Networks Meet Squeeze-Excitation Networks and Beyond' + URL: https://arxiv.org/abs/1904.11492 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/gc_head.py#L10 + Framework: PyTorch +- Name: gcnet_r50-d8_4xb2-80k_cityscapes-512x1024 + In Collection: GCNet + Results: + Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 78.48 + mIoU(ms+flip): 80.01 + Config: configs/gcnet/gcnet_r50-d8_4xb2-80k_cityscapes-512x1024.py + Metadata: + Training Data: Cityscapes + Batch Size: 8 + Architecture: + - R-50-D8 + - GCNet + Training Resources: 4x V100 GPUS + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/gcnet/gcnet_r50-d8_512x1024_80k_cityscapes/gcnet_r50-d8_512x1024_80k_cityscapes_20200618_074450-ef8f069b.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/gcnet/gcnet_r50-d8_512x1024_80k_cityscapes/gcnet_r50-d8_512x1024_80k_cityscapes_20200618_074450.log.json + Paper: + Title: 'GCNet: Non-local Networks Meet Squeeze-Excitation Networks and Beyond' + URL: https://arxiv.org/abs/1904.11492 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/gc_head.py#L10 + Framework: PyTorch +- Name: gcnet_r101-d8_4xb2-80k_cityscapes-512x1024 + In Collection: GCNet + Results: + Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 79.03 + mIoU(ms+flip): 79.84 + Config: configs/gcnet/gcnet_r101-d8_4xb2-80k_cityscapes-512x1024.py + Metadata: + Training Data: Cityscapes + Batch Size: 8 + Architecture: + - R-101-D8 + - GCNet + Training Resources: 4x V100 GPUS + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/gcnet/gcnet_r101-d8_512x1024_80k_cityscapes/gcnet_r101-d8_512x1024_80k_cityscapes_20200618_074450-778ebf69.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/gcnet/gcnet_r101-d8_512x1024_80k_cityscapes/gcnet_r101-d8_512x1024_80k_cityscapes_20200618_074450.log.json + Paper: + Title: 'GCNet: Non-local Networks Meet Squeeze-Excitation Networks and Beyond' + URL: https://arxiv.org/abs/1904.11492 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/gc_head.py#L10 + Framework: PyTorch +- Name: gcnet_r50-d8_4xb2-80k_cityscapes-769x769 + In Collection: GCNet + Results: + Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 78.68 + mIoU(ms+flip): 80.66 + Config: configs/gcnet/gcnet_r50-d8_4xb2-80k_cityscapes-769x769.py + Metadata: + Training Data: Cityscapes + Batch Size: 8 + Architecture: + - R-50-D8 + - GCNet + Training Resources: 4x V100 GPUS + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/gcnet/gcnet_r50-d8_769x769_80k_cityscapes/gcnet_r50-d8_769x769_80k_cityscapes_20200619_092516-4839565b.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/gcnet/gcnet_r50-d8_769x769_80k_cityscapes/gcnet_r50-d8_769x769_80k_cityscapes_20200619_092516.log.json + Paper: + Title: 'GCNet: Non-local Networks Meet Squeeze-Excitation Networks and Beyond' + URL: https://arxiv.org/abs/1904.11492 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/gc_head.py#L10 + Framework: PyTorch +- Name: gcnet_r101-d8_4xb2-80k_cityscapes-769x769 + In Collection: GCNet + Results: + Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 79.18 + mIoU(ms+flip): 80.71 + Config: configs/gcnet/gcnet_r101-d8_4xb2-80k_cityscapes-769x769.py + Metadata: + Training Data: Cityscapes + Batch Size: 8 + Architecture: + - R-101-D8 + - GCNet + Training Resources: 4x V100 GPUS + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/gcnet/gcnet_r101-d8_769x769_80k_cityscapes/gcnet_r101-d8_769x769_80k_cityscapes_20200619_092628-8e043423.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/gcnet/gcnet_r101-d8_769x769_80k_cityscapes/gcnet_r101-d8_769x769_80k_cityscapes_20200619_092628.log.json + Paper: + Title: 'GCNet: Non-local Networks Meet Squeeze-Excitation Networks and Beyond' + URL: https://arxiv.org/abs/1904.11492 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/gc_head.py#L10 + Framework: PyTorch +- Name: gcnet_r50-d8_4xb4-80k_ade20k-512x512 + In Collection: GCNet + Results: + Task: Semantic Segmentation + Dataset: ADE20K + Metrics: + mIoU: 41.47 + mIoU(ms+flip): 42.85 + Config: configs/gcnet/gcnet_r50-d8_4xb4-80k_ade20k-512x512.py + Metadata: + Training Data: ADE20K + Batch Size: 16 + Architecture: + - R-50-D8 + - GCNet + Training Resources: 4x V100 GPUS + Memory (GB): 8.5 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/gcnet/gcnet_r50-d8_512x512_80k_ade20k/gcnet_r50-d8_512x512_80k_ade20k_20200614_185146-91a6da41.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/gcnet/gcnet_r50-d8_512x512_80k_ade20k/gcnet_r50-d8_512x512_80k_ade20k_20200614_185146.log.json + Paper: + Title: 'GCNet: Non-local Networks Meet Squeeze-Excitation Networks and Beyond' + URL: https://arxiv.org/abs/1904.11492 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/gc_head.py#L10 + Framework: PyTorch +- Name: gcnet_r101-d8_4xb4-80k_ade20k-512x512 + In Collection: GCNet + Results: + Task: Semantic Segmentation + Dataset: ADE20K + Metrics: + mIoU: 42.82 + mIoU(ms+flip): 44.54 + Config: configs/gcnet/gcnet_r101-d8_4xb4-80k_ade20k-512x512.py + Metadata: + Training Data: ADE20K + Batch Size: 16 + Architecture: + - R-101-D8 + - GCNet + Training Resources: 4x V100 GPUS + Memory (GB): 12.0 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/gcnet/gcnet_r101-d8_512x512_80k_ade20k/gcnet_r101-d8_512x512_80k_ade20k_20200615_020811-c3fcb6dd.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/gcnet/gcnet_r101-d8_512x512_80k_ade20k/gcnet_r101-d8_512x512_80k_ade20k_20200615_020811.log.json + Paper: + Title: 'GCNet: Non-local Networks Meet Squeeze-Excitation Networks and Beyond' + URL: https://arxiv.org/abs/1904.11492 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/gc_head.py#L10 + Framework: PyTorch +- Name: gcnet_r50-d8_4xb4-160k_ade20k-512x512 + In Collection: GCNet + Results: + Task: Semantic Segmentation + Dataset: ADE20K + Metrics: + mIoU: 42.37 + mIoU(ms+flip): 43.52 + Config: configs/gcnet/gcnet_r50-d8_4xb4-160k_ade20k-512x512.py + Metadata: + Training Data: ADE20K + Batch Size: 16 + Architecture: + - R-50-D8 + - GCNet + Training Resources: 4x V100 GPUS + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/gcnet/gcnet_r50-d8_512x512_160k_ade20k/gcnet_r50-d8_512x512_160k_ade20k_20200615_224122-d95f3e1f.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/gcnet/gcnet_r50-d8_512x512_160k_ade20k/gcnet_r50-d8_512x512_160k_ade20k_20200615_224122.log.json + Paper: + Title: 'GCNet: Non-local Networks Meet Squeeze-Excitation Networks and Beyond' + URL: https://arxiv.org/abs/1904.11492 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/gc_head.py#L10 + Framework: PyTorch +- Name: gcnet_r101-d8_4xb4-160k_ade20k-512x512 + In Collection: GCNet + Results: + Task: Semantic Segmentation + Dataset: ADE20K + Metrics: + mIoU: 43.69 + mIoU(ms+flip): 45.21 + Config: configs/gcnet/gcnet_r101-d8_4xb4-160k_ade20k-512x512.py + Metadata: + Training Data: ADE20K + Batch Size: 16 + Architecture: + - R-101-D8 + - GCNet + Training Resources: 4x V100 GPUS + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/gcnet/gcnet_r101-d8_512x512_160k_ade20k/gcnet_r101-d8_512x512_160k_ade20k_20200615_225406-615528d7.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/gcnet/gcnet_r101-d8_512x512_160k_ade20k/gcnet_r101-d8_512x512_160k_ade20k_20200615_225406.log.json + Paper: + Title: 'GCNet: Non-local Networks Meet Squeeze-Excitation Networks and Beyond' + URL: https://arxiv.org/abs/1904.11492 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/gc_head.py#L10 + Framework: PyTorch +- Name: gcnet_r50-d8_4xb4-20k_voc12aug-512x512 + In Collection: GCNet + Results: + Task: Semantic Segmentation + Dataset: Pascal VOC 2012 + Aug + Metrics: + mIoU: 76.42 + mIoU(ms+flip): 77.51 + Config: configs/gcnet/gcnet_r50-d8_4xb4-20k_voc12aug-512x512.py + Metadata: + Training Data: Pascal VOC 2012 + Aug + Batch Size: 16 + Architecture: + - R-50-D8 + - GCNet + Training Resources: 4x V100 GPUS + Memory (GB): 5.8 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/gcnet/gcnet_r50-d8_512x512_20k_voc12aug/gcnet_r50-d8_512x512_20k_voc12aug_20200617_165701-3cbfdab1.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/gcnet/gcnet_r50-d8_512x512_20k_voc12aug/gcnet_r50-d8_512x512_20k_voc12aug_20200617_165701.log.json + Paper: + Title: 'GCNet: Non-local Networks Meet Squeeze-Excitation Networks and Beyond' + URL: https://arxiv.org/abs/1904.11492 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/gc_head.py#L10 + Framework: PyTorch +- Name: gcnet_r101-d8_4xb4-20k_voc12aug-512x512 + In Collection: GCNet + Results: + Task: Semantic Segmentation + Dataset: Pascal VOC 2012 + Aug + Metrics: + mIoU: 77.41 + mIoU(ms+flip): 78.56 + Config: configs/gcnet/gcnet_r101-d8_4xb4-20k_voc12aug-512x512.py + Metadata: + Training Data: Pascal VOC 2012 + Aug + Batch Size: 16 + Architecture: + - R-101-D8 + - GCNet + Training Resources: 4x V100 GPUS + Memory (GB): 9.2 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/gcnet/gcnet_r101-d8_512x512_20k_voc12aug/gcnet_r101-d8_512x512_20k_voc12aug_20200617_165713-6c720aa9.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/gcnet/gcnet_r101-d8_512x512_20k_voc12aug/gcnet_r101-d8_512x512_20k_voc12aug_20200617_165713.log.json + Paper: + Title: 'GCNet: Non-local Networks Meet Squeeze-Excitation Networks and Beyond' + URL: https://arxiv.org/abs/1904.11492 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/gc_head.py#L10 + Framework: PyTorch +- Name: gcnet_r50-d8_4xb4-40k_voc12aug-512x512 + In Collection: GCNet + Results: + Task: Semantic Segmentation + Dataset: Pascal VOC 2012 + Aug + Metrics: + mIoU: 76.24 + mIoU(ms+flip): 77.63 + Config: configs/gcnet/gcnet_r50-d8_4xb4-40k_voc12aug-512x512.py + Metadata: + Training Data: Pascal VOC 2012 + Aug + Batch Size: 16 + Architecture: + - R-50-D8 + - GCNet + Training Resources: 4x V100 GPUS + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/gcnet/gcnet_r50-d8_512x512_40k_voc12aug/gcnet_r50-d8_512x512_40k_voc12aug_20200613_195105-9797336d.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/gcnet/gcnet_r50-d8_512x512_40k_voc12aug/gcnet_r50-d8_512x512_40k_voc12aug_20200613_195105.log.json + Paper: + Title: 'GCNet: Non-local Networks Meet Squeeze-Excitation Networks and Beyond' + URL: https://arxiv.org/abs/1904.11492 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/gc_head.py#L10 + Framework: PyTorch +- Name: gcnet_r101-d8_4xb4-40k_voc12aug-512x512 + In Collection: GCNet + Results: + Task: Semantic Segmentation + Dataset: Pascal VOC 2012 + Aug + Metrics: + mIoU: 77.84 + mIoU(ms+flip): 78.59 + Config: configs/gcnet/gcnet_r101-d8_4xb4-40k_voc12aug-512x512.py + Metadata: + Training Data: Pascal VOC 2012 + Aug + Batch Size: 16 + Architecture: + - R-101-D8 + - GCNet + Training Resources: 4x V100 GPUS + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/gcnet/gcnet_r101-d8_512x512_40k_voc12aug/gcnet_r101-d8_512x512_40k_voc12aug_20200613_185806-1e38208d.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/gcnet/gcnet_r101-d8_512x512_40k_voc12aug/gcnet_r101-d8_512x512_40k_voc12aug_20200613_185806.log.json + Paper: + Title: 'GCNet: Non-local Networks Meet Squeeze-Excitation Networks and Beyond' + URL: https://arxiv.org/abs/1904.11492 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/gc_head.py#L10 + Framework: PyTorch diff --git a/configs/hrnet/README.md b/configs/hrnet/README.md index f85683b63f..38a6bd0e76 100644 --- a/configs/hrnet/README.md +++ b/configs/hrnet/README.md @@ -1,6 +1,6 @@ # HRNet -[Deep High-Resolution Representation Learning for Human Pose Estimation](https://arxiv.org/abs/1908.07919) +> [Deep High-Resolution Representation Learning for Human Pose Estimation](https://arxiv.org/abs/1908.07919) ## Introduction @@ -22,101 +22,101 @@ High-resolution representations are essential for position-sensitive vision prob -## Citation - -```bibtext -@inproceedings{SunXLW19, - title={Deep High-Resolution Representation Learning for Human Pose Estimation}, - author={Ke Sun and Bin Xiao and Dong Liu and Jingdong Wang}, - booktitle={CVPR}, - year={2019} -} -``` - ## Results and models ### Cityscapes -| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | mIoU | mIoU(ms+flip) | config | download | -| ------ | ------------------ | --------- | ------: | -------- | -------------- | ----: | ------------: | ---------------------------------------------------------------------------------------------------------------------------- | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | -| FCN | HRNetV2p-W18-Small | 512x1024 | 40000 | 1.7 | 23.74 | 73.86 | 75.91 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/hrnet/fcn_hr18s_4xb2-40k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr18s_512x1024_40k_cityscapes/fcn_hr18s_512x1024_40k_cityscapes_20200601_014216-93db27d0.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr18s_512x1024_40k_cityscapes/fcn_hr18s_512x1024_40k_cityscapes_20200601_014216.log.json) | -| FCN | HRNetV2p-W18 | 512x1024 | 40000 | 2.9 | 12.97 | 77.19 | 78.92 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/hrnet/fcn_hr18_4xb2-40k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr18_512x1024_40k_cityscapes/fcn_hr18_512x1024_40k_cityscapes_20200601_014216-f196fb4e.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr18_512x1024_40k_cityscapes/fcn_hr18_512x1024_40k_cityscapes_20200601_014216.log.json) | -| FCN | HRNetV2p-W48 | 512x1024 | 40000 | 6.2 | 6.42 | 78.48 | 79.69 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/hrnet/fcn_hr48_4xb2-40k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr48_512x1024_40k_cityscapes/fcn_hr48_512x1024_40k_cityscapes_20200601_014240-a989b146.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr48_512x1024_40k_cityscapes/fcn_hr48_512x1024_40k_cityscapes_20200601_014240.log.json) | -| FCN | HRNetV2p-W18-Small | 512x1024 | 80000 | - | - | 75.31 | 77.48 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/hrnet/fcn_hr18s_4xb2-80k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr18s_512x1024_80k_cityscapes/fcn_hr18s_512x1024_80k_cityscapes_20200601_202700-1462b75d.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr18s_512x1024_80k_cityscapes/fcn_hr18s_512x1024_80k_cityscapes_20200601_202700.log.json) | -| FCN | HRNetV2p-W18 | 512x1024 | 80000 | - | - | 78.65 | 80.35 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/hrnet/fcn_hr18_4xb2-80k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr18_512x1024_80k_cityscapes/fcn_hr18_512x1024_80k_cityscapes_20200601_223255-4e7b345e.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr18_512x1024_80k_cityscapes/fcn_hr18_512x1024_80k_cityscapes_20200601_223255.log.json) | -| FCN | HRNetV2p-W48 | 512x1024 | 80000 | - | - | 79.93 | 80.72 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/hrnet/fcn_hr48_4xb2-80k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr48_512x1024_80k_cityscapes/fcn_hr48_512x1024_80k_cityscapes_20200601_202606-58ea95d6.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr48_512x1024_80k_cityscapes/fcn_hr48_512x1024_80k_cityscapes_20200601_202606.log.json) | -| FCN | HRNetV2p-W18-Small | 512x1024 | 160000 | - | - | 76.31 | 78.31 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/hrnet/fcn_hr18s_4xb2-160k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr18s_512x1024_160k_cityscapes/fcn_hr18s_512x1024_160k_cityscapes_20200602_190901-4a0797ea.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr18s_512x1024_160k_cityscapes/fcn_hr18s_512x1024_160k_cityscapes_20200602_190901.log.json) | -| FCN | HRNetV2p-W18 | 512x1024 | 160000 | - | - | 78.80 | 80.74 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/hrnet/fcn_hr18_4xb2-160k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr18_512x1024_160k_cityscapes/fcn_hr18_512x1024_160k_cityscapes_20200602_190822-221e4a4f.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr18_512x1024_160k_cityscapes/fcn_hr18_512x1024_160k_cityscapes_20200602_190822.log.json) | -| FCN | HRNetV2p-W48 | 512x1024 | 160000 | - | - | 80.65 | 81.92 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/hrnet/fcn_hr48_4xb2-160k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr48_512x1024_160k_cityscapes/fcn_hr48_512x1024_160k_cityscapes_20200602_190946-59b7973e.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr48_512x1024_160k_cityscapes/fcn_hr48_512x1024_160k_cityscapes_20200602_190946.log.json) | +| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | Device | mIoU | mIoU(ms+flip) | config | download | +| ------ | ------------------ | --------- | ------: | -------- | -------------- | ------ | ----: | ------------: | ---------------------------------------------------------------------------------------------------------------------------- | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | +| FCN | HRNetV2p-W18-Small | 512x1024 | 40000 | 1.7 | 23.74 | V100 | 73.86 | 75.91 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/hrnet/fcn_hr18s_4xb2-40k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr18s_512x1024_40k_cityscapes/fcn_hr18s_512x1024_40k_cityscapes_20200601_014216-93db27d0.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr18s_512x1024_40k_cityscapes/fcn_hr18s_512x1024_40k_cityscapes_20200601_014216.log.json) | +| FCN | HRNetV2p-W18 | 512x1024 | 40000 | 2.9 | 12.97 | V100 | 77.19 | 78.92 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/hrnet/fcn_hr18_4xb2-40k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr18_512x1024_40k_cityscapes/fcn_hr18_512x1024_40k_cityscapes_20200601_014216-f196fb4e.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr18_512x1024_40k_cityscapes/fcn_hr18_512x1024_40k_cityscapes_20200601_014216.log.json) | +| FCN | HRNetV2p-W48 | 512x1024 | 40000 | 6.2 | 6.42 | V100 | 78.48 | 79.69 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/hrnet/fcn_hr48_4xb2-40k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr48_512x1024_40k_cityscapes/fcn_hr48_512x1024_40k_cityscapes_20200601_014240-a989b146.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr48_512x1024_40k_cityscapes/fcn_hr48_512x1024_40k_cityscapes_20200601_014240.log.json) | +| FCN | HRNetV2p-W18-Small | 512x1024 | 80000 | - | - | V100 | 75.31 | 77.48 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/hrnet/fcn_hr18s_4xb2-80k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr18s_512x1024_80k_cityscapes/fcn_hr18s_512x1024_80k_cityscapes_20200601_202700-1462b75d.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr18s_512x1024_80k_cityscapes/fcn_hr18s_512x1024_80k_cityscapes_20200601_202700.log.json) | +| FCN | HRNetV2p-W18 | 512x1024 | 80000 | - | - | V100 | 78.65 | 80.35 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/hrnet/fcn_hr18_4xb2-80k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr18_512x1024_80k_cityscapes/fcn_hr18_512x1024_80k_cityscapes_20200601_223255-4e7b345e.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr18_512x1024_80k_cityscapes/fcn_hr18_512x1024_80k_cityscapes_20200601_223255.log.json) | +| FCN | HRNetV2p-W48 | 512x1024 | 80000 | - | - | V100 | 79.93 | 80.72 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/hrnet/fcn_hr48_4xb2-80k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr48_512x1024_80k_cityscapes/fcn_hr48_512x1024_80k_cityscapes_20200601_202606-58ea95d6.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr48_512x1024_80k_cityscapes/fcn_hr48_512x1024_80k_cityscapes_20200601_202606.log.json) | +| FCN | HRNetV2p-W18-Small | 512x1024 | 160000 | - | - | V100 | 76.31 | 78.31 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/hrnet/fcn_hr18s_4xb2-160k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr18s_512x1024_160k_cityscapes/fcn_hr18s_512x1024_160k_cityscapes_20200602_190901-4a0797ea.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr18s_512x1024_160k_cityscapes/fcn_hr18s_512x1024_160k_cityscapes_20200602_190901.log.json) | +| FCN | HRNetV2p-W18 | 512x1024 | 160000 | - | - | V100 | 78.80 | 80.74 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/hrnet/fcn_hr18_4xb2-160k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr18_512x1024_160k_cityscapes/fcn_hr18_512x1024_160k_cityscapes_20200602_190822-221e4a4f.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr18_512x1024_160k_cityscapes/fcn_hr18_512x1024_160k_cityscapes_20200602_190822.log.json) | +| FCN | HRNetV2p-W48 | 512x1024 | 160000 | - | - | V100 | 80.65 | 81.92 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/hrnet/fcn_hr48_4xb2-160k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr48_512x1024_160k_cityscapes/fcn_hr48_512x1024_160k_cityscapes_20200602_190946-59b7973e.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr48_512x1024_160k_cityscapes/fcn_hr48_512x1024_160k_cityscapes_20200602_190946.log.json) | ### ADE20K -| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | mIoU | mIoU(ms+flip) | config | download | -| ------ | ------------------ | --------- | ------: | -------- | -------------- | ----: | ------------: | ----------------------------------------------------------------------------------------------------------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ | -| FCN | HRNetV2p-W18-Small | 512x512 | 80000 | 3.8 | 38.66 | 31.38 | 32.45 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/hrnet/fcn_hr18s_4xb4-80k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr18s_512x512_80k_ade20k/fcn_hr18s_512x512_80k_ade20k_20200614_144345-77fc814a.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr18s_512x512_80k_ade20k/fcn_hr18s_512x512_80k_ade20k_20200614_144345.log.json) | -| FCN | HRNetV2p-W18 | 512x512 | 80000 | 4.9 | 22.57 | 36.27 | 37.28 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/hrnet/fcn_hr18_4xb4-80k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr18_512x512_80k_ade20k/fcn_hr18_512x512_80k_ade20k_20210827_114910-6c9382c0.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr18_512x512_80k_ade20k/fcn_hr18_512x512_80k_ade20k_20210827_114910.log.json) | -| FCN | HRNetV2p-W48 | 512x512 | 80000 | 8.2 | 21.23 | 41.90 | 43.27 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/hrnet/fcn_hr48_4xb4-80k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr48_512x512_80k_ade20k/fcn_hr48_512x512_80k_ade20k_20200614_193946-7ba5258d.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr48_512x512_80k_ade20k/fcn_hr48_512x512_80k_ade20k_20200614_193946.log.json) | -| FCN | HRNetV2p-W18-Small | 512x512 | 160000 | - | - | 33.07 | 34.56 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/hrnet/fcn_hr18s_4xb4-160k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr18s_512x512_160k_ade20k/fcn_hr18s_512x512_160k_ade20k_20210829_174739-f1e7c2e7.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr18s_512x512_160k_ade20k/fcn_hr18s_512x512_160k_ade20k_20210829_174739.log.json) | -| FCN | HRNetV2p-W18 | 512x512 | 160000 | - | - | 36.79 | 38.58 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/hrnet/fcn_hr18_4xb4-160k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr18_512x512_160k_ade20k/fcn_hr18_512x512_160k_ade20k_20200614_214426-ca961836.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr18_512x512_160k_ade20k/fcn_hr18_512x512_160k_ade20k_20200614_214426.log.json) | -| FCN | HRNetV2p-W48 | 512x512 | 160000 | - | - | 42.02 | 43.86 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/hrnet/fcn_hr48_4xb4-160k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr48_512x512_160k_ade20k/fcn_hr48_512x512_160k_ade20k_20200614_214407-a52fc02c.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr48_512x512_160k_ade20k/fcn_hr48_512x512_160k_ade20k_20200614_214407.log.json) | +| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | Device | mIoU | mIoU(ms+flip) | config | download | +| ------ | ------------------ | --------- | ------: | -------- | -------------- | ------ | ----: | ------------: | ----------------------------------------------------------------------------------------------------------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ | +| FCN | HRNetV2p-W18-Small | 512x512 | 80000 | 3.8 | 38.66 | V100 | 31.38 | 32.45 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/hrnet/fcn_hr18s_4xb4-80k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr18s_512x512_80k_ade20k/fcn_hr18s_512x512_80k_ade20k_20200614_144345-77fc814a.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr18s_512x512_80k_ade20k/fcn_hr18s_512x512_80k_ade20k_20200614_144345.log.json) | +| FCN | HRNetV2p-W18 | 512x512 | 80000 | 4.9 | 22.57 | V100 | 36.27 | 37.28 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/hrnet/fcn_hr18_4xb4-80k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr18_512x512_80k_ade20k/fcn_hr18_512x512_80k_ade20k_20210827_114910-6c9382c0.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr18_512x512_80k_ade20k/fcn_hr18_512x512_80k_ade20k_20210827_114910.log.json) | +| FCN | HRNetV2p-W48 | 512x512 | 80000 | 8.2 | 21.23 | V100 | 41.90 | 43.27 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/hrnet/fcn_hr48_4xb4-80k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr48_512x512_80k_ade20k/fcn_hr48_512x512_80k_ade20k_20200614_193946-7ba5258d.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr48_512x512_80k_ade20k/fcn_hr48_512x512_80k_ade20k_20200614_193946.log.json) | +| FCN | HRNetV2p-W18-Small | 512x512 | 160000 | - | - | V100 | 33.07 | 34.56 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/hrnet/fcn_hr18s_4xb4-160k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr18s_512x512_160k_ade20k/fcn_hr18s_512x512_160k_ade20k_20210829_174739-f1e7c2e7.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr18s_512x512_160k_ade20k/fcn_hr18s_512x512_160k_ade20k_20210829_174739.log.json) | +| FCN | HRNetV2p-W18 | 512x512 | 160000 | - | - | V100 | 36.79 | 38.58 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/hrnet/fcn_hr18_4xb4-160k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr18_512x512_160k_ade20k/fcn_hr18_512x512_160k_ade20k_20200614_214426-ca961836.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr18_512x512_160k_ade20k/fcn_hr18_512x512_160k_ade20k_20200614_214426.log.json) | +| FCN | HRNetV2p-W48 | 512x512 | 160000 | - | - | V100 | 42.02 | 43.86 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/hrnet/fcn_hr48_4xb4-160k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr48_512x512_160k_ade20k/fcn_hr48_512x512_160k_ade20k_20200614_214407-a52fc02c.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr48_512x512_160k_ade20k/fcn_hr48_512x512_160k_ade20k_20200614_214407.log.json) | ### Pascal VOC 2012 + Aug -| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | mIoU | mIoU(ms+flip) | config | download | -| ------ | ------------------ | --------- | ------: | -------- | -------------- | ----: | ------------: | ------------------------------------------------------------------------------------------------------------------------ | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | -| FCN | HRNetV2p-W18-Small | 512x512 | 20000 | 1.8 | 43.36 | 65.5 | 68.89 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/hrnet/fcn_hr18s_4xb4-20k_voc12aug-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr18s_512x512_20k_voc12aug/fcn_hr18s_512x512_20k_voc12aug_20210829_174910-0aceadb4.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr18s_512x512_20k_voc12aug/fcn_hr18s_512x512_20k_voc12aug_20210829_174910.log.json) | -| FCN | HRNetV2p-W18 | 512x512 | 20000 | 2.9 | 23.48 | 72.30 | 74.71 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/hrnet/fcn_hr18_4xb4-20k_voc12aug-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr18_512x512_20k_voc12aug/fcn_hr18_512x512_20k_voc12aug_20200617_224503-488d45f7.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr18_512x512_20k_voc12aug/fcn_hr18_512x512_20k_voc12aug_20200617_224503.log.json) | -| FCN | HRNetV2p-W48 | 512x512 | 20000 | 6.2 | 22.05 | 75.87 | 78.58 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/hrnet/fcn_hr48_4xb4-20k_voc12aug-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr48_512x512_20k_voc12aug/fcn_hr48_512x512_20k_voc12aug_20200617_224419-89de05cd.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr48_512x512_20k_voc12aug/fcn_hr48_512x512_20k_voc12aug_20200617_224419.log.json) | -| FCN | HRNetV2p-W18-Small | 512x512 | 40000 | - | - | 66.61 | 70.00 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/hrnet/fcn_hr18s_4xb4-40k_voc12aug-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr18s_512x512_40k_voc12aug/fcn_hr18s_512x512_40k_voc12aug_20200614_000648-4f8d6e7f.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr18s_512x512_40k_voc12aug/fcn_hr18s_512x512_40k_voc12aug_20200614_000648.log.json) | -| FCN | HRNetV2p-W18 | 512x512 | 40000 | - | - | 72.90 | 75.59 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/hrnet/fcn_hr18_4xb4-40k_voc12aug-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr18_512x512_40k_voc12aug/fcn_hr18_512x512_40k_voc12aug_20200613_224401-1b4b76cd.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr18_512x512_40k_voc12aug/fcn_hr18_512x512_40k_voc12aug_20200613_224401.log.json) | -| FCN | HRNetV2p-W48 | 512x512 | 40000 | - | - | 76.24 | 78.49 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/hrnet/fcn_hr48_4xb4-40k_voc12aug-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr48_512x512_40k_voc12aug/fcn_hr48_512x512_40k_voc12aug_20200613_222111-1b0f18bc.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr48_512x512_40k_voc12aug/fcn_hr48_512x512_40k_voc12aug_20200613_222111.log.json) | +| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | Device | mIoU | mIoU(ms+flip) | config | download | +| ------ | ------------------ | --------- | ------: | -------- | -------------- | ------ | ----: | ------------: | ------------------------------------------------------------------------------------------------------------------------ | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | +| FCN | HRNetV2p-W18-Small | 512x512 | 20000 | 1.8 | 43.36 | V100 | 65.5 | 68.89 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/hrnet/fcn_hr18s_4xb4-20k_voc12aug-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr18s_512x512_20k_voc12aug/fcn_hr18s_512x512_20k_voc12aug_20210829_174910-0aceadb4.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr18s_512x512_20k_voc12aug/fcn_hr18s_512x512_20k_voc12aug_20210829_174910.log.json) | +| FCN | HRNetV2p-W18 | 512x512 | 20000 | 2.9 | 23.48 | V100 | 72.30 | 74.71 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/hrnet/fcn_hr18_4xb4-20k_voc12aug-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr18_512x512_20k_voc12aug/fcn_hr18_512x512_20k_voc12aug_20200617_224503-488d45f7.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr18_512x512_20k_voc12aug/fcn_hr18_512x512_20k_voc12aug_20200617_224503.log.json) | +| FCN | HRNetV2p-W48 | 512x512 | 20000 | 6.2 | 22.05 | V100 | 75.87 | 78.58 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/hrnet/fcn_hr48_4xb4-20k_voc12aug-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr48_512x512_20k_voc12aug/fcn_hr48_512x512_20k_voc12aug_20200617_224419-89de05cd.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr48_512x512_20k_voc12aug/fcn_hr48_512x512_20k_voc12aug_20200617_224419.log.json) | +| FCN | HRNetV2p-W18-Small | 512x512 | 40000 | - | - | V100 | 66.61 | 70.00 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/hrnet/fcn_hr18s_4xb4-40k_voc12aug-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr18s_512x512_40k_voc12aug/fcn_hr18s_512x512_40k_voc12aug_20200614_000648-4f8d6e7f.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr18s_512x512_40k_voc12aug/fcn_hr18s_512x512_40k_voc12aug_20200614_000648.log.json) | +| FCN | HRNetV2p-W18 | 512x512 | 40000 | - | - | V100 | 72.90 | 75.59 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/hrnet/fcn_hr18_4xb4-40k_voc12aug-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr18_512x512_40k_voc12aug/fcn_hr18_512x512_40k_voc12aug_20200613_224401-1b4b76cd.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr18_512x512_40k_voc12aug/fcn_hr18_512x512_40k_voc12aug_20200613_224401.log.json) | +| FCN | HRNetV2p-W48 | 512x512 | 40000 | - | - | V100 | 76.24 | 78.49 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/hrnet/fcn_hr48_4xb4-40k_voc12aug-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr48_512x512_40k_voc12aug/fcn_hr48_512x512_40k_voc12aug_20200613_222111-1b0f18bc.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr48_512x512_40k_voc12aug/fcn_hr48_512x512_40k_voc12aug_20200613_222111.log.json) | ### Pascal Context -| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | mIoU | mIoU(ms+flip) | config | download | -| ------ | ------------ | --------- | ------: | -------- | -------------- | ----: | ------------: | ----------------------------------------------------------------------------------------------------------------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ | -| FCN | HRNetV2p-W48 | 480x480 | 40000 | 6.1 | 8.86 | 45.14 | 47.42 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/hrnet/fcn_hr48_4xb4-40k_pascal-context-480x480.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr48_480x480_40k_pascal_context/fcn_hr48_480x480_40k_pascal_context_20200911_164852-667d00b0.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr48_480x480_40k_pascal_context/fcn_hr48_480x480_40k_pascal_context-20200911_164852.log.json) | -| FCN | HRNetV2p-W48 | 480x480 | 80000 | - | - | 45.84 | 47.84 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/hrnet/fcn_hr48_4xb4-80k_pascal-context-480x480.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr48_480x480_80k_pascal_context/fcn_hr48_480x480_80k_pascal_context_20200911_155322-847a6711.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr48_480x480_80k_pascal_context/fcn_hr48_480x480_80k_pascal_context-20200911_155322.log.json) | +| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | Device | mIoU | mIoU(ms+flip) | config | download | +| ------ | ------------ | --------- | ------: | -------- | -------------- | ------ | ----: | ------------: | ----------------------------------------------------------------------------------------------------------------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ | +| FCN | HRNetV2p-W48 | 480x480 | 40000 | 6.1 | 8.86 | V100 | 45.14 | 47.42 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/hrnet/fcn_hr48_4xb4-40k_pascal-context-480x480.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr48_480x480_40k_pascal_context/fcn_hr48_480x480_40k_pascal_context_20200911_164852-667d00b0.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr48_480x480_40k_pascal_context/fcn_hr48_480x480_40k_pascal_context-20200911_164852.log.json) | +| FCN | HRNetV2p-W48 | 480x480 | 80000 | - | - | V100 | 45.84 | 47.84 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/hrnet/fcn_hr48_4xb4-80k_pascal-context-480x480.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr48_480x480_80k_pascal_context/fcn_hr48_480x480_80k_pascal_context_20200911_155322-847a6711.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr48_480x480_80k_pascal_context/fcn_hr48_480x480_80k_pascal_context-20200911_155322.log.json) | ### Pascal Context 59 -| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | mIoU | mIoU(ms+flip) | config | download | -| ------ | ------------ | --------- | ------: | -------- | -------------- | ----: | ------------: | -------------------------------------------------------------------------------------------------------------------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ | -| FCN | HRNetV2p-W48 | 480x480 | 40000 | - | - | 50.33 | 52.83 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/hrnet/fcn_hr48_4xb4-40k_pascal-context-59-480x480.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr48_480x480_40k_pascal_context_59/fcn_hr48_480x480_40k_pascal_context_59_20210410_122738-b808b8b2.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr48_480x480_40k_pascal_context_59/fcn_hr48_480x480_40k_pascal_context_59-20210410_122738.log.json) | -| FCN | HRNetV2p-W48 | 480x480 | 80000 | - | - | 51.12 | 53.56 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/hrnet/fcn_hr48_4xb4-80k_pascal-context-59-480x480.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr48_480x480_80k_pascal_context_59/fcn_hr48_480x480_80k_pascal_context_59_20210411_003240-3ae7081e.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr48_480x480_80k_pascal_context_59/fcn_hr48_480x480_80k_pascal_context_59-20210411_003240.log.json) | +| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | Device | mIoU | mIoU(ms+flip) | config | download | +| ------ | ------------ | --------- | ------: | -------- | -------------- | ------ | ----: | ------------: | -------------------------------------------------------------------------------------------------------------------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ | +| FCN | HRNetV2p-W48 | 480x480 | 40000 | - | - | V100 | 50.33 | 52.83 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/hrnet/fcn_hr48_4xb4-40k_pascal-context-59-480x480.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr48_480x480_40k_pascal_context_59/fcn_hr48_480x480_40k_pascal_context_59_20210410_122738-b808b8b2.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr48_480x480_40k_pascal_context_59/fcn_hr48_480x480_40k_pascal_context_59-20210410_122738.log.json) | +| FCN | HRNetV2p-W48 | 480x480 | 80000 | - | - | V100 | 51.12 | 53.56 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/hrnet/fcn_hr48_4xb4-80k_pascal-context-59-480x480.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr48_480x480_80k_pascal_context_59/fcn_hr48_480x480_80k_pascal_context_59_20210411_003240-3ae7081e.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr48_480x480_80k_pascal_context_59/fcn_hr48_480x480_80k_pascal_context_59-20210411_003240.log.json) | ### LoveDA -| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | mIoU | mIoU(ms+flip) | config | download | -| ------ | ------------------ | --------- | ------: | -------- | -------------- | ----: | ------------: | ----------------------------------------------------------------------------------------------------------------------- | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | -| FCN | HRNetV2p-W18-Small | 512x512 | 80000 | 1.59 | 24.87 | 49.28 | 49.42 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/hrnet/fcn_hr18s_4xb4-80k_loveda-512x512.pyy) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr18s_512x512_80k_loveda/fcn_hr18s_512x512_80k_loveda_20211210_203228-60a86a7a.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr18s_512x512_80k_loveda/fcn_hr18s_512x512_80k_loveda_20211210_203228.log.json) | -| FCN | HRNetV2p-W18 | 512x512 | 80000 | 2.76 | 12.92 | 50.81 | 50.95 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/hrnet/fcn_hr18_4xb4-80k_loveda-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr18_512x512_80k_loveda/fcn_hr18_512x512_80k_loveda_20211210_203952-93d9c3b3.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr18_512x512_80k_loveda/fcn_hr18_512x512_80k_loveda_20211210_203952.log.json) | -| FCN | HRNetV2p-W48 | 512x512 | 80000 | 6.20 | 9.61 | 51.42 | 51.64 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/hrnet/fcn_hr48_4xb4-80k_loveda-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr48_512x512_80k_loveda/fcn_hr48_512x512_80k_loveda_20211211_044756-67072f55.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr48_512x512_80k_loveda/fcn_hr48_512x512_80k_loveda_20211211_044756.log.json) | +| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | Device | mIoU | mIoU(ms+flip) | config | download | +| ------ | ------------------ | --------- | ------: | -------- | -------------- | ------ | ----: | ------------: | ----------------------------------------------------------------------------------------------------------------------- | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | +| FCN | HRNetV2p-W18-Small | 512x512 | 80000 | 1.59 | 24.87 | V100 | 49.28 | 49.42 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/hrnet/fcn_hr18s_4xb4-80k_loveda-512x512.pyy) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr18s_512x512_80k_loveda/fcn_hr18s_512x512_80k_loveda_20211210_203228-60a86a7a.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr18s_512x512_80k_loveda/fcn_hr18s_512x512_80k_loveda_20211210_203228.log.json) | +| FCN | HRNetV2p-W18 | 512x512 | 80000 | 2.76 | 12.92 | V100 | 50.81 | 50.95 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/hrnet/fcn_hr18_4xb4-80k_loveda-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr18_512x512_80k_loveda/fcn_hr18_512x512_80k_loveda_20211210_203952-93d9c3b3.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr18_512x512_80k_loveda/fcn_hr18_512x512_80k_loveda_20211210_203952.log.json) | +| FCN | HRNetV2p-W48 | 512x512 | 80000 | 6.20 | 9.61 | V100 | 51.42 | 51.64 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/hrnet/fcn_hr48_4xb4-80k_loveda-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr48_512x512_80k_loveda/fcn_hr48_512x512_80k_loveda_20211211_044756-67072f55.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr48_512x512_80k_loveda/fcn_hr48_512x512_80k_loveda_20211211_044756.log.json) | ### Potsdam -| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | mIoU | mIoU(ms+flip) | config | download | -| ------ | ------------------ | --------- | ------: | -------- | -------------- | ----: | ------------: | ----------------------------------------------------------------------------------------------------------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ | -| FCN | HRNetV2p-W18-Small | 512x512 | 80000 | 1.58 | 36.00 | 77.64 | 78.8 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/hrnet/fcn_hr18s_4xb4-80k_potsdam-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr18s_512x512_80k_potsdam/fcn_hr18s_512x512_80k_potsdam_20211218_205517-ba32af63.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr18s_512x512_80k_potsdam/fcn_hr18s_512x512_80k_potsdam_20211218_205517.log.json) | -| FCN | HRNetV2p-W18 | 512x512 | 80000 | 2.76 | 19.25 | 78.26 | 79.24 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/hrnet/fcn_hr18_4xb4-80k_potsdam-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr18_512x512_80k_potsdam/fcn_hr18_512x512_80k_potsdam_20211218_205517-5d0387ad.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr18_512x512_80k_potsdam/fcn_hr18_512x512_80k_potsdam_20211218_205517.log.json) | -| FCN | HRNetV2p-W48 | 512x512 | 80000 | 6.20 | 16.42 | 78.39 | 79.34 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/hrnet/fcn_hr48_4xb4-80k_potsdam-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr48_512x512_80k_potsdam/fcn_hr48_512x512_80k_potsdam_20211219_020601-97434c78.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr48_512x512_80k_potsdam/fcn_hr48_512x512_80k_potsdam_20211219_020601.log.json) | +| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | Device | mIoU | mIoU(ms+flip) | config | download | +| ------ | ------------------ | --------- | ------: | -------- | -------------- | ------ | ----: | ------------: | ----------------------------------------------------------------------------------------------------------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ | +| FCN | HRNetV2p-W18-Small | 512x512 | 80000 | 1.58 | 36.00 | V100 | 77.64 | 78.8 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/hrnet/fcn_hr18s_4xb4-80k_potsdam-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr18s_512x512_80k_potsdam/fcn_hr18s_512x512_80k_potsdam_20211218_205517-ba32af63.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr18s_512x512_80k_potsdam/fcn_hr18s_512x512_80k_potsdam_20211218_205517.log.json) | +| FCN | HRNetV2p-W18 | 512x512 | 80000 | 2.76 | 19.25 | V100 | 78.26 | 79.24 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/hrnet/fcn_hr18_4xb4-80k_potsdam-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr18_512x512_80k_potsdam/fcn_hr18_512x512_80k_potsdam_20211218_205517-5d0387ad.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr18_512x512_80k_potsdam/fcn_hr18_512x512_80k_potsdam_20211218_205517.log.json) | +| FCN | HRNetV2p-W48 | 512x512 | 80000 | 6.20 | 16.42 | V100 | 78.39 | 79.34 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/hrnet/fcn_hr48_4xb4-80k_potsdam-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr48_512x512_80k_potsdam/fcn_hr48_512x512_80k_potsdam_20211219_020601-97434c78.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr48_512x512_80k_potsdam/fcn_hr48_512x512_80k_potsdam_20211219_020601.log.json) | ### Vaihingen -| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | mIoU | mIoU(ms+flip) | config | download | -| ------ | ------------------ | --------- | ------: | -------- | -------------- | ----: | ------------: | ------------------------------------------------------------------------------------------------------------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ | -| FCN | HRNetV2p-W18-Small | 512x512 | 80000 | 1.58 | 38.11 | 71.81 | 73.1 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/hrnet/fcn_hr18s_4xb4-80k_vaihingen-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr18s_4x4_512x512_80k_vaihingen/fcn_hr18s_4x4_512x512_80k_vaihingen_20211231_230909-b23aae02.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr18s_4x4_512x512_80k_vaihingen/fcn_hr18s_4x4_512x512_80k_vaihingen_20211231_230909.log.json) | -| FCN | HRNetV2p-W18 | 512x512 | 80000 | 2.76 | 19.55 | 72.57 | 74.09 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/hrnet/fcn_hr18_4xb4-80k_vaihingen-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr18_4x4_512x512_80k_vaihingen/fcn_hr18_4x4_512x512_80k_vaihingen_20211231_231216-2ec3ae8a.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr18_4x4_512x512_80k_vaihingen/fcn_hr18_4x4_512x512_80k_vaihingen_20211231_231216.log.json) | -| FCN | HRNetV2p-W48 | 512x512 | 80000 | 6.20 | 17.25 | 72.50 | 73.52 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/hrnet/fcn_hr48_4xb4-80k_vaihingen-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr48_4x4_512x512_80k_vaihingen/fcn_hr48_4x4_512x512_80k_vaihingen_20211231_231244-7133cb22.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr48_4x4_512x512_80k_vaihingen/fcn_hr48_4x4_512x512_80k_vaihingen_20211231_231244.log.json) | +| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | Device | mIoU | mIoU(ms+flip) | config | download | +| ------ | ------------------ | --------- | ------: | -------- | -------------- | ------ | ----: | ------------: | ------------------------------------------------------------------------------------------------------------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ | +| FCN | HRNetV2p-W18-Small | 512x512 | 80000 | 1.58 | 38.11 | V100 | 71.81 | 73.1 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/hrnet/fcn_hr18s_4xb4-80k_vaihingen-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr18s_4x4_512x512_80k_vaihingen/fcn_hr18s_4x4_512x512_80k_vaihingen_20211231_230909-b23aae02.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr18s_4x4_512x512_80k_vaihingen/fcn_hr18s_4x4_512x512_80k_vaihingen_20211231_230909.log.json) | +| FCN | HRNetV2p-W18 | 512x512 | 80000 | 2.76 | 19.55 | V100 | 72.57 | 74.09 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/hrnet/fcn_hr18_4xb4-80k_vaihingen-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr18_4x4_512x512_80k_vaihingen/fcn_hr18_4x4_512x512_80k_vaihingen_20211231_231216-2ec3ae8a.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr18_4x4_512x512_80k_vaihingen/fcn_hr18_4x4_512x512_80k_vaihingen_20211231_231216.log.json) | +| FCN | HRNetV2p-W48 | 512x512 | 80000 | 6.20 | 17.25 | V100 | 72.50 | 73.52 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/hrnet/fcn_hr48_4xb4-80k_vaihingen-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr48_4x4_512x512_80k_vaihingen/fcn_hr48_4x4_512x512_80k_vaihingen_20211231_231244-7133cb22.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr48_4x4_512x512_80k_vaihingen/fcn_hr48_4x4_512x512_80k_vaihingen_20211231_231244.log.json) | ### iSAID -| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | mIoU | mIoU(ms+flip) | config | download | -| ------ | ------------------ | --------- | ------: | -------- | -------------- | ----: | ------------: | --------------------------------------------------------------------------------------------------------------------- | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | -| FCN | HRNetV2p-W18-Small | 896x896 | 80000 | 4.95 | 13.84 | 62.30 | 62.97 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/hrnet/fcn_hr18s_4xb4-80k_isaid-896x896.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr18s_4x4_896x896_80k_isaid/fcn_hr18s_4x4_896x896_80k_isaid_20220118_001603-3cc0769b.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr18s_4x4_896x896_80k_isaid/fcn_hr18s_4x4_896x896_80k_isaid_20220118_001603.log.json) | -| FCN | HRNetV2p-W18 | 896x896 | 80000 | 8.30 | 7.71 | 65.06 | 65.60 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/hrnet/fcn_hr18_4xb4-80k_isaid-896x896.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr18_4x4_896x896_80k_isaid/fcn_hr18_4x4_896x896_80k_isaid_20220110_182230-49bf752e.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr18_4x4_896x896_80k_isaid/fcn_hr18_4x4_896x896_80k_isaid_20220110_182230.log.json) | -| FCN | HRNetV2p-W48 | 896x896 | 80000 | 16.89 | 7.34 | 67.80 | 68.53 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/hrnet/fcn_hr48_4xb4-80k_isaid-896x896.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr48_4x4_896x896_80k_isaid/fcn_hr48_4x4_896x896_80k_isaid_20220114_174643-547fc420.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr48_4x4_896x896_80k_isaid/fcn_hr48_4x4_896x896_80k_isaid_20220114_174643.log.json) | +| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | Device | mIoU | mIoU(ms+flip) | config | download | +| ------ | ------------------ | --------- | ------: | -------- | -------------- | ------ | ----: | ------------: | --------------------------------------------------------------------------------------------------------------------- | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | +| FCN | HRNetV2p-W18-Small | 896x896 | 80000 | 4.95 | 13.84 | V100 | 62.30 | 62.97 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/hrnet/fcn_hr18s_4xb4-80k_isaid-896x896.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr18s_4x4_896x896_80k_isaid/fcn_hr18s_4x4_896x896_80k_isaid_20220118_001603-3cc0769b.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr18s_4x4_896x896_80k_isaid/fcn_hr18s_4x4_896x896_80k_isaid_20220118_001603.log.json) | +| FCN | HRNetV2p-W18 | 896x896 | 80000 | 8.30 | 7.71 | V100 | 65.06 | 65.60 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/hrnet/fcn_hr18_4xb4-80k_isaid-896x896.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr18_4x4_896x896_80k_isaid/fcn_hr18_4x4_896x896_80k_isaid_20220110_182230-49bf752e.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr18_4x4_896x896_80k_isaid/fcn_hr18_4x4_896x896_80k_isaid_20220110_182230.log.json) | +| FCN | HRNetV2p-W48 | 896x896 | 80000 | 16.89 | 7.34 | V100 | 67.80 | 68.53 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/hrnet/fcn_hr48_4xb4-80k_isaid-896x896.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr48_4x4_896x896_80k_isaid/fcn_hr48_4x4_896x896_80k_isaid_20220114_174643-547fc420.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr48_4x4_896x896_80k_isaid/fcn_hr48_4x4_896x896_80k_isaid_20220114_174643.log.json) | Note: - `896x896` is the Crop Size of iSAID dataset, which is followed by the implementation of [PointFlow: Flowing Semantics Through Points for Aerial Image Segmentation](https://arxiv.org/pdf/2103.06564.pdf) + +## Citation + +```bibtext +@inproceedings{SunXLW19, + title={Deep High-Resolution Representation Learning for Human Pose Estimation}, + author={Ke Sun and Bin Xiao and Dong Liu and Jingdong Wang}, + booktitle={CVPR}, + year={2019} +} +``` diff --git a/configs/hrnet/hrnet.yml b/configs/hrnet/hrnet.yml deleted file mode 100644 index 77f556e17a..0000000000 --- a/configs/hrnet/hrnet.yml +++ /dev/null @@ -1,695 +0,0 @@ -Models: -- Name: fcn_hr18s_4xb2-40k_cityscapes-512x1024 - In Collection: FCN - Metadata: - backbone: HRNetV2p-W18-Small - crop size: (512,1024) - lr schd: 40000 - inference time (ms/im): - - value: 42.12 - hardware: V100 - backend: PyTorch - batch size: 1 - mode: FP32 - resolution: (512,1024) - Training Memory (GB): 1.7 - Results: - - Task: Semantic Segmentation - Dataset: Cityscapes - Metrics: - mIoU: 73.86 - mIoU(ms+flip): 75.91 - Config: configs/hrnet/fcn_hr18s_4xb2-40k_cityscapes-512x1024.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr18s_512x1024_40k_cityscapes/fcn_hr18s_512x1024_40k_cityscapes_20200601_014216-93db27d0.pth -- Name: fcn_hr18_4xb2-40k_cityscapes-512x1024 - In Collection: FCN - Metadata: - backbone: HRNetV2p-W18 - crop size: (512,1024) - lr schd: 40000 - inference time (ms/im): - - value: 77.1 - hardware: V100 - backend: PyTorch - batch size: 1 - mode: FP32 - resolution: (512,1024) - Training Memory (GB): 2.9 - Results: - - Task: Semantic Segmentation - Dataset: Cityscapes - Metrics: - mIoU: 77.19 - mIoU(ms+flip): 78.92 - Config: configs/hrnet/fcn_hr18_4xb2-40k_cityscapes-512x1024.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr18_512x1024_40k_cityscapes/fcn_hr18_512x1024_40k_cityscapes_20200601_014216-f196fb4e.pth -- Name: fcn_hr48_4xb2-40k_cityscapes-512x1024 - In Collection: FCN - Metadata: - backbone: HRNetV2p-W48 - crop size: (512,1024) - lr schd: 40000 - inference time (ms/im): - - value: 155.76 - hardware: V100 - backend: PyTorch - batch size: 1 - mode: FP32 - resolution: (512,1024) - Training Memory (GB): 6.2 - Results: - - Task: Semantic Segmentation - Dataset: Cityscapes - Metrics: - mIoU: 78.48 - mIoU(ms+flip): 79.69 - Config: configs/hrnet/fcn_hr48_4xb2-40k_cityscapes-512x1024.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr48_512x1024_40k_cityscapes/fcn_hr48_512x1024_40k_cityscapes_20200601_014240-a989b146.pth -- Name: fcn_hr18s_4xb2-80k_cityscapes-512x1024 - In Collection: FCN - Metadata: - backbone: HRNetV2p-W18-Small - crop size: (512,1024) - lr schd: 80000 - Results: - - Task: Semantic Segmentation - Dataset: Cityscapes - Metrics: - mIoU: 75.31 - mIoU(ms+flip): 77.48 - Config: configs/hrnet/fcn_hr18s_4xb2-80k_cityscapes-512x1024.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr18s_512x1024_80k_cityscapes/fcn_hr18s_512x1024_80k_cityscapes_20200601_202700-1462b75d.pth -- Name: fcn_hr18_4xb2-80k_cityscapes-512x1024 - In Collection: FCN - Metadata: - backbone: HRNetV2p-W18 - crop size: (512,1024) - lr schd: 80000 - Results: - - Task: Semantic Segmentation - Dataset: Cityscapes - Metrics: - mIoU: 78.65 - mIoU(ms+flip): 80.35 - Config: configs/hrnet/fcn_hr18_4xb2-80k_cityscapes-512x1024.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr18_512x1024_80k_cityscapes/fcn_hr18_512x1024_80k_cityscapes_20200601_223255-4e7b345e.pth -- Name: fcn_hr48_4xb2-80k_cityscapes-512x1024 - In Collection: FCN - Metadata: - backbone: HRNetV2p-W48 - crop size: (512,1024) - lr schd: 80000 - Results: - - Task: Semantic Segmentation - Dataset: Cityscapes - Metrics: - mIoU: 79.93 - mIoU(ms+flip): 80.72 - Config: configs/hrnet/fcn_hr48_4xb2-80k_cityscapes-512x1024.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr48_512x1024_80k_cityscapes/fcn_hr48_512x1024_80k_cityscapes_20200601_202606-58ea95d6.pth -- Name: fcn_hr18s_4xb2-160k_cityscapes-512x1024 - In Collection: FCN - Metadata: - backbone: HRNetV2p-W18-Small - crop size: (512,1024) - lr schd: 160000 - Results: - - Task: Semantic Segmentation - Dataset: Cityscapes - Metrics: - mIoU: 76.31 - mIoU(ms+flip): 78.31 - Config: configs/hrnet/fcn_hr18s_4xb2-160k_cityscapes-512x1024.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr18s_512x1024_160k_cityscapes/fcn_hr18s_512x1024_160k_cityscapes_20200602_190901-4a0797ea.pth -- Name: fcn_hr18_4xb2-160k_cityscapes-512x1024 - In Collection: FCN - Metadata: - backbone: HRNetV2p-W18 - crop size: (512,1024) - lr schd: 160000 - Results: - - Task: Semantic Segmentation - Dataset: Cityscapes - Metrics: - mIoU: 78.8 - mIoU(ms+flip): 80.74 - Config: configs/hrnet/fcn_hr18_4xb2-160k_cityscapes-512x1024.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr18_512x1024_160k_cityscapes/fcn_hr18_512x1024_160k_cityscapes_20200602_190822-221e4a4f.pth -- Name: fcn_hr48_4xb2-160k_cityscapes-512x1024 - In Collection: FCN - Metadata: - backbone: HRNetV2p-W48 - crop size: (512,1024) - lr schd: 160000 - Results: - - Task: Semantic Segmentation - Dataset: Cityscapes - Metrics: - mIoU: 80.65 - mIoU(ms+flip): 81.92 - Config: configs/hrnet/fcn_hr48_4xb2-160k_cityscapes-512x1024.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr48_512x1024_160k_cityscapes/fcn_hr48_512x1024_160k_cityscapes_20200602_190946-59b7973e.pth -- Name: fcn_hr18s_4xb4-80k_ade20k-512x512 - In Collection: FCN - Metadata: - backbone: HRNetV2p-W18-Small - crop size: (512,512) - lr schd: 80000 - inference time (ms/im): - - value: 25.87 - hardware: V100 - backend: PyTorch - batch size: 1 - mode: FP32 - resolution: (512,512) - Training Memory (GB): 3.8 - Results: - - Task: Semantic Segmentation - Dataset: ADE20K - Metrics: - mIoU: 31.38 - mIoU(ms+flip): 32.45 - Config: configs/hrnet/fcn_hr18s_4xb4-80k_ade20k-512x512.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr18s_512x512_80k_ade20k/fcn_hr18s_512x512_80k_ade20k_20200614_144345-77fc814a.pth -- Name: fcn_hr18_4xb4-80k_ade20k-512x512 - In Collection: FCN - Metadata: - backbone: HRNetV2p-W18 - crop size: (512,512) - lr schd: 80000 - inference time (ms/im): - - value: 44.31 - hardware: V100 - backend: PyTorch - batch size: 1 - mode: FP32 - resolution: (512,512) - Training Memory (GB): 4.9 - Results: - - Task: Semantic Segmentation - Dataset: ADE20K - Metrics: - mIoU: 36.27 - mIoU(ms+flip): 37.28 - Config: configs/hrnet/fcn_hr18_4xb4-80k_ade20k-512x512.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr18_512x512_80k_ade20k/fcn_hr18_512x512_80k_ade20k_20210827_114910-6c9382c0.pth -- Name: fcn_hr48_4xb4-80k_ade20k-512x512 - In Collection: FCN - Metadata: - backbone: HRNetV2p-W48 - crop size: (512,512) - lr schd: 80000 - inference time (ms/im): - - value: 47.1 - hardware: V100 - backend: PyTorch - batch size: 1 - mode: FP32 - resolution: (512,512) - Training Memory (GB): 8.2 - Results: - - Task: Semantic Segmentation - Dataset: ADE20K - Metrics: - mIoU: 41.9 - mIoU(ms+flip): 43.27 - Config: configs/hrnet/fcn_hr48_4xb4-80k_ade20k-512x512.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr48_512x512_80k_ade20k/fcn_hr48_512x512_80k_ade20k_20200614_193946-7ba5258d.pth -- Name: fcn_hr18s_4xb4-160k_ade20k-512x512 - In Collection: FCN - Metadata: - backbone: HRNetV2p-W18-Small - crop size: (512,512) - lr schd: 160000 - Results: - - Task: Semantic Segmentation - Dataset: ADE20K - Metrics: - mIoU: 33.07 - mIoU(ms+flip): 34.56 - Config: configs/hrnet/fcn_hr18s_4xb4-160k_ade20k-512x512.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr18s_512x512_160k_ade20k/fcn_hr18s_512x512_160k_ade20k_20210829_174739-f1e7c2e7.pth -- Name: fcn_hr18_4xb4-160k_ade20k-512x512 - In Collection: FCN - Metadata: - backbone: HRNetV2p-W18 - crop size: (512,512) - lr schd: 160000 - Results: - - Task: Semantic Segmentation - Dataset: ADE20K - Metrics: - mIoU: 36.79 - mIoU(ms+flip): 38.58 - Config: configs/hrnet/fcn_hr18_4xb4-160k_ade20k-512x512.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr18_512x512_160k_ade20k/fcn_hr18_512x512_160k_ade20k_20200614_214426-ca961836.pth -- Name: fcn_hr48_4xb4-160k_ade20k-512x512 - In Collection: FCN - Metadata: - backbone: HRNetV2p-W48 - crop size: (512,512) - lr schd: 160000 - Results: - - Task: Semantic Segmentation - Dataset: ADE20K - Metrics: - mIoU: 42.02 - mIoU(ms+flip): 43.86 - Config: configs/hrnet/fcn_hr48_4xb4-160k_ade20k-512x512.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr48_512x512_160k_ade20k/fcn_hr48_512x512_160k_ade20k_20200614_214407-a52fc02c.pth -- Name: fcn_hr18s_4xb4-20k_voc12aug-512x512 - In Collection: FCN - Metadata: - backbone: HRNetV2p-W18-Small - crop size: (512,512) - lr schd: 20000 - inference time (ms/im): - - value: 23.06 - hardware: V100 - backend: PyTorch - batch size: 1 - mode: FP32 - resolution: (512,512) - Training Memory (GB): 1.8 - Results: - - Task: Semantic Segmentation - Dataset: Pascal VOC 2012 + Aug - Metrics: - mIoU: 65.5 - mIoU(ms+flip): 68.89 - Config: configs/hrnet/fcn_hr18s_4xb4-20k_voc12aug-512x512.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr18s_512x512_20k_voc12aug/fcn_hr18s_512x512_20k_voc12aug_20210829_174910-0aceadb4.pth -- Name: fcn_hr18_4xb4-20k_voc12aug-512x512 - In Collection: FCN - Metadata: - backbone: HRNetV2p-W18 - crop size: (512,512) - lr schd: 20000 - inference time (ms/im): - - value: 42.59 - hardware: V100 - backend: PyTorch - batch size: 1 - mode: FP32 - resolution: (512,512) - Training Memory (GB): 2.9 - Results: - - Task: Semantic Segmentation - Dataset: Pascal VOC 2012 + Aug - Metrics: - mIoU: 72.3 - mIoU(ms+flip): 74.71 - Config: configs/hrnet/fcn_hr18_4xb4-20k_voc12aug-512x512.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr18_512x512_20k_voc12aug/fcn_hr18_512x512_20k_voc12aug_20200617_224503-488d45f7.pth -- Name: fcn_hr48_4xb4-20k_voc12aug-512x512 - In Collection: FCN - Metadata: - backbone: HRNetV2p-W48 - crop size: (512,512) - lr schd: 20000 - inference time (ms/im): - - value: 45.35 - hardware: V100 - backend: PyTorch - batch size: 1 - mode: FP32 - resolution: (512,512) - Training Memory (GB): 6.2 - Results: - - Task: Semantic Segmentation - Dataset: Pascal VOC 2012 + Aug - Metrics: - mIoU: 75.87 - mIoU(ms+flip): 78.58 - Config: configs/hrnet/fcn_hr48_4xb4-20k_voc12aug-512x512.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr48_512x512_20k_voc12aug/fcn_hr48_512x512_20k_voc12aug_20200617_224419-89de05cd.pth -- Name: fcn_hr18s_4xb4-40k_voc12aug-512x512 - In Collection: FCN - Metadata: - backbone: HRNetV2p-W18-Small - crop size: (512,512) - lr schd: 40000 - Results: - - Task: Semantic Segmentation - Dataset: Pascal VOC 2012 + Aug - Metrics: - mIoU: 66.61 - mIoU(ms+flip): 70.0 - Config: configs/hrnet/fcn_hr18s_4xb4-40k_voc12aug-512x512.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr18s_512x512_40k_voc12aug/fcn_hr18s_512x512_40k_voc12aug_20200614_000648-4f8d6e7f.pth -- Name: fcn_hr18_4xb4-40k_voc12aug-512x512 - In Collection: FCN - Metadata: - backbone: HRNetV2p-W18 - crop size: (512,512) - lr schd: 40000 - Results: - - Task: Semantic Segmentation - Dataset: Pascal VOC 2012 + Aug - Metrics: - mIoU: 72.9 - mIoU(ms+flip): 75.59 - Config: configs/hrnet/fcn_hr18_4xb4-40k_voc12aug-512x512.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr18_512x512_40k_voc12aug/fcn_hr18_512x512_40k_voc12aug_20200613_224401-1b4b76cd.pth -- Name: fcn_hr48_4xb4-40k_voc12aug-512x512 - In Collection: FCN - Metadata: - backbone: HRNetV2p-W48 - crop size: (512,512) - lr schd: 40000 - Results: - - Task: Semantic Segmentation - Dataset: Pascal VOC 2012 + Aug - Metrics: - mIoU: 76.24 - mIoU(ms+flip): 78.49 - Config: configs/hrnet/fcn_hr48_4xb4-40k_voc12aug-512x512.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr48_512x512_40k_voc12aug/fcn_hr48_512x512_40k_voc12aug_20200613_222111-1b0f18bc.pth -- Name: fcn_hr48_4xb4-40k_pascal-context-480x480 - In Collection: FCN - Metadata: - backbone: HRNetV2p-W48 - crop size: (480,480) - lr schd: 40000 - inference time (ms/im): - - value: 112.87 - hardware: V100 - backend: PyTorch - batch size: 1 - mode: FP32 - resolution: (480,480) - Training Memory (GB): 6.1 - Results: - - Task: Semantic Segmentation - Dataset: Pascal Context - Metrics: - mIoU: 45.14 - mIoU(ms+flip): 47.42 - Config: configs/hrnet/fcn_hr48_4xb4-40k_pascal-context-480x480.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr48_480x480_40k_pascal_context/fcn_hr48_480x480_40k_pascal_context_20200911_164852-667d00b0.pth -- Name: fcn_hr48_4xb4-80k_pascal-context-480x480 - In Collection: FCN - Metadata: - backbone: HRNetV2p-W48 - crop size: (480,480) - lr schd: 80000 - Results: - - Task: Semantic Segmentation - Dataset: Pascal Context - Metrics: - mIoU: 45.84 - mIoU(ms+flip): 47.84 - Config: configs/hrnet/fcn_hr48_4xb4-80k_pascal-context-480x480.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr48_480x480_80k_pascal_context/fcn_hr48_480x480_80k_pascal_context_20200911_155322-847a6711.pth -- Name: fcn_hr48_4xb4-40k_pascal-context-59-480x480 - In Collection: FCN - Metadata: - backbone: HRNetV2p-W48 - crop size: (480,480) - lr schd: 40000 - Results: - - Task: Semantic Segmentation - Dataset: Pascal Context 59 - Metrics: - mIoU: 50.33 - mIoU(ms+flip): 52.83 - Config: configs/hrnet/fcn_hr48_4xb4-40k_pascal-context-59-480x480.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr48_480x480_40k_pascal_context_59/fcn_hr48_480x480_40k_pascal_context_59_20210410_122738-b808b8b2.pth -- Name: fcn_hr48_4xb4-80k_pascal-context-59-480x480 - In Collection: FCN - Metadata: - backbone: HRNetV2p-W48 - crop size: (480,480) - lr schd: 80000 - Results: - - Task: Semantic Segmentation - Dataset: Pascal Context 59 - Metrics: - mIoU: 51.12 - mIoU(ms+flip): 53.56 - Config: configs/hrnet/fcn_hr48_4xb4-80k_pascal-context-59-480x480.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr48_480x480_80k_pascal_context_59/fcn_hr48_480x480_80k_pascal_context_59_20210411_003240-3ae7081e.pth -- Name: fcn_hr18s_4xb4-80k_loveda-512x512 - In Collection: FCN - Metadata: - backbone: HRNetV2p-W18-Small - crop size: (512,512) - lr schd: 80000 - inference time (ms/im): - - value: 40.21 - hardware: V100 - backend: PyTorch - batch size: 1 - mode: FP32 - resolution: (512,512) - Training Memory (GB): 1.59 - Results: - - Task: Semantic Segmentation - Dataset: LoveDA - Metrics: - mIoU: 49.28 - mIoU(ms+flip): 49.42 - Config: configs/hrnet/fcn_hr18s_4xb4-80k_loveda-512x512.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr18s_512x512_80k_loveda/fcn_hr18s_512x512_80k_loveda_20211210_203228-60a86a7a.pth -- Name: fcn_hr18_4xb4-80k_loveda-512x512 - In Collection: FCN - Metadata: - backbone: HRNetV2p-W18 - crop size: (512,512) - lr schd: 80000 - inference time (ms/im): - - value: 77.4 - hardware: V100 - backend: PyTorch - batch size: 1 - mode: FP32 - resolution: (512,512) - Training Memory (GB): 2.76 - Results: - - Task: Semantic Segmentation - Dataset: LoveDA - Metrics: - mIoU: 50.81 - mIoU(ms+flip): 50.95 - Config: configs/hrnet/fcn_hr18_4xb4-80k_loveda-512x512.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr18_512x512_80k_loveda/fcn_hr18_512x512_80k_loveda_20211210_203952-93d9c3b3.pth -- Name: fcn_hr48_4xb4-80k_loveda-512x512 - In Collection: FCN - Metadata: - backbone: HRNetV2p-W48 - crop size: (512,512) - lr schd: 80000 - inference time (ms/im): - - value: 104.06 - hardware: V100 - backend: PyTorch - batch size: 1 - mode: FP32 - resolution: (512,512) - Training Memory (GB): 6.2 - Results: - - Task: Semantic Segmentation - Dataset: LoveDA - Metrics: - mIoU: 51.42 - mIoU(ms+flip): 51.64 - Config: configs/hrnet/fcn_hr48_4xb4-80k_loveda-512x512.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr48_512x512_80k_loveda/fcn_hr48_512x512_80k_loveda_20211211_044756-67072f55.pth -- Name: fcn_hr18s_4xb4-80k_potsdam-512x512 - In Collection: FCN - Metadata: - backbone: HRNetV2p-W18-Small - crop size: (512,512) - lr schd: 80000 - inference time (ms/im): - - value: 27.78 - hardware: V100 - backend: PyTorch - batch size: 1 - mode: FP32 - resolution: (512,512) - Training Memory (GB): 1.58 - Results: - - Task: Semantic Segmentation - Dataset: Potsdam - Metrics: - mIoU: 77.64 - mIoU(ms+flip): 78.8 - Config: configs/hrnet/fcn_hr18s_4xb4-80k_potsdam-512x512.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr18s_512x512_80k_potsdam/fcn_hr18s_512x512_80k_potsdam_20211218_205517-ba32af63.pth -- Name: fcn_hr18_4xb4-80k_potsdam-512x512 - In Collection: FCN - Metadata: - backbone: HRNetV2p-W18 - crop size: (512,512) - lr schd: 80000 - inference time (ms/im): - - value: 51.95 - hardware: V100 - backend: PyTorch - batch size: 1 - mode: FP32 - resolution: (512,512) - Training Memory (GB): 2.76 - Results: - - Task: Semantic Segmentation - Dataset: Potsdam - Metrics: - mIoU: 78.26 - mIoU(ms+flip): 79.24 - Config: configs/hrnet/fcn_hr18_4xb4-80k_potsdam-512x512.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr18_512x512_80k_potsdam/fcn_hr18_512x512_80k_potsdam_20211218_205517-5d0387ad.pth -- Name: fcn_hr48_4xb4-80k_potsdam-512x512 - In Collection: FCN - Metadata: - backbone: HRNetV2p-W48 - crop size: (512,512) - lr schd: 80000 - inference time (ms/im): - - value: 60.9 - hardware: V100 - backend: PyTorch - batch size: 1 - mode: FP32 - resolution: (512,512) - Training Memory (GB): 6.2 - Results: - - Task: Semantic Segmentation - Dataset: Potsdam - Metrics: - mIoU: 78.39 - mIoU(ms+flip): 79.34 - Config: configs/hrnet/fcn_hr48_4xb4-80k_potsdam-512x512.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr48_512x512_80k_potsdam/fcn_hr48_512x512_80k_potsdam_20211219_020601-97434c78.pth -- Name: fcn_hr18s_4xb4-80k_vaihingen-512x512 - In Collection: FCN - Metadata: - backbone: HRNetV2p-W18-Small - crop size: (512,512) - lr schd: 80000 - inference time (ms/im): - - value: 26.24 - hardware: V100 - backend: PyTorch - batch size: 1 - mode: FP32 - resolution: (512,512) - Training Memory (GB): 1.58 - Results: - - Task: Semantic Segmentation - Dataset: Vaihingen - Metrics: - mIoU: 71.81 - mIoU(ms+flip): 73.1 - Config: configs/hrnet/fcn_hr18s_4xb4-80k_vaihingen-512x512.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr18s_4x4_512x512_80k_vaihingen/fcn_hr18s_4x4_512x512_80k_vaihingen_20211231_230909-b23aae02.pth -- Name: fcn_hr18_4xb4-80k_vaihingen-512x512 - In Collection: FCN - Metadata: - backbone: HRNetV2p-W18 - crop size: (512,512) - lr schd: 80000 - inference time (ms/im): - - value: 51.15 - hardware: V100 - backend: PyTorch - batch size: 1 - mode: FP32 - resolution: (512,512) - Training Memory (GB): 2.76 - Results: - - Task: Semantic Segmentation - Dataset: Vaihingen - Metrics: - mIoU: 72.57 - mIoU(ms+flip): 74.09 - Config: configs/hrnet/fcn_hr18_4xb4-80k_vaihingen-512x512.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr18_4x4_512x512_80k_vaihingen/fcn_hr18_4x4_512x512_80k_vaihingen_20211231_231216-2ec3ae8a.pth -- Name: fcn_hr48_4xb4-80k_vaihingen-512x512 - In Collection: FCN - Metadata: - backbone: HRNetV2p-W48 - crop size: (512,512) - lr schd: 80000 - inference time (ms/im): - - value: 57.97 - hardware: V100 - backend: PyTorch - batch size: 1 - mode: FP32 - resolution: (512,512) - Training Memory (GB): 6.2 - Results: - - Task: Semantic Segmentation - Dataset: Vaihingen - Metrics: - mIoU: 72.5 - mIoU(ms+flip): 73.52 - Config: configs/hrnet/fcn_hr48_4xb4-80k_vaihingen-512x512.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr48_4x4_512x512_80k_vaihingen/fcn_hr48_4x4_512x512_80k_vaihingen_20211231_231244-7133cb22.pth -- Name: fcn_hr18s_4xb4-80k_isaid-896x896 - In Collection: FCN - Metadata: - backbone: HRNetV2p-W18-Small - crop size: (896,896) - lr schd: 80000 - inference time (ms/im): - - value: 72.25 - hardware: V100 - backend: PyTorch - batch size: 1 - mode: FP32 - resolution: (896,896) - Training Memory (GB): 4.95 - Results: - - Task: Semantic Segmentation - Dataset: iSAID - Metrics: - mIoU: 62.3 - mIoU(ms+flip): 62.97 - Config: configs/hrnet/fcn_hr18s_4xb4-80k_isaid-896x896.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr18s_4x4_896x896_80k_isaid/fcn_hr18s_4x4_896x896_80k_isaid_20220118_001603-3cc0769b.pth -- Name: fcn_hr18_4xb4-80k_isaid-896x896 - In Collection: FCN - Metadata: - backbone: HRNetV2p-W18 - crop size: (896,896) - lr schd: 80000 - inference time (ms/im): - - value: 129.7 - hardware: V100 - backend: PyTorch - batch size: 1 - mode: FP32 - resolution: (896,896) - Training Memory (GB): 8.3 - Results: - - Task: Semantic Segmentation - Dataset: iSAID - Metrics: - mIoU: 65.06 - mIoU(ms+flip): 65.6 - Config: configs/hrnet/fcn_hr18_4xb4-80k_isaid-896x896.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr18_4x4_896x896_80k_isaid/fcn_hr18_4x4_896x896_80k_isaid_20220110_182230-49bf752e.pth -- Name: fcn_hr48_4xb4-80k_isaid-896x896 - In Collection: FCN - Metadata: - backbone: HRNetV2p-W48 - crop size: (896,896) - lr schd: 80000 - inference time (ms/im): - - value: 136.24 - hardware: V100 - backend: PyTorch - batch size: 1 - mode: FP32 - resolution: (896,896) - Training Memory (GB): 16.89 - Results: - - Task: Semantic Segmentation - Dataset: iSAID - Metrics: - mIoU: 67.8 - mIoU(ms+flip): 68.53 - Config: configs/hrnet/fcn_hr48_4xb4-80k_isaid-896x896.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr48_4x4_896x896_80k_isaid/fcn_hr48_4x4_896x896_80k_isaid_20220114_174643-547fc420.pth diff --git a/configs/hrnet/metafile.yaml b/configs/hrnet/metafile.yaml new file mode 100644 index 0000000000..11c30165a5 --- /dev/null +++ b/configs/hrnet/metafile.yaml @@ -0,0 +1,874 @@ +Models: +- Name: fcn_hr18s_4xb2-40k_cityscapes-512x1024 + In Collection: FCN + Results: + Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 73.86 + mIoU(ms+flip): 75.91 + Config: configs/hrnet/fcn_hr18s_4xb2-40k_cityscapes-512x1024.py + Metadata: + Training Data: Cityscapes + Batch Size: 8 + Architecture: + - HRNetV2p-W18-Small + - FCN + Training Resources: 4x V100 GPUS + Memory (GB): 1.7 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr18s_512x1024_40k_cityscapes/fcn_hr18s_512x1024_40k_cityscapes_20200601_014216-93db27d0.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr18s_512x1024_40k_cityscapes/fcn_hr18s_512x1024_40k_cityscapes_20200601_014216.log.json + Paper: + Title: Deep High-Resolution Representation Learning for Human Pose Estimation + URL: https://arxiv.org/abs/1908.07919 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/backbones/hrnet.py#L218 + Framework: PyTorch +- Name: fcn_hr18_4xb2-40k_cityscapes-512x1024 + In Collection: FCN + Results: + Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 77.19 + mIoU(ms+flip): 78.92 + Config: configs/hrnet/fcn_hr18_4xb2-40k_cityscapes-512x1024.py + Metadata: + Training Data: Cityscapes + Batch Size: 8 + Architecture: + - HRNetV2p-W18 + - FCN + Training Resources: 4x V100 GPUS + Memory (GB): 2.9 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr18_512x1024_40k_cityscapes/fcn_hr18_512x1024_40k_cityscapes_20200601_014216-f196fb4e.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr18_512x1024_40k_cityscapes/fcn_hr18_512x1024_40k_cityscapes_20200601_014216.log.json + Paper: + Title: Deep High-Resolution Representation Learning for Human Pose Estimation + URL: https://arxiv.org/abs/1908.07919 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/backbones/hrnet.py#L218 + Framework: PyTorch +- Name: fcn_hr48_4xb2-40k_cityscapes-512x1024 + In Collection: FCN + Results: + Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 78.48 + mIoU(ms+flip): 79.69 + Config: configs/hrnet/fcn_hr48_4xb2-40k_cityscapes-512x1024.py + Metadata: + Training Data: Cityscapes + Batch Size: 8 + Architecture: + - HRNetV2p-W48 + - FCN + Training Resources: 4x V100 GPUS + Memory (GB): 6.2 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr48_512x1024_40k_cityscapes/fcn_hr48_512x1024_40k_cityscapes_20200601_014240-a989b146.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr48_512x1024_40k_cityscapes/fcn_hr48_512x1024_40k_cityscapes_20200601_014240.log.json + Paper: + Title: Deep High-Resolution Representation Learning for Human Pose Estimation + URL: https://arxiv.org/abs/1908.07919 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/backbones/hrnet.py#L218 + Framework: PyTorch +- Name: fcn_hr18s_4xb2-80k_cityscapes-512x1024 + In Collection: FCN + Results: + Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 75.31 + mIoU(ms+flip): 77.48 + Config: configs/hrnet/fcn_hr18s_4xb2-80k_cityscapes-512x1024.py + Metadata: + Training Data: Cityscapes + Batch Size: 8 + Architecture: + - HRNetV2p-W18-Small + - FCN + Training Resources: 4x V100 GPUS + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr18s_512x1024_80k_cityscapes/fcn_hr18s_512x1024_80k_cityscapes_20200601_202700-1462b75d.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr18s_512x1024_80k_cityscapes/fcn_hr18s_512x1024_80k_cityscapes_20200601_202700.log.json + Paper: + Title: Deep High-Resolution Representation Learning for Human Pose Estimation + URL: https://arxiv.org/abs/1908.07919 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/backbones/hrnet.py#L218 + Framework: PyTorch +- Name: fcn_hr18_4xb2-80k_cityscapes-512x1024 + In Collection: FCN + Results: + Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 78.65 + mIoU(ms+flip): 80.35 + Config: configs/hrnet/fcn_hr18_4xb2-80k_cityscapes-512x1024.py + Metadata: + Training Data: Cityscapes + Batch Size: 8 + Architecture: + - HRNetV2p-W18 + - FCN + Training Resources: 4x V100 GPUS + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr18_512x1024_80k_cityscapes/fcn_hr18_512x1024_80k_cityscapes_20200601_223255-4e7b345e.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr18_512x1024_80k_cityscapes/fcn_hr18_512x1024_80k_cityscapes_20200601_223255.log.json + Paper: + Title: Deep High-Resolution Representation Learning for Human Pose Estimation + URL: https://arxiv.org/abs/1908.07919 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/backbones/hrnet.py#L218 + Framework: PyTorch +- Name: fcn_hr48_4xb2-80k_cityscapes-512x1024 + In Collection: FCN + Results: + Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 79.93 + mIoU(ms+flip): 80.72 + Config: configs/hrnet/fcn_hr48_4xb2-80k_cityscapes-512x1024.py + Metadata: + Training Data: Cityscapes + Batch Size: 8 + Architecture: + - HRNetV2p-W48 + - FCN + Training Resources: 4x V100 GPUS + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr48_512x1024_80k_cityscapes/fcn_hr48_512x1024_80k_cityscapes_20200601_202606-58ea95d6.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr48_512x1024_80k_cityscapes/fcn_hr48_512x1024_80k_cityscapes_20200601_202606.log.json + Paper: + Title: Deep High-Resolution Representation Learning for Human Pose Estimation + URL: https://arxiv.org/abs/1908.07919 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/backbones/hrnet.py#L218 + Framework: PyTorch +- Name: fcn_hr18s_4xb2-160k_cityscapes-512x1024 + In Collection: FCN + Results: + Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 76.31 + mIoU(ms+flip): 78.31 + Config: configs/hrnet/fcn_hr18s_4xb2-160k_cityscapes-512x1024.py + Metadata: + Training Data: Cityscapes + Batch Size: 8 + Architecture: + - HRNetV2p-W18-Small + - FCN + Training Resources: 4x V100 GPUS + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr18s_512x1024_160k_cityscapes/fcn_hr18s_512x1024_160k_cityscapes_20200602_190901-4a0797ea.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr18s_512x1024_160k_cityscapes/fcn_hr18s_512x1024_160k_cityscapes_20200602_190901.log.json + Paper: + Title: Deep High-Resolution Representation Learning for Human Pose Estimation + URL: https://arxiv.org/abs/1908.07919 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/backbones/hrnet.py#L218 + Framework: PyTorch +- Name: fcn_hr18_4xb2-160k_cityscapes-512x1024 + In Collection: FCN + Results: + Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 78.8 + mIoU(ms+flip): 80.74 + Config: configs/hrnet/fcn_hr18_4xb2-160k_cityscapes-512x1024.py + Metadata: + Training Data: Cityscapes + Batch Size: 8 + Architecture: + - HRNetV2p-W18 + - FCN + Training Resources: 4x V100 GPUS + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr18_512x1024_160k_cityscapes/fcn_hr18_512x1024_160k_cityscapes_20200602_190822-221e4a4f.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr18_512x1024_160k_cityscapes/fcn_hr18_512x1024_160k_cityscapes_20200602_190822.log.json + Paper: + Title: Deep High-Resolution Representation Learning for Human Pose Estimation + URL: https://arxiv.org/abs/1908.07919 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/backbones/hrnet.py#L218 + Framework: PyTorch +- Name: fcn_hr48_4xb2-160k_cityscapes-512x1024 + In Collection: FCN + Results: + Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 80.65 + mIoU(ms+flip): 81.92 + Config: configs/hrnet/fcn_hr48_4xb2-160k_cityscapes-512x1024.py + Metadata: + Training Data: Cityscapes + Batch Size: 8 + Architecture: + - HRNetV2p-W48 + - FCN + Training Resources: 4x V100 GPUS + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr48_512x1024_160k_cityscapes/fcn_hr48_512x1024_160k_cityscapes_20200602_190946-59b7973e.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr48_512x1024_160k_cityscapes/fcn_hr48_512x1024_160k_cityscapes_20200602_190946.log.json + Paper: + Title: Deep High-Resolution Representation Learning for Human Pose Estimation + URL: https://arxiv.org/abs/1908.07919 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/backbones/hrnet.py#L218 + Framework: PyTorch +- Name: fcn_hr18s_4xb4-80k_ade20k-512x512 + In Collection: FCN + Results: + Task: Semantic Segmentation + Dataset: ADE20K + Metrics: + mIoU: 31.38 + mIoU(ms+flip): 32.45 + Config: configs/hrnet/fcn_hr18s_4xb4-80k_ade20k-512x512.py + Metadata: + Training Data: ADE20K + Batch Size: 16 + Architecture: + - HRNetV2p-W18-Small + - FCN + Training Resources: 4x V100 GPUS + Memory (GB): 3.8 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr18s_512x512_80k_ade20k/fcn_hr18s_512x512_80k_ade20k_20200614_144345-77fc814a.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr18s_512x512_80k_ade20k/fcn_hr18s_512x512_80k_ade20k_20200614_144345.log.json + Paper: + Title: Deep High-Resolution Representation Learning for Human Pose Estimation + URL: https://arxiv.org/abs/1908.07919 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/backbones/hrnet.py#L218 + Framework: PyTorch +- Name: fcn_hr18_4xb4-80k_ade20k-512x512 + In Collection: FCN + Results: + Task: Semantic Segmentation + Dataset: ADE20K + Metrics: + mIoU: 36.27 + mIoU(ms+flip): 37.28 + Config: configs/hrnet/fcn_hr18_4xb4-80k_ade20k-512x512.py + Metadata: + Training Data: ADE20K + Batch Size: 16 + Architecture: + - HRNetV2p-W18 + - FCN + Training Resources: 4x V100 GPUS + Memory (GB): 4.9 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr18_512x512_80k_ade20k/fcn_hr18_512x512_80k_ade20k_20210827_114910-6c9382c0.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr18_512x512_80k_ade20k/fcn_hr18_512x512_80k_ade20k_20210827_114910.log.json + Paper: + Title: Deep High-Resolution Representation Learning for Human Pose Estimation + URL: https://arxiv.org/abs/1908.07919 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/backbones/hrnet.py#L218 + Framework: PyTorch +- Name: fcn_hr48_4xb4-80k_ade20k-512x512 + In Collection: FCN + Results: + Task: Semantic Segmentation + Dataset: ADE20K + Metrics: + mIoU: 41.9 + mIoU(ms+flip): 43.27 + Config: configs/hrnet/fcn_hr48_4xb4-80k_ade20k-512x512.py + Metadata: + Training Data: ADE20K + Batch Size: 16 + Architecture: + - HRNetV2p-W48 + - FCN + Training Resources: 4x V100 GPUS + Memory (GB): 8.2 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr48_512x512_80k_ade20k/fcn_hr48_512x512_80k_ade20k_20200614_193946-7ba5258d.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr48_512x512_80k_ade20k/fcn_hr48_512x512_80k_ade20k_20200614_193946.log.json + Paper: + Title: Deep High-Resolution Representation Learning for Human Pose Estimation + URL: https://arxiv.org/abs/1908.07919 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/backbones/hrnet.py#L218 + Framework: PyTorch +- Name: fcn_hr18s_4xb4-160k_ade20k-512x512 + In Collection: FCN + Results: + Task: Semantic Segmentation + Dataset: ADE20K + Metrics: + mIoU: 33.07 + mIoU(ms+flip): 34.56 + Config: configs/hrnet/fcn_hr18s_4xb4-160k_ade20k-512x512.py + Metadata: + Training Data: ADE20K + Batch Size: 16 + Architecture: + - HRNetV2p-W18-Small + - FCN + Training Resources: 4x V100 GPUS + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr18s_512x512_160k_ade20k/fcn_hr18s_512x512_160k_ade20k_20210829_174739-f1e7c2e7.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr18s_512x512_160k_ade20k/fcn_hr18s_512x512_160k_ade20k_20210829_174739.log.json + Paper: + Title: Deep High-Resolution Representation Learning for Human Pose Estimation + URL: https://arxiv.org/abs/1908.07919 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/backbones/hrnet.py#L218 + Framework: PyTorch +- Name: fcn_hr18_4xb4-160k_ade20k-512x512 + In Collection: FCN + Results: + Task: Semantic Segmentation + Dataset: ADE20K + Metrics: + mIoU: 36.79 + mIoU(ms+flip): 38.58 + Config: configs/hrnet/fcn_hr18_4xb4-160k_ade20k-512x512.py + Metadata: + Training Data: ADE20K + Batch Size: 16 + Architecture: + - HRNetV2p-W18 + - FCN + Training Resources: 4x V100 GPUS + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr18_512x512_160k_ade20k/fcn_hr18_512x512_160k_ade20k_20200614_214426-ca961836.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr18_512x512_160k_ade20k/fcn_hr18_512x512_160k_ade20k_20200614_214426.log.json + Paper: + Title: Deep High-Resolution Representation Learning for Human Pose Estimation + URL: https://arxiv.org/abs/1908.07919 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/backbones/hrnet.py#L218 + Framework: PyTorch +- Name: fcn_hr48_4xb4-160k_ade20k-512x512 + In Collection: FCN + Results: + Task: Semantic Segmentation + Dataset: ADE20K + Metrics: + mIoU: 42.02 + mIoU(ms+flip): 43.86 + Config: configs/hrnet/fcn_hr48_4xb4-160k_ade20k-512x512.py + Metadata: + Training Data: ADE20K + Batch Size: 16 + Architecture: + - HRNetV2p-W48 + - FCN + Training Resources: 4x V100 GPUS + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr48_512x512_160k_ade20k/fcn_hr48_512x512_160k_ade20k_20200614_214407-a52fc02c.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr48_512x512_160k_ade20k/fcn_hr48_512x512_160k_ade20k_20200614_214407.log.json + Paper: + Title: Deep High-Resolution Representation Learning for Human Pose Estimation + URL: https://arxiv.org/abs/1908.07919 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/backbones/hrnet.py#L218 + Framework: PyTorch +- Name: fcn_hr18s_4xb4-20k_voc12aug-512x512 + In Collection: FCN + Results: + Task: Semantic Segmentation + Dataset: Pascal VOC 2012 + Aug + Metrics: + mIoU: 65.5 + mIoU(ms+flip): 68.89 + Config: configs/hrnet/fcn_hr18s_4xb4-20k_voc12aug-512x512.py + Metadata: + Training Data: Pascal VOC 2012 + Aug + Batch Size: 16 + Architecture: + - HRNetV2p-W18-Small + - FCN + Training Resources: 4x V100 GPUS + Memory (GB): 1.8 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr18s_512x512_20k_voc12aug/fcn_hr18s_512x512_20k_voc12aug_20210829_174910-0aceadb4.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr18s_512x512_20k_voc12aug/fcn_hr18s_512x512_20k_voc12aug_20210829_174910.log.json + Paper: + Title: Deep High-Resolution Representation Learning for Human Pose Estimation + URL: https://arxiv.org/abs/1908.07919 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/backbones/hrnet.py#L218 + Framework: PyTorch +- Name: fcn_hr18_4xb4-20k_voc12aug-512x512 + In Collection: FCN + Results: + Task: Semantic Segmentation + Dataset: Pascal VOC 2012 + Aug + Metrics: + mIoU: 72.3 + mIoU(ms+flip): 74.71 + Config: configs/hrnet/fcn_hr18_4xb4-20k_voc12aug-512x512.py + Metadata: + Training Data: Pascal VOC 2012 + Aug + Batch Size: 16 + Architecture: + - HRNetV2p-W18 + - FCN + Training Resources: 4x V100 GPUS + Memory (GB): 2.9 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr18_512x512_20k_voc12aug/fcn_hr18_512x512_20k_voc12aug_20200617_224503-488d45f7.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr18_512x512_20k_voc12aug/fcn_hr18_512x512_20k_voc12aug_20200617_224503.log.json + Paper: + Title: Deep High-Resolution Representation Learning for Human Pose Estimation + URL: https://arxiv.org/abs/1908.07919 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/backbones/hrnet.py#L218 + Framework: PyTorch +- Name: fcn_hr48_4xb4-20k_voc12aug-512x512 + In Collection: FCN + Results: + Task: Semantic Segmentation + Dataset: Pascal VOC 2012 + Aug + Metrics: + mIoU: 75.87 + mIoU(ms+flip): 78.58 + Config: configs/hrnet/fcn_hr48_4xb4-20k_voc12aug-512x512.py + Metadata: + Training Data: Pascal VOC 2012 + Aug + Batch Size: 16 + Architecture: + - HRNetV2p-W48 + - FCN + Training Resources: 4x V100 GPUS + Memory (GB): 6.2 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr48_512x512_20k_voc12aug/fcn_hr48_512x512_20k_voc12aug_20200617_224419-89de05cd.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr48_512x512_20k_voc12aug/fcn_hr48_512x512_20k_voc12aug_20200617_224419.log.json + Paper: + Title: Deep High-Resolution Representation Learning for Human Pose Estimation + URL: https://arxiv.org/abs/1908.07919 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/backbones/hrnet.py#L218 + Framework: PyTorch +- Name: fcn_hr18s_4xb4-40k_voc12aug-512x512 + In Collection: FCN + Results: + Task: Semantic Segmentation + Dataset: Pascal VOC 2012 + Aug + Metrics: + mIoU: 66.61 + mIoU(ms+flip): 70.0 + Config: configs/hrnet/fcn_hr18s_4xb4-40k_voc12aug-512x512.py + Metadata: + Training Data: Pascal VOC 2012 + Aug + Batch Size: 16 + Architecture: + - HRNetV2p-W18-Small + - FCN + Training Resources: 4x V100 GPUS + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr18s_512x512_40k_voc12aug/fcn_hr18s_512x512_40k_voc12aug_20200614_000648-4f8d6e7f.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr18s_512x512_40k_voc12aug/fcn_hr18s_512x512_40k_voc12aug_20200614_000648.log.json + Paper: + Title: Deep High-Resolution Representation Learning for Human Pose Estimation + URL: https://arxiv.org/abs/1908.07919 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/backbones/hrnet.py#L218 + Framework: PyTorch +- Name: fcn_hr18_4xb4-40k_voc12aug-512x512 + In Collection: FCN + Results: + Task: Semantic Segmentation + Dataset: Pascal VOC 2012 + Aug + Metrics: + mIoU: 72.9 + mIoU(ms+flip): 75.59 + Config: configs/hrnet/fcn_hr18_4xb4-40k_voc12aug-512x512.py + Metadata: + Training Data: Pascal VOC 2012 + Aug + Batch Size: 16 + Architecture: + - HRNetV2p-W18 + - FCN + Training Resources: 4x V100 GPUS + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr18_512x512_40k_voc12aug/fcn_hr18_512x512_40k_voc12aug_20200613_224401-1b4b76cd.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr18_512x512_40k_voc12aug/fcn_hr18_512x512_40k_voc12aug_20200613_224401.log.json + Paper: + Title: Deep High-Resolution Representation Learning for Human Pose Estimation + URL: https://arxiv.org/abs/1908.07919 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/backbones/hrnet.py#L218 + Framework: PyTorch +- Name: fcn_hr48_4xb4-40k_voc12aug-512x512 + In Collection: FCN + Results: + Task: Semantic Segmentation + Dataset: Pascal VOC 2012 + Aug + Metrics: + mIoU: 76.24 + mIoU(ms+flip): 78.49 + Config: configs/hrnet/fcn_hr48_4xb4-40k_voc12aug-512x512.py + Metadata: + Training Data: Pascal VOC 2012 + Aug + Batch Size: 16 + Architecture: + - HRNetV2p-W48 + - FCN + Training Resources: 4x V100 GPUS + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr48_512x512_40k_voc12aug/fcn_hr48_512x512_40k_voc12aug_20200613_222111-1b0f18bc.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr48_512x512_40k_voc12aug/fcn_hr48_512x512_40k_voc12aug_20200613_222111.log.json + Paper: + Title: Deep High-Resolution Representation Learning for Human Pose Estimation + URL: https://arxiv.org/abs/1908.07919 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/backbones/hrnet.py#L218 + Framework: PyTorch +- Name: fcn_hr48_4xb4-40k_pascal-context-480x480 + In Collection: FCN + Results: + Task: Semantic Segmentation + Dataset: Pascal Context + Metrics: + mIoU: 45.14 + mIoU(ms+flip): 47.42 + Config: configs/hrnet/fcn_hr48_4xb4-40k_pascal-context-480x480.py + Metadata: + Training Data: Pascal Context + Batch Size: 16 + Architecture: + - HRNetV2p-W48 + - FCN + Training Resources: 4x V100 GPUS + Memory (GB): 6.1 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr48_480x480_40k_pascal_context/fcn_hr48_480x480_40k_pascal_context_20200911_164852-667d00b0.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr48_480x480_40k_pascal_context/fcn_hr48_480x480_40k_pascal_context-20200911_164852.log.json + Paper: + Title: Deep High-Resolution Representation Learning for Human Pose Estimation + URL: https://arxiv.org/abs/1908.07919 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/backbones/hrnet.py#L218 + Framework: PyTorch +- Name: fcn_hr48_4xb4-80k_pascal-context-480x480 + In Collection: FCN + Results: + Task: Semantic Segmentation + Dataset: Pascal Context + Metrics: + mIoU: 45.84 + mIoU(ms+flip): 47.84 + Config: configs/hrnet/fcn_hr48_4xb4-80k_pascal-context-480x480.py + Metadata: + Training Data: Pascal Context + Batch Size: 16 + Architecture: + - HRNetV2p-W48 + - FCN + Training Resources: 4x V100 GPUS + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr48_480x480_80k_pascal_context/fcn_hr48_480x480_80k_pascal_context_20200911_155322-847a6711.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr48_480x480_80k_pascal_context/fcn_hr48_480x480_80k_pascal_context-20200911_155322.log.json + Paper: + Title: Deep High-Resolution Representation Learning for Human Pose Estimation + URL: https://arxiv.org/abs/1908.07919 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/backbones/hrnet.py#L218 + Framework: PyTorch +- Name: fcn_hr48_4xb4-40k_pascal-context-59-480x480 + In Collection: FCN + Results: + Task: Semantic Segmentation + Dataset: Pascal Context 59 + Metrics: + mIoU: 50.33 + mIoU(ms+flip): 52.83 + Config: configs/hrnet/fcn_hr48_4xb4-40k_pascal-context-59-480x480.py + Metadata: + Training Data: Pascal Context 59 + Batch Size: 16 + Architecture: + - HRNetV2p-W48 + - FCN + Training Resources: 4x V100 GPUS + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr48_480x480_40k_pascal_context_59/fcn_hr48_480x480_40k_pascal_context_59_20210410_122738-b808b8b2.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr48_480x480_40k_pascal_context_59/fcn_hr48_480x480_40k_pascal_context_59-20210410_122738.log.json + Paper: + Title: Deep High-Resolution Representation Learning for Human Pose Estimation + URL: https://arxiv.org/abs/1908.07919 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/backbones/hrnet.py#L218 + Framework: PyTorch +- Name: fcn_hr48_4xb4-80k_pascal-context-59-480x480 + In Collection: FCN + Results: + Task: Semantic Segmentation + Dataset: Pascal Context 59 + Metrics: + mIoU: 51.12 + mIoU(ms+flip): 53.56 + Config: configs/hrnet/fcn_hr48_4xb4-80k_pascal-context-59-480x480.py + Metadata: + Training Data: Pascal Context 59 + Batch Size: 16 + Architecture: + - HRNetV2p-W48 + - FCN + Training Resources: 4x V100 GPUS + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr48_480x480_80k_pascal_context_59/fcn_hr48_480x480_80k_pascal_context_59_20210411_003240-3ae7081e.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr48_480x480_80k_pascal_context_59/fcn_hr48_480x480_80k_pascal_context_59-20210411_003240.log.json + Paper: + Title: Deep High-Resolution Representation Learning for Human Pose Estimation + URL: https://arxiv.org/abs/1908.07919 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/backbones/hrnet.py#L218 + Framework: PyTorch +- Name: fcn_hr18s_4xb4-80k_loveda-512x512 + In Collection: FCN + Results: + Task: Semantic Segmentation + Dataset: LoveDA + Metrics: + mIoU: 49.28 + mIoU(ms+flip): 49.42 + Config: configs/hrnet/fcn_hr18s_4xb4-80k_loveda-512x512.py + Metadata: + Training Data: LoveDA + Batch Size: 16 + Architecture: + - HRNetV2p-W18-Small + - FCN + Training Resources: 4x V100 GPUS + Memory (GB): 1.59 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr18s_512x512_80k_loveda/fcn_hr18s_512x512_80k_loveda_20211210_203228-60a86a7a.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr18s_512x512_80k_loveda/fcn_hr18s_512x512_80k_loveda_20211210_203228.log.json + Paper: + Title: Deep High-Resolution Representation Learning for Human Pose Estimation + URL: https://arxiv.org/abs/1908.07919 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/backbones/hrnet.py#L218 + Framework: PyTorch +- Name: fcn_hr18_4xb4-80k_loveda-512x512 + In Collection: FCN + Results: + Task: Semantic Segmentation + Dataset: LoveDA + Metrics: + mIoU: 50.81 + mIoU(ms+flip): 50.95 + Config: configs/hrnet/fcn_hr18_4xb4-80k_loveda-512x512.py + Metadata: + Training Data: LoveDA + Batch Size: 16 + Architecture: + - HRNetV2p-W18 + - FCN + Training Resources: 4x V100 GPUS + Memory (GB): 2.76 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr18_512x512_80k_loveda/fcn_hr18_512x512_80k_loveda_20211210_203952-93d9c3b3.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr18_512x512_80k_loveda/fcn_hr18_512x512_80k_loveda_20211210_203952.log.json + Paper: + Title: Deep High-Resolution Representation Learning for Human Pose Estimation + URL: https://arxiv.org/abs/1908.07919 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/backbones/hrnet.py#L218 + Framework: PyTorch +- Name: fcn_hr48_4xb4-80k_loveda-512x512 + In Collection: FCN + Results: + Task: Semantic Segmentation + Dataset: LoveDA + Metrics: + mIoU: 51.42 + mIoU(ms+flip): 51.64 + Config: configs/hrnet/fcn_hr48_4xb4-80k_loveda-512x512.py + Metadata: + Training Data: LoveDA + Batch Size: 16 + Architecture: + - HRNetV2p-W48 + - FCN + Training Resources: 4x V100 GPUS + Memory (GB): 6.2 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr48_512x512_80k_loveda/fcn_hr48_512x512_80k_loveda_20211211_044756-67072f55.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr48_512x512_80k_loveda/fcn_hr48_512x512_80k_loveda_20211211_044756.log.json + Paper: + Title: Deep High-Resolution Representation Learning for Human Pose Estimation + URL: https://arxiv.org/abs/1908.07919 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/backbones/hrnet.py#L218 + Framework: PyTorch +- Name: fcn_hr18s_4xb4-80k_potsdam-512x512 + In Collection: FCN + Results: + Task: Semantic Segmentation + Dataset: Potsdam + Metrics: + mIoU: 77.64 + mIoU(ms+flip): 78.8 + Config: configs/hrnet/fcn_hr18s_4xb4-80k_potsdam-512x512.py + Metadata: + Training Data: Potsdam + Batch Size: 16 + Architecture: + - HRNetV2p-W18-Small + - FCN + Training Resources: 4x V100 GPUS + Memory (GB): 1.58 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr18s_512x512_80k_potsdam/fcn_hr18s_512x512_80k_potsdam_20211218_205517-ba32af63.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr18s_512x512_80k_potsdam/fcn_hr18s_512x512_80k_potsdam_20211218_205517.log.json + Paper: + Title: Deep High-Resolution Representation Learning for Human Pose Estimation + URL: https://arxiv.org/abs/1908.07919 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/backbones/hrnet.py#L218 + Framework: PyTorch +- Name: fcn_hr18_4xb4-80k_potsdam-512x512 + In Collection: FCN + Results: + Task: Semantic Segmentation + Dataset: Potsdam + Metrics: + mIoU: 78.26 + mIoU(ms+flip): 79.24 + Config: configs/hrnet/fcn_hr18_4xb4-80k_potsdam-512x512.py + Metadata: + Training Data: Potsdam + Batch Size: 16 + Architecture: + - HRNetV2p-W18 + - FCN + Training Resources: 4x V100 GPUS + Memory (GB): 2.76 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr18_512x512_80k_potsdam/fcn_hr18_512x512_80k_potsdam_20211218_205517-5d0387ad.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr18_512x512_80k_potsdam/fcn_hr18_512x512_80k_potsdam_20211218_205517.log.json + Paper: + Title: Deep High-Resolution Representation Learning for Human Pose Estimation + URL: https://arxiv.org/abs/1908.07919 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/backbones/hrnet.py#L218 + Framework: PyTorch +- Name: fcn_hr48_4xb4-80k_potsdam-512x512 + In Collection: FCN + Results: + Task: Semantic Segmentation + Dataset: Potsdam + Metrics: + mIoU: 78.39 + mIoU(ms+flip): 79.34 + Config: configs/hrnet/fcn_hr48_4xb4-80k_potsdam-512x512.py + Metadata: + Training Data: Potsdam + Batch Size: 16 + Architecture: + - HRNetV2p-W48 + - FCN + Training Resources: 4x V100 GPUS + Memory (GB): 6.2 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr48_512x512_80k_potsdam/fcn_hr48_512x512_80k_potsdam_20211219_020601-97434c78.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr48_512x512_80k_potsdam/fcn_hr48_512x512_80k_potsdam_20211219_020601.log.json + Paper: + Title: Deep High-Resolution Representation Learning for Human Pose Estimation + URL: https://arxiv.org/abs/1908.07919 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/backbones/hrnet.py#L218 + Framework: PyTorch +- Name: fcn_hr18s_4xb4-80k_vaihingen-512x512 + In Collection: FCN + Results: + Task: Semantic Segmentation + Dataset: Vaihingen + Metrics: + mIoU: 71.81 + mIoU(ms+flip): 73.1 + Config: configs/hrnet/fcn_hr18s_4xb4-80k_vaihingen-512x512.py + Metadata: + Training Data: Vaihingen + Batch Size: 16 + Architecture: + - HRNetV2p-W18-Small + - FCN + Training Resources: 4x V100 GPUS + Memory (GB): 1.58 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr18s_4x4_512x512_80k_vaihingen/fcn_hr18s_4x4_512x512_80k_vaihingen_20211231_230909-b23aae02.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr18s_4x4_512x512_80k_vaihingen/fcn_hr18s_4x4_512x512_80k_vaihingen_20211231_230909.log.json + Paper: + Title: Deep High-Resolution Representation Learning for Human Pose Estimation + URL: https://arxiv.org/abs/1908.07919 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/backbones/hrnet.py#L218 + Framework: PyTorch +- Name: fcn_hr18_4xb4-80k_vaihingen-512x512 + In Collection: FCN + Results: + Task: Semantic Segmentation + Dataset: Vaihingen + Metrics: + mIoU: 72.57 + mIoU(ms+flip): 74.09 + Config: configs/hrnet/fcn_hr18_4xb4-80k_vaihingen-512x512.py + Metadata: + Training Data: Vaihingen + Batch Size: 16 + Architecture: + - HRNetV2p-W18 + - FCN + Training Resources: 4x V100 GPUS + Memory (GB): 2.76 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr18_4x4_512x512_80k_vaihingen/fcn_hr18_4x4_512x512_80k_vaihingen_20211231_231216-2ec3ae8a.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr18_4x4_512x512_80k_vaihingen/fcn_hr18_4x4_512x512_80k_vaihingen_20211231_231216.log.json + Paper: + Title: Deep High-Resolution Representation Learning for Human Pose Estimation + URL: https://arxiv.org/abs/1908.07919 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/backbones/hrnet.py#L218 + Framework: PyTorch +- Name: fcn_hr48_4xb4-80k_vaihingen-512x512 + In Collection: FCN + Results: + Task: Semantic Segmentation + Dataset: Vaihingen + Metrics: + mIoU: 72.5 + mIoU(ms+flip): 73.52 + Config: configs/hrnet/fcn_hr48_4xb4-80k_vaihingen-512x512.py + Metadata: + Training Data: Vaihingen + Batch Size: 16 + Architecture: + - HRNetV2p-W48 + - FCN + Training Resources: 4x V100 GPUS + Memory (GB): 6.2 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr48_4x4_512x512_80k_vaihingen/fcn_hr48_4x4_512x512_80k_vaihingen_20211231_231244-7133cb22.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr48_4x4_512x512_80k_vaihingen/fcn_hr48_4x4_512x512_80k_vaihingen_20211231_231244.log.json + Paper: + Title: Deep High-Resolution Representation Learning for Human Pose Estimation + URL: https://arxiv.org/abs/1908.07919 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/backbones/hrnet.py#L218 + Framework: PyTorch +- Name: fcn_hr18s_4xb4-80k_isaid-896x896 + In Collection: FCN + Results: + Task: Semantic Segmentation + Dataset: iSAID + Metrics: + mIoU: 62.3 + mIoU(ms+flip): 62.97 + Config: configs/hrnet/fcn_hr18s_4xb4-80k_isaid-896x896.py + Metadata: + Training Data: iSAID + Batch Size: 16 + Architecture: + - HRNetV2p-W18-Small + - FCN + Training Resources: 4x V100 GPUS + Memory (GB): 4.95 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr18s_4x4_896x896_80k_isaid/fcn_hr18s_4x4_896x896_80k_isaid_20220118_001603-3cc0769b.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr18s_4x4_896x896_80k_isaid/fcn_hr18s_4x4_896x896_80k_isaid_20220118_001603.log.json + Paper: + Title: Deep High-Resolution Representation Learning for Human Pose Estimation + URL: https://arxiv.org/abs/1908.07919 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/backbones/hrnet.py#L218 + Framework: PyTorch +- Name: fcn_hr18_4xb4-80k_isaid-896x896 + In Collection: FCN + Results: + Task: Semantic Segmentation + Dataset: iSAID + Metrics: + mIoU: 65.06 + mIoU(ms+flip): 65.6 + Config: configs/hrnet/fcn_hr18_4xb4-80k_isaid-896x896.py + Metadata: + Training Data: iSAID + Batch Size: 16 + Architecture: + - HRNetV2p-W18 + - FCN + Training Resources: 4x V100 GPUS + Memory (GB): 8.3 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr18_4x4_896x896_80k_isaid/fcn_hr18_4x4_896x896_80k_isaid_20220110_182230-49bf752e.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr18_4x4_896x896_80k_isaid/fcn_hr18_4x4_896x896_80k_isaid_20220110_182230.log.json + Paper: + Title: Deep High-Resolution Representation Learning for Human Pose Estimation + URL: https://arxiv.org/abs/1908.07919 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/backbones/hrnet.py#L218 + Framework: PyTorch +- Name: fcn_hr48_4xb4-80k_isaid-896x896 + In Collection: FCN + Results: + Task: Semantic Segmentation + Dataset: iSAID + Metrics: + mIoU: 67.8 + mIoU(ms+flip): 68.53 + Config: configs/hrnet/fcn_hr48_4xb4-80k_isaid-896x896.py + Metadata: + Training Data: iSAID + Batch Size: 16 + Architecture: + - HRNetV2p-W48 + - FCN + Training Resources: 4x V100 GPUS + Memory (GB): 16.89 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr48_4x4_896x896_80k_isaid/fcn_hr48_4x4_896x896_80k_isaid_20220114_174643-547fc420.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr48_4x4_896x896_80k_isaid/fcn_hr48_4x4_896x896_80k_isaid_20220114_174643.log.json + Paper: + Title: Deep High-Resolution Representation Learning for Human Pose Estimation + URL: https://arxiv.org/abs/1908.07919 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/backbones/hrnet.py#L218 + Framework: PyTorch diff --git a/configs/icnet/README.md b/configs/icnet/README.md index 134f53b29f..2b58c2eed8 100644 --- a/configs/icnet/README.md +++ b/configs/icnet/README.md @@ -1,6 +1,6 @@ # ICNet -[ICNet for Real-time Semantic Segmentation on High-resolution Images](https://arxiv.org/abs/1704.08545) +> [ICNet for Real-time Semantic Segmentation on High-resolution Images](https://arxiv.org/abs/1704.08545) ## Introduction @@ -22,6 +22,27 @@ We focus on the challenging task of real-time semantic segmentation in this pape +## Results and models + +### Cityscapes + +| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | Device | mIoU | mIoU(ms+flip) | config | download | +| ---------------- | -------- | --------- | ------: | -------- | -------------- | ------ | ----: | ------------: | ---------------------------------------------------------------------------------------------------------------------------------------- | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | +| ICNet | R-18-D8 | 832x832 | 80000 | 1.70 | 27.12 | V100 | 68.14 | 70.16 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/icnet/icnet_r18-d8_4xb2-80k_cityscapes-832x832.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/icnet/icnet_r18-d8_832x832_80k_cityscapes/icnet_r18-d8_832x832_80k_cityscapes_20210925_225521-2e36638d.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/icnet/icnet_r18-d8_832x832_80k_cityscapes/icnet_r18-d8_832x832_80k_cityscapes_20210925_225521.log.json) | +| ICNet | R-18-D8 | 832x832 | 160000 | - | - | V100 | 71.64 | 74.18 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/icnet/icnet_r18-d8_4xb2-160k_cityscapes-832x832.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/icnet/icnet_r18-d8_832x832_160k_cityscapes/icnet_r18-d8_832x832_160k_cityscapes_20210925_230153-2c6eb6e0.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/icnet/icnet_r18-d8_832x832_160k_cityscapes/icnet_r18-d8_832x832_160k_cityscapes_20210925_230153.log.json) | +| ICNet (in1k-pre) | R-18-D8 | 832x832 | 80000 | - | - | V100 | 72.51 | 74.78 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/icnet/icnet_r18-d8-in1k-pre_4xb2-80k_cityscapes-832x832.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/icnet/icnet_r18-d8_in1k-pre_832x832_80k_cityscapes/icnet_r18-d8_in1k-pre_832x832_80k_cityscapes_20210925_230354-1cbe3022.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/icnet/icnet_r18-d8_in1k-pre_832x832_80k_cityscapes/icnet_r18-d8_in1k-pre_832x832_80k_cityscapes_20210925_230354.log.json) | +| ICNet (in1k-pre) | R-18-D8 | 832x832 | 160000 | - | - | V100 | 74.43 | 76.72 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/icnet/icnet_r18-d8-in1k-pre_4xb2-160k_cityscapes-832x832.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/icnet/icnet_r18-d8_in1k-pre_832x832_160k_cityscapes/icnet_r18-d8_in1k-pre_832x832_160k_cityscapes_20210926_052702-619c8ae1.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/icnet/icnet_r18-d8_in1k-pre_832x832_160k_cityscapes/icnet_r18-d8_in1k-pre_832x832_160k_cityscapes_20210926_052702.log.json) | +| ICNet | R-50-D8 | 832x832 | 80000 | 2.53 | 20.08 | V100 | 68.91 | 69.72 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/icnet/icnet_r50-d8_4xb2-80k_cityscapes-832x832.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/icnet/icnet_r50-d8_832x832_80k_cityscapes/icnet_r50-d8_832x832_80k_cityscapes_20210926_044625-c6407341.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/icnet/icnet_r50-d8_832x832_80k_cityscapes/icnet_r50-d8_832x832_80k_cityscapes_20210926_044625.log.json) | +| ICNet | R-50-D8 | 832x832 | 160000 | - | - | V100 | 73.82 | 75.67 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/icnet/icnet_r50-d8_4xb2-160k_cityscapes-832x832.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/icnet/icnet_r50-d8_832x832_160k_cityscapes/icnet_r50-d8_832x832_160k_cityscapes_20210925_232612-a95f0d4e.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/icnet/icnet_r50-d8_832x832_160k_cityscapes/icnet_r50-d8_832x832_160k_cityscapes_20210925_232612.log.json) | +| ICNet (in1k-pre) | R-50-D8 | 832x832 | 80000 | - | - | V100 | 74.58 | 76.41 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/icnet/icnet_r50-d8-in1k-pre_4xb2-80k_cityscapes-832x832.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/icnet/icnet_r50-d8_in1k-pre_832x832_80k_cityscapes/icnet_r50-d8_in1k-pre_832x832_80k_cityscapes_20210926_032943-1743dc7b.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/icnet/icnet_r50-d8_in1k-pre_832x832_80k_cityscapes/icnet_r50-d8_in1k-pre_832x832_80k_cityscapes_20210926_032943.log.json) | +| ICNet (in1k-pre) | R-50-D8 | 832x832 | 160000 | - | - | V100 | 76.29 | 78.09 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/icnet/icnet_r50-d8-in1k-pre_4xb2-160k_cityscapes-832x832.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/icnet/icnet_r50-d8_in1k-pre_832x832_160k_cityscapes/icnet_r50-d8_in1k-pre_832x832_160k_cityscapes_20210926_042715-ce310aea.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/icnet/icnet_r50-d8_in1k-pre_832x832_160k_cityscapes/icnet_r50-d8_in1k-pre_832x832_160k_cityscapes_20210926_042715.log.json) | +| ICNet | R-101-D8 | 832x832 | 80000 | 3.08 | 16.95 | V100 | 70.28 | 71.95 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/icnet/icnet_r101-d8_4xb2-80k_cityscapes-832x832.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/icnet/icnet_r101-d8_832x832_80k_cityscapes/icnet_r101-d8_832x832_80k_cityscapes_20210926_072447-b52f936e.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/icnet/icnet_r101-d8_832x832_80k_cityscapes/icnet_r101-d8_832x832_80k_cityscapes_20210926_072447.log.json) | +| ICNet | R-101-D8 | 832x832 | 160000 | - | - | V100 | 73.80 | 76.10 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/icnet/icnet_r101-d8_4xb2-160k_cityscapes-832x832.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/icnet/icnet_r101-d8_832x832_160k_cityscapes/icnet_r101-d8_832x832_160k_cityscapes_20210926_092350-3a1ebf1a.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/icnet/icnet_r101-d8_832x832_160k_cityscapes/icnet_r101-d8_832x832_160k_cityscapes_20210926_092350.log.json) | +| ICNet (in1k-pre) | R-101-D8 | 832x832 | 80000 | - | - | V100 | 75.57 | 77.86 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/icnet/icnet_r101-d8-in1k-pre_4xb2-80k_cityscapes-832x832.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/icnet/icnet_r101-d8_in1k-pre_832x832_80k_cityscapes/icnet_r101-d8_in1k-pre_832x832_80k_cityscapes_20210926_020414-7ceb12c5.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/icnet/icnet_r101-d8_in1k-pre_832x832_80k_cityscapes/icnet_r101-d8_in1k-pre_832x832_80k_cityscapes_20210926_020414.log.json) | +| ICNet (in1k-pre) | R-101-D8 | 832x832 | 160000 | - | - | V100 | 76.15 | 77.98 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/icnet/icnet_r101-d8-in1k-pre_4xb2-160k_cityscapes-832x832.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/icnet/icnet_r101-d8_in1k-pre_832x832_160k_cityscapes/icnet_r101-d8_in1k-pre_832x832_160k_cityscapes_20210925_232612-9484ae8a.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/icnet/icnet_r101-d8_in1k-pre_832x832_160k_cityscapes/icnet_r101-d8_in1k-pre_832x832_160k_cityscapes_20210925_232612.log.json) | + +Note: `in1k-pre` means pretrained model is used. + ## Citation ```bibtext @@ -33,24 +54,3 @@ We focus on the challenging task of real-time semantic segmentation in this pape year={2018} } ``` - -## Results and models - -### Cityscapes - -| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | mIoU | mIoU(ms+flip) | config | download | -| ---------------- | -------- | --------- | ------: | -------- | -------------- | ----: | ------------: | ---------------------------------------------------------------------------------------------------------------------------------------- | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | -| ICNet | R-18-D8 | 832x832 | 80000 | 1.70 | 27.12 | 68.14 | 70.16 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/icnet/icnet_r18-d8_4xb2-80k_cityscapes-832x832.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/icnet/icnet_r18-d8_832x832_80k_cityscapes/icnet_r18-d8_832x832_80k_cityscapes_20210925_225521-2e36638d.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/icnet/icnet_r18-d8_832x832_80k_cityscapes/icnet_r18-d8_832x832_80k_cityscapes_20210925_225521.log.json) | -| ICNet | R-18-D8 | 832x832 | 160000 | - | - | 71.64 | 74.18 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/icnet/icnet_r18-d8_4xb2-160k_cityscapes-832x832.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/icnet/icnet_r18-d8_832x832_160k_cityscapes/icnet_r18-d8_832x832_160k_cityscapes_20210925_230153-2c6eb6e0.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/icnet/icnet_r18-d8_832x832_160k_cityscapes/icnet_r18-d8_832x832_160k_cityscapes_20210925_230153.log.json) | -| ICNet (in1k-pre) | R-18-D8 | 832x832 | 80000 | - | - | 72.51 | 74.78 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/icnet/icnet_r18-d8-in1k-pre_4xb2-80k_cityscapes-832x832.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/icnet/icnet_r18-d8_in1k-pre_832x832_80k_cityscapes/icnet_r18-d8_in1k-pre_832x832_80k_cityscapes_20210925_230354-1cbe3022.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/icnet/icnet_r18-d8_in1k-pre_832x832_80k_cityscapes/icnet_r18-d8_in1k-pre_832x832_80k_cityscapes_20210925_230354.log.json) | -| ICNet (in1k-pre) | R-18-D8 | 832x832 | 160000 | - | - | 74.43 | 76.72 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/icnet/icnet_r18-d8-in1k-pre_4xb2-160k_cityscapes-832x832.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/icnet/icnet_r18-d8_in1k-pre_832x832_160k_cityscapes/icnet_r18-d8_in1k-pre_832x832_160k_cityscapes_20210926_052702-619c8ae1.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/icnet/icnet_r18-d8_in1k-pre_832x832_160k_cityscapes/icnet_r18-d8_in1k-pre_832x832_160k_cityscapes_20210926_052702.log.json) | -| ICNet | R-50-D8 | 832x832 | 80000 | 2.53 | 20.08 | 68.91 | 69.72 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/icnet/icnet_r50-d8_4xb2-80k_cityscapes-832x832.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/icnet/icnet_r50-d8_832x832_80k_cityscapes/icnet_r50-d8_832x832_80k_cityscapes_20210926_044625-c6407341.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/icnet/icnet_r50-d8_832x832_80k_cityscapes/icnet_r50-d8_832x832_80k_cityscapes_20210926_044625.log.json) | -| ICNet | R-50-D8 | 832x832 | 160000 | - | - | 73.82 | 75.67 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/icnet/icnet_r50-d8_4xb2-160k_cityscapes-832x832.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/icnet/icnet_r50-d8_832x832_160k_cityscapes/icnet_r50-d8_832x832_160k_cityscapes_20210925_232612-a95f0d4e.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/icnet/icnet_r50-d8_832x832_160k_cityscapes/icnet_r50-d8_832x832_160k_cityscapes_20210925_232612.log.json) | -| ICNet (in1k-pre) | R-50-D8 | 832x832 | 80000 | - | - | 74.58 | 76.41 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/icnet/icnet_r50-d8-in1k-pre_4xb2-80k_cityscapes-832x832.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/icnet/icnet_r50-d8_in1k-pre_832x832_80k_cityscapes/icnet_r50-d8_in1k-pre_832x832_80k_cityscapes_20210926_032943-1743dc7b.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/icnet/icnet_r50-d8_in1k-pre_832x832_80k_cityscapes/icnet_r50-d8_in1k-pre_832x832_80k_cityscapes_20210926_032943.log.json) | -| ICNet (in1k-pre) | R-50-D8 | 832x832 | 160000 | - | - | 76.29 | 78.09 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/icnet/icnet_r50-d8-in1k-pre_4xb2-160k_cityscapes-832x832.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/icnet/icnet_r50-d8_in1k-pre_832x832_160k_cityscapes/icnet_r50-d8_in1k-pre_832x832_160k_cityscapes_20210926_042715-ce310aea.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/icnet/icnet_r50-d8_in1k-pre_832x832_160k_cityscapes/icnet_r50-d8_in1k-pre_832x832_160k_cityscapes_20210926_042715.log.json) | -| ICNet | R-101-D8 | 832x832 | 80000 | 3.08 | 16.95 | 70.28 | 71.95 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/icnet/icnet_r101-d8_4xb2-80k_cityscapes-832x832.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/icnet/icnet_r101-d8_832x832_80k_cityscapes/icnet_r101-d8_832x832_80k_cityscapes_20210926_072447-b52f936e.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/icnet/icnet_r101-d8_832x832_80k_cityscapes/icnet_r101-d8_832x832_80k_cityscapes_20210926_072447.log.json) | -| ICNet | R-101-D8 | 832x832 | 160000 | - | - | 73.80 | 76.10 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/icnet/icnet_r101-d8_4xb2-160k_cityscapes-832x832.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/icnet/icnet_r101-d8_832x832_160k_cityscapes/icnet_r101-d8_832x832_160k_cityscapes_20210926_092350-3a1ebf1a.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/icnet/icnet_r101-d8_832x832_160k_cityscapes/icnet_r101-d8_832x832_160k_cityscapes_20210926_092350.log.json) | -| ICNet (in1k-pre) | R-101-D8 | 832x832 | 80000 | - | - | 75.57 | 77.86 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/icnet/icnet_r101-d8-in1k-pre_4xb2-80k_cityscapes-832x832.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/icnet/icnet_r101-d8_in1k-pre_832x832_80k_cityscapes/icnet_r101-d8_in1k-pre_832x832_80k_cityscapes_20210926_020414-7ceb12c5.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/icnet/icnet_r101-d8_in1k-pre_832x832_80k_cityscapes/icnet_r101-d8_in1k-pre_832x832_80k_cityscapes_20210926_020414.log.json) | -| ICNet (in1k-pre) | R-101-D8 | 832x832 | 160000 | - | - | 76.15 | 77.98 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/icnet/icnet_r101-d8-in1k-pre_4xb2-160k_cityscapes-832x832.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/icnet/icnet_r101-d8_in1k-pre_832x832_160k_cityscapes/icnet_r101-d8_in1k-pre_832x832_160k_cityscapes_20210925_232612-9484ae8a.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/icnet/icnet_r101-d8_in1k-pre_832x832_160k_cityscapes/icnet_r101-d8_in1k-pre_832x832_160k_cityscapes_20210925_232612.log.json) | - -Note: `in1k-pre` means pretrained model is used. diff --git a/configs/icnet/icnet.yml b/configs/icnet/icnet.yml deleted file mode 100644 index 5ded544726..0000000000 --- a/configs/icnet/icnet.yml +++ /dev/null @@ -1,207 +0,0 @@ -Collections: -- Name: ICNet - Metadata: - Training Data: - - Cityscapes - Paper: - URL: https://arxiv.org/abs/1704.08545 - Title: ICNet for Real-time Semantic Segmentation on High-resolution Images - README: configs/icnet/README.md - Code: - URL: https://github.com/open-mmlab/mmsegmentation/blob/v0.18.0/mmseg/models/necks/ic_neck.py#L77 - Version: v0.18.0 - Converted From: - Code: https://github.com/hszhao/ICNet -Models: -- Name: icnet_r18-d8_4xb2-80k_cityscapes-832x832 - In Collection: ICNet - Metadata: - backbone: R-18-D8 - crop size: (832,832) - lr schd: 80000 - inference time (ms/im): - - value: 36.87 - hardware: V100 - backend: PyTorch - batch size: 1 - mode: FP32 - resolution: (832,832) - Training Memory (GB): 1.7 - Results: - - Task: Semantic Segmentation - Dataset: Cityscapes - Metrics: - mIoU: 68.14 - mIoU(ms+flip): 70.16 - Config: configs/icnet/icnet_r18-d8_4xb2-80k_cityscapes-832x832.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/icnet/icnet_r18-d8_832x832_80k_cityscapes/icnet_r18-d8_832x832_80k_cityscapes_20210925_225521-2e36638d.pth -- Name: icnet_r18-d8_4xb2-160k_cityscapes-832x832 - In Collection: ICNet - Metadata: - backbone: R-18-D8 - crop size: (832,832) - lr schd: 160000 - Results: - - Task: Semantic Segmentation - Dataset: Cityscapes - Metrics: - mIoU: 71.64 - mIoU(ms+flip): 74.18 - Config: configs/icnet/icnet_r18-d8_4xb2-160k_cityscapes-832x832.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/icnet/icnet_r18-d8_832x832_160k_cityscapes/icnet_r18-d8_832x832_160k_cityscapes_20210925_230153-2c6eb6e0.pth -- Name: icnet_r18-d8-in1k-pre_4xb2-80k_cityscapes-832x832 - In Collection: ICNet - Metadata: - backbone: R-18-D8 - crop size: (832,832) - lr schd: 80000 - Results: - - Task: Semantic Segmentation - Dataset: Cityscapes - Metrics: - mIoU: 72.51 - mIoU(ms+flip): 74.78 - Config: configs/icnet/icnet_r18-d8-in1k-pre_4xb2-80k_cityscapes-832x832.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/icnet/icnet_r18-d8_in1k-pre_832x832_80k_cityscapes/icnet_r18-d8_in1k-pre_832x832_80k_cityscapes_20210925_230354-1cbe3022.pth -- Name: icnet_r18-d8-in1k-pre_4xb2-160k_cityscapes-832x832 - In Collection: ICNet - Metadata: - backbone: R-18-D8 - crop size: (832,832) - lr schd: 160000 - Results: - - Task: Semantic Segmentation - Dataset: Cityscapes - Metrics: - mIoU: 74.43 - mIoU(ms+flip): 76.72 - Config: configs/icnet/icnet_r18-d8-in1k-pre_4xb2-160k_cityscapes-832x832.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/icnet/icnet_r18-d8_in1k-pre_832x832_160k_cityscapes/icnet_r18-d8_in1k-pre_832x832_160k_cityscapes_20210926_052702-619c8ae1.pth -- Name: icnet_r50-d8_4xb2-80k_cityscapes-832x832 - In Collection: ICNet - Metadata: - backbone: R-50-D8 - crop size: (832,832) - lr schd: 80000 - inference time (ms/im): - - value: 49.8 - hardware: V100 - backend: PyTorch - batch size: 1 - mode: FP32 - resolution: (832,832) - Training Memory (GB): 2.53 - Results: - - Task: Semantic Segmentation - Dataset: Cityscapes - Metrics: - mIoU: 68.91 - mIoU(ms+flip): 69.72 - Config: configs/icnet/icnet_r50-d8_4xb2-80k_cityscapes-832x832.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/icnet/icnet_r50-d8_832x832_80k_cityscapes/icnet_r50-d8_832x832_80k_cityscapes_20210926_044625-c6407341.pth -- Name: icnet_r50-d8_4xb2-160k_cityscapes-832x832 - In Collection: ICNet - Metadata: - backbone: R-50-D8 - crop size: (832,832) - lr schd: 160000 - Results: - - Task: Semantic Segmentation - Dataset: Cityscapes - Metrics: - mIoU: 73.82 - mIoU(ms+flip): 75.67 - Config: configs/icnet/icnet_r50-d8_4xb2-160k_cityscapes-832x832.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/icnet/icnet_r50-d8_832x832_160k_cityscapes/icnet_r50-d8_832x832_160k_cityscapes_20210925_232612-a95f0d4e.pth -- Name: icnet_r50-d8-in1k-pre_4xb2-80k_cityscapes-832x832 - In Collection: ICNet - Metadata: - backbone: R-50-D8 - crop size: (832,832) - lr schd: 80000 - Results: - - Task: Semantic Segmentation - Dataset: Cityscapes - Metrics: - mIoU: 74.58 - mIoU(ms+flip): 76.41 - Config: configs/icnet/icnet_r50-d8-in1k-pre_4xb2-80k_cityscapes-832x832.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/icnet/icnet_r50-d8_in1k-pre_832x832_80k_cityscapes/icnet_r50-d8_in1k-pre_832x832_80k_cityscapes_20210926_032943-1743dc7b.pth -- Name: icnet_r50-d8-in1k-pre_4xb2-160k_cityscapes-832x832 - In Collection: ICNet - Metadata: - backbone: R-50-D8 - crop size: (832,832) - lr schd: 160000 - Results: - - Task: Semantic Segmentation - Dataset: Cityscapes - Metrics: - mIoU: 76.29 - mIoU(ms+flip): 78.09 - Config: configs/icnet/icnet_r50-d8-in1k-pre_4xb2-160k_cityscapes-832x832.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/icnet/icnet_r50-d8_in1k-pre_832x832_160k_cityscapes/icnet_r50-d8_in1k-pre_832x832_160k_cityscapes_20210926_042715-ce310aea.pth -- Name: icnet_r101-d8_4xb2-80k_cityscapes-832x832 - In Collection: ICNet - Metadata: - backbone: R-101-D8 - crop size: (832,832) - lr schd: 80000 - inference time (ms/im): - - value: 59.0 - hardware: V100 - backend: PyTorch - batch size: 1 - mode: FP32 - resolution: (832,832) - Training Memory (GB): 3.08 - Results: - - Task: Semantic Segmentation - Dataset: Cityscapes - Metrics: - mIoU: 70.28 - mIoU(ms+flip): 71.95 - Config: configs/icnet/icnet_r101-d8_4xb2-80k_cityscapes-832x832.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/icnet/icnet_r101-d8_832x832_80k_cityscapes/icnet_r101-d8_832x832_80k_cityscapes_20210926_072447-b52f936e.pth -- Name: icnet_r101-d8_4xb2-160k_cityscapes-832x832 - In Collection: ICNet - Metadata: - backbone: R-101-D8 - crop size: (832,832) - lr schd: 160000 - Results: - - Task: Semantic Segmentation - Dataset: Cityscapes - Metrics: - mIoU: 73.8 - mIoU(ms+flip): 76.1 - Config: configs/icnet/icnet_r101-d8_4xb2-160k_cityscapes-832x832.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/icnet/icnet_r101-d8_832x832_160k_cityscapes/icnet_r101-d8_832x832_160k_cityscapes_20210926_092350-3a1ebf1a.pth -- Name: icnet_r101-d8-in1k-pre_4xb2-80k_cityscapes-832x832 - In Collection: ICNet - Metadata: - backbone: R-101-D8 - crop size: (832,832) - lr schd: 80000 - Results: - - Task: Semantic Segmentation - Dataset: Cityscapes - Metrics: - mIoU: 75.57 - mIoU(ms+flip): 77.86 - Config: configs/icnet/icnet_r101-d8-in1k-pre_4xb2-80k_cityscapes-832x832.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/icnet/icnet_r101-d8_in1k-pre_832x832_80k_cityscapes/icnet_r101-d8_in1k-pre_832x832_80k_cityscapes_20210926_020414-7ceb12c5.pth -- Name: icnet_r101-d8-in1k-pre_4xb2-160k_cityscapes-832x832 - In Collection: ICNet - Metadata: - backbone: R-101-D8 - crop size: (832,832) - lr schd: 160000 - Results: - - Task: Semantic Segmentation - Dataset: Cityscapes - Metrics: - mIoU: 76.15 - mIoU(ms+flip): 77.98 - Config: configs/icnet/icnet_r101-d8-in1k-pre_4xb2-160k_cityscapes-832x832.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/icnet/icnet_r101-d8_in1k-pre_832x832_160k_cityscapes/icnet_r101-d8_in1k-pre_832x832_160k_cityscapes_20210925_232612-9484ae8a.pth diff --git a/configs/icnet/metafile.yaml b/configs/icnet/metafile.yaml new file mode 100644 index 0000000000..1d843ee4b6 --- /dev/null +++ b/configs/icnet/metafile.yaml @@ -0,0 +1,298 @@ +Collections: +- Name: ICNet + License: Apache License 2.0 + Metadata: + Training Data: + - Cityscapes + Paper: + Title: ICNet for Real-time Semantic Segmentation on High-resolution Images + URL: https://arxiv.org/abs/1704.08545 + README: configs/icnet/README.md + Frameworks: + - PyTorch +Models: +- Name: icnet_r18-d8_4xb2-80k_cityscapes-832x832 + In Collection: ICNet + Results: + Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 68.14 + mIoU(ms+flip): 70.16 + Config: configs/icnet/icnet_r18-d8_4xb2-80k_cityscapes-832x832.py + Metadata: + Training Data: Cityscapes + Batch Size: 8 + Architecture: + - R-18-D8 + - ICNet + Training Resources: 4x V100 GPUS + Memory (GB): 1.7 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/icnet/icnet_r18-d8_832x832_80k_cityscapes/icnet_r18-d8_832x832_80k_cityscapes_20210925_225521-2e36638d.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/icnet/icnet_r18-d8_832x832_80k_cityscapes/icnet_r18-d8_832x832_80k_cityscapes_20210925_225521.log.json + Paper: + Title: ICNet for Real-time Semantic Segmentation on High-resolution Images + URL: https://arxiv.org/abs/1704.08545 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.18.0/mmseg/models/necks/ic_neck.py#L77 + Framework: PyTorch +- Name: icnet_r18-d8_4xb2-160k_cityscapes-832x832 + In Collection: ICNet + Results: + Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 71.64 + mIoU(ms+flip): 74.18 + Config: configs/icnet/icnet_r18-d8_4xb2-160k_cityscapes-832x832.py + Metadata: + Training Data: Cityscapes + Batch Size: 8 + Architecture: + - R-18-D8 + - ICNet + Training Resources: 4x V100 GPUS + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/icnet/icnet_r18-d8_832x832_160k_cityscapes/icnet_r18-d8_832x832_160k_cityscapes_20210925_230153-2c6eb6e0.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/icnet/icnet_r18-d8_832x832_160k_cityscapes/icnet_r18-d8_832x832_160k_cityscapes_20210925_230153.log.json + Paper: + Title: ICNet for Real-time Semantic Segmentation on High-resolution Images + URL: https://arxiv.org/abs/1704.08545 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.18.0/mmseg/models/necks/ic_neck.py#L77 + Framework: PyTorch +- Name: icnet_r18-d8-in1k-pre_4xb2-80k_cityscapes-832x832 + In Collection: ICNet + Results: + Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 72.51 + mIoU(ms+flip): 74.78 + Config: configs/icnet/icnet_r18-d8-in1k-pre_4xb2-80k_cityscapes-832x832.py + Metadata: + Training Data: Cityscapes + Batch Size: 8 + Architecture: + - R-18-D8 + - ICNet + - (in1k-pre) + Training Resources: 4x V100 GPUS + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/icnet/icnet_r18-d8_in1k-pre_832x832_80k_cityscapes/icnet_r18-d8_in1k-pre_832x832_80k_cityscapes_20210925_230354-1cbe3022.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/icnet/icnet_r18-d8_in1k-pre_832x832_80k_cityscapes/icnet_r18-d8_in1k-pre_832x832_80k_cityscapes_20210925_230354.log.json + Paper: + Title: ICNet for Real-time Semantic Segmentation on High-resolution Images + URL: https://arxiv.org/abs/1704.08545 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.18.0/mmseg/models/necks/ic_neck.py#L77 + Framework: PyTorch +- Name: icnet_r18-d8-in1k-pre_4xb2-160k_cityscapes-832x832 + In Collection: ICNet + Results: + Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 74.43 + mIoU(ms+flip): 76.72 + Config: configs/icnet/icnet_r18-d8-in1k-pre_4xb2-160k_cityscapes-832x832.py + Metadata: + Training Data: Cityscapes + Batch Size: 8 + Architecture: + - R-18-D8 + - ICNet + - (in1k-pre) + Training Resources: 4x V100 GPUS + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/icnet/icnet_r18-d8_in1k-pre_832x832_160k_cityscapes/icnet_r18-d8_in1k-pre_832x832_160k_cityscapes_20210926_052702-619c8ae1.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/icnet/icnet_r18-d8_in1k-pre_832x832_160k_cityscapes/icnet_r18-d8_in1k-pre_832x832_160k_cityscapes_20210926_052702.log.json + Paper: + Title: ICNet for Real-time Semantic Segmentation on High-resolution Images + URL: https://arxiv.org/abs/1704.08545 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.18.0/mmseg/models/necks/ic_neck.py#L77 + Framework: PyTorch +- Name: icnet_r50-d8_4xb2-80k_cityscapes-832x832 + In Collection: ICNet + Results: + Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 68.91 + mIoU(ms+flip): 69.72 + Config: configs/icnet/icnet_r50-d8_4xb2-80k_cityscapes-832x832.py + Metadata: + Training Data: Cityscapes + Batch Size: 8 + Architecture: + - R-50-D8 + - ICNet + Training Resources: 4x V100 GPUS + Memory (GB): 2.53 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/icnet/icnet_r50-d8_832x832_80k_cityscapes/icnet_r50-d8_832x832_80k_cityscapes_20210926_044625-c6407341.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/icnet/icnet_r50-d8_832x832_80k_cityscapes/icnet_r50-d8_832x832_80k_cityscapes_20210926_044625.log.json + Paper: + Title: ICNet for Real-time Semantic Segmentation on High-resolution Images + URL: https://arxiv.org/abs/1704.08545 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.18.0/mmseg/models/necks/ic_neck.py#L77 + Framework: PyTorch +- Name: icnet_r50-d8_4xb2-160k_cityscapes-832x832 + In Collection: ICNet + Results: + Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 73.82 + mIoU(ms+flip): 75.67 + Config: configs/icnet/icnet_r50-d8_4xb2-160k_cityscapes-832x832.py + Metadata: + Training Data: Cityscapes + Batch Size: 8 + Architecture: + - R-50-D8 + - ICNet + Training Resources: 4x V100 GPUS + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/icnet/icnet_r50-d8_832x832_160k_cityscapes/icnet_r50-d8_832x832_160k_cityscapes_20210925_232612-a95f0d4e.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/icnet/icnet_r50-d8_832x832_160k_cityscapes/icnet_r50-d8_832x832_160k_cityscapes_20210925_232612.log.json + Paper: + Title: ICNet for Real-time Semantic Segmentation on High-resolution Images + URL: https://arxiv.org/abs/1704.08545 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.18.0/mmseg/models/necks/ic_neck.py#L77 + Framework: PyTorch +- Name: icnet_r50-d8-in1k-pre_4xb2-80k_cityscapes-832x832 + In Collection: ICNet + Results: + Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 74.58 + mIoU(ms+flip): 76.41 + Config: configs/icnet/icnet_r50-d8-in1k-pre_4xb2-80k_cityscapes-832x832.py + Metadata: + Training Data: Cityscapes + Batch Size: 8 + Architecture: + - R-50-D8 + - ICNet + - (in1k-pre) + Training Resources: 4x V100 GPUS + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/icnet/icnet_r50-d8_in1k-pre_832x832_80k_cityscapes/icnet_r50-d8_in1k-pre_832x832_80k_cityscapes_20210926_032943-1743dc7b.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/icnet/icnet_r50-d8_in1k-pre_832x832_80k_cityscapes/icnet_r50-d8_in1k-pre_832x832_80k_cityscapes_20210926_032943.log.json + Paper: + Title: ICNet for Real-time Semantic Segmentation on High-resolution Images + URL: https://arxiv.org/abs/1704.08545 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.18.0/mmseg/models/necks/ic_neck.py#L77 + Framework: PyTorch +- Name: icnet_r50-d8-in1k-pre_4xb2-160k_cityscapes-832x832 + In Collection: ICNet + Results: + Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 76.29 + mIoU(ms+flip): 78.09 + Config: configs/icnet/icnet_r50-d8-in1k-pre_4xb2-160k_cityscapes-832x832.py + Metadata: + Training Data: Cityscapes + Batch Size: 8 + Architecture: + - R-50-D8 + - ICNet + - (in1k-pre) + Training Resources: 4x V100 GPUS + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/icnet/icnet_r50-d8_in1k-pre_832x832_160k_cityscapes/icnet_r50-d8_in1k-pre_832x832_160k_cityscapes_20210926_042715-ce310aea.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/icnet/icnet_r50-d8_in1k-pre_832x832_160k_cityscapes/icnet_r50-d8_in1k-pre_832x832_160k_cityscapes_20210926_042715.log.json + Paper: + Title: ICNet for Real-time Semantic Segmentation on High-resolution Images + URL: https://arxiv.org/abs/1704.08545 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.18.0/mmseg/models/necks/ic_neck.py#L77 + Framework: PyTorch +- Name: icnet_r101-d8_4xb2-80k_cityscapes-832x832 + In Collection: ICNet + Results: + Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 70.28 + mIoU(ms+flip): 71.95 + Config: configs/icnet/icnet_r101-d8_4xb2-80k_cityscapes-832x832.py + Metadata: + Training Data: Cityscapes + Batch Size: 8 + Architecture: + - R-101-D8 + - ICNet + Training Resources: 4x V100 GPUS + Memory (GB): 3.08 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/icnet/icnet_r101-d8_832x832_80k_cityscapes/icnet_r101-d8_832x832_80k_cityscapes_20210926_072447-b52f936e.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/icnet/icnet_r101-d8_832x832_80k_cityscapes/icnet_r101-d8_832x832_80k_cityscapes_20210926_072447.log.json + Paper: + Title: ICNet for Real-time Semantic Segmentation on High-resolution Images + URL: https://arxiv.org/abs/1704.08545 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.18.0/mmseg/models/necks/ic_neck.py#L77 + Framework: PyTorch +- Name: icnet_r101-d8_4xb2-160k_cityscapes-832x832 + In Collection: ICNet + Results: + Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 73.8 + mIoU(ms+flip): 76.1 + Config: configs/icnet/icnet_r101-d8_4xb2-160k_cityscapes-832x832.py + Metadata: + Training Data: Cityscapes + Batch Size: 8 + Architecture: + - R-101-D8 + - ICNet + Training Resources: 4x V100 GPUS + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/icnet/icnet_r101-d8_832x832_160k_cityscapes/icnet_r101-d8_832x832_160k_cityscapes_20210926_092350-3a1ebf1a.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/icnet/icnet_r101-d8_832x832_160k_cityscapes/icnet_r101-d8_832x832_160k_cityscapes_20210926_092350.log.json + Paper: + Title: ICNet for Real-time Semantic Segmentation on High-resolution Images + URL: https://arxiv.org/abs/1704.08545 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.18.0/mmseg/models/necks/ic_neck.py#L77 + Framework: PyTorch +- Name: icnet_r101-d8-in1k-pre_4xb2-80k_cityscapes-832x832 + In Collection: ICNet + Results: + Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 75.57 + mIoU(ms+flip): 77.86 + Config: configs/icnet/icnet_r101-d8-in1k-pre_4xb2-80k_cityscapes-832x832.py + Metadata: + Training Data: Cityscapes + Batch Size: 8 + Architecture: + - R-101-D8 + - ICNet + - (in1k-pre) + Training Resources: 4x V100 GPUS + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/icnet/icnet_r101-d8_in1k-pre_832x832_80k_cityscapes/icnet_r101-d8_in1k-pre_832x832_80k_cityscapes_20210926_020414-7ceb12c5.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/icnet/icnet_r101-d8_in1k-pre_832x832_80k_cityscapes/icnet_r101-d8_in1k-pre_832x832_80k_cityscapes_20210926_020414.log.json + Paper: + Title: ICNet for Real-time Semantic Segmentation on High-resolution Images + URL: https://arxiv.org/abs/1704.08545 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.18.0/mmseg/models/necks/ic_neck.py#L77 + Framework: PyTorch +- Name: icnet_r101-d8-in1k-pre_4xb2-160k_cityscapes-832x832 + In Collection: ICNet + Results: + Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 76.15 + mIoU(ms+flip): 77.98 + Config: configs/icnet/icnet_r101-d8-in1k-pre_4xb2-160k_cityscapes-832x832.py + Metadata: + Training Data: Cityscapes + Batch Size: 8 + Architecture: + - R-101-D8 + - ICNet + - (in1k-pre) + Training Resources: 4x V100 GPUS + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/icnet/icnet_r101-d8_in1k-pre_832x832_160k_cityscapes/icnet_r101-d8_in1k-pre_832x832_160k_cityscapes_20210925_232612-9484ae8a.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/icnet/icnet_r101-d8_in1k-pre_832x832_160k_cityscapes/icnet_r101-d8_in1k-pre_832x832_160k_cityscapes_20210925_232612.log.json + Paper: + Title: ICNet for Real-time Semantic Segmentation on High-resolution Images + URL: https://arxiv.org/abs/1704.08545 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.18.0/mmseg/models/necks/ic_neck.py#L77 + Framework: PyTorch diff --git a/configs/isanet/README.md b/configs/isanet/README.md index db93dae234..da9f0104c5 100644 --- a/configs/isanet/README.md +++ b/configs/isanet/README.md @@ -1,6 +1,6 @@ # ISANet -[Interlaced Sparse Self-Attention for Semantic Segmentation](https://arxiv.org/abs/1907.12273) +> [Interlaced Sparse Self-Attention for Semantic Segmentation](https://arxiv.org/abs/1907.12273) ## Introduction @@ -22,6 +22,39 @@ In this paper, we present a so-called interlaced sparse self-attention approach +## Results and models + +### Cityscapes + +| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | Device | mIoU | mIoU(ms+flip) | config | download | +| ------ | -------- | --------- | ------- | -------: | -------------- | ------ | ----- | ------------: | --------------------------------------------------------------------------------------------------------------------------------: | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | +| ISANet | R-50-D8 | 512x1024 | 40000 | 5.869 | 2.91 | V100 | 78.49 | 79.44 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/isanet/isanet_r50-d8_4xb2-40k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/isanet/isanet_r50-d8_512x1024_40k_cityscapes/isanet_r50-d8_512x1024_40k_cityscapes_20210901_054739-981bd763.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/isanet/isanet_r50-d8_512x1024_40k_cityscapes/isanet_r50-d8_512x1024_40k_cityscapes_20210901_054739.log.json) | +| ISANet | R-50-D8 | 512x1024 | 80000 | 5.869 | 2.91 | V100 | 78.68 | 80.25 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/isanet/isanet_r50-d8_4xb2-80k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/isanet/isanet_r50-d8_512x1024_80k_cityscapes/isanet_r50-d8_512x1024_80k_cityscapes_20210901_074202-89384497.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/isanet/isanet_r50-d8_512x1024_80k_cityscapes/isanet_r50-d8_512x1024_80k_cityscapes_20210901_074202.log.json) | +| ISANet | R-50-D8 | 769x769 | 40000 | 6.759 | 1.54 | V100 | 78.70 | 80.28 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/isanet/isanet_r50-d8_4xb2-40k_cityscapes-769x769.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/isanet/isanet_r50-d8_769x769_40k_cityscapes/isanet_r50-d8_769x769_40k_cityscapes_20210903_050200-4ae7e65b.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/isanet/isanet_r50-d8_769x769_40k_cityscapes/isanet_r50-d8_769x769_40k_cityscapes_20210903_050200.log.json) | +| ISANet | R-50-D8 | 769x769 | 80000 | 6.759 | 1.54 | V100 | 79.29 | 80.53 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/isanet/isanet_r50-d8_4xb2-80k_cityscapes-769x769.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/isanet/isanet_r50-d8_769x769_80k_cityscapes/isanet_r50-d8_769x769_80k_cityscapes_20210903_101126-99b54519.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/isanet/isanet_r50-d8_769x769_80k_cityscapes/isanet_r50-d8_769x769_80k_cityscapes_20210903_101126.log.json) | +| ISANet | R-101-D8 | 512x1024 | 40000 | 9.425 | 2.35 | V100 | 79.58 | 81.05 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/isanet/isanet_r101-d8_4xb2-40k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/isanet/isanet_r101-d8_512x1024_40k_cityscapes/isanet_r101-d8_512x1024_40k_cityscapes_20210901_145553-293e6bd6.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/isanet/isanet_r101-d8_512x1024_40k_cityscapes/isanet_r101-d8_512x1024_40k_cityscapes_20210901_145553.log.json) | +| ISANet | R-101-D8 | 512x1024 | 80000 | 9.425 | 2.35 | V100 | 80.32 | 81.58 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/isanet/isanet_r101-d8_4xb2-80k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/isanet/isanet_r101-d8_512x1024_80k_cityscapes/isanet_r101-d8_512x1024_80k_cityscapes_20210901_145243-5b99c9b2.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/isanet/isanet_r101-d8_512x1024_80k_cityscapes/isanet_r101-d8_512x1024_80k_cityscapes_20210901_145243.log.json) | +| ISANet | R-101-D8 | 769x769 | 40000 | 10.815 | 0.92 | V100 | 79.68 | 80.95 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/isanet/isanet_r101-d8_4xb2-40k_cityscapes-769x769.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/isanet/isanet_r101-d8_769x769_40k_cityscapes/isanet_r101-d8_769x769_40k_cityscapes_20210903_111320-509e7224.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/isanet/isanet_r101-d8_769x769_40k_cityscapes/isanet_r101-d8_769x769_40k_cityscapes_20210903_111320.log.json) | +| ISANet | R-101-D8 | 769x769 | 80000 | 10.815 | 0.92 | V100 | 80.61 | 81.59 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/isanet/isanet_r101-d8_4xb2-80k_cityscapes-769x769.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/isanet/isanet_r101-d8_769x769_80k_cityscapes/isanet_r101-d8_769x769_80k_cityscapes_20210903_111319-24f71dfa.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/isanet/isanet_r101-d8_769x769_80k_cityscapes/isanet_r101-d8_769x769_80k_cityscapes_20210903_111319.log.json) | + +### ADE20K + +| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | Device | mIoU | mIoU(ms+flip) | config | download | +| ------ | -------- | --------- | ------- | -------: | -------------- | ------ | ----- | ------------: | ----------------------------------------------------------------------------------------------------------------------------: | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | +| ISANet | R-50-D8 | 512x512 | 80000 | 9.0 | 22.55 | V100 | 41.12 | 42.35 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/isanet/isanet_r50-d8_4xb4-80k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/isanet/isanet_r50-d8_512x512_80k_ade20k/isanet_r50-d8_512x512_80k_ade20k_20210903_124557-6ed83a0c.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/isanet/isanet_r50-d8_512x512_80k_ade20k/isanet_r50-d8_512x512_80k_ade20k_20210903_124557.log.json) | +| ISANet | R-50-D8 | 512x512 | 160000 | 9.0 | 22.55 | V100 | 42.59 | 43.07 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/isanet/isanet_r50-d8_4xb4-160k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/isanet/isanet_r50-d8_512x512_160k_ade20k/isanet_r50-d8_512x512_160k_ade20k_20210903_104850-f752d0a3.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/isanet/isanet_r50-d8_512x512_160k_ade20k/isanet_r50-d8_512x512_160k_ade20k_20210903_104850.log.json) | +| ISANet | R-101-D8 | 512x512 | 80000 | 12.562 | 10.56 | V100 | 43.51 | 44.38 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/isanet/isanet_r101-d8_4xb4-80k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/isanet/isanet_r101-d8_512x512_80k_ade20k/isanet_r101-d8_512x512_80k_ade20k_20210903_162056-68b235c2.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/isanet/isanet_r101-d8_512x512_80k_ade20k/isanet_r101-d8_512x512_80k_ade20k_20210903_162056.log.json) | +| ISANet | R-101-D8 | 512x512 | 160000 | 12.562 | 10.56 | V100 | 43.80 | 45.4 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/isanet/isanet_r101-d8_4xb4-160k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/isanet/isanet_r101-d8_512x512_160k_ade20k/isanet_r101-d8_512x512_160k_ade20k_20210903_211431-a7879dcd.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/isanet/isanet_r101-d8_512x512_160k_ade20k/isanet_r101-d8_512x512_160k_ade20k_20210903_211431.log.json) | + +### Pascal VOC 2012 + Aug + +| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | Device | mIoU | mIoU(ms+flip) | config | download | +| ------ | -------- | --------- | ------- | -------: | -------------- | ------ | ----- | ------------: | -----------------------------------------------------------------------------------------------------------------------------: | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | +| ISANet | R-50-D8 | 512x512 | 20000 | 5.9 | 23.08 | V100 | 76.78 | 77.79 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/isanet/isanet_r50-d8_4xb4-20k_voc12aug-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/isanet/isanet_r50-d8_512x512_20k_voc12aug/isanet_r50-d8_512x512_20k_voc12aug_20210901_164838-79d59b80.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/isanet/isanet_r50-d8_512x512_20k_voc12aug/isanet_r50-d8_512x512_20k_voc12aug_20210901_164838.log.json) | +| ISANet | R-50-D8 | 512x512 | 40000 | 5.9 | 23.08 | V100 | 76.20 | 77.22 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/isanet/isanet_r50-d8_4xb4-40k_voc12aug-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/isanet/isanet_r50-d8_512x512_40k_voc12aug/isanet_r50-d8_512x512_40k_voc12aug_20210901_151349-7d08a54e.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/isanet/isanet_r50-d8_512x512_40k_voc12aug/isanet_r50-d8_512x512_40k_voc12aug_20210901_151349.log.json) | +| ISANet | R-101-D8 | 512x512 | 20000 | 9.465 | 7.42 | V100 | 78.46 | 79.16 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/isanet/isanet_r101-d8_4xb4-20k_voc12aug-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/isanet/isanet_r101-d8_512x512_20k_voc12aug/isanet_r101-d8_512x512_20k_voc12aug_20210901_115805-3ccbf355.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/isanet/isanet_r101-d8_512x512_20k_voc12aug/isanet_r101-d8_512x512_20k_voc12aug_20210901_115805.log.json) | +| ISANet | R-101-D8 | 512x512 | 40000 | 9.465 | 7.42 | V100 | 78.12 | 79.04 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/isanet/isanet_r101-d8_4xb4-40k_voc12aug-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/isanet/isanet_r101-d8_512x512_40k_voc12aug/isanet_r101-d8_512x512_40k_voc12aug_20210901_145814-bc71233b.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/isanet/isanet_r101-d8_512x512_40k_voc12aug/isanet_r101-d8_512x512_40k_voc12aug_20210901_145814.log.json) | + ## Citation ```bibetex @@ -45,36 +78,3 @@ The technical report above is also presented at: publisher={Springer} } ``` - -## Results and models - -### Cityscapes - -| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | mIoU | mIoU(ms+flip) | config | download | -| ------ | -------- | --------- | ------- | -------: | -------------- | ----- | ------------: | --------------------------------------------------------------------------------------------------------------------------------: | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | -| ISANet | R-50-D8 | 512x1024 | 40000 | 5.869 | 2.91 | 78.49 | 79.44 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/isanet/isanet_r50-d8_4xb2-40k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/isanet/isanet_r50-d8_512x1024_40k_cityscapes/isanet_r50-d8_512x1024_40k_cityscapes_20210901_054739-981bd763.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/isanet/isanet_r50-d8_512x1024_40k_cityscapes/isanet_r50-d8_512x1024_40k_cityscapes_20210901_054739.log.json) | -| ISANet | R-50-D8 | 512x1024 | 80000 | 5.869 | 2.91 | 78.68 | 80.25 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/isanet/isanet_r50-d8_4xb2-80k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/isanet/isanet_r50-d8_512x1024_80k_cityscapes/isanet_r50-d8_512x1024_80k_cityscapes_20210901_074202-89384497.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/isanet/isanet_r50-d8_512x1024_80k_cityscapes/isanet_r50-d8_512x1024_80k_cityscapes_20210901_074202.log.json) | -| ISANet | R-50-D8 | 769x769 | 40000 | 6.759 | 1.54 | 78.70 | 80.28 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/isanet/isanet_r50-d8_4xb2-40k_cityscapes-769x769.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/isanet/isanet_r50-d8_769x769_40k_cityscapes/isanet_r50-d8_769x769_40k_cityscapes_20210903_050200-4ae7e65b.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/isanet/isanet_r50-d8_769x769_40k_cityscapes/isanet_r50-d8_769x769_40k_cityscapes_20210903_050200.log.json) | -| ISANet | R-50-D8 | 769x769 | 80000 | 6.759 | 1.54 | 79.29 | 80.53 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/isanet/isanet_r50-d8_4xb2-80k_cityscapes-769x769.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/isanet/isanet_r50-d8_769x769_80k_cityscapes/isanet_r50-d8_769x769_80k_cityscapes_20210903_101126-99b54519.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/isanet/isanet_r50-d8_769x769_80k_cityscapes/isanet_r50-d8_769x769_80k_cityscapes_20210903_101126.log.json) | -| ISANet | R-101-D8 | 512x1024 | 40000 | 9.425 | 2.35 | 79.58 | 81.05 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/isanet/isanet_r101-d8_4xb2-40k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/isanet/isanet_r101-d8_512x1024_40k_cityscapes/isanet_r101-d8_512x1024_40k_cityscapes_20210901_145553-293e6bd6.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/isanet/isanet_r101-d8_512x1024_40k_cityscapes/isanet_r101-d8_512x1024_40k_cityscapes_20210901_145553.log.json) | -| ISANet | R-101-D8 | 512x1024 | 80000 | 9.425 | 2.35 | 80.32 | 81.58 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/isanet/isanet_r101-d8_4xb2-80k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/isanet/isanet_r101-d8_512x1024_80k_cityscapes/isanet_r101-d8_512x1024_80k_cityscapes_20210901_145243-5b99c9b2.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/isanet/isanet_r101-d8_512x1024_80k_cityscapes/isanet_r101-d8_512x1024_80k_cityscapes_20210901_145243.log.json) | -| ISANet | R-101-D8 | 769x769 | 40000 | 10.815 | 0.92 | 79.68 | 80.95 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/isanet/isanet_r101-d8_4xb2-40k_cityscapes-769x769.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/isanet/isanet_r101-d8_769x769_40k_cityscapes/isanet_r101-d8_769x769_40k_cityscapes_20210903_111320-509e7224.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/isanet/isanet_r101-d8_769x769_40k_cityscapes/isanet_r101-d8_769x769_40k_cityscapes_20210903_111320.log.json) | -| ISANet | R-101-D8 | 769x769 | 80000 | 10.815 | 0.92 | 80.61 | 81.59 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/isanet/isanet_r101-d8_4xb2-80k_cityscapes-769x769.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/isanet/isanet_r101-d8_769x769_80k_cityscapes/isanet_r101-d8_769x769_80k_cityscapes_20210903_111319-24f71dfa.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/isanet/isanet_r101-d8_769x769_80k_cityscapes/isanet_r101-d8_769x769_80k_cityscapes_20210903_111319.log.json) | - -### ADE20K - -| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | mIoU | mIoU(ms+flip) | config | download | -| ------ | -------- | --------- | ------- | -------: | -------------- | ----- | ------------: | ----------------------------------------------------------------------------------------------------------------------------: | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | -| ISANet | R-50-D8 | 512x512 | 80000 | 9.0 | 22.55 | 41.12 | 42.35 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/isanet/isanet_r50-d8_4xb4-80k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/isanet/isanet_r50-d8_512x512_80k_ade20k/isanet_r50-d8_512x512_80k_ade20k_20210903_124557-6ed83a0c.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/isanet/isanet_r50-d8_512x512_80k_ade20k/isanet_r50-d8_512x512_80k_ade20k_20210903_124557.log.json) | -| ISANet | R-50-D8 | 512x512 | 160000 | 9.0 | 22.55 | 42.59 | 43.07 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/isanet/isanet_r50-d8_4xb4-160k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/isanet/isanet_r50-d8_512x512_160k_ade20k/isanet_r50-d8_512x512_160k_ade20k_20210903_104850-f752d0a3.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/isanet/isanet_r50-d8_512x512_160k_ade20k/isanet_r50-d8_512x512_160k_ade20k_20210903_104850.log.json) | -| ISANet | R-101-D8 | 512x512 | 80000 | 12.562 | 10.56 | 43.51 | 44.38 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/isanet/isanet_r101-d8_4xb4-80k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/isanet/isanet_r101-d8_512x512_80k_ade20k/isanet_r101-d8_512x512_80k_ade20k_20210903_162056-68b235c2.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/isanet/isanet_r101-d8_512x512_80k_ade20k/isanet_r101-d8_512x512_80k_ade20k_20210903_162056.log.json) | -| ISANet | R-101-D8 | 512x512 | 160000 | 12.562 | 10.56 | 43.80 | 45.4 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/isanet/isanet_r101-d8_4xb4-160k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/isanet/isanet_r101-d8_512x512_160k_ade20k/isanet_r101-d8_512x512_160k_ade20k_20210903_211431-a7879dcd.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/isanet/isanet_r101-d8_512x512_160k_ade20k/isanet_r101-d8_512x512_160k_ade20k_20210903_211431.log.json) | - -### Pascal VOC 2012 + Aug - -| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | mIoU | mIoU(ms+flip) | config | download | -| ------ | -------- | --------- | ------- | -------: | -------------- | ----- | ------------: | -----------------------------------------------------------------------------------------------------------------------------: | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | -| ISANet | R-50-D8 | 512x512 | 20000 | 5.9 | 23.08 | 76.78 | 77.79 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/isanet/isanet_r50-d8_4xb4-20k_voc12aug-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/isanet/isanet_r50-d8_512x512_20k_voc12aug/isanet_r50-d8_512x512_20k_voc12aug_20210901_164838-79d59b80.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/isanet/isanet_r50-d8_512x512_20k_voc12aug/isanet_r50-d8_512x512_20k_voc12aug_20210901_164838.log.json) | -| ISANet | R-50-D8 | 512x512 | 40000 | 5.9 | 23.08 | 76.20 | 77.22 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/isanet/isanet_r50-d8_4xb4-40k_voc12aug-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/isanet/isanet_r50-d8_512x512_40k_voc12aug/isanet_r50-d8_512x512_40k_voc12aug_20210901_151349-7d08a54e.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/isanet/isanet_r50-d8_512x512_40k_voc12aug/isanet_r50-d8_512x512_40k_voc12aug_20210901_151349.log.json) | -| ISANet | R-101-D8 | 512x512 | 20000 | 9.465 | 7.42 | 78.46 | 79.16 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/isanet/isanet_r101-d8_4xb4-20k_voc12aug-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/isanet/isanet_r101-d8_512x512_20k_voc12aug/isanet_r101-d8_512x512_20k_voc12aug_20210901_115805-3ccbf355.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/isanet/isanet_r101-d8_512x512_20k_voc12aug/isanet_r101-d8_512x512_20k_voc12aug_20210901_115805.log.json) | -| ISANet | R-101-D8 | 512x512 | 40000 | 9.465 | 7.42 | 78.12 | 79.04 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/isanet/isanet_r101-d8_4xb4-40k_voc12aug-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/isanet/isanet_r101-d8_512x512_40k_voc12aug/isanet_r101-d8_512x512_40k_voc12aug_20210901_145814-bc71233b.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/isanet/isanet_r101-d8_512x512_40k_voc12aug/isanet_r101-d8_512x512_40k_voc12aug_20210901_145814.log.json) | diff --git a/configs/isanet/isanet.yml b/configs/isanet/isanet.yml deleted file mode 100644 index 405b3c1231..0000000000 --- a/configs/isanet/isanet.yml +++ /dev/null @@ -1,369 +0,0 @@ -Collections: -- Name: ISANet - Metadata: - Training Data: - - Cityscapes - - ADE20K - - Pascal VOC 2012 + Aug - Paper: - URL: https://arxiv.org/abs/1907.12273 - Title: Interlaced Sparse Self-Attention for Semantic Segmentation - README: configs/isanet/README.md - Code: - URL: https://github.com/open-mmlab/mmsegmentation/blob/v0.18.0/mmseg/models/decode_heads/isa_head.py#L58 - Version: v0.18.0 - Converted From: - Code: https://github.com/openseg-group/openseg.pytorch -Models: -- Name: isanet_r50-d8_4xb2-40k_cityscapes-512x1024 - In Collection: ISANet - Metadata: - backbone: R-50-D8 - crop size: (512,1024) - lr schd: 40000 - inference time (ms/im): - - value: 343.64 - hardware: V100 - backend: PyTorch - batch size: 1 - mode: FP32 - resolution: (512,1024) - Training Memory (GB): 5.869 - Results: - - Task: Semantic Segmentation - Dataset: Cityscapes - Metrics: - mIoU: 78.49 - mIoU(ms+flip): 79.44 - Config: configs/isanet/isanet_r50-d8_4xb2-40k_cityscapes-512x1024.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/isanet/isanet_r50-d8_512x1024_40k_cityscapes/isanet_r50-d8_512x1024_40k_cityscapes_20210901_054739-981bd763.pth -- Name: isanet_r50-d8_4xb2-80k_cityscapes-512x1024 - In Collection: ISANet - Metadata: - backbone: R-50-D8 - crop size: (512,1024) - lr schd: 80000 - inference time (ms/im): - - value: 343.64 - hardware: V100 - backend: PyTorch - batch size: 1 - mode: FP32 - resolution: (512,1024) - Training Memory (GB): 5.869 - Results: - - Task: Semantic Segmentation - Dataset: Cityscapes - Metrics: - mIoU: 78.68 - mIoU(ms+flip): 80.25 - Config: configs/isanet/isanet_r50-d8_4xb2-80k_cityscapes-512x1024.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/isanet/isanet_r50-d8_512x1024_80k_cityscapes/isanet_r50-d8_512x1024_80k_cityscapes_20210901_074202-89384497.pth -- Name: isanet_r50-d8_4xb2-40k_cityscapes-769x769 - In Collection: ISANet - Metadata: - backbone: R-50-D8 - crop size: (769,769) - lr schd: 40000 - inference time (ms/im): - - value: 649.35 - hardware: V100 - backend: PyTorch - batch size: 1 - mode: FP32 - resolution: (769,769) - Training Memory (GB): 6.759 - Results: - - Task: Semantic Segmentation - Dataset: Cityscapes - Metrics: - mIoU: 78.7 - mIoU(ms+flip): 80.28 - Config: configs/isanet/isanet_r50-d8_4xb2-40k_cityscapes-769x769.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/isanet/isanet_r50-d8_769x769_40k_cityscapes/isanet_r50-d8_769x769_40k_cityscapes_20210903_050200-4ae7e65b.pth -- Name: isanet_r50-d8_4xb2-80k_cityscapes-769x769 - In Collection: ISANet - Metadata: - backbone: R-50-D8 - crop size: (769,769) - lr schd: 80000 - inference time (ms/im): - - value: 649.35 - hardware: V100 - backend: PyTorch - batch size: 1 - mode: FP32 - resolution: (769,769) - Training Memory (GB): 6.759 - Results: - - Task: Semantic Segmentation - Dataset: Cityscapes - Metrics: - mIoU: 79.29 - mIoU(ms+flip): 80.53 - Config: configs/isanet/isanet_r50-d8_4xb2-80k_cityscapes-769x769.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/isanet/isanet_r50-d8_769x769_80k_cityscapes/isanet_r50-d8_769x769_80k_cityscapes_20210903_101126-99b54519.pth -- Name: isanet_r101-d8_4xb2-40k_cityscapes-512x1024 - In Collection: ISANet - Metadata: - backbone: R-101-D8 - crop size: (512,1024) - lr schd: 40000 - inference time (ms/im): - - value: 425.53 - hardware: V100 - backend: PyTorch - batch size: 1 - mode: FP32 - resolution: (512,1024) - Training Memory (GB): 9.425 - Results: - - Task: Semantic Segmentation - Dataset: Cityscapes - Metrics: - mIoU: 79.58 - mIoU(ms+flip): 81.05 - Config: configs/isanet/isanet_r101-d8_4xb2-40k_cityscapes-512x1024.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/isanet/isanet_r101-d8_512x1024_40k_cityscapes/isanet_r101-d8_512x1024_40k_cityscapes_20210901_145553-293e6bd6.pth -- Name: isanet_r101-d8_4xb2-80k_cityscapes-512x1024 - In Collection: ISANet - Metadata: - backbone: R-101-D8 - crop size: (512,1024) - lr schd: 80000 - inference time (ms/im): - - value: 425.53 - hardware: V100 - backend: PyTorch - batch size: 1 - mode: FP32 - resolution: (512,1024) - Training Memory (GB): 9.425 - Results: - - Task: Semantic Segmentation - Dataset: Cityscapes - Metrics: - mIoU: 80.32 - mIoU(ms+flip): 81.58 - Config: configs/isanet/isanet_r101-d8_4xb2-80k_cityscapes-512x1024.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/isanet/isanet_r101-d8_512x1024_80k_cityscapes/isanet_r101-d8_512x1024_80k_cityscapes_20210901_145243-5b99c9b2.pth -- Name: isanet_r101-d8_4xb2-40k_cityscapes-769x769 - In Collection: ISANet - Metadata: - backbone: R-101-D8 - crop size: (769,769) - lr schd: 40000 - inference time (ms/im): - - value: 1086.96 - hardware: V100 - backend: PyTorch - batch size: 1 - mode: FP32 - resolution: (769,769) - Training Memory (GB): 10.815 - Results: - - Task: Semantic Segmentation - Dataset: Cityscapes - Metrics: - mIoU: 79.68 - mIoU(ms+flip): 80.95 - Config: configs/isanet/isanet_r101-d8_4xb2-40k_cityscapes-769x769.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/isanet/isanet_r101-d8_769x769_40k_cityscapes/isanet_r101-d8_769x769_40k_cityscapes_20210903_111320-509e7224.pth -- Name: isanet_r101-d8_4xb2-80k_cityscapes-769x769 - In Collection: ISANet - Metadata: - backbone: R-101-D8 - crop size: (769,769) - lr schd: 80000 - inference time (ms/im): - - value: 1086.96 - hardware: V100 - backend: PyTorch - batch size: 1 - mode: FP32 - resolution: (769,769) - Training Memory (GB): 10.815 - Results: - - Task: Semantic Segmentation - Dataset: Cityscapes - Metrics: - mIoU: 80.61 - mIoU(ms+flip): 81.59 - Config: configs/isanet/isanet_r101-d8_4xb2-80k_cityscapes-769x769.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/isanet/isanet_r101-d8_769x769_80k_cityscapes/isanet_r101-d8_769x769_80k_cityscapes_20210903_111319-24f71dfa.pth -- Name: isanet_r50-d8_4xb4-80k_ade20k-512x512 - In Collection: ISANet - Metadata: - backbone: R-50-D8 - crop size: (512,512) - lr schd: 80000 - inference time (ms/im): - - value: 44.35 - hardware: V100 - backend: PyTorch - batch size: 1 - mode: FP32 - resolution: (512,512) - Training Memory (GB): 9.0 - Results: - - Task: Semantic Segmentation - Dataset: ADE20K - Metrics: - mIoU: 41.12 - mIoU(ms+flip): 42.35 - Config: configs/isanet/isanet_r50-d8_4xb4-80k_ade20k-512x512.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/isanet/isanet_r50-d8_512x512_80k_ade20k/isanet_r50-d8_512x512_80k_ade20k_20210903_124557-6ed83a0c.pth -- Name: isanet_r50-d8_4xb4-160k_ade20k-512x512 - In Collection: ISANet - Metadata: - backbone: R-50-D8 - crop size: (512,512) - lr schd: 160000 - inference time (ms/im): - - value: 44.35 - hardware: V100 - backend: PyTorch - batch size: 1 - mode: FP32 - resolution: (512,512) - Training Memory (GB): 9.0 - Results: - - Task: Semantic Segmentation - Dataset: ADE20K - Metrics: - mIoU: 42.59 - mIoU(ms+flip): 43.07 - Config: configs/isanet/isanet_r50-d8_4xb4-160k_ade20k-512x512.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/isanet/isanet_r50-d8_512x512_160k_ade20k/isanet_r50-d8_512x512_160k_ade20k_20210903_104850-f752d0a3.pth -- Name: isanet_r101-d8_4xb4-80k_ade20k-512x512 - In Collection: ISANet - Metadata: - backbone: R-101-D8 - crop size: (512,512) - lr schd: 80000 - inference time (ms/im): - - value: 94.7 - hardware: V100 - backend: PyTorch - batch size: 1 - mode: FP32 - resolution: (512,512) - Training Memory (GB): 12.562 - Results: - - Task: Semantic Segmentation - Dataset: ADE20K - Metrics: - mIoU: 43.51 - mIoU(ms+flip): 44.38 - Config: configs/isanet/isanet_r101-d8_4xb4-80k_ade20k-512x512.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/isanet/isanet_r101-d8_512x512_80k_ade20k/isanet_r101-d8_512x512_80k_ade20k_20210903_162056-68b235c2.pth -- Name: isanet_r101-d8_4xb4-160k_ade20k-512x512 - In Collection: ISANet - Metadata: - backbone: R-101-D8 - crop size: (512,512) - lr schd: 160000 - inference time (ms/im): - - value: 94.7 - hardware: V100 - backend: PyTorch - batch size: 1 - mode: FP32 - resolution: (512,512) - Training Memory (GB): 12.562 - Results: - - Task: Semantic Segmentation - Dataset: ADE20K - Metrics: - mIoU: 43.8 - mIoU(ms+flip): 45.4 - Config: configs/isanet/isanet_r101-d8_4xb4-160k_ade20k-512x512.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/isanet/isanet_r101-d8_512x512_160k_ade20k/isanet_r101-d8_512x512_160k_ade20k_20210903_211431-a7879dcd.pth -- Name: isanet_r50-d8_4xb4-20k_voc12aug-512x512 - In Collection: ISANet - Metadata: - backbone: R-50-D8 - crop size: (512,512) - lr schd: 20000 - inference time (ms/im): - - value: 43.33 - hardware: V100 - backend: PyTorch - batch size: 1 - mode: FP32 - resolution: (512,512) - Training Memory (GB): 5.9 - Results: - - Task: Semantic Segmentation - Dataset: Pascal VOC 2012 + Aug - Metrics: - mIoU: 76.78 - mIoU(ms+flip): 77.79 - Config: configs/isanet/isanet_r50-d8_4xb4-20k_voc12aug-512x512.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/isanet/isanet_r50-d8_512x512_20k_voc12aug/isanet_r50-d8_512x512_20k_voc12aug_20210901_164838-79d59b80.pth -- Name: isanet_r50-d8_4xb4-40k_voc12aug-512x512 - In Collection: ISANet - Metadata: - backbone: R-50-D8 - crop size: (512,512) - lr schd: 40000 - inference time (ms/im): - - value: 43.33 - hardware: V100 - backend: PyTorch - batch size: 1 - mode: FP32 - resolution: (512,512) - Training Memory (GB): 5.9 - Results: - - Task: Semantic Segmentation - Dataset: Pascal VOC 2012 + Aug - Metrics: - mIoU: 76.2 - mIoU(ms+flip): 77.22 - Config: configs/isanet/isanet_r50-d8_4xb4-40k_voc12aug-512x512.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/isanet/isanet_r50-d8_512x512_40k_voc12aug/isanet_r50-d8_512x512_40k_voc12aug_20210901_151349-7d08a54e.pth -- Name: isanet_r101-d8_4xb4-20k_voc12aug-512x512 - In Collection: ISANet - Metadata: - backbone: R-101-D8 - crop size: (512,512) - lr schd: 20000 - inference time (ms/im): - - value: 134.77 - hardware: V100 - backend: PyTorch - batch size: 1 - mode: FP32 - resolution: (512,512) - Training Memory (GB): 9.465 - Results: - - Task: Semantic Segmentation - Dataset: Pascal VOC 2012 + Aug - Metrics: - mIoU: 78.46 - mIoU(ms+flip): 79.16 - Config: configs/isanet/isanet_r101-d8_4xb4-20k_voc12aug-512x512.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/isanet/isanet_r101-d8_512x512_20k_voc12aug/isanet_r101-d8_512x512_20k_voc12aug_20210901_115805-3ccbf355.pth -- Name: isanet_r101-d8_4xb4-40k_voc12aug-512x512 - In Collection: ISANet - Metadata: - backbone: R-101-D8 - crop size: (512,512) - lr schd: 40000 - inference time (ms/im): - - value: 134.77 - hardware: V100 - backend: PyTorch - batch size: 1 - mode: FP32 - resolution: (512,512) - Training Memory (GB): 9.465 - Results: - - Task: Semantic Segmentation - Dataset: Pascal VOC 2012 + Aug - Metrics: - mIoU: 78.12 - mIoU(ms+flip): 79.04 - Config: configs/isanet/isanet_r101-d8_4xb4-40k_voc12aug-512x512.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/isanet/isanet_r101-d8_512x512_40k_voc12aug/isanet_r101-d8_512x512_40k_voc12aug_20210901_145814-bc71233b.pth diff --git a/configs/isanet/metafile.yaml b/configs/isanet/metafile.yaml new file mode 100644 index 0000000000..ad394eabb2 --- /dev/null +++ b/configs/isanet/metafile.yaml @@ -0,0 +1,399 @@ +Collections: +- Name: ISANet + License: Apache License 2.0 + Metadata: + Training Data: + - Cityscapes + - ADE20K + - Pascal VOC 2012 + Aug + Paper: + Title: Interlaced Sparse Self-Attention for Semantic Segmentation + URL: https://arxiv.org/abs/1907.12273 + README: configs/isanet/README.md + Frameworks: + - PyTorch +Models: +- Name: isanet_r50-d8_4xb2-40k_cityscapes-512x1024 + In Collection: ISANet + Results: + Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 78.49 + mIoU(ms+flip): 79.44 + Config: configs/isanet/isanet_r50-d8_4xb2-40k_cityscapes-512x1024.py + Metadata: + Training Data: Cityscapes + Batch Size: 8 + Architecture: + - R-50-D8 + - ISANet + Training Resources: 4x V100 GPUS + Memory (GB): 5.869 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/isanet/isanet_r50-d8_512x1024_40k_cityscapes/isanet_r50-d8_512x1024_40k_cityscapes_20210901_054739-981bd763.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/isanet/isanet_r50-d8_512x1024_40k_cityscapes/isanet_r50-d8_512x1024_40k_cityscapes_20210901_054739.log.json + Paper: + Title: Interlaced Sparse Self-Attention for Semantic Segmentation + URL: https://arxiv.org/abs/1907.12273 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.18.0/mmseg/models/decode_heads/isa_head.py#L58 + Framework: PyTorch +- Name: isanet_r50-d8_4xb2-80k_cityscapes-512x1024 + In Collection: ISANet + Results: + Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 78.68 + mIoU(ms+flip): 80.25 + Config: configs/isanet/isanet_r50-d8_4xb2-80k_cityscapes-512x1024.py + Metadata: + Training Data: Cityscapes + Batch Size: 8 + Architecture: + - R-50-D8 + - ISANet + Training Resources: 4x V100 GPUS + Memory (GB): 5.869 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/isanet/isanet_r50-d8_512x1024_80k_cityscapes/isanet_r50-d8_512x1024_80k_cityscapes_20210901_074202-89384497.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/isanet/isanet_r50-d8_512x1024_80k_cityscapes/isanet_r50-d8_512x1024_80k_cityscapes_20210901_074202.log.json + Paper: + Title: Interlaced Sparse Self-Attention for Semantic Segmentation + URL: https://arxiv.org/abs/1907.12273 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.18.0/mmseg/models/decode_heads/isa_head.py#L58 + Framework: PyTorch +- Name: isanet_r50-d8_4xb2-40k_cityscapes-769x769 + In Collection: ISANet + Results: + Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 78.7 + mIoU(ms+flip): 80.28 + Config: configs/isanet/isanet_r50-d8_4xb2-40k_cityscapes-769x769.py + Metadata: + Training Data: Cityscapes + Batch Size: 8 + Architecture: + - R-50-D8 + - ISANet + Training Resources: 4x V100 GPUS + Memory (GB): 6.759 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/isanet/isanet_r50-d8_769x769_40k_cityscapes/isanet_r50-d8_769x769_40k_cityscapes_20210903_050200-4ae7e65b.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/isanet/isanet_r50-d8_769x769_40k_cityscapes/isanet_r50-d8_769x769_40k_cityscapes_20210903_050200.log.json + Paper: + Title: Interlaced Sparse Self-Attention for Semantic Segmentation + URL: https://arxiv.org/abs/1907.12273 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.18.0/mmseg/models/decode_heads/isa_head.py#L58 + Framework: PyTorch +- Name: isanet_r50-d8_4xb2-80k_cityscapes-769x769 + In Collection: ISANet + Results: + Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 79.29 + mIoU(ms+flip): 80.53 + Config: configs/isanet/isanet_r50-d8_4xb2-80k_cityscapes-769x769.py + Metadata: + Training Data: Cityscapes + Batch Size: 8 + Architecture: + - R-50-D8 + - ISANet + Training Resources: 4x V100 GPUS + Memory (GB): 6.759 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/isanet/isanet_r50-d8_769x769_80k_cityscapes/isanet_r50-d8_769x769_80k_cityscapes_20210903_101126-99b54519.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/isanet/isanet_r50-d8_769x769_80k_cityscapes/isanet_r50-d8_769x769_80k_cityscapes_20210903_101126.log.json + Paper: + Title: Interlaced Sparse Self-Attention for Semantic Segmentation + URL: https://arxiv.org/abs/1907.12273 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.18.0/mmseg/models/decode_heads/isa_head.py#L58 + Framework: PyTorch +- Name: isanet_r101-d8_4xb2-40k_cityscapes-512x1024 + In Collection: ISANet + Results: + Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 79.58 + mIoU(ms+flip): 81.05 + Config: configs/isanet/isanet_r101-d8_4xb2-40k_cityscapes-512x1024.py + Metadata: + Training Data: Cityscapes + Batch Size: 8 + Architecture: + - R-101-D8 + - ISANet + Training Resources: 4x V100 GPUS + Memory (GB): 9.425 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/isanet/isanet_r101-d8_512x1024_40k_cityscapes/isanet_r101-d8_512x1024_40k_cityscapes_20210901_145553-293e6bd6.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/isanet/isanet_r101-d8_512x1024_40k_cityscapes/isanet_r101-d8_512x1024_40k_cityscapes_20210901_145553.log.json + Paper: + Title: Interlaced Sparse Self-Attention for Semantic Segmentation + URL: https://arxiv.org/abs/1907.12273 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.18.0/mmseg/models/decode_heads/isa_head.py#L58 + Framework: PyTorch +- Name: isanet_r101-d8_4xb2-80k_cityscapes-512x1024 + In Collection: ISANet + Results: + Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 80.32 + mIoU(ms+flip): 81.58 + Config: configs/isanet/isanet_r101-d8_4xb2-80k_cityscapes-512x1024.py + Metadata: + Training Data: Cityscapes + Batch Size: 8 + Architecture: + - R-101-D8 + - ISANet + Training Resources: 4x V100 GPUS + Memory (GB): 9.425 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/isanet/isanet_r101-d8_512x1024_80k_cityscapes/isanet_r101-d8_512x1024_80k_cityscapes_20210901_145243-5b99c9b2.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/isanet/isanet_r101-d8_512x1024_80k_cityscapes/isanet_r101-d8_512x1024_80k_cityscapes_20210901_145243.log.json + Paper: + Title: Interlaced Sparse Self-Attention for Semantic Segmentation + URL: https://arxiv.org/abs/1907.12273 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.18.0/mmseg/models/decode_heads/isa_head.py#L58 + Framework: PyTorch +- Name: isanet_r101-d8_4xb2-40k_cityscapes-769x769 + In Collection: ISANet + Results: + Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 79.68 + mIoU(ms+flip): 80.95 + Config: configs/isanet/isanet_r101-d8_4xb2-40k_cityscapes-769x769.py + Metadata: + Training Data: Cityscapes + Batch Size: 8 + Architecture: + - R-101-D8 + - ISANet + Training Resources: 4x V100 GPUS + Memory (GB): 10.815 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/isanet/isanet_r101-d8_769x769_40k_cityscapes/isanet_r101-d8_769x769_40k_cityscapes_20210903_111320-509e7224.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/isanet/isanet_r101-d8_769x769_40k_cityscapes/isanet_r101-d8_769x769_40k_cityscapes_20210903_111320.log.json + Paper: + Title: Interlaced Sparse Self-Attention for Semantic Segmentation + URL: https://arxiv.org/abs/1907.12273 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.18.0/mmseg/models/decode_heads/isa_head.py#L58 + Framework: PyTorch +- Name: isanet_r101-d8_4xb2-80k_cityscapes-769x769 + In Collection: ISANet + Results: + Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 80.61 + mIoU(ms+flip): 81.59 + Config: configs/isanet/isanet_r101-d8_4xb2-80k_cityscapes-769x769.py + Metadata: + Training Data: Cityscapes + Batch Size: 8 + Architecture: + - R-101-D8 + - ISANet + Training Resources: 4x V100 GPUS + Memory (GB): 10.815 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/isanet/isanet_r101-d8_769x769_80k_cityscapes/isanet_r101-d8_769x769_80k_cityscapes_20210903_111319-24f71dfa.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/isanet/isanet_r101-d8_769x769_80k_cityscapes/isanet_r101-d8_769x769_80k_cityscapes_20210903_111319.log.json + Paper: + Title: Interlaced Sparse Self-Attention for Semantic Segmentation + URL: https://arxiv.org/abs/1907.12273 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.18.0/mmseg/models/decode_heads/isa_head.py#L58 + Framework: PyTorch +- Name: isanet_r50-d8_4xb4-80k_ade20k-512x512 + In Collection: ISANet + Results: + Task: Semantic Segmentation + Dataset: ADE20K + Metrics: + mIoU: 41.12 + mIoU(ms+flip): 42.35 + Config: configs/isanet/isanet_r50-d8_4xb4-80k_ade20k-512x512.py + Metadata: + Training Data: ADE20K + Batch Size: 16 + Architecture: + - R-50-D8 + - ISANet + Training Resources: 4x V100 GPUS + Memory (GB): 9.0 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/isanet/isanet_r50-d8_512x512_80k_ade20k/isanet_r50-d8_512x512_80k_ade20k_20210903_124557-6ed83a0c.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/isanet/isanet_r50-d8_512x512_80k_ade20k/isanet_r50-d8_512x512_80k_ade20k_20210903_124557.log.json + Paper: + Title: Interlaced Sparse Self-Attention for Semantic Segmentation + URL: https://arxiv.org/abs/1907.12273 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.18.0/mmseg/models/decode_heads/isa_head.py#L58 + Framework: PyTorch +- Name: isanet_r50-d8_4xb4-160k_ade20k-512x512 + In Collection: ISANet + Results: + Task: Semantic Segmentation + Dataset: ADE20K + Metrics: + mIoU: 42.59 + mIoU(ms+flip): 43.07 + Config: configs/isanet/isanet_r50-d8_4xb4-160k_ade20k-512x512.py + Metadata: + Training Data: ADE20K + Batch Size: 16 + Architecture: + - R-50-D8 + - ISANet + Training Resources: 4x V100 GPUS + Memory (GB): 9.0 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/isanet/isanet_r50-d8_512x512_160k_ade20k/isanet_r50-d8_512x512_160k_ade20k_20210903_104850-f752d0a3.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/isanet/isanet_r50-d8_512x512_160k_ade20k/isanet_r50-d8_512x512_160k_ade20k_20210903_104850.log.json + Paper: + Title: Interlaced Sparse Self-Attention for Semantic Segmentation + URL: https://arxiv.org/abs/1907.12273 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.18.0/mmseg/models/decode_heads/isa_head.py#L58 + Framework: PyTorch +- Name: isanet_r101-d8_4xb4-80k_ade20k-512x512 + In Collection: ISANet + Results: + Task: Semantic Segmentation + Dataset: ADE20K + Metrics: + mIoU: 43.51 + mIoU(ms+flip): 44.38 + Config: configs/isanet/isanet_r101-d8_4xb4-80k_ade20k-512x512.py + Metadata: + Training Data: ADE20K + Batch Size: 16 + Architecture: + - R-101-D8 + - ISANet + Training Resources: 4x V100 GPUS + Memory (GB): 12.562 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/isanet/isanet_r101-d8_512x512_80k_ade20k/isanet_r101-d8_512x512_80k_ade20k_20210903_162056-68b235c2.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/isanet/isanet_r101-d8_512x512_80k_ade20k/isanet_r101-d8_512x512_80k_ade20k_20210903_162056.log.json + Paper: + Title: Interlaced Sparse Self-Attention for Semantic Segmentation + URL: https://arxiv.org/abs/1907.12273 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.18.0/mmseg/models/decode_heads/isa_head.py#L58 + Framework: PyTorch +- Name: isanet_r101-d8_4xb4-160k_ade20k-512x512 + In Collection: ISANet + Results: + Task: Semantic Segmentation + Dataset: ADE20K + Metrics: + mIoU: 43.8 + mIoU(ms+flip): 45.4 + Config: configs/isanet/isanet_r101-d8_4xb4-160k_ade20k-512x512.py + Metadata: + Training Data: ADE20K + Batch Size: 16 + Architecture: + - R-101-D8 + - ISANet + Training Resources: 4x V100 GPUS + Memory (GB): 12.562 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/isanet/isanet_r101-d8_512x512_160k_ade20k/isanet_r101-d8_512x512_160k_ade20k_20210903_211431-a7879dcd.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/isanet/isanet_r101-d8_512x512_160k_ade20k/isanet_r101-d8_512x512_160k_ade20k_20210903_211431.log.json + Paper: + Title: Interlaced Sparse Self-Attention for Semantic Segmentation + URL: https://arxiv.org/abs/1907.12273 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.18.0/mmseg/models/decode_heads/isa_head.py#L58 + Framework: PyTorch +- Name: isanet_r50-d8_4xb4-20k_voc12aug-512x512 + In Collection: ISANet + Results: + Task: Semantic Segmentation + Dataset: Pascal VOC 2012 + Aug + Metrics: + mIoU: 76.78 + mIoU(ms+flip): 77.79 + Config: configs/isanet/isanet_r50-d8_4xb4-20k_voc12aug-512x512.py + Metadata: + Training Data: Pascal VOC 2012 + Aug + Batch Size: 16 + Architecture: + - R-50-D8 + - ISANet + Training Resources: 4x V100 GPUS + Memory (GB): 5.9 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/isanet/isanet_r50-d8_512x512_20k_voc12aug/isanet_r50-d8_512x512_20k_voc12aug_20210901_164838-79d59b80.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/isanet/isanet_r50-d8_512x512_20k_voc12aug/isanet_r50-d8_512x512_20k_voc12aug_20210901_164838.log.json + Paper: + Title: Interlaced Sparse Self-Attention for Semantic Segmentation + URL: https://arxiv.org/abs/1907.12273 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.18.0/mmseg/models/decode_heads/isa_head.py#L58 + Framework: PyTorch +- Name: isanet_r50-d8_4xb4-40k_voc12aug-512x512 + In Collection: ISANet + Results: + Task: Semantic Segmentation + Dataset: Pascal VOC 2012 + Aug + Metrics: + mIoU: 76.2 + mIoU(ms+flip): 77.22 + Config: configs/isanet/isanet_r50-d8_4xb4-40k_voc12aug-512x512.py + Metadata: + Training Data: Pascal VOC 2012 + Aug + Batch Size: 16 + Architecture: + - R-50-D8 + - ISANet + Training Resources: 4x V100 GPUS + Memory (GB): 5.9 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/isanet/isanet_r50-d8_512x512_40k_voc12aug/isanet_r50-d8_512x512_40k_voc12aug_20210901_151349-7d08a54e.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/isanet/isanet_r50-d8_512x512_40k_voc12aug/isanet_r50-d8_512x512_40k_voc12aug_20210901_151349.log.json + Paper: + Title: Interlaced Sparse Self-Attention for Semantic Segmentation + URL: https://arxiv.org/abs/1907.12273 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.18.0/mmseg/models/decode_heads/isa_head.py#L58 + Framework: PyTorch +- Name: isanet_r101-d8_4xb4-20k_voc12aug-512x512 + In Collection: ISANet + Results: + Task: Semantic Segmentation + Dataset: Pascal VOC 2012 + Aug + Metrics: + mIoU: 78.46 + mIoU(ms+flip): 79.16 + Config: configs/isanet/isanet_r101-d8_4xb4-20k_voc12aug-512x512.py + Metadata: + Training Data: Pascal VOC 2012 + Aug + Batch Size: 16 + Architecture: + - R-101-D8 + - ISANet + Training Resources: 4x V100 GPUS + Memory (GB): 9.465 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/isanet/isanet_r101-d8_512x512_20k_voc12aug/isanet_r101-d8_512x512_20k_voc12aug_20210901_115805-3ccbf355.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/isanet/isanet_r101-d8_512x512_20k_voc12aug/isanet_r101-d8_512x512_20k_voc12aug_20210901_115805.log.json + Paper: + Title: Interlaced Sparse Self-Attention for Semantic Segmentation + URL: https://arxiv.org/abs/1907.12273 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.18.0/mmseg/models/decode_heads/isa_head.py#L58 + Framework: PyTorch +- Name: isanet_r101-d8_4xb4-40k_voc12aug-512x512 + In Collection: ISANet + Results: + Task: Semantic Segmentation + Dataset: Pascal VOC 2012 + Aug + Metrics: + mIoU: 78.12 + mIoU(ms+flip): 79.04 + Config: configs/isanet/isanet_r101-d8_4xb4-40k_voc12aug-512x512.py + Metadata: + Training Data: Pascal VOC 2012 + Aug + Batch Size: 16 + Architecture: + - R-101-D8 + - ISANet + Training Resources: 4x V100 GPUS + Memory (GB): 9.465 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/isanet/isanet_r101-d8_512x512_40k_voc12aug/isanet_r101-d8_512x512_40k_voc12aug_20210901_145814-bc71233b.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/isanet/isanet_r101-d8_512x512_40k_voc12aug/isanet_r101-d8_512x512_40k_voc12aug_20210901_145814.log.json + Paper: + Title: Interlaced Sparse Self-Attention for Semantic Segmentation + URL: https://arxiv.org/abs/1907.12273 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.18.0/mmseg/models/decode_heads/isa_head.py#L58 + Framework: PyTorch diff --git a/configs/knet/README.md b/configs/knet/README.md index ed5bc06257..070c7256da 100644 --- a/configs/knet/README.md +++ b/configs/knet/README.md @@ -1,6 +1,6 @@ # K-Net -[K-Net: Towards Unified Image Segmentation](https://arxiv.org/abs/2106.14855) +> [K-Net: Towards Unified Image Segmentation](https://arxiv.org/abs/2106.14855) ## Introduction @@ -22,29 +22,31 @@ Semantic, instance, and panoptic segmentations have been addressed using differe -```bibtex -@inproceedings{zhang2021knet, - title={{K-Net: Towards} Unified Image Segmentation}, - author={Wenwei Zhang and Jiangmiao Pang and Kai Chen and Chen Change Loy}, - year={2021}, - booktitle={NeurIPS}, -} -``` - ## Results and models ### ADE20K -| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | mIoU | mIoU(ms+flip) | config | download | -| ---------------- | -------- | --------- | ------- | -------- | -------------- | ----- | ------------- | ------------------------------------------------------------------------------------------------------------------------------------------ | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | -| KNet + FCN | R-50-D8 | 512x512 | 80000 | 7.01 | 19.24 | 43.60 | 45.12 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/knet/knet-s3_r50-d8_fcn_8xb2-adamw-80k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/knet/knet_s3_fcn_r50-d8_8x2_512x512_adamw_80k_ade20k/knet_s3_fcn_r50-d8_8x2_512x512_adamw_80k_ade20k_20220228_043751-abcab920.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/knet/knet_s3_fcn_r50-d8_8x2_512x512_adamw_80k_ade20k/knet_s3_fcn_r50-d8_8x2_512x512_adamw_80k_ade20k_20220228_043751.log.json) | -| KNet + PSPNet | R-50-D8 | 512x512 | 80000 | 6.98 | 20.04 | 44.18 | 45.58 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/knet/knet-s3_r50-d8_pspnet_8xb2-adamw-80k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/knet/knet_s3_pspnet_r50-d8_8x2_512x512_adamw_80k_ade20k/knet_s3_pspnet_r50-d8_8x2_512x512_adamw_80k_ade20k_20220228_054634-d2c72240.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/knet/knet_s3_pspnet_r50-d8_8x2_512x512_adamw_80k_ade20k/knet_s3_pspnet_r50-d8_8x2_512x512_adamw_80k_ade20k_20220228_054634.log.json) | -| KNet + DeepLabV3 | R-50-D8 | 512x512 | 80000 | 7.42 | 12.10 | 45.06 | 46.11 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/knet/knet-s3_r50-d8_deeplabv3_8xb2-adamw-80k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/knet/knet_s3_deeplabv3_r50-d8_8x2_512x512_adamw_80k_ade20k/knet_s3_deeplabv3_r50-d8_8x2_512x512_adamw_80k_ade20k_20220228_041642-00c8fbeb.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/knet/knet_s3_deeplabv3_r50-d8_8x2_512x512_adamw_80k_ade20k/knet_s3_deeplabv3_r50-d8_8x2_512x512_adamw_80k_ade20k_20220228_041642.log.json) | -| KNet + UperNet | R-50-D8 | 512x512 | 80000 | 7.34 | 17.11 | 43.45 | 44.07 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/knet/knet-s3_r50-d8_upernet_8xb2-adamw-80k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/knet/knet_s3_upernet_r50-d8_8x2_512x512_adamw_80k_ade20k/knet_s3_upernet_r50-d8_8x2_512x512_adamw_80k_ade20k_20220304_125657-215753b0.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/knet/knet_s3_upernet_r50-d8_8x2_512x512_adamw_80k_ade20k/knet_s3_upernet_r50-d8_8x2_512x512_adamw_80k_ade20k_20220304_125657.log.json) | -| KNet + UperNet | Swin-T | 512x512 | 80000 | 7.57 | 15.56 | 45.84 | 46.27 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/knet/knet-s3_swin-t_upernet_8xb2-adamw-80k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/knet/knet_s3_upernet_swin-t_8x2_512x512_adamw_80k_ade20k/knet_s3_upernet_swin-t_8x2_512x512_adamw_80k_ade20k_20220303_133059-7545e1dc.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/knet/knet_s3_upernet_swin-t_8x2_512x512_adamw_80k_ade20k/knet_s3_upernet_swin-t_8x2_512x512_adamw_80k_ade20k_20220303_133059.log.json) | -| KNet + UperNet | Swin-L | 512x512 | 80000 | 13.5 | 8.29 | 52.05 | 53.24 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/knet/knet-s3_swin-l_upernet_8xb2-adamw-80k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/knet/knet_s3_upernet_swin-l_8x2_512x512_adamw_80k_ade20k/knet_s3_upernet_swin-l_8x2_512x512_adamw_80k_ade20k_20220303_154559-d8da9a90.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/knet/knet_s3_upernet_swin-l_8x2_512x512_adamw_80k_ade20k/knet_s3_upernet_swin-l_8x2_512x512_adamw_80k_ade20k_20220303_154559.log.json) | -| KNet + UperNet | Swin-L | 640x640 | 80000 | 13.54 | 8.29 | 52.21 | 53.34 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/knet/knet-s3_swin-l_upernet_8xb2-adamw-80k_ade20k-640x640.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/knet/knet_s3_upernet_swin-l_8x2_640x640_adamw_80k_ade20k/knet_s3_upernet_swin-l_8x2_640x640_adamw_80k_ade20k_20220301_220747-8787fc71.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/knet/knet_s3_upernet_swin-l_8x2_640x640_adamw_80k_ade20k/knet_s3_upernet_swin-l_8x2_640x640_adamw_80k_ade20k_20220301_220747.log.json) | +| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | Device | mIoU | mIoU(ms+flip) | config | download | +| ---------------- | -------- | --------- | ------- | -------- | -------------- | ------ | ----- | ------------- | ------------------------------------------------------------------------------------------------------------------------------------------ | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | +| KNet + FCN | R-50-D8 | 512x512 | 80000 | 7.01 | 19.24 | V100 | 43.60 | 45.12 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/knet/knet-s3_r50-d8_fcn_8xb2-adamw-80k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/knet/knet_s3_fcn_r50-d8_8x2_512x512_adamw_80k_ade20k/knet_s3_fcn_r50-d8_8x2_512x512_adamw_80k_ade20k_20220228_043751-abcab920.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/knet/knet_s3_fcn_r50-d8_8x2_512x512_adamw_80k_ade20k/knet_s3_fcn_r50-d8_8x2_512x512_adamw_80k_ade20k_20220228_043751.log.json) | +| KNet + PSPNet | R-50-D8 | 512x512 | 80000 | 6.98 | 20.04 | V100 | 44.18 | 45.58 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/knet/knet-s3_r50-d8_pspnet_8xb2-adamw-80k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/knet/knet_s3_pspnet_r50-d8_8x2_512x512_adamw_80k_ade20k/knet_s3_pspnet_r50-d8_8x2_512x512_adamw_80k_ade20k_20220228_054634-d2c72240.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/knet/knet_s3_pspnet_r50-d8_8x2_512x512_adamw_80k_ade20k/knet_s3_pspnet_r50-d8_8x2_512x512_adamw_80k_ade20k_20220228_054634.log.json) | +| KNet + DeepLabV3 | R-50-D8 | 512x512 | 80000 | 7.42 | 12.10 | V100 | 45.06 | 46.11 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/knet/knet-s3_r50-d8_deeplabv3_8xb2-adamw-80k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/knet/knet_s3_deeplabv3_r50-d8_8x2_512x512_adamw_80k_ade20k/knet_s3_deeplabv3_r50-d8_8x2_512x512_adamw_80k_ade20k_20220228_041642-00c8fbeb.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/knet/knet_s3_deeplabv3_r50-d8_8x2_512x512_adamw_80k_ade20k/knet_s3_deeplabv3_r50-d8_8x2_512x512_adamw_80k_ade20k_20220228_041642.log.json) | +| KNet + UperNet | R-50-D8 | 512x512 | 80000 | 7.34 | 17.11 | V100 | 43.45 | 44.07 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/knet/knet-s3_r50-d8_upernet_8xb2-adamw-80k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/knet/knet_s3_upernet_r50-d8_8x2_512x512_adamw_80k_ade20k/knet_s3_upernet_r50-d8_8x2_512x512_adamw_80k_ade20k_20220304_125657-215753b0.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/knet/knet_s3_upernet_r50-d8_8x2_512x512_adamw_80k_ade20k/knet_s3_upernet_r50-d8_8x2_512x512_adamw_80k_ade20k_20220304_125657.log.json) | +| KNet + UperNet | Swin-T | 512x512 | 80000 | 7.57 | 15.56 | V100 | 45.84 | 46.27 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/knet/knet-s3_swin-t_upernet_8xb2-adamw-80k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/knet/knet_s3_upernet_swin-t_8x2_512x512_adamw_80k_ade20k/knet_s3_upernet_swin-t_8x2_512x512_adamw_80k_ade20k_20220303_133059-7545e1dc.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/knet/knet_s3_upernet_swin-t_8x2_512x512_adamw_80k_ade20k/knet_s3_upernet_swin-t_8x2_512x512_adamw_80k_ade20k_20220303_133059.log.json) | +| KNet + UperNet | Swin-L | 512x512 | 80000 | 13.5 | 8.29 | V100 | 52.05 | 53.24 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/knet/knet-s3_swin-l_upernet_8xb2-adamw-80k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/knet/knet_s3_upernet_swin-l_8x2_512x512_adamw_80k_ade20k/knet_s3_upernet_swin-l_8x2_512x512_adamw_80k_ade20k_20220303_154559-d8da9a90.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/knet/knet_s3_upernet_swin-l_8x2_512x512_adamw_80k_ade20k/knet_s3_upernet_swin-l_8x2_512x512_adamw_80k_ade20k_20220303_154559.log.json) | +| KNet + UperNet | Swin-L | 640x640 | 80000 | 13.54 | 8.29 | V100 | 52.21 | 53.34 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/knet/knet-s3_swin-l_upernet_8xb2-adamw-80k_ade20k-640x640.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/knet/knet_s3_upernet_swin-l_8x2_640x640_adamw_80k_ade20k/knet_s3_upernet_swin-l_8x2_640x640_adamw_80k_ade20k_20220301_220747-8787fc71.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/knet/knet_s3_upernet_swin-l_8x2_640x640_adamw_80k_ade20k/knet_s3_upernet_swin-l_8x2_640x640_adamw_80k_ade20k_20220301_220747.log.json) | Note: - All experiments of K-Net are implemented with 8 V100 (32G) GPUs with 2 samplers per GPU. + +# Citation + +```bibtex +@inproceedings{zhang2021knet, + title={{K-Net: Towards} Unified Image Segmentation}, + author={Wenwei Zhang and Jiangmiao Pang and Kai Chen and Chen Change Loy}, + year={2021}, + booktitle={NeurIPS}, +} +``` diff --git a/configs/knet/knet.yml b/configs/knet/knet.yml deleted file mode 100644 index 1c98e4703c..0000000000 --- a/configs/knet/knet.yml +++ /dev/null @@ -1,169 +0,0 @@ -Collections: -- Name: KNet - Metadata: - Training Data: - - ADE20K - Paper: - URL: https://arxiv.org/abs/2106.14855 - Title: 'K-Net: Towards Unified Image Segmentation' - README: configs/knet/README.md - Code: - URL: https://github.com/open-mmlab/mmsegmentation/blob/v0.23.0/mmseg/models/decode_heads/knet_head.py#L392 - Version: v0.23.0 - Converted From: - Code: https://github.com/ZwwWayne/K-Net/ -Models: -- Name: knet-s3_r50-d8_fcn_8xb2-adamw-80k_ade20k-512x512 - In Collection: KNet - Metadata: - backbone: R-50-D8 - crop size: (512,512) - lr schd: 80000 - inference time (ms/im): - - value: 51.98 - hardware: V100 - backend: PyTorch - batch size: 1 - mode: FP32 - resolution: (512,512) - Training Memory (GB): 7.01 - Results: - - Task: Semantic Segmentation - Dataset: ADE20K - Metrics: - mIoU: 43.6 - mIoU(ms+flip): 45.12 - Config: configs/knet/knet-s3_r50-d8_fcn_8xb2-adamw-80k_ade20k-512x512.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/knet/knet_s3_fcn_r50-d8_8x2_512x512_adamw_80k_ade20k/knet_s3_fcn_r50-d8_8x2_512x512_adamw_80k_ade20k_20220228_043751-abcab920.pth -- Name: knet-s3_r50-d8_pspnet_8xb2-adamw-80k_ade20k-512x512 - In Collection: KNet - Metadata: - backbone: R-50-D8 - crop size: (512,512) - lr schd: 80000 - inference time (ms/im): - - value: 49.9 - hardware: V100 - backend: PyTorch - batch size: 1 - mode: FP32 - resolution: (512,512) - Training Memory (GB): 6.98 - Results: - - Task: Semantic Segmentation - Dataset: ADE20K - Metrics: - mIoU: 44.18 - mIoU(ms+flip): 45.58 - Config: configs/knet/knet-s3_r50-d8_pspnet_8xb2-adamw-80k_ade20k-512x512.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/knet/knet_s3_pspnet_r50-d8_8x2_512x512_adamw_80k_ade20k/knet_s3_pspnet_r50-d8_8x2_512x512_adamw_80k_ade20k_20220228_054634-d2c72240.pth -- Name: knet-s3_r50-d8_deeplabv3_8xb2-adamw-80k_ade20k-512x512 - In Collection: KNet - Metadata: - backbone: R-50-D8 - crop size: (512,512) - lr schd: 80000 - inference time (ms/im): - - value: 82.64 - hardware: V100 - backend: PyTorch - batch size: 1 - mode: FP32 - resolution: (512,512) - Training Memory (GB): 7.42 - Results: - - Task: Semantic Segmentation - Dataset: ADE20K - Metrics: - mIoU: 45.06 - mIoU(ms+flip): 46.11 - Config: configs/knet/knet-s3_r50-d8_deeplabv3_8xb2-adamw-80k_ade20k-512x512.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/knet/knet_s3_deeplabv3_r50-d8_8x2_512x512_adamw_80k_ade20k/knet_s3_deeplabv3_r50-d8_8x2_512x512_adamw_80k_ade20k_20220228_041642-00c8fbeb.pth -- Name: knet-s3_r50-d8_upernet_8xb2-adamw-80k_ade20k-512x512 - In Collection: KNet - Metadata: - backbone: R-50-D8 - crop size: (512,512) - lr schd: 80000 - inference time (ms/im): - - value: 58.45 - hardware: V100 - backend: PyTorch - batch size: 1 - mode: FP32 - resolution: (512,512) - Training Memory (GB): 7.34 - Results: - - Task: Semantic Segmentation - Dataset: ADE20K - Metrics: - mIoU: 43.45 - mIoU(ms+flip): 44.07 - Config: configs/knet/knet-s3_r50-d8_upernet_8xb2-adamw-80k_ade20k-512x512.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/knet/knet_s3_upernet_r50-d8_8x2_512x512_adamw_80k_ade20k/knet_s3_upernet_r50-d8_8x2_512x512_adamw_80k_ade20k_20220304_125657-215753b0.pth -- Name: knet-s3_swin-t_upernet_8xb2-adamw-80k_ade20k-512x512 - In Collection: KNet - Metadata: - backbone: Swin-T - crop size: (512,512) - lr schd: 80000 - inference time (ms/im): - - value: 64.27 - hardware: V100 - backend: PyTorch - batch size: 1 - mode: FP32 - resolution: (512,512) - Training Memory (GB): 7.57 - Results: - - Task: Semantic Segmentation - Dataset: ADE20K - Metrics: - mIoU: 45.84 - mIoU(ms+flip): 46.27 - Config: configs/knet/knet-s3_swin-t_upernet_8xb2-adamw-80k_ade20k-512x512.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/knet/knet_s3_upernet_swin-t_8x2_512x512_adamw_80k_ade20k/knet_s3_upernet_swin-t_8x2_512x512_adamw_80k_ade20k_20220303_133059-7545e1dc.pth -- Name: knet-s3_swin-l_upernet_8xb2-adamw-80k_ade20k-512x512 - In Collection: KNet - Metadata: - backbone: Swin-L - crop size: (512,512) - lr schd: 80000 - inference time (ms/im): - - value: 120.63 - hardware: V100 - backend: PyTorch - batch size: 1 - mode: FP32 - resolution: (512,512) - Training Memory (GB): 13.5 - Results: - - Task: Semantic Segmentation - Dataset: ADE20K - Metrics: - mIoU: 52.05 - mIoU(ms+flip): 53.24 - Config: configs/knet/knet-s3_swin-l_upernet_8xb2-adamw-80k_ade20k-512x512.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/knet/knet_s3_upernet_swin-l_8x2_512x512_adamw_80k_ade20k/knet_s3_upernet_swin-l_8x2_512x512_adamw_80k_ade20k_20220303_154559-d8da9a90.pth -- Name: knet-s3_swin-l_upernet_8xb2-adamw-80k_ade20k-640x640 - In Collection: KNet - Metadata: - backbone: Swin-L - crop size: (640,640) - lr schd: 80000 - inference time (ms/im): - - value: 120.63 - hardware: V100 - backend: PyTorch - batch size: 1 - mode: FP32 - resolution: (640,640) - Training Memory (GB): 13.54 - Results: - - Task: Semantic Segmentation - Dataset: ADE20K - Metrics: - mIoU: 52.21 - mIoU(ms+flip): 53.34 - Config: configs/knet/knet-s3_swin-l_upernet_8xb2-adamw-80k_ade20k-640x640.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/knet/knet_s3_upernet_swin-l_8x2_640x640_adamw_80k_ade20k/knet_s3_upernet_swin-l_8x2_640x640_adamw_80k_ade20k_20220301_220747-8787fc71.pth diff --git a/configs/knet/metafile.yaml b/configs/knet/metafile.yaml new file mode 100644 index 0000000000..0f4ab79609 --- /dev/null +++ b/configs/knet/metafile.yaml @@ -0,0 +1,188 @@ +Collections: +- Name: KNet + License: Apache License 2.0 + Metadata: + Training Data: + - ADE20K + Paper: + Title: 'K-Net: Towards Unified Image Segmentation' + URL: https://arxiv.org/abs/2106.14855 + README: configs/knet/README.md + Frameworks: + - PyTorch +Models: +- Name: knet-s3_r50-d8_fcn_8xb2-adamw-80k_ade20k-512x512 + In Collection: KNet + Results: + Task: Semantic Segmentation + Dataset: ADE20K + Metrics: + mIoU: 43.6 + mIoU(ms+flip): 45.12 + Config: configs/knet/knet-s3_r50-d8_fcn_8xb2-adamw-80k_ade20k-512x512.py + Metadata: + Training Data: ADE20K + Batch Size: 16 + Architecture: + - R-50-D8 + - KNet + - FCN + Training Resources: 8x V100 GPUS + Memory (GB): 7.01 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/knet/knet_s3_fcn_r50-d8_8x2_512x512_adamw_80k_ade20k/knet_s3_fcn_r50-d8_8x2_512x512_adamw_80k_ade20k_20220228_043751-abcab920.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/knet/knet_s3_fcn_r50-d8_8x2_512x512_adamw_80k_ade20k/knet_s3_fcn_r50-d8_8x2_512x512_adamw_80k_ade20k_20220228_043751.log.json + Paper: + Title: 'K-Net: Towards Unified Image Segmentation' + URL: https://arxiv.org/abs/2106.14855 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.23.0/mmseg/models/decode_heads/knet_head.py#L392 + Framework: PyTorch +- Name: knet-s3_r50-d8_pspnet_8xb2-adamw-80k_ade20k-512x512 + In Collection: KNet + Results: + Task: Semantic Segmentation + Dataset: ADE20K + Metrics: + mIoU: 44.18 + mIoU(ms+flip): 45.58 + Config: configs/knet/knet-s3_r50-d8_pspnet_8xb2-adamw-80k_ade20k-512x512.py + Metadata: + Training Data: ADE20K + Batch Size: 16 + Architecture: + - R-50-D8 + - KNet + - PSPNet + Training Resources: 8x V100 GPUS + Memory (GB): 6.98 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/knet/knet_s3_pspnet_r50-d8_8x2_512x512_adamw_80k_ade20k/knet_s3_pspnet_r50-d8_8x2_512x512_adamw_80k_ade20k_20220228_054634-d2c72240.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/knet/knet_s3_pspnet_r50-d8_8x2_512x512_adamw_80k_ade20k/knet_s3_pspnet_r50-d8_8x2_512x512_adamw_80k_ade20k_20220228_054634.log.json + Paper: + Title: 'K-Net: Towards Unified Image Segmentation' + URL: https://arxiv.org/abs/2106.14855 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.23.0/mmseg/models/decode_heads/knet_head.py#L392 + Framework: PyTorch +- Name: knet-s3_r50-d8_deeplabv3_8xb2-adamw-80k_ade20k-512x512 + In Collection: KNet + Results: + Task: Semantic Segmentation + Dataset: ADE20K + Metrics: + mIoU: 45.06 + mIoU(ms+flip): 46.11 + Config: configs/knet/knet-s3_r50-d8_deeplabv3_8xb2-adamw-80k_ade20k-512x512.py + Metadata: + Training Data: ADE20K + Batch Size: 16 + Architecture: + - R-50-D8 + - KNet + - DeepLabV3 + Training Resources: 8x V100 GPUS + Memory (GB): 7.42 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/knet/knet_s3_deeplabv3_r50-d8_8x2_512x512_adamw_80k_ade20k/knet_s3_deeplabv3_r50-d8_8x2_512x512_adamw_80k_ade20k_20220228_041642-00c8fbeb.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/knet/knet_s3_deeplabv3_r50-d8_8x2_512x512_adamw_80k_ade20k/knet_s3_deeplabv3_r50-d8_8x2_512x512_adamw_80k_ade20k_20220228_041642.log.json + Paper: + Title: 'K-Net: Towards Unified Image Segmentation' + URL: https://arxiv.org/abs/2106.14855 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.23.0/mmseg/models/decode_heads/knet_head.py#L392 + Framework: PyTorch +- Name: knet-s3_r50-d8_upernet_8xb2-adamw-80k_ade20k-512x512 + In Collection: KNet + Results: + Task: Semantic Segmentation + Dataset: ADE20K + Metrics: + mIoU: 43.45 + mIoU(ms+flip): 44.07 + Config: configs/knet/knet-s3_r50-d8_upernet_8xb2-adamw-80k_ade20k-512x512.py + Metadata: + Training Data: ADE20K + Batch Size: 16 + Architecture: + - R-50-D8 + - KNet + - UperNet + Training Resources: 8x V100 GPUS + Memory (GB): 7.34 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/knet/knet_s3_upernet_r50-d8_8x2_512x512_adamw_80k_ade20k/knet_s3_upernet_r50-d8_8x2_512x512_adamw_80k_ade20k_20220304_125657-215753b0.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/knet/knet_s3_upernet_r50-d8_8x2_512x512_adamw_80k_ade20k/knet_s3_upernet_r50-d8_8x2_512x512_adamw_80k_ade20k_20220304_125657.log.json + Paper: + Title: 'K-Net: Towards Unified Image Segmentation' + URL: https://arxiv.org/abs/2106.14855 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.23.0/mmseg/models/decode_heads/knet_head.py#L392 + Framework: PyTorch +- Name: knet-s3_swin-t_upernet_8xb2-adamw-80k_ade20k-512x512 + In Collection: KNet + Results: + Task: Semantic Segmentation + Dataset: ADE20K + Metrics: + mIoU: 45.84 + mIoU(ms+flip): 46.27 + Config: configs/knet/knet-s3_swin-t_upernet_8xb2-adamw-80k_ade20k-512x512.py + Metadata: + Training Data: ADE20K + Batch Size: 16 + Architecture: + - Swin-T + - KNet + - UperNet + Training Resources: 8x V100 GPUS + Memory (GB): 7.57 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/knet/knet_s3_upernet_swin-t_8x2_512x512_adamw_80k_ade20k/knet_s3_upernet_swin-t_8x2_512x512_adamw_80k_ade20k_20220303_133059-7545e1dc.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/knet/knet_s3_upernet_swin-t_8x2_512x512_adamw_80k_ade20k/knet_s3_upernet_swin-t_8x2_512x512_adamw_80k_ade20k_20220303_133059.log.json + Paper: + Title: 'K-Net: Towards Unified Image Segmentation' + URL: https://arxiv.org/abs/2106.14855 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.23.0/mmseg/models/decode_heads/knet_head.py#L392 + Framework: PyTorch +- Name: knet-s3_swin-l_upernet_8xb2-adamw-80k_ade20k-512x512 + In Collection: KNet + Results: + Task: Semantic Segmentation + Dataset: ADE20K + Metrics: + mIoU: 52.05 + mIoU(ms+flip): 53.24 + Config: configs/knet/knet-s3_swin-l_upernet_8xb2-adamw-80k_ade20k-512x512.py + Metadata: + Training Data: ADE20K + Batch Size: 16 + Architecture: + - Swin-L + - KNet + - UperNet + Training Resources: 8x V100 GPUS + Memory (GB): 13.5 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/knet/knet_s3_upernet_swin-l_8x2_512x512_adamw_80k_ade20k/knet_s3_upernet_swin-l_8x2_512x512_adamw_80k_ade20k_20220303_154559-d8da9a90.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/knet/knet_s3_upernet_swin-l_8x2_512x512_adamw_80k_ade20k/knet_s3_upernet_swin-l_8x2_512x512_adamw_80k_ade20k_20220303_154559.log.json + Paper: + Title: 'K-Net: Towards Unified Image Segmentation' + URL: https://arxiv.org/abs/2106.14855 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.23.0/mmseg/models/decode_heads/knet_head.py#L392 + Framework: PyTorch +- Name: knet-s3_swin-l_upernet_8xb2-adamw-80k_ade20k-640x640 + In Collection: KNet + Results: + Task: Semantic Segmentation + Dataset: ADE20K + Metrics: + mIoU: 52.21 + mIoU(ms+flip): 53.34 + Config: configs/knet/knet-s3_swin-l_upernet_8xb2-adamw-80k_ade20k-640x640.py + Metadata: + Training Data: ADE20K + Batch Size: 16 + Architecture: + - Swin-L + - KNet + - UperNet + Training Resources: 8x V100 GPUS + Memory (GB): 13.54 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/knet/knet_s3_upernet_swin-l_8x2_640x640_adamw_80k_ade20k/knet_s3_upernet_swin-l_8x2_640x640_adamw_80k_ade20k_20220301_220747-8787fc71.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/knet/knet_s3_upernet_swin-l_8x2_640x640_adamw_80k_ade20k/knet_s3_upernet_swin-l_8x2_640x640_adamw_80k_ade20k_20220301_220747.log.json + Paper: + Title: 'K-Net: Towards Unified Image Segmentation' + URL: https://arxiv.org/abs/2106.14855 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.23.0/mmseg/models/decode_heads/knet_head.py#L392 + Framework: PyTorch diff --git a/configs/mae/README.md b/configs/mae/README.md index 330749732e..94ade08823 100644 --- a/configs/mae/README.md +++ b/configs/mae/README.md @@ -1,6 +1,6 @@ # MAE -[Masked Autoencoders Are Scalable Vision Learners](https://arxiv.org/abs/2111.06377) +> [Masked Autoencoders Are Scalable Vision Learners](https://arxiv.org/abs/2111.06377) ## Introduction @@ -22,17 +22,6 @@ This paper shows that masked autoencoders (MAE) are scalable self-supervised lea -## Citation - -```bibtex -@article{he2021masked, - title={Masked autoencoders are scalable vision learners}, - author={He, Kaiming and Chen, Xinlei and Xie, Saining and Li, Yanghao and Doll{\'a}r, Piotr and Girshick, Ross}, - journal={arXiv preprint arXiv:2111.06377}, - year={2021} -} -``` - ## Usage To use other repositories' pre-trained models, it is necessary to convert keys. @@ -77,6 +66,17 @@ upernet_mae-base_fp16_8x2_512x512_160k_ade20k_20220426_174752-f92a2975.pth $GPUS ### ADE20K -| Method | Backbone | Crop Size | pretrain | pretrain img size | Batch Size | Lr schd | Mem (GB) | Inf time (fps) | mIoU | mIoU(ms+flip) | config | download | -| ------- | -------- | --------- | ----------- | ----------------- | ---------- | ------- | -------- | -------------- | ----- | ------------: | -------------------------------------------------------------------------------------------------------------------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ | -| UPerNet | ViT-B | 512x512 | ImageNet-1K | 224x224 | 16 | 160000 | 9.96 | 7.14 | 48.13 | 48.70 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/mae/mae-base_upernet_8xb2-amp-160k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/mae/upernet_mae-base_fp16_8x2_512x512_160k_ade20k/upernet_mae-base_fp16_8x2_512x512_160k_ade20k_20220426_174752-f92a2975.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/mae/upernet_mae-base_fp16_8x2_512x512_160k_ade20k/upernet_mae-base_fp16_8x2_512x512_160k_ade20k_20220426_174752.log.json) | +| Method | Backbone | Crop Size | pretrain | pretrain img size | Batch Size | Lr schd | Mem (GB) | Inf time (fps) | Device | mIoU | mIoU(ms+flip) | config | download | +| ------- | -------- | --------- | ----------- | ----------------- | ---------- | ------- | -------- | -------------- | ------ | ----- | ------------: | -------------------------------------------------------------------------------------------------------------------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ | +| UPerNet | ViT-B | 512x512 | ImageNet-1K | 224x224 | 16 | 160000 | 9.96 | 7.14 | V100 | 48.13 | 48.70 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/mae/mae-base_upernet_8xb2-amp-160k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/mae/upernet_mae-base_fp16_8x2_512x512_160k_ade20k/upernet_mae-base_fp16_8x2_512x512_160k_ade20k_20220426_174752-f92a2975.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/mae/upernet_mae-base_fp16_8x2_512x512_160k_ade20k/upernet_mae-base_fp16_8x2_512x512_160k_ade20k_20220426_174752.log.json) | + +## Citation + +```bibtex +@article{he2021masked, + title={Masked autoencoders are scalable vision learners}, + author={He, Kaiming and Chen, Xinlei and Xie, Saining and Li, Yanghao and Doll{\'a}r, Piotr and Girshick, Ross}, + journal={arXiv preprint arXiv:2111.06377}, + year={2021} +} +``` diff --git a/configs/mae/mae.yml b/configs/mae/mae.yml deleted file mode 100644 index 72b2cc7f12..0000000000 --- a/configs/mae/mae.yml +++ /dev/null @@ -1,23 +0,0 @@ -Models: -- Name: mae-base_upernet_8xb2-amp-160k_ade20k-512x512 - In Collection: UPerNet - Metadata: - backbone: ViT-B - crop size: (512,512) - lr schd: 160000 - inference time (ms/im): - - value: 140.06 - hardware: V100 - backend: PyTorch - batch size: 1 - mode: AMP - resolution: (512,512) - Training Memory (GB): 9.96 - Results: - - Task: Semantic Segmentation - Dataset: ADE20K - Metrics: - mIoU: 48.13 - mIoU(ms+flip): 48.7 - Config: configs/mae/mae-base_upernet_8xb2-amp-160k_ade20k-512x512.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/mae/upernet_mae-base_fp16_8x2_512x512_160k_ade20k/upernet_mae-base_fp16_8x2_512x512_160k_ade20k_20220426_174752-f92a2975.pth diff --git a/configs/mae/metafile.yaml b/configs/mae/metafile.yaml new file mode 100644 index 0000000000..567eafe131 --- /dev/null +++ b/configs/mae/metafile.yaml @@ -0,0 +1,25 @@ +Models: +- Name: mae-base_upernet_8xb2-amp-160k_ade20k-512x512 + In Collection: UPerNet + Results: + Task: Semantic Segmentation + Dataset: ADE20K + Metrics: + mIoU: 48.13 + mIoU(ms+flip): 48.7 + Config: configs/mae/mae-base_upernet_8xb2-amp-160k_ade20k-512x512.py + Metadata: + Training Data: ADE20K + Batch Size: 16 + Architecture: + - ViT-B + - UPerNet + Training Resources: 8x V100 GPUS + Memory (GB): 9.96 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/mae/upernet_mae-base_fp16_8x2_512x512_160k_ade20k/upernet_mae-base_fp16_8x2_512x512_160k_ade20k_20220426_174752-f92a2975.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/mae/upernet_mae-base_fp16_8x2_512x512_160k_ade20k/upernet_mae-base_fp16_8x2_512x512_160k_ade20k_20220426_174752.log.json + Paper: + Title: Masked Autoencoders Are Scalable Vision Learners + URL: https://arxiv.org/abs/2111.06377 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.24.0/mmseg/models/backbones/mae.py#L46 + Framework: PyTorch diff --git a/configs/mask2former/README.md b/configs/mask2former/README.md index 1861fec3b1..02639bef58 100644 --- a/configs/mask2former/README.md +++ b/configs/mask2former/README.md @@ -1,6 +1,6 @@ # Mask2Former -[Masked-attention Mask Transformer for Universal Image Segmentation](https://arxiv.org/abs/2112.01527) +> [Masked-attention Mask Transformer for Universal Image Segmentation](https://arxiv.org/abs/2112.01527) ## Introduction @@ -16,21 +16,6 @@ Image segmentation is about grouping pixels with different semantics, e.g., category or instance membership, where each choice of semantics defines a task. While only the semantics of each task differ, current research focuses on designing specialized architectures for each task. We present Masked-attention Mask Transformer (Mask2Former), a new architecture capable of addressing any image segmentation task (panoptic, instance or semantic). Its key components include masked attention, which extracts localized features by constraining cross-attention within predicted mask regions. In addition to reducing the research effort by at least three times, it outperforms the best specialized architectures by a significant margin on four popular datasets. Most notably, Mask2Former sets a new state-of-the-art for panoptic segmentation (57.8 PQ on COCO), instance segmentation (50.1 AP on COCO) and semantic segmentation (57.7 mIoU on ADE20K). -```bibtex -@inproceedings{cheng2021mask2former, - title={Masked-attention Mask Transformer for Universal Image Segmentation}, - author={Bowen Cheng and Ishan Misra and Alexander G. Schwing and Alexander Kirillov and Rohit Girdhar}, - journal={CVPR}, - year={2022} -} -@inproceedings{cheng2021maskformer, - title={Per-Pixel Classification is Not All You Need for Semantic Segmentation}, - author={Bowen Cheng and Alexander G. Schwing and Alexander Kirillov}, - journal={NeurIPS}, - year={2021} -} -``` - ### Usage - Mask2Former model needs to install [MMDetection](https://github.com/open-mmlab/mmdetection) first. @@ -43,26 +28,26 @@ pip install "mmdet>=3.0.0rc4" ### Cityscapes -| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | mIoU | mIoU(ms+flip) | config | download | -| ----------- | -------------- | --------- | ------- | -------: | -------------- | ----- | ------------: | -----------------------------------------------------------------------------------------------------------------------------------------------------------: | --------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | -| Mask2Former | R-50-D32 | 512x1024 | 90000 | 5806 | 9.17 | 80.44 | - | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/mask2former/mask2former_r50_8xb2-90k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/mask2former/mask2former_r50_8xb2-90k_cityscapes-512x1024/mask2former_r50_8xb2-90k_cityscapes-512x1024_20221202_140802-ffd9d750.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/mask2former/mask2former_r50_8xb2-90k_cityscapes-512x1024/mask2former_r50_8xb2-90k_cityscapes-512x1024_20221202_140802.json) | -| Mask2Former | R-101-D32 | 512x1024 | 90000 | 6971 | 7.11 | 80.80 | - | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/mask2former/mask2former_r101_8xb2-90k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/mask2former/mask2former_r101_8xb2-90k_cityscapes-512x1024/mask2former_r101_8xb2-90k_cityscapes-512x1024_20221130_031628-43e68666.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/mask2former/mask2former_r101_8xb2-90k_cityscapes-512x1024/mask2former_r101_8xb2-90k_cityscapes-512x1024_20221130_031628.json)) | -| Mask2Former | Swin-T | 512x1024 | 90000 | 6511 | 7.18 | 81.71 | - | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/mask2former/mask2former_swin-t_8xb2-90k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/mask2former/mask2former_swin-t_8xb2-90k_cityscapes-512x1024/mask2former_swin-t_8xb2-90k_cityscapes-512x1024_20221127_144501-36c59341.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/mask2former/mask2former_swin-t_8xb2-90k_cityscapes-512x1024/mask2former_swin-t_8xb2-90k_cityscapes-512x1024_20221127_144501.json)) | -| Mask2Former | Swin-S | 512x1024 | 90000 | 8282 | 5.57 | 82.57 | - | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/mask2former/mask2former_swin-s_8xb2-90k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/mask2former/mask2former_swin-s_8xb2-90k_cityscapes-512x1024/mask2former_swin-s_8xb2-90k_cityscapes-512x1024_20221127_143802-9ab177f6.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/mask2former/mask2former_swin-s_8xb2-90k_cityscapes-512x1024/mask2former_swin-s_8xb2-90k_cityscapes-512x1024_20221127_143802.json)) | -| Mask2Former | Swin-B (in22k) | 512x1024 | 90000 | 11152 | 4.32 | 83.52 | - | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/mask2former/mask2former_swin-b-in22k-384x384-pre_8xb2-90k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/mask2former/mask2former_swin-b-in22k-384x384-pre_8xb2-90k_cityscapes-512x1024/mask2former_swin-b-in22k-384x384-pre_8xb2-90k_cityscapes-512x1024_20221203_045030-9a86a225.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/mask2former/mask2former_swin-b-in22k-384x384-pre_8xb2-90k_cityscapes-512x1024/mask2former_swin-b-in22k-384x384-pre_8xb2-90k_cityscapes-512x1024_20221203_045030.json)) | -| Mask2Former | Swin-L (in22k) | 512x1024 | 90000 | 16207 | 2.86 | 83.65 | - | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/mask2former/mask2former_swin-l-in22k-384x384-pre_8xb2-90k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/mask2former/mask2former_swin-l-in22k-384x384-pre_8xb2-90k_cityscapes-512x1024/mask2former_swin-l-in22k-384x384-pre_8xb2-90k_cityscapes-512x1024_20221202_141901-28ad20f1.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/mask2former/mask2former_swin-l-in22k-384x384-pre_8xb2-90k_cityscapes-512x1024/mask2former_swin-l-in22k-384x384-pre_8xb2-90k_cityscapes-512x1024_20221202_141901.json)) | +| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | Device | mIoU | mIoU(ms+flip) | config | download | +| ----------- | -------------- | --------- | ------- | -------: | -------------- | ------ | ----- | ------------: | -----------------------------------------------------------------------------------------------------------------------------------------------------------: | --------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | +| Mask2Former | R-50-D32 | 512x1024 | 90000 | 5.67 | 9.17 | A100 | 80.44 | - | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/mask2former/mask2former_r50_8xb2-90k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/mask2former/mask2former_r50_8xb2-90k_cityscapes-512x1024/mask2former_r50_8xb2-90k_cityscapes-512x1024_20221202_140802-ffd9d750.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/mask2former/mask2former_r50_8xb2-90k_cityscapes-512x1024/mask2former_r50_8xb2-90k_cityscapes-512x1024_20221202_140802.json) | +| Mask2Former | R-101-D32 | 512x1024 | 90000 | 6.81 | 7.11 | A100 | 80.80 | - | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/mask2former/mask2former_r101_8xb2-90k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/mask2former/mask2former_r101_8xb2-90k_cityscapes-512x1024/mask2former_r101_8xb2-90k_cityscapes-512x1024_20221130_031628-43e68666.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/mask2former/mask2former_r101_8xb2-90k_cityscapes-512x1024/mask2former_r101_8xb2-90k_cityscapes-512x1024_20221130_031628.json)) | +| Mask2Former | Swin-T | 512x1024 | 90000 | 6.36 | 7.18 | A100 | 81.71 | - | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/mask2former/mask2former_swin-t_8xb2-90k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/mask2former/mask2former_swin-t_8xb2-90k_cityscapes-512x1024/mask2former_swin-t_8xb2-90k_cityscapes-512x1024_20221127_144501-36c59341.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/mask2former/mask2former_swin-t_8xb2-90k_cityscapes-512x1024/mask2former_swin-t_8xb2-90k_cityscapes-512x1024_20221127_144501.json)) | +| Mask2Former | Swin-S | 512x1024 | 90000 | 8.09 | 5.57 | A100 | 82.57 | - | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/mask2former/mask2former_swin-s_8xb2-90k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/mask2former/mask2former_swin-s_8xb2-90k_cityscapes-512x1024/mask2former_swin-s_8xb2-90k_cityscapes-512x1024_20221127_143802-9ab177f6.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/mask2former/mask2former_swin-s_8xb2-90k_cityscapes-512x1024/mask2former_swin-s_8xb2-90k_cityscapes-512x1024_20221127_143802.json)) | +| Mask2Former | Swin-B (in22k) | 512x1024 | 90000 | 10.89 | 4.32 | A100 | 83.52 | - | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/mask2former/mask2former_swin-b-in22k-384x384-pre_8xb2-90k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/mask2former/mask2former_swin-b-in22k-384x384-pre_8xb2-90k_cityscapes-512x1024/mask2former_swin-b-in22k-384x384-pre_8xb2-90k_cityscapes-512x1024_20221203_045030-9a86a225.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/mask2former/mask2former_swin-b-in22k-384x384-pre_8xb2-90k_cityscapes-512x1024/mask2former_swin-b-in22k-384x384-pre_8xb2-90k_cityscapes-512x1024_20221203_045030.json)) | +| Mask2Former | Swin-L (in22k) | 512x1024 | 90000 | 15.83 | 2.86 | A100 | 83.65 | - | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/mask2former/mask2former_swin-l-in22k-384x384-pre_8xb2-90k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/mask2former/mask2former_swin-l-in22k-384x384-pre_8xb2-90k_cityscapes-512x1024/mask2former_swin-l-in22k-384x384-pre_8xb2-90k_cityscapes-512x1024_20221202_141901-28ad20f1.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/mask2former/mask2former_swin-l-in22k-384x384-pre_8xb2-90k_cityscapes-512x1024/mask2former_swin-l-in22k-384x384-pre_8xb2-90k_cityscapes-512x1024_20221202_141901.json)) | ### ADE20K -| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | mIoU | mIoU(ms+flip) | config | download | -| ----------- | -------------- | --------- | ------- | -------: | -------------- | ----- | ------------: | -------------------------------------------------------------------------------------------------------------------------------------------------------: | ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | -| Mask2Former | R-50-D32 | 512x512 | 160000 | 3385 | 26.59 | 47.87 | - | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/mask2former/mask2former_r50_8xb2-160k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/mask2former/mask2former_r50_8xb2-160k_ade20k-512x512/mask2former_r50_8xb2-160k_ade20k-512x512_20221204_000055-2d1f55f1.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/mask2former/mask2former_r50_8xb2-160k_ade20k-512x512/mask2former_r50_8xb2-160k_ade20k-512x512_20221204_000055.json)) | -| Mask2Former | R-101-D32 | 512x512 | 160000 | 4190 | 22.97 | 48.60 | - | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/mask2former/mask2former_r101_8xb2-160k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/mask2former/mask2former_r101_8xb2-160k_ade20k-512x512/mask2former_r101_8xb2-160k_ade20k-512x512_20221203_233905-b7135890.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/mask2former/mask2former_r101_8xb2-160k_ade20k-512x512/mask2former_r101_8xb2-160k_ade20k-512x512_20221203_233905.json)) | -| Mask2Former | Swin-T | 512x512 | 160000 | 3826 | 23.82 | 48.66 | - | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/mask2former/mask2former_swin-t_8xb2-160k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/mask2former/mask2former_swin-t_8xb2-160k_ade20k-512x512/mask2former_swin-t_8xb2-160k_ade20k-512x512_20221203_234230-7d64e5dd.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/mask2former/mask2former_swin-t_8xb2-160k_ade20k-512x512/mask2former_swin-t_8xb2-160k_ade20k-512x512_20221203_234230.json)) | -| Mask2Former | Swin-S | 512x512 | 160000 | 5034 | 19.69 | 51.24 | - | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/mask2former/mask2former_swin-s_8xb2-160k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/mask2former/mask2former_swin-s_8xb2-160k_ade20k-512x512/mask2former_swin-s_8xb2-160k_ade20k-512x512_20221204_143905-e715144e.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/mask2former/mask2former_swin-s_8xb2-160k_ade20k-512x512/mask2former_swin-s_8xb2-160k_ade20k-512x512_20221204_143905.json)) | -| Mask2Former | Swin-B | 640x640 | 160000 | 5795 | 12.48 | 52.44 | - | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/mask2former/mask2former_swin-b-in1k-384x384-pre_8xb2-160k_ade20k-640x640.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/mask2former/mask2former_swin-b-in1k-384x384-pre_8xb2-160k_ade20k-640x640/mask2former_swin-b-in1k-384x384-pre_8xb2-160k_ade20k-640x640_20221129_125118-a4a086d2.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/mask2former/mask2former_swin-b-in1k-384x384-pre_8xb2-160k_ade20k-640x640/mask2former_swin-b-in1k-384x384-pre_8xb2-160k_ade20k-640x640_20221129_125118.json)) | -| Mask2Former | Swin-B (in22k) | 640x640 | 160000 | 5795 | 12.43 | 53.90 | - | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/mask2former/mask2former_swin-b-in22k-384x384-pre_8xb2-160k_ade20k-640x640.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/mask2former/mask2former_swin-b-in22k-384x384-pre_8xb2-160k_ade20k-640x640/mask2former_swin-b-in22k-384x384-pre_8xb2-160k_ade20k-640x640_20221203_235230-7ec0f569.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/mask2former/mask2former_swin-b-in22k-384x384-pre_8xb2-160k_ade20k-640x640/mask2former_swin-b-in22k-384x384-pre_8xb2-160k_ade20k-640x640_20221203_235230.json)) | -| Mask2Former | Swin-L (in22k) | 640x640 | 160000 | 9077 | 8.81 | 56.01 | - | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/mask2former/mask2former_swin-l-in22k-384x384-pre_8xb2-160k_ade20k-640x640.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/mask2former/mask2former_swin-l-in22k-384x384-pre_8xb2-160k_ade20k-640x640/mask2former_swin-l-in22k-384x384-pre_8xb2-160k_ade20k-640x640_20221203_235933-7120c214.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/mask2former/mask2former_swin-l-in22k-384x384-pre_8xb2-160k_ade20k-640x640/mask2former_swin-l-in22k-384x384-pre_8xb2-160k_ade20k-640x640_20221203_235933.json)) | +| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | Device | mIoU | mIoU(ms+flip) | config | download | +| ----------- | -------------- | --------- | ------- | -------: | -------------- | ------ | ----- | ------------: | -------------------------------------------------------------------------------------------------------------------------------------------------------: | ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | +| Mask2Former | R-50-D32 | 512x512 | 160000 | 3.31 | 26.59 | A100 | 47.87 | - | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/mask2former/mask2former_r50_8xb2-160k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/mask2former/mask2former_r50_8xb2-160k_ade20k-512x512/mask2former_r50_8xb2-160k_ade20k-512x512_20221204_000055-2d1f55f1.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/mask2former/mask2former_r50_8xb2-160k_ade20k-512x512/mask2former_r50_8xb2-160k_ade20k-512x512_20221204_000055.json)) | +| Mask2Former | R-101-D32 | 512x512 | 160000 | 4.09 | 22.97 | A100 | 48.60 | - | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/mask2former/mask2former_r101_8xb2-160k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/mask2former/mask2former_r101_8xb2-160k_ade20k-512x512/mask2former_r101_8xb2-160k_ade20k-512x512_20221203_233905-b7135890.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/mask2former/mask2former_r101_8xb2-160k_ade20k-512x512/mask2former_r101_8xb2-160k_ade20k-512x512_20221203_233905.json)) | +| Mask2Former | Swin-T | 512x512 | 160000 | 3826 | 23.82 | A100 | 48.66 | - | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/mask2former/mask2former_swin-t_8xb2-160k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/mask2former/mask2former_swin-t_8xb2-160k_ade20k-512x512/mask2former_swin-t_8xb2-160k_ade20k-512x512_20221203_234230-7d64e5dd.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/mask2former/mask2former_swin-t_8xb2-160k_ade20k-512x512/mask2former_swin-t_8xb2-160k_ade20k-512x512_20221203_234230.json)) | +| Mask2Former | Swin-S | 512x512 | 160000 | 3.74 | 19.69 | A100 | 51.24 | - | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/mask2former/mask2former_swin-s_8xb2-160k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/mask2former/mask2former_swin-s_8xb2-160k_ade20k-512x512/mask2former_swin-s_8xb2-160k_ade20k-512x512_20221204_143905-e715144e.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/mask2former/mask2former_swin-s_8xb2-160k_ade20k-512x512/mask2former_swin-s_8xb2-160k_ade20k-512x512_20221204_143905.json)) | +| Mask2Former | Swin-B | 640x640 | 160000 | 5.66 | 12.48 | A100 | 52.44 | - | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/mask2former/mask2former_swin-b-in1k-384x384-pre_8xb2-160k_ade20k-640x640.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/mask2former/mask2former_swin-b-in1k-384x384-pre_8xb2-160k_ade20k-640x640/mask2former_swin-b-in1k-384x384-pre_8xb2-160k_ade20k-640x640_20221129_125118-a4a086d2.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/mask2former/mask2former_swin-b-in1k-384x384-pre_8xb2-160k_ade20k-640x640/mask2former_swin-b-in1k-384x384-pre_8xb2-160k_ade20k-640x640_20221129_125118.json)) | +| Mask2Former | Swin-B (in22k) | 640x640 | 160000 | 5.66 | 12.43 | A100 | 53.90 | - | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/mask2former/mask2former_swin-b-in22k-384x384-pre_8xb2-160k_ade20k-640x640.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/mask2former/mask2former_swin-b-in22k-384x384-pre_8xb2-160k_ade20k-640x640/mask2former_swin-b-in22k-384x384-pre_8xb2-160k_ade20k-640x640_20221203_235230-7ec0f569.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/mask2former/mask2former_swin-b-in22k-384x384-pre_8xb2-160k_ade20k-640x640/mask2former_swin-b-in22k-384x384-pre_8xb2-160k_ade20k-640x640_20221203_235230.json)) | +| Mask2Former | Swin-L (in22k) | 640x640 | 160000 | 8.86 | 8.81 | A100 | 56.01 | - | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/mask2former/mask2former_swin-l-in22k-384x384-pre_8xb2-160k_ade20k-640x640.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/mask2former/mask2former_swin-l-in22k-384x384-pre_8xb2-160k_ade20k-640x640/mask2former_swin-l-in22k-384x384-pre_8xb2-160k_ade20k-640x640_20221203_235933-7120c214.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/mask2former/mask2former_swin-l-in22k-384x384-pre_8xb2-160k_ade20k-640x640/mask2former_swin-l-in22k-384x384-pre_8xb2-160k_ade20k-640x640_20221203_235933.json)) | Note: @@ -70,3 +55,20 @@ Note: - As mentioned at [the official repo](https://github.com/facebookresearch/Mask2Former/issues/5), the results of Mask2Former are relatively not stable, the result of Mask2Former(swin-s) on ADE20K dataset in the table is the medium result obtained by training 5 times following the suggestion of the author. - The ResNet backbones utilized in MaskFormer models are standard `ResNet` rather than `ResNetV1c`. - Test time augmentation is not supported in MMSegmentation 1.x version yet, we would add "ms+flip" results as soon as possible. + +## Citation + +```bibtex +@inproceedings{cheng2021mask2former, + title={Masked-attention Mask Transformer for Universal Image Segmentation}, + author={Bowen Cheng and Ishan Misra and Alexander G. Schwing and Alexander Kirillov and Rohit Girdhar}, + journal={CVPR}, + year={2022} +} +@inproceedings{cheng2021maskformer, + title={Per-Pixel Classification is Not All You Need for Semantic Segmentation}, + author={Bowen Cheng and Alexander G. Schwing and Alexander Kirillov}, + journal={NeurIPS}, + year={2021} +} +``` diff --git a/configs/mask2former/mask2former.yml b/configs/mask2former/mask2former.yml deleted file mode 100644 index 4e33766c70..0000000000 --- a/configs/mask2former/mask2former.yml +++ /dev/null @@ -1,290 +0,0 @@ -Collections: -- Name: Mask2Former - Metadata: - Training Data: - - Usage - - Cityscapes - - ADE20K - Paper: - URL: https://arxiv.org/abs/2112.01527 - Title: Masked-attention Mask Transformer for Universal Image Segmentation - README: configs/mask2former/README.md - Code: - URL: https://github.com/open-mmlab/mmdetection/blob/3.x/mmdet/models/dense_heads/mask2former_head.py - Version: 3.x - Converted From: - Code: https://github.com/facebookresearch/Mask2Former -Models: -- Name: mask2former_r50_8xb2-90k_cityscapes-512x1024 - In Collection: Mask2Former - Metadata: - backbone: R-50-D32 - crop size: (512,1024) - lr schd: 90000 - inference time (ms/im): - - value: 109.05 - hardware: V100 - backend: PyTorch - batch size: 1 - mode: FP32 - resolution: (512,1024) - Training Memory (GB): 5806.0 - Results: - - Task: Semantic Segmentation - Dataset: Cityscapes - Metrics: - mIoU: 80.44 - Config: configs/mask2former/mask2former_r50_8xb2-90k_cityscapes-512x1024.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/mask2former/mask2former_r50_8xb2-90k_cityscapes-512x1024/mask2former_r50_8xb2-90k_cityscapes-512x1024_20221202_140802-ffd9d750.pth -- Name: mask2former_r101_8xb2-90k_cityscapes-512x1024 - In Collection: Mask2Former - Metadata: - backbone: R-101-D32 - crop size: (512,1024) - lr schd: 90000 - inference time (ms/im): - - value: 140.65 - hardware: V100 - backend: PyTorch - batch size: 1 - mode: FP32 - resolution: (512,1024) - Training Memory (GB): 6971.0 - Results: - - Task: Semantic Segmentation - Dataset: Cityscapes - Metrics: - mIoU: 80.8 - Config: configs/mask2former/mask2former_r101_8xb2-90k_cityscapes-512x1024.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/mask2former/mask2former_r101_8xb2-90k_cityscapes-512x1024/mask2former_r101_8xb2-90k_cityscapes-512x1024_20221130_031628-43e68666.pth -- Name: mask2former_swin-t_8xb2-90k_cityscapes-512x1024 - In Collection: Mask2Former - Metadata: - backbone: Swin-T - crop size: (512,1024) - lr schd: 90000 - inference time (ms/im): - - value: 139.28 - hardware: V100 - backend: PyTorch - batch size: 1 - mode: FP32 - resolution: (512,1024) - Training Memory (GB): 6511.0 - Results: - - Task: Semantic Segmentation - Dataset: Cityscapes - Metrics: - mIoU: 81.71 - Config: configs/mask2former/mask2former_swin-t_8xb2-90k_cityscapes-512x1024.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/mask2former/mask2former_swin-t_8xb2-90k_cityscapes-512x1024/mask2former_swin-t_8xb2-90k_cityscapes-512x1024_20221127_144501-36c59341.pth -- Name: mask2former_swin-s_8xb2-90k_cityscapes-512x1024 - In Collection: Mask2Former - Metadata: - backbone: Swin-S - crop size: (512,1024) - lr schd: 90000 - inference time (ms/im): - - value: 179.53 - hardware: V100 - backend: PyTorch - batch size: 1 - mode: FP32 - resolution: (512,1024) - Training Memory (GB): 8282.0 - Results: - - Task: Semantic Segmentation - Dataset: Cityscapes - Metrics: - mIoU: 82.57 - Config: configs/mask2former/mask2former_swin-s_8xb2-90k_cityscapes-512x1024.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/mask2former/mask2former_swin-s_8xb2-90k_cityscapes-512x1024/mask2former_swin-s_8xb2-90k_cityscapes-512x1024_20221127_143802-9ab177f6.pth -- Name: mask2former_swin-b-in22k-384x384-pre_8xb2-90k_cityscapes-512x1024 - In Collection: Mask2Former - Metadata: - backbone: Swin-B (in22k) - crop size: (512,1024) - lr schd: 90000 - inference time (ms/im): - - value: 231.48 - hardware: V100 - backend: PyTorch - batch size: 1 - mode: FP32 - resolution: (512,1024) - Training Memory (GB): 11152.0 - Results: - - Task: Semantic Segmentation - Dataset: Cityscapes - Metrics: - mIoU: 83.52 - Config: configs/mask2former/mask2former_swin-b-in22k-384x384-pre_8xb2-90k_cityscapes-512x1024.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/mask2former/mask2former_swin-b-in22k-384x384-pre_8xb2-90k_cityscapes-512x1024/mask2former_swin-b-in22k-384x384-pre_8xb2-90k_cityscapes-512x1024_20221203_045030-9a86a225.pth -- Name: mask2former_swin-l-in22k-384x384-pre_8xb2-90k_cityscapes-512x1024 - In Collection: Mask2Former - Metadata: - backbone: Swin-L (in22k) - crop size: (512,1024) - lr schd: 90000 - inference time (ms/im): - - value: 349.65 - hardware: V100 - backend: PyTorch - batch size: 1 - mode: FP32 - resolution: (512,1024) - Training Memory (GB): 16207.0 - Results: - - Task: Semantic Segmentation - Dataset: Cityscapes - Metrics: - mIoU: 83.65 - Config: configs/mask2former/mask2former_swin-l-in22k-384x384-pre_8xb2-90k_cityscapes-512x1024.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/mask2former/mask2former_swin-l-in22k-384x384-pre_8xb2-90k_cityscapes-512x1024/mask2former_swin-l-in22k-384x384-pre_8xb2-90k_cityscapes-512x1024_20221202_141901-28ad20f1.pth -- Name: mask2former_r50_8xb2-160k_ade20k-512x512 - In Collection: Mask2Former - Metadata: - backbone: R-50-D32 - crop size: (512,512) - lr schd: 160000 - inference time (ms/im): - - value: 37.61 - hardware: V100 - backend: PyTorch - batch size: 1 - mode: FP32 - resolution: (512,512) - Training Memory (GB): 3385.0 - Results: - - Task: Semantic Segmentation - Dataset: ADE20K - Metrics: - mIoU: 47.87 - Config: configs/mask2former/mask2former_r50_8xb2-160k_ade20k-512x512.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/mask2former/mask2former_r50_8xb2-160k_ade20k-512x512/mask2former_r50_8xb2-160k_ade20k-512x512_20221204_000055-2d1f55f1.pth -- Name: mask2former_r101_8xb2-160k_ade20k-512x512 - In Collection: Mask2Former - Metadata: - backbone: R-101-D32 - crop size: (512,512) - lr schd: 160000 - inference time (ms/im): - - value: 43.54 - hardware: V100 - backend: PyTorch - batch size: 1 - mode: FP32 - resolution: (512,512) - Training Memory (GB): 4190.0 - Results: - - Task: Semantic Segmentation - Dataset: ADE20K - Metrics: - mIoU: 48.6 - Config: configs/mask2former/mask2former_r101_8xb2-160k_ade20k-512x512.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/mask2former/mask2former_r101_8xb2-160k_ade20k-512x512/mask2former_r101_8xb2-160k_ade20k-512x512_20221203_233905-b7135890.pth -- Name: mask2former_swin-t_8xb2-160k_ade20k-512x512 - In Collection: Mask2Former - Metadata: - backbone: Swin-T - crop size: (512,512) - lr schd: 160000 - inference time (ms/im): - - value: 41.98 - hardware: V100 - backend: PyTorch - batch size: 1 - mode: FP32 - resolution: (512,512) - Training Memory (GB): 3826.0 - Results: - - Task: Semantic Segmentation - Dataset: ADE20K - Metrics: - mIoU: 48.66 - Config: configs/mask2former/mask2former_swin-t_8xb2-160k_ade20k-512x512.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/mask2former/mask2former_swin-t_8xb2-160k_ade20k-512x512/mask2former_swin-t_8xb2-160k_ade20k-512x512_20221203_234230-7d64e5dd.pth -- Name: mask2former_swin-s_8xb2-160k_ade20k-512x512 - In Collection: Mask2Former - Metadata: - backbone: Swin-S - crop size: (512,512) - lr schd: 160000 - inference time (ms/im): - - value: 50.79 - hardware: V100 - backend: PyTorch - batch size: 1 - mode: FP32 - resolution: (512,512) - Training Memory (GB): 5034.0 - Results: - - Task: Semantic Segmentation - Dataset: ADE20K - Metrics: - mIoU: 51.24 - Config: configs/mask2former/mask2former_swin-s_8xb2-160k_ade20k-512x512.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/mask2former/mask2former_swin-s_8xb2-160k_ade20k-512x512/mask2former_swin-s_8xb2-160k_ade20k-512x512_20221204_143905-e715144e.pth -- Name: mask2former_swin-b-in1k-384x384-pre_8xb2-160k_ade20k-640x640 - In Collection: Mask2Former - Metadata: - backbone: Swin-B - crop size: (640,640) - lr schd: 160000 - inference time (ms/im): - - value: 80.13 - hardware: V100 - backend: PyTorch - batch size: 1 - mode: FP32 - resolution: (640,640) - Training Memory (GB): 5795.0 - Results: - - Task: Semantic Segmentation - Dataset: ADE20K - Metrics: - mIoU: 52.44 - Config: configs/mask2former/mask2former_swin-b-in1k-384x384-pre_8xb2-160k_ade20k-640x640.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/mask2former/mask2former_swin-b-in1k-384x384-pre_8xb2-160k_ade20k-640x640/mask2former_swin-b-in1k-384x384-pre_8xb2-160k_ade20k-640x640_20221129_125118-a4a086d2.pth -- Name: mask2former_swin-b-in22k-384x384-pre_8xb2-160k_ade20k-640x640 - In Collection: Mask2Former - Metadata: - backbone: Swin-B (in22k) - crop size: (640,640) - lr schd: 160000 - inference time (ms/im): - - value: 80.45 - hardware: V100 - backend: PyTorch - batch size: 1 - mode: FP32 - resolution: (640,640) - Training Memory (GB): 5795.0 - Results: - - Task: Semantic Segmentation - Dataset: ADE20K - Metrics: - mIoU: 53.9 - Config: configs/mask2former/mask2former_swin-b-in22k-384x384-pre_8xb2-160k_ade20k-640x640.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/mask2former/mask2former_swin-b-in22k-384x384-pre_8xb2-160k_ade20k-640x640/mask2former_swin-b-in22k-384x384-pre_8xb2-160k_ade20k-640x640_20221203_235230-7ec0f569.pth -- Name: mask2former_swin-l-in22k-384x384-pre_8xb2-160k_ade20k-640x640 - In Collection: Mask2Former - Metadata: - backbone: Swin-L (in22k) - crop size: (640,640) - lr schd: 160000 - inference time (ms/im): - - value: 113.51 - hardware: V100 - backend: PyTorch - batch size: 1 - mode: FP32 - resolution: (640,640) - Training Memory (GB): 9077.0 - Results: - - Task: Semantic Segmentation - Dataset: ADE20K - Metrics: - mIoU: 56.01 - Config: configs/mask2former/mask2former_swin-l-in22k-384x384-pre_8xb2-160k_ade20k-640x640.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/mask2former/mask2former_swin-l-in22k-384x384-pre_8xb2-160k_ade20k-640x640/mask2former_swin-l-in22k-384x384-pre_8xb2-160k_ade20k-640x640_20221203_235933-7120c214.pth diff --git a/configs/mask2former/metafile.yaml b/configs/mask2former/metafile.yaml new file mode 100644 index 0000000000..090c95e7cf --- /dev/null +++ b/configs/mask2former/metafile.yaml @@ -0,0 +1,314 @@ +Collections: +- Name: Mask2Former + License: Apache License 2.0 + Metadata: + Training Data: + - Usage + - Cityscapes + - ADE20K + Paper: + Title: Masked-attention Mask Transformer for Universal Image Segmentation + URL: https://arxiv.org/abs/2112.01527 + README: configs/mask2former/README.md + Frameworks: + - PyTorch +Models: +- Name: mask2former_r50_8xb2-90k_cityscapes-512x1024 + In Collection: Mask2Former + Results: + Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 80.44 + Config: configs/mask2former/mask2former_r50_8xb2-90k_cityscapes-512x1024.py + Metadata: + Training Data: Cityscapes + Batch Size: 16 + Architecture: + - R-50-D32 + - Mask2Former + Training Resources: 8x A100 GPUS + Memory (GB): 5.67 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/mask2former/mask2former_r50_8xb2-90k_cityscapes-512x1024/mask2former_r50_8xb2-90k_cityscapes-512x1024_20221202_140802-ffd9d750.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/mask2former/mask2former_r50_8xb2-90k_cityscapes-512x1024/mask2former_r50_8xb2-90k_cityscapes-512x1024_20221202_140802.json + Paper: + Title: Masked-attention Mask Transformer for Universal Image Segmentation + URL: https://arxiv.org/abs/2112.01527 + Code: https://github.com/open-mmlab/mmdetection/blob/3.x/mmdet/models/dense_heads/mask2former_head.py + Framework: PyTorch +- Name: mask2former_r101_8xb2-90k_cityscapes-512x1024 + In Collection: Mask2Former + Results: + Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 80.8 + Config: configs/mask2former/mask2former_r101_8xb2-90k_cityscapes-512x1024.py + Metadata: + Training Data: Cityscapes + Batch Size: 16 + Architecture: + - R-101-D32 + - Mask2Former + Training Resources: 8x A100 GPUS + Memory (GB): 6.81 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/mask2former/mask2former_r101_8xb2-90k_cityscapes-512x1024/mask2former_r101_8xb2-90k_cityscapes-512x1024_20221130_031628-43e68666.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/mask2former/mask2former_r101_8xb2-90k_cityscapes-512x1024/mask2former_r101_8xb2-90k_cityscapes-512x1024_20221130_031628.json + Paper: + Title: Masked-attention Mask Transformer for Universal Image Segmentation + URL: https://arxiv.org/abs/2112.01527 + Code: https://github.com/open-mmlab/mmdetection/blob/3.x/mmdet/models/dense_heads/mask2former_head.py + Framework: PyTorch +- Name: mask2former_swin-t_8xb2-90k_cityscapes-512x1024 + In Collection: Mask2Former + Results: + Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 81.71 + Config: configs/mask2former/mask2former_swin-t_8xb2-90k_cityscapes-512x1024.py + Metadata: + Training Data: Cityscapes + Batch Size: 16 + Architecture: + - Swin-T + - Mask2Former + Training Resources: 8x A100 GPUS + Memory (GB): 6.36 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/mask2former/mask2former_swin-t_8xb2-90k_cityscapes-512x1024/mask2former_swin-t_8xb2-90k_cityscapes-512x1024_20221127_144501-36c59341.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/mask2former/mask2former_swin-t_8xb2-90k_cityscapes-512x1024/mask2former_swin-t_8xb2-90k_cityscapes-512x1024_20221127_144501.json + Paper: + Title: Masked-attention Mask Transformer for Universal Image Segmentation + URL: https://arxiv.org/abs/2112.01527 + Code: https://github.com/open-mmlab/mmdetection/blob/3.x/mmdet/models/dense_heads/mask2former_head.py + Framework: PyTorch +- Name: mask2former_swin-s_8xb2-90k_cityscapes-512x1024 + In Collection: Mask2Former + Results: + Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 82.57 + Config: configs/mask2former/mask2former_swin-s_8xb2-90k_cityscapes-512x1024.py + Metadata: + Training Data: Cityscapes + Batch Size: 16 + Architecture: + - Swin-S + - Mask2Former + Training Resources: 8x A100 GPUS + Memory (GB): 8.09 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/mask2former/mask2former_swin-s_8xb2-90k_cityscapes-512x1024/mask2former_swin-s_8xb2-90k_cityscapes-512x1024_20221127_143802-9ab177f6.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/mask2former/mask2former_swin-s_8xb2-90k_cityscapes-512x1024/mask2former_swin-s_8xb2-90k_cityscapes-512x1024_20221127_143802.json + Paper: + Title: Masked-attention Mask Transformer for Universal Image Segmentation + URL: https://arxiv.org/abs/2112.01527 + Code: https://github.com/open-mmlab/mmdetection/blob/3.x/mmdet/models/dense_heads/mask2former_head.py + Framework: PyTorch +- Name: mask2former_swin-b-in22k-384x384-pre_8xb2-90k_cityscapes-512x1024 + In Collection: Mask2Former + Results: + Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 83.52 + Config: configs/mask2former/mask2former_swin-b-in22k-384x384-pre_8xb2-90k_cityscapes-512x1024.py + Metadata: + Training Data: Cityscapes + Batch Size: 16 + Architecture: + - Swin-B + - Mask2Former + Training Resources: 8x A100 GPUS + Memory (GB): 10.89 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/mask2former/mask2former_swin-b-in22k-384x384-pre_8xb2-90k_cityscapes-512x1024/mask2former_swin-b-in22k-384x384-pre_8xb2-90k_cityscapes-512x1024_20221203_045030-9a86a225.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/mask2former/mask2former_swin-b-in22k-384x384-pre_8xb2-90k_cityscapes-512x1024/mask2former_swin-b-in22k-384x384-pre_8xb2-90k_cityscapes-512x1024_20221203_045030.json + Paper: + Title: Masked-attention Mask Transformer for Universal Image Segmentation + URL: https://arxiv.org/abs/2112.01527 + Code: https://github.com/open-mmlab/mmdetection/blob/3.x/mmdet/models/dense_heads/mask2former_head.py + Framework: PyTorch +- Name: mask2former_swin-l-in22k-384x384-pre_8xb2-90k_cityscapes-512x1024 + In Collection: Mask2Former + Results: + Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 83.65 + Config: configs/mask2former/mask2former_swin-l-in22k-384x384-pre_8xb2-90k_cityscapes-512x1024.py + Metadata: + Training Data: Cityscapes + Batch Size: 16 + Architecture: + - Swin-L + - Mask2Former + Training Resources: 8x A100 GPUS + Memory (GB): 15.83 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/mask2former/mask2former_swin-l-in22k-384x384-pre_8xb2-90k_cityscapes-512x1024/mask2former_swin-l-in22k-384x384-pre_8xb2-90k_cityscapes-512x1024_20221202_141901-28ad20f1.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/mask2former/mask2former_swin-l-in22k-384x384-pre_8xb2-90k_cityscapes-512x1024/mask2former_swin-l-in22k-384x384-pre_8xb2-90k_cityscapes-512x1024_20221202_141901.json + Paper: + Title: Masked-attention Mask Transformer for Universal Image Segmentation + URL: https://arxiv.org/abs/2112.01527 + Code: https://github.com/open-mmlab/mmdetection/blob/3.x/mmdet/models/dense_heads/mask2former_head.py + Framework: PyTorch +- Name: mask2former_r50_8xb2-160k_ade20k-512x512 + In Collection: Mask2Former + Results: + Task: Semantic Segmentation + Dataset: ADE20K + Metrics: + mIoU: 47.87 + Config: configs/mask2former/mask2former_r50_8xb2-160k_ade20k-512x512.py + Metadata: + Training Data: ADE20K + Batch Size: 16 + Architecture: + - R-50-D32 + - Mask2Former + Training Resources: 8x A100 GPUS + Memory (GB): 3.31 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/mask2former/mask2former_r50_8xb2-160k_ade20k-512x512/mask2former_r50_8xb2-160k_ade20k-512x512_20221204_000055-2d1f55f1.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/mask2former/mask2former_r50_8xb2-160k_ade20k-512x512/mask2former_r50_8xb2-160k_ade20k-512x512_20221204_000055.json + Paper: + Title: Masked-attention Mask Transformer for Universal Image Segmentation + URL: https://arxiv.org/abs/2112.01527 + Code: https://github.com/open-mmlab/mmdetection/blob/3.x/mmdet/models/dense_heads/mask2former_head.py + Framework: PyTorch +- Name: mask2former_r101_8xb2-160k_ade20k-512x512 + In Collection: Mask2Former + Results: + Task: Semantic Segmentation + Dataset: ADE20K + Metrics: + mIoU: 48.6 + Config: configs/mask2former/mask2former_r101_8xb2-160k_ade20k-512x512.py + Metadata: + Training Data: ADE20K + Batch Size: 16 + Architecture: + - R-101-D32 + - Mask2Former + Training Resources: 8x A100 GPUS + Memory (GB): 4.09 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/mask2former/mask2former_r101_8xb2-160k_ade20k-512x512/mask2former_r101_8xb2-160k_ade20k-512x512_20221203_233905-b7135890.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/mask2former/mask2former_r101_8xb2-160k_ade20k-512x512/mask2former_r101_8xb2-160k_ade20k-512x512_20221203_233905.json + Paper: + Title: Masked-attention Mask Transformer for Universal Image Segmentation + URL: https://arxiv.org/abs/2112.01527 + Code: https://github.com/open-mmlab/mmdetection/blob/3.x/mmdet/models/dense_heads/mask2former_head.py + Framework: PyTorch +- Name: mask2former_swin-t_8xb2-160k_ade20k-512x512 + In Collection: Mask2Former + Results: + Task: Semantic Segmentation + Dataset: ADE20K + Metrics: + mIoU: 48.66 + Config: configs/mask2former/mask2former_swin-t_8xb2-160k_ade20k-512x512.py + Metadata: + Training Data: ADE20K + Batch Size: 16 + Architecture: + - Swin-T + - Mask2Former + Training Resources: 8x A100 GPUS + Memory (GB): 3826.0 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/mask2former/mask2former_swin-t_8xb2-160k_ade20k-512x512/mask2former_swin-t_8xb2-160k_ade20k-512x512_20221203_234230-7d64e5dd.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/mask2former/mask2former_swin-t_8xb2-160k_ade20k-512x512/mask2former_swin-t_8xb2-160k_ade20k-512x512_20221203_234230.json + Paper: + Title: Masked-attention Mask Transformer for Universal Image Segmentation + URL: https://arxiv.org/abs/2112.01527 + Code: https://github.com/open-mmlab/mmdetection/blob/3.x/mmdet/models/dense_heads/mask2former_head.py + Framework: PyTorch +- Name: mask2former_swin-s_8xb2-160k_ade20k-512x512 + In Collection: Mask2Former + Results: + Task: Semantic Segmentation + Dataset: ADE20K + Metrics: + mIoU: 51.24 + Config: configs/mask2former/mask2former_swin-s_8xb2-160k_ade20k-512x512.py + Metadata: + Training Data: ADE20K + Batch Size: 16 + Architecture: + - Swin-S + - Mask2Former + Training Resources: 8x A100 GPUS + Memory (GB): 3.74 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/mask2former/mask2former_swin-s_8xb2-160k_ade20k-512x512/mask2former_swin-s_8xb2-160k_ade20k-512x512_20221204_143905-e715144e.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/mask2former/mask2former_swin-s_8xb2-160k_ade20k-512x512/mask2former_swin-s_8xb2-160k_ade20k-512x512_20221204_143905.json + Paper: + Title: Masked-attention Mask Transformer for Universal Image Segmentation + URL: https://arxiv.org/abs/2112.01527 + Code: https://github.com/open-mmlab/mmdetection/blob/3.x/mmdet/models/dense_heads/mask2former_head.py + Framework: PyTorch +- Name: mask2former_swin-b-in1k-384x384-pre_8xb2-160k_ade20k-640x640 + In Collection: Mask2Former + Results: + Task: Semantic Segmentation + Dataset: ADE20K + Metrics: + mIoU: 52.44 + Config: configs/mask2former/mask2former_swin-b-in1k-384x384-pre_8xb2-160k_ade20k-640x640.py + Metadata: + Training Data: ADE20K + Batch Size: 16 + Architecture: + - Swin-B + - Mask2Former + Training Resources: 8x A100 GPUS + Memory (GB): 5.66 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/mask2former/mask2former_swin-b-in1k-384x384-pre_8xb2-160k_ade20k-640x640/mask2former_swin-b-in1k-384x384-pre_8xb2-160k_ade20k-640x640_20221129_125118-a4a086d2.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/mask2former/mask2former_swin-b-in1k-384x384-pre_8xb2-160k_ade20k-640x640/mask2former_swin-b-in1k-384x384-pre_8xb2-160k_ade20k-640x640_20221129_125118.json + Paper: + Title: Masked-attention Mask Transformer for Universal Image Segmentation + URL: https://arxiv.org/abs/2112.01527 + Code: https://github.com/open-mmlab/mmdetection/blob/3.x/mmdet/models/dense_heads/mask2former_head.py + Framework: PyTorch +- Name: mask2former_swin-b-in22k-384x384-pre_8xb2-160k_ade20k-640x640 + In Collection: Mask2Former + Results: + Task: Semantic Segmentation + Dataset: ADE20K + Metrics: + mIoU: 53.9 + Config: configs/mask2former/mask2former_swin-b-in22k-384x384-pre_8xb2-160k_ade20k-640x640.py + Metadata: + Training Data: ADE20K + Batch Size: 16 + Architecture: + - Swin-B + - Mask2Former + Training Resources: 8x A100 GPUS + Memory (GB): 5.66 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/mask2former/mask2former_swin-b-in22k-384x384-pre_8xb2-160k_ade20k-640x640/mask2former_swin-b-in22k-384x384-pre_8xb2-160k_ade20k-640x640_20221203_235230-7ec0f569.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/mask2former/mask2former_swin-b-in22k-384x384-pre_8xb2-160k_ade20k-640x640/mask2former_swin-b-in22k-384x384-pre_8xb2-160k_ade20k-640x640_20221203_235230.json + Paper: + Title: Masked-attention Mask Transformer for Universal Image Segmentation + URL: https://arxiv.org/abs/2112.01527 + Code: https://github.com/open-mmlab/mmdetection/blob/3.x/mmdet/models/dense_heads/mask2former_head.py + Framework: PyTorch +- Name: mask2former_swin-l-in22k-384x384-pre_8xb2-160k_ade20k-640x640 + In Collection: Mask2Former + Results: + Task: Semantic Segmentation + Dataset: ADE20K + Metrics: + mIoU: 56.01 + Config: configs/mask2former/mask2former_swin-l-in22k-384x384-pre_8xb2-160k_ade20k-640x640.py + Metadata: + Training Data: ADE20K + Batch Size: 16 + Architecture: + - Swin-L + - Mask2Former + Training Resources: 8x A100 GPUS + Memory (GB): 8.86 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/mask2former/mask2former_swin-l-in22k-384x384-pre_8xb2-160k_ade20k-640x640/mask2former_swin-l-in22k-384x384-pre_8xb2-160k_ade20k-640x640_20221203_235933-7120c214.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/mask2former/mask2former_swin-l-in22k-384x384-pre_8xb2-160k_ade20k-640x640/mask2former_swin-l-in22k-384x384-pre_8xb2-160k_ade20k-640x640_20221203_235933.json + Paper: + Title: Masked-attention Mask Transformer for Universal Image Segmentation + URL: https://arxiv.org/abs/2112.01527 + Code: https://github.com/open-mmlab/mmdetection/blob/3.x/mmdet/models/dense_heads/mask2former_head.py + Framework: PyTorch diff --git a/configs/maskformer/README.md b/configs/maskformer/README.md index 0248dbb63c..aa54a27088 100644 --- a/configs/maskformer/README.md +++ b/configs/maskformer/README.md @@ -1,6 +1,6 @@ # MaskFormer -[MaskFormer: Per-Pixel Classification is Not All You Need for Semantic Segmentation](https://arxiv.org/abs/2107.06278) +> [MaskFormer: Per-Pixel Classification is Not All You Need for Semantic Segmentation](https://arxiv.org/abs/2107.06278) ## Introduction @@ -22,17 +22,6 @@ Modern approaches typically formulate semantic segmentation as a per-pixel class -```bibtex -@article{cheng2021per, - title={Per-pixel classification is not all you need for semantic segmentation}, - author={Cheng, Bowen and Schwing, Alex and Kirillov, Alexander}, - journal={Advances in Neural Information Processing Systems}, - volume={34}, - pages={17864--17875}, - year={2021} -} -``` - ### Usage - MaskFormer model needs to install [MMDetection](https://github.com/open-mmlab/mmdetection) first. @@ -45,12 +34,12 @@ pip install "mmdet>=3.0.0rc4" ### ADE20K -| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | mIoU | mIoU(ms+flip) | config | download | -| ---------- | --------- | --------- | ------- | -------- | -------------- | ----- | ------------- | -------------------------------------------------------------------------------------------------------------------------------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ | -| MaskFormer | R-50-D32 | 512x512 | 160000 | 3.29 | 42.20 | 44.29 | - | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/maskformer/maskformer_r50-d32_8xb2-160k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/maskformer/maskformer_r50-d32_8xb2-160k_ade20k-512x512/maskformer_r50-d32_8xb2-160k_ade20k-512x512_20221030_182724-3a9cfe45.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/maskformer/maskformer_r50-d32_8xb2-160k_ade20k-512x512/maskformer_r50-d32_8xb2-160k_ade20k-512x512_20221030_182724.json) | -| MaskFormer | R-101-D32 | 512x512 | 160000 | 4.12 | 34.90 | 45.11 | - | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/maskformer/maskformer_r101-d32_8xb2-160k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/maskformer/maskformer_r101-d32_8xb2-160k_ade20k-512x512/maskformer_r101-d32_8xb2-160k_ade20k-512x512_20221031_223053-84adbfcb.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/maskformer/maskformer_r101-d32_8xb2-160k_ade20k-512x512/maskformer_r101-d32_8xb2-160k_ade20k-512x512_20221031_223053.json) | -| MaskFormer | Swin-T | 512x512 | 160000 | 3.73 | 40.53 | 46.69 | - | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/maskformer/maskformer_swin-t_upernet_8xb2-160k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/maskformer/maskformer_swin-t_upernet_8xb2-160k_ade20k-512x512/maskformer_swin-t_upernet_8xb2-160k_ade20k-512x512_20221114_232813-f14e7ce0.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/maskformer/maskformer_swin-t_upernet_8xb2-160k_ade20k-512x512/maskformer_swin-t_upernet_8xb2-160k_ade20k-512x512_20221114_232813.json) | -| MaskFormer | Swin-S | 512x512 | 160000 | 5.33 | 26.98 | 49.36 | - | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/maskformer/maskformer_swin-s_upernet_8xb2-160k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/maskformer/maskformer_swin-s_upernet_8xb2-160k_ade20k-512x512/maskformer_swin-s_upernet_8xb2-160k_ade20k-512x512_20221115_114710-723512c7.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/maskformer/maskformer_swin-s_upernet_8xb2-160k_ade20k-512x512/maskformer_swin-s_upernet_8xb2-160k_ade20k-512x512_20221115_114710.json) | +| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | Device | mIoU | mIoU(ms+flip) | config | download | +| ---------- | --------- | --------- | ------- | -------- | -------------- | ------ | ----- | ------------- | -------------------------------------------------------------------------------------------------------------------------------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ | +| MaskFormer | R-50-D32 | 512x512 | 160000 | 3.29 | A100 | 42.20 | 44.29 | - | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/maskformer/maskformer_r50-d32_8xb2-160k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/maskformer/maskformer_r50-d32_8xb2-160k_ade20k-512x512/maskformer_r50-d32_8xb2-160k_ade20k-512x512_20221030_182724-3a9cfe45.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/maskformer/maskformer_r50-d32_8xb2-160k_ade20k-512x512/maskformer_r50-d32_8xb2-160k_ade20k-512x512_20221030_182724.json) | +| MaskFormer | R-101-D32 | 512x512 | 160000 | 4.12 | A100 | 34.90 | 45.11 | - | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/maskformer/maskformer_r101-d32_8xb2-160k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/maskformer/maskformer_r101-d32_8xb2-160k_ade20k-512x512/maskformer_r101-d32_8xb2-160k_ade20k-512x512_20221031_223053-84adbfcb.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/maskformer/maskformer_r101-d32_8xb2-160k_ade20k-512x512/maskformer_r101-d32_8xb2-160k_ade20k-512x512_20221031_223053.json) | +| MaskFormer | Swin-T | 512x512 | 160000 | 3.73 | A100 | 40.53 | 46.69 | - | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/maskformer/maskformer_swin-t_upernet_8xb2-160k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/maskformer/maskformer_swin-t_upernet_8xb2-160k_ade20k-512x512/maskformer_swin-t_upernet_8xb2-160k_ade20k-512x512_20221114_232813-f14e7ce0.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/maskformer/maskformer_swin-t_upernet_8xb2-160k_ade20k-512x512/maskformer_swin-t_upernet_8xb2-160k_ade20k-512x512_20221114_232813.json) | +| MaskFormer | Swin-S | 512x512 | 160000 | 5.33 | A100 | 26.98 | 49.36 | - | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/maskformer/maskformer_swin-s_upernet_8xb2-160k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/maskformer/maskformer_swin-s_upernet_8xb2-160k_ade20k-512x512/maskformer_swin-s_upernet_8xb2-160k_ade20k-512x512_20221115_114710-723512c7.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/maskformer/maskformer_swin-s_upernet_8xb2-160k_ade20k-512x512/maskformer_swin-s_upernet_8xb2-160k_ade20k-512x512_20221115_114710.json) | Note: @@ -58,3 +47,16 @@ Note: - The results of MaskFormer are relatively not stable. The accuracy (mIoU) of model with `R-101-D32` is from 44.7 to 46.0, and with `Swin-S` is from 49.0 to 49.8. - The ResNet backbones utilized in MaskFormer models are standard `ResNet` rather than `ResNetV1c`. - Test time augmentation is not supported in MMSegmentation 1.x version yet, we would add "ms+flip" results as soon as possible. + +## Citation + +```bibtex +@article{cheng2021per, + title={Per-pixel classification is not all you need for semantic segmentation}, + author={Cheng, Bowen and Schwing, Alex and Kirillov, Alexander}, + journal={Advances in Neural Information Processing Systems}, + volume={34}, + pages={17864--17875}, + year={2021} +} +``` diff --git a/configs/maskformer/maskformer.yml b/configs/maskformer/maskformer.yml deleted file mode 100644 index b499476a50..0000000000 --- a/configs/maskformer/maskformer.yml +++ /dev/null @@ -1,101 +0,0 @@ -Collections: -- Name: MaskFormer - Metadata: - Training Data: - - Usage - - ADE20K - Paper: - URL: https://arxiv.org/abs/2107.06278 - Title: 'MaskFormer: Per-Pixel Classification is Not All You Need for Semantic - Segmentation' - README: configs/maskformer/README.md - Code: - URL: https://github.com/open-mmlab/mmdetection/blob/dev-3.x/mmdet/models/dense_heads/maskformer_head.py#L21 - Version: dev-3.x - Converted From: - Code: https://github.com/facebookresearch/MaskFormer/ -Models: -- Name: maskformer_r50-d32_8xb2-160k_ade20k-512x512 - In Collection: MaskFormer - Metadata: - backbone: R-50-D32 - crop size: (512,512) - lr schd: 160000 - inference time (ms/im): - - value: 23.7 - hardware: V100 - backend: PyTorch - batch size: 1 - mode: FP32 - resolution: (512,512) - Training Memory (GB): 3.29 - Results: - - Task: Semantic Segmentation - Dataset: ADE20K - Metrics: - mIoU: 44.29 - Config: configs/maskformer/maskformer_r50-d32_8xb2-160k_ade20k-512x512.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/maskformer/maskformer_r50-d32_8xb2-160k_ade20k-512x512/maskformer_r50-d32_8xb2-160k_ade20k-512x512_20221030_182724-3a9cfe45.pth -- Name: maskformer_r101-d32_8xb2-160k_ade20k-512x512 - In Collection: MaskFormer - Metadata: - backbone: R-101-D32 - crop size: (512,512) - lr schd: 160000 - inference time (ms/im): - - value: 28.65 - hardware: V100 - backend: PyTorch - batch size: 1 - mode: FP32 - resolution: (512,512) - Training Memory (GB): 4.12 - Results: - - Task: Semantic Segmentation - Dataset: ADE20K - Metrics: - mIoU: 45.11 - Config: configs/maskformer/maskformer_r101-d32_8xb2-160k_ade20k-512x512.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/maskformer/maskformer_r101-d32_8xb2-160k_ade20k-512x512/maskformer_r101-d32_8xb2-160k_ade20k-512x512_20221031_223053-84adbfcb.pth -- Name: maskformer_swin-t_upernet_8xb2-160k_ade20k-512x512 - In Collection: MaskFormer - Metadata: - backbone: Swin-T - crop size: (512,512) - lr schd: 160000 - inference time (ms/im): - - value: 24.67 - hardware: V100 - backend: PyTorch - batch size: 1 - mode: FP32 - resolution: (512,512) - Training Memory (GB): 3.73 - Results: - - Task: Semantic Segmentation - Dataset: ADE20K - Metrics: - mIoU: 46.69 - Config: configs/maskformer/maskformer_swin-t_upernet_8xb2-160k_ade20k-512x512.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/maskformer/maskformer_swin-t_upernet_8xb2-160k_ade20k-512x512/maskformer_swin-t_upernet_8xb2-160k_ade20k-512x512_20221114_232813-f14e7ce0.pth -- Name: maskformer_swin-s_upernet_8xb2-160k_ade20k-512x512 - In Collection: MaskFormer - Metadata: - backbone: Swin-S - crop size: (512,512) - lr schd: 160000 - inference time (ms/im): - - value: 37.06 - hardware: V100 - backend: PyTorch - batch size: 1 - mode: FP32 - resolution: (512,512) - Training Memory (GB): 5.33 - Results: - - Task: Semantic Segmentation - Dataset: ADE20K - Metrics: - mIoU: 49.36 - Config: configs/maskformer/maskformer_swin-s_upernet_8xb2-160k_ade20k-512x512.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/maskformer/maskformer_swin-s_upernet_8xb2-160k_ade20k-512x512/maskformer_swin-s_upernet_8xb2-160k_ade20k-512x512_20221115_114710-723512c7.pth diff --git a/configs/maskformer/metafile.yaml b/configs/maskformer/metafile.yaml new file mode 100644 index 0000000000..c9853e131f --- /dev/null +++ b/configs/maskformer/metafile.yaml @@ -0,0 +1,111 @@ +Collections: +- Name: MaskFormer + License: Apache License 2.0 + Metadata: + Training Data: + - Usage + - ADE20K + Paper: + Title: 'MaskFormer: Per-Pixel Classification is Not All You Need for Semantic + Segmentation' + URL: https://arxiv.org/abs/2107.06278 + README: configs/maskformer/README.md + Frameworks: + - PyTorch +Models: +- Name: maskformer_r50-d32_8xb2-160k_ade20k-512x512 + In Collection: MaskFormer + Results: + Task: Semantic Segmentation + Dataset: ADE20K + Metrics: + mIoU: 44.29 + Config: configs/maskformer/maskformer_r50-d32_8xb2-160k_ade20k-512x512.py + Metadata: + Training Data: ADE20K + Batch Size: 16 + Architecture: + - R-50-D32 + - MaskFormer + Training Resources: 8x 42.20 GPUS + Memory (GB): 3.29 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/maskformer/maskformer_r50-d32_8xb2-160k_ade20k-512x512/maskformer_r50-d32_8xb2-160k_ade20k-512x512_20221030_182724-3a9cfe45.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/maskformer/maskformer_r50-d32_8xb2-160k_ade20k-512x512/maskformer_r50-d32_8xb2-160k_ade20k-512x512_20221030_182724.json + Paper: + Title: 'MaskFormer: Per-Pixel Classification is Not All You Need for Semantic + Segmentation' + URL: https://arxiv.org/abs/2107.06278 + Code: https://github.com/open-mmlab/mmdetection/blob/dev-3.x/mmdet/models/dense_heads/maskformer_head.py#L21 + Framework: PyTorch +- Name: maskformer_r101-d32_8xb2-160k_ade20k-512x512 + In Collection: MaskFormer + Results: + Task: Semantic Segmentation + Dataset: ADE20K + Metrics: + mIoU: 45.11 + Config: configs/maskformer/maskformer_r101-d32_8xb2-160k_ade20k-512x512.py + Metadata: + Training Data: ADE20K + Batch Size: 16 + Architecture: + - R-101-D32 + - MaskFormer + Training Resources: 8x 34.90 GPUS + Memory (GB): 4.12 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/maskformer/maskformer_r101-d32_8xb2-160k_ade20k-512x512/maskformer_r101-d32_8xb2-160k_ade20k-512x512_20221031_223053-84adbfcb.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/maskformer/maskformer_r101-d32_8xb2-160k_ade20k-512x512/maskformer_r101-d32_8xb2-160k_ade20k-512x512_20221031_223053.json + Paper: + Title: 'MaskFormer: Per-Pixel Classification is Not All You Need for Semantic + Segmentation' + URL: https://arxiv.org/abs/2107.06278 + Code: https://github.com/open-mmlab/mmdetection/blob/dev-3.x/mmdet/models/dense_heads/maskformer_head.py#L21 + Framework: PyTorch +- Name: maskformer_swin-t_upernet_8xb2-160k_ade20k-512x512 + In Collection: MaskFormer + Results: + Task: Semantic Segmentation + Dataset: ADE20K + Metrics: + mIoU: 46.69 + Config: configs/maskformer/maskformer_swin-t_upernet_8xb2-160k_ade20k-512x512.py + Metadata: + Training Data: ADE20K + Batch Size: 16 + Architecture: + - Swin-T + - MaskFormer + Training Resources: 8x 40.53 GPUS + Memory (GB): 3.73 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/maskformer/maskformer_swin-t_upernet_8xb2-160k_ade20k-512x512/maskformer_swin-t_upernet_8xb2-160k_ade20k-512x512_20221114_232813-f14e7ce0.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/maskformer/maskformer_swin-t_upernet_8xb2-160k_ade20k-512x512/maskformer_swin-t_upernet_8xb2-160k_ade20k-512x512_20221114_232813.json + Paper: + Title: 'MaskFormer: Per-Pixel Classification is Not All You Need for Semantic + Segmentation' + URL: https://arxiv.org/abs/2107.06278 + Code: https://github.com/open-mmlab/mmdetection/blob/dev-3.x/mmdet/models/dense_heads/maskformer_head.py#L21 + Framework: PyTorch +- Name: maskformer_swin-s_upernet_8xb2-160k_ade20k-512x512 + In Collection: MaskFormer + Results: + Task: Semantic Segmentation + Dataset: ADE20K + Metrics: + mIoU: 49.36 + Config: configs/maskformer/maskformer_swin-s_upernet_8xb2-160k_ade20k-512x512.py + Metadata: + Training Data: ADE20K + Batch Size: 16 + Architecture: + - Swin-S + - MaskFormer + Training Resources: 8x 26.98 GPUS + Memory (GB): 5.33 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/maskformer/maskformer_swin-s_upernet_8xb2-160k_ade20k-512x512/maskformer_swin-s_upernet_8xb2-160k_ade20k-512x512_20221115_114710-723512c7.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/maskformer/maskformer_swin-s_upernet_8xb2-160k_ade20k-512x512/maskformer_swin-s_upernet_8xb2-160k_ade20k-512x512_20221115_114710.json + Paper: + Title: 'MaskFormer: Per-Pixel Classification is Not All You Need for Semantic + Segmentation' + URL: https://arxiv.org/abs/2107.06278 + Code: https://github.com/open-mmlab/mmdetection/blob/dev-3.x/mmdet/models/dense_heads/maskformer_head.py#L21 + Framework: PyTorch diff --git a/configs/mobilenet_v2/README.md b/configs/mobilenet_v2/README.md index 30f1fe3ce2..6d8e5945cb 100644 --- a/configs/mobilenet_v2/README.md +++ b/configs/mobilenet_v2/README.md @@ -1,6 +1,6 @@ # MobileNetV2 -[MobileNetV2: Inverted Residuals and Linear Bottlenecks](https://arxiv.org/abs/1801.04381) +> [MobileNetV2: Inverted Residuals and Linear Bottlenecks](https://arxiv.org/abs/1801.04381) ## Introduction @@ -23,6 +23,26 @@ The MobileNetV2 architecture is based on an inverted residual structure where th +## Results and models + +### Cityscapes + +| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | Device | mIoU | mIoU(ms+flip) | config | download | +| ---------- | -------- | --------- | ------: | -------: | -------------- | ------ | ----: | ------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------ | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | +| FCN | M-V2-D8 | 512x1024 | 80000 | 3.4 | 14.2 | A100 | 71.19 | 73.34 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/mobilenet_v2/mobilenet-v2-d8_fcn_4xb2-80k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/mobilenet_v2/mobilenet-v2-d8_fcn_4xb2-80k_cityscapes-512x1024/mobilenet-v2-d8_fcn_4xb2-80k_cityscapes-512x1024-20230224_185436-13fef4ea.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/mobilenet_v2/mobilenet-v2-d8_fcn_4xb2-80k_cityscapes-512x1024/mobilenet-v2-d8_fcn_4xb2-80k_cityscapes-512x1024_20230224_185436.json) | +| PSPNet | M-V2-D8 | 512x1024 | 80000 | 3.6 | 11.2 | V100 | 70.23 | - | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/mobilenet_v2/mobilenet-v2-d8_pspnet_4xb2-80k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/mobilenet_v2/pspnet_m-v2-d8_512x1024_80k_cityscapes/pspnet_m-v2-d8_512x1024_80k_cityscapes_20200825_124817-19e81d51.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/mobilenet_v2/pspnet_m-v2-d8_512x1024_80k_cityscapes/pspnet_m-v2-d8_512x1024_80k_cityscapes-20200825_124817.log.json) | +| DeepLabV3 | M-V2-D8 | 512x1024 | 80000 | 3.9 | 8.4 | V100 | 73.84 | - | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/mobilenet_v2/mobilenet-v2-d8_deeplabv3_4xb2-80k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/mobilenet_v2/deeplabv3_m-v2-d8_512x1024_80k_cityscapes/deeplabv3_m-v2-d8_512x1024_80k_cityscapes_20200825_124836-bef03590.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/mobilenet_v2/deeplabv3_m-v2-d8_512x1024_80k_cityscapes/deeplabv3_m-v2-d8_512x1024_80k_cityscapes-20200825_124836.log.json) | +| DeepLabV3+ | M-V2-D8 | 512x1024 | 80000 | 5.1 | 8.4 | V100 | 75.20 | - | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/mobilenet_v2/mobilenet-v2-d8_deeplabv3plus_4xb2-80k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/mobilenet_v2/deeplabv3plus_m-v2-d8_512x1024_80k_cityscapes/deeplabv3plus_m-v2-d8_512x1024_80k_cityscapes_20200825_124836-d256dd4b.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/mobilenet_v2/deeplabv3plus_m-v2-d8_512x1024_80k_cityscapes/deeplabv3plus_m-v2-d8_512x1024_80k_cityscapes-20200825_124836.log.json) | + +### ADE20K + +| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | Device | mIoU | mIoU(ms+flip) | config | download | +| ---------- | -------- | --------- | ------: | -------: | -------------- | ------ | ----: | ------------- | -------------------------------------------------------------------------------------------------------------------------------------------------- | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | +| FCN | M-V2-D8 | 512x512 | 160000 | 6.5 | 64.4 | V100 | 19.71 | - | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/mobilenet_v2/mobilenet-v2-d8_fcn_4xb4-160k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/mobilenet_v2/fcn_m-v2-d8_512x512_160k_ade20k/fcn_m-v2-d8_512x512_160k_ade20k_20200825_214953-c40e1095.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/mobilenet_v2/fcn_m-v2-d8_512x512_160k_ade20k/fcn_m-v2-d8_512x512_160k_ade20k-20200825_214953.log.json) | +| PSPNet | M-V2-D8 | 512x512 | 160000 | 6.5 | 57.7 | V100 | 29.68 | - | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/mobilenet_v2/mobilenet-v2-d8_pspnet_4xb4-160k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/mobilenet_v2/pspnet_m-v2-d8_512x512_160k_ade20k/pspnet_m-v2-d8_512x512_160k_ade20k_20200825_214953-f5942f7a.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/mobilenet_v2/pspnet_m-v2-d8_512x512_160k_ade20k/pspnet_m-v2-d8_512x512_160k_ade20k-20200825_214953.log.json) | +| DeepLabV3 | M-V2-D8 | 512x512 | 160000 | 6.8 | 39.9 | V100 | 34.08 | - | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/mobilenet_v2/mobilenet-v2-d8_deeplabv3_4xb4-160k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/mobilenet_v2/deeplabv3_m-v2-d8_512x512_160k_ade20k/deeplabv3_m-v2-d8_512x512_160k_ade20k_20200825_223255-63986343.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/mobilenet_v2/deeplabv3_m-v2-d8_512x512_160k_ade20k/deeplabv3_m-v2-d8_512x512_160k_ade20k-20200825_223255.log.json) | +| DeepLabV3+ | M-V2-D8 | 512x512 | 160000 | 8.2 | 43.1 | V100 | 34.02 | - | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/mobilenet_v2/mobilenet-v2-d8_deeplabv3plus_4xb4-160k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/mobilenet_v2/deeplabv3plus_m-v2-d8_512x512_160k_ade20k/deeplabv3plus_m-v2-d8_512x512_160k_ade20k_20200825_223255-465a01d4.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/mobilenet_v2/deeplabv3plus_m-v2-d8_512x512_160k_ade20k/deeplabv3plus_m-v2-d8_512x512_160k_ade20k-20200825_223255.log.json) | + ## Citation ```bibtex @@ -34,23 +54,3 @@ The MobileNetV2 architecture is based on an inverted residual structure where th year={2018} } ``` - -## Results and models - -### Cityscapes - -| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | mIoU | mIoU(ms+flip) | config | download | -| ---------- | -------- | --------- | ------: | -------: | -------------- | ----: | ------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------ | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | -| FCN | M-V2-D8 | 512x1024 | 80000 | 3.4 | 14.2 | 71.19 | 73.34 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/mobilenet_v2/mobilenet-v2-d8_fcn_4xb2-80k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/mobilenet_v2/mobilenet-v2-d8_fcn_4xb2-80k_cityscapes-512x1024/mobilenet-v2-d8_fcn_4xb2-80k_cityscapes-512x1024-20230224_185436-13fef4ea.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/mobilenet_v2/mobilenet-v2-d8_fcn_4xb2-80k_cityscapes-512x1024/mobilenet-v2-d8_fcn_4xb2-80k_cityscapes-512x1024_20230224_185436.json) | -| PSPNet | M-V2-D8 | 512x1024 | 80000 | 3.6 | 11.2 | 70.23 | - | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/mobilenet_v2/mobilenet-v2-d8_pspnet_4xb2-80k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/mobilenet_v2/pspnet_m-v2-d8_512x1024_80k_cityscapes/pspnet_m-v2-d8_512x1024_80k_cityscapes_20200825_124817-19e81d51.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/mobilenet_v2/pspnet_m-v2-d8_512x1024_80k_cityscapes/pspnet_m-v2-d8_512x1024_80k_cityscapes-20200825_124817.log.json) | -| DeepLabV3 | M-V2-D8 | 512x1024 | 80000 | 3.9 | 8.4 | 73.84 | - | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/mobilenet_v2/mobilenet-v2-d8_deeplabv3_4xb2-80k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/mobilenet_v2/deeplabv3_m-v2-d8_512x1024_80k_cityscapes/deeplabv3_m-v2-d8_512x1024_80k_cityscapes_20200825_124836-bef03590.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/mobilenet_v2/deeplabv3_m-v2-d8_512x1024_80k_cityscapes/deeplabv3_m-v2-d8_512x1024_80k_cityscapes-20200825_124836.log.json) | -| DeepLabV3+ | M-V2-D8 | 512x1024 | 80000 | 5.1 | 8.4 | 75.20 | - | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/mobilenet_v2/mobilenet-v2-d8_deeplabv3plus_4xb2-80k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/mobilenet_v2/deeplabv3plus_m-v2-d8_512x1024_80k_cityscapes/deeplabv3plus_m-v2-d8_512x1024_80k_cityscapes_20200825_124836-d256dd4b.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/mobilenet_v2/deeplabv3plus_m-v2-d8_512x1024_80k_cityscapes/deeplabv3plus_m-v2-d8_512x1024_80k_cityscapes-20200825_124836.log.json) | - -### ADE20K - -| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | mIoU | mIoU(ms+flip) | config | download | -| ---------- | -------- | --------- | ------: | -------: | -------------- | ----: | ------------- | -------------------------------------------------------------------------------------------------------------------------------------------------- | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | -| FCN | M-V2-D8 | 512x512 | 160000 | 6.5 | 64.4 | 19.71 | - | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/mobilenet_v2/mobilenet-v2-d8_fcn_4xb4-160k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/mobilenet_v2/fcn_m-v2-d8_512x512_160k_ade20k/fcn_m-v2-d8_512x512_160k_ade20k_20200825_214953-c40e1095.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/mobilenet_v2/fcn_m-v2-d8_512x512_160k_ade20k/fcn_m-v2-d8_512x512_160k_ade20k-20200825_214953.log.json) | -| PSPNet | M-V2-D8 | 512x512 | 160000 | 6.5 | 57.7 | 29.68 | - | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/mobilenet_v2/mobilenet-v2-d8_pspnet_4xb4-160k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/mobilenet_v2/pspnet_m-v2-d8_512x512_160k_ade20k/pspnet_m-v2-d8_512x512_160k_ade20k_20200825_214953-f5942f7a.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/mobilenet_v2/pspnet_m-v2-d8_512x512_160k_ade20k/pspnet_m-v2-d8_512x512_160k_ade20k-20200825_214953.log.json) | -| DeepLabV3 | M-V2-D8 | 512x512 | 160000 | 6.8 | 39.9 | 34.08 | - | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/mobilenet_v2/mobilenet-v2-d8_deeplabv3_4xb4-160k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/mobilenet_v2/deeplabv3_m-v2-d8_512x512_160k_ade20k/deeplabv3_m-v2-d8_512x512_160k_ade20k_20200825_223255-63986343.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/mobilenet_v2/deeplabv3_m-v2-d8_512x512_160k_ade20k/deeplabv3_m-v2-d8_512x512_160k_ade20k-20200825_223255.log.json) | -| DeepLabV3+ | M-V2-D8 | 512x512 | 160000 | 8.2 | 43.1 | 34.02 | - | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/mobilenet_v2/mobilenet-v2-d8_deeplabv3plus_4xb4-160k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/mobilenet_v2/deeplabv3plus_m-v2-d8_512x512_160k_ade20k/deeplabv3plus_m-v2-d8_512x512_160k_ade20k_20200825_223255-465a01d4.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/mobilenet_v2/deeplabv3plus_m-v2-d8_512x512_160k_ade20k/deeplabv3plus_m-v2-d8_512x512_160k_ade20k-20200825_223255.log.json) | diff --git a/configs/mobilenet_v2/metafile.yaml b/configs/mobilenet_v2/metafile.yaml new file mode 100644 index 0000000000..119c9ae7d6 --- /dev/null +++ b/configs/mobilenet_v2/metafile.yaml @@ -0,0 +1,186 @@ +Models: +- Name: mobilenet-v2-d8_fcn_4xb2-80k_cityscapes-512x1024 + In Collection: FCN + Results: + Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 71.19 + mIoU(ms+flip): 73.34 + Config: configs/mobilenet_v2/mobilenet-v2-d8_fcn_4xb2-80k_cityscapes-512x1024.py + Metadata: + Training Data: Cityscapes + Batch Size: 8 + Architecture: + - M-V2-D8 + - FCN + Training Resources: 4x A100 GPUS + Memory (GB): 3.4 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/mobilenet_v2/mobilenet-v2-d8_fcn_4xb2-80k_cityscapes-512x1024/mobilenet-v2-d8_fcn_4xb2-80k_cityscapes-512x1024-20230224_185436-13fef4ea.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/mobilenet_v2/mobilenet-v2-d8_fcn_4xb2-80k_cityscapes-512x1024/mobilenet-v2-d8_fcn_4xb2-80k_cityscapes-512x1024_20230224_185436.json + Paper: + Title: 'MobileNetV2: Inverted Residuals and Linear Bottlenecks' + URL: https://arxiv.org/abs/1801.04381 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/backbones/mobilenet_v2.py#L14 + Framework: PyTorch +- Name: mobilenet-v2-d8_pspnet_4xb2-80k_cityscapes-512x1024 + In Collection: PSPNet + Results: + Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 70.23 + Config: configs/mobilenet_v2/mobilenet-v2-d8_pspnet_4xb2-80k_cityscapes-512x1024.py + Metadata: + Training Data: Cityscapes + Batch Size: 8 + Architecture: + - M-V2-D8 + - PSPNet + Training Resources: 4x V100 GPUS + Memory (GB): 3.6 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/mobilenet_v2/pspnet_m-v2-d8_512x1024_80k_cityscapes/pspnet_m-v2-d8_512x1024_80k_cityscapes_20200825_124817-19e81d51.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/mobilenet_v2/pspnet_m-v2-d8_512x1024_80k_cityscapes/pspnet_m-v2-d8_512x1024_80k_cityscapes-20200825_124817.log.json + Paper: + Title: 'MobileNetV2: Inverted Residuals and Linear Bottlenecks' + URL: https://arxiv.org/abs/1801.04381 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/backbones/mobilenet_v2.py#L14 + Framework: PyTorch +- Name: mobilenet-v2-d8_deeplabv3_4xb2-80k_cityscapes-512x1024 + In Collection: DeepLabV3 + Results: + Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 73.84 + Config: configs/mobilenet_v2/mobilenet-v2-d8_deeplabv3_4xb2-80k_cityscapes-512x1024.py + Metadata: + Training Data: Cityscapes + Batch Size: 8 + Architecture: + - M-V2-D8 + - DeepLabV3 + Training Resources: 4x V100 GPUS + Memory (GB): 3.9 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/mobilenet_v2/deeplabv3_m-v2-d8_512x1024_80k_cityscapes/deeplabv3_m-v2-d8_512x1024_80k_cityscapes_20200825_124836-bef03590.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/mobilenet_v2/deeplabv3_m-v2-d8_512x1024_80k_cityscapes/deeplabv3_m-v2-d8_512x1024_80k_cityscapes-20200825_124836.log.json + Paper: + Title: 'MobileNetV2: Inverted Residuals and Linear Bottlenecks' + URL: https://arxiv.org/abs/1801.04381 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/backbones/mobilenet_v2.py#L14 + Framework: PyTorch +- Name: mobilenet-v2-d8_deeplabv3plus_4xb2-80k_cityscapes-512x1024 + In Collection: DeepLabV3+ + Results: + Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 75.2 + Config: configs/mobilenet_v2/mobilenet-v2-d8_deeplabv3plus_4xb2-80k_cityscapes-512x1024.py + Metadata: + Training Data: Cityscapes + Batch Size: 8 + Architecture: + - M-V2-D8 + - DeepLabV3+ + Training Resources: 4x V100 GPUS + Memory (GB): 5.1 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/mobilenet_v2/deeplabv3plus_m-v2-d8_512x1024_80k_cityscapes/deeplabv3plus_m-v2-d8_512x1024_80k_cityscapes_20200825_124836-d256dd4b.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/mobilenet_v2/deeplabv3plus_m-v2-d8_512x1024_80k_cityscapes/deeplabv3plus_m-v2-d8_512x1024_80k_cityscapes-20200825_124836.log.json + Paper: + Title: 'MobileNetV2: Inverted Residuals and Linear Bottlenecks' + URL: https://arxiv.org/abs/1801.04381 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/backbones/mobilenet_v2.py#L14 + Framework: PyTorch +- Name: mobilenet-v2-d8_fcn_4xb4-160k_ade20k-512x512 + In Collection: FCN + Results: + Task: Semantic Segmentation + Dataset: ADE20K + Metrics: + mIoU: 19.71 + Config: configs/mobilenet_v2/mobilenet-v2-d8_fcn_4xb4-160k_ade20k-512x512.py + Metadata: + Training Data: ADE20K + Batch Size: 16 + Architecture: + - M-V2-D8 + - FCN + Training Resources: 4x V100 GPUS + Memory (GB): 6.5 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/mobilenet_v2/fcn_m-v2-d8_512x512_160k_ade20k/fcn_m-v2-d8_512x512_160k_ade20k_20200825_214953-c40e1095.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/mobilenet_v2/fcn_m-v2-d8_512x512_160k_ade20k/fcn_m-v2-d8_512x512_160k_ade20k-20200825_214953.log.json + Paper: + Title: 'MobileNetV2: Inverted Residuals and Linear Bottlenecks' + URL: https://arxiv.org/abs/1801.04381 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/backbones/mobilenet_v2.py#L14 + Framework: PyTorch +- Name: mobilenet-v2-d8_pspnet_4xb4-160k_ade20k-512x512 + In Collection: PSPNet + Results: + Task: Semantic Segmentation + Dataset: ADE20K + Metrics: + mIoU: 29.68 + Config: configs/mobilenet_v2/mobilenet-v2-d8_pspnet_4xb4-160k_ade20k-512x512.py + Metadata: + Training Data: ADE20K + Batch Size: 16 + Architecture: + - M-V2-D8 + - PSPNet + Training Resources: 4x V100 GPUS + Memory (GB): 6.5 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/mobilenet_v2/pspnet_m-v2-d8_512x512_160k_ade20k/pspnet_m-v2-d8_512x512_160k_ade20k_20200825_214953-f5942f7a.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/mobilenet_v2/pspnet_m-v2-d8_512x512_160k_ade20k/pspnet_m-v2-d8_512x512_160k_ade20k-20200825_214953.log.json + Paper: + Title: 'MobileNetV2: Inverted Residuals and Linear Bottlenecks' + URL: https://arxiv.org/abs/1801.04381 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/backbones/mobilenet_v2.py#L14 + Framework: PyTorch +- Name: mobilenet-v2-d8_deeplabv3_4xb4-160k_ade20k-512x512 + In Collection: DeepLabV3 + Results: + Task: Semantic Segmentation + Dataset: ADE20K + Metrics: + mIoU: 34.08 + Config: configs/mobilenet_v2/mobilenet-v2-d8_deeplabv3_4xb4-160k_ade20k-512x512.py + Metadata: + Training Data: ADE20K + Batch Size: 16 + Architecture: + - M-V2-D8 + - DeepLabV3 + Training Resources: 4x V100 GPUS + Memory (GB): 6.8 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/mobilenet_v2/deeplabv3_m-v2-d8_512x512_160k_ade20k/deeplabv3_m-v2-d8_512x512_160k_ade20k_20200825_223255-63986343.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/mobilenet_v2/deeplabv3_m-v2-d8_512x512_160k_ade20k/deeplabv3_m-v2-d8_512x512_160k_ade20k-20200825_223255.log.json + Paper: + Title: 'MobileNetV2: Inverted Residuals and Linear Bottlenecks' + URL: https://arxiv.org/abs/1801.04381 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/backbones/mobilenet_v2.py#L14 + Framework: PyTorch +- Name: mobilenet-v2-d8_deeplabv3plus_4xb4-160k_ade20k-512x512 + In Collection: DeepLabV3+ + Results: + Task: Semantic Segmentation + Dataset: ADE20K + Metrics: + mIoU: 34.02 + Config: configs/mobilenet_v2/mobilenet-v2-d8_deeplabv3plus_4xb4-160k_ade20k-512x512.py + Metadata: + Training Data: ADE20K + Batch Size: 16 + Architecture: + - M-V2-D8 + - DeepLabV3+ + Training Resources: 4x V100 GPUS + Memory (GB): 8.2 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/mobilenet_v2/deeplabv3plus_m-v2-d8_512x512_160k_ade20k/deeplabv3plus_m-v2-d8_512x512_160k_ade20k_20200825_223255-465a01d4.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/mobilenet_v2/deeplabv3plus_m-v2-d8_512x512_160k_ade20k/deeplabv3plus_m-v2-d8_512x512_160k_ade20k-20200825_223255.log.json + Paper: + Title: 'MobileNetV2: Inverted Residuals and Linear Bottlenecks' + URL: https://arxiv.org/abs/1801.04381 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/backbones/mobilenet_v2.py#L14 + Framework: PyTorch diff --git a/configs/mobilenet_v2/mobilenet_v2.yml b/configs/mobilenet_v2/mobilenet_v2.yml deleted file mode 100644 index 6d87401ce8..0000000000 --- a/configs/mobilenet_v2/mobilenet_v2.yml +++ /dev/null @@ -1,170 +0,0 @@ -Models: -- Name: mobilenet-v2-d8_fcn_4xb2-80k_cityscapes-512x1024 - In Collection: FCN - Metadata: - backbone: M-V2-D8 - crop size: (512,1024) - lr schd: 80000 - inference time (ms/im): - - value: 70.42 - hardware: V100 - backend: PyTorch - batch size: 1 - mode: FP32 - resolution: (512,1024) - Training Memory (GB): 3.4 - Results: - - Task: Semantic Segmentation - Dataset: Cityscapes - Metrics: - mIoU: 71.19 - mIoU(ms+flip): 73.34 - Config: configs/mobilenet_v2/mobilenet-v2-d8_fcn_4xb2-80k_cityscapes-512x1024.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/mobilenet_v2/mobilenet-v2-d8_fcn_4xb2-80k_cityscapes-512x1024/mobilenet-v2-d8_fcn_4xb2-80k_cityscapes-512x1024-20230224_185436-13fef4ea.pth -- Name: mobilenet-v2-d8_pspnet_4xb2-80k_cityscapes-512x1024 - In Collection: PSPNet - Metadata: - backbone: M-V2-D8 - crop size: (512,1024) - lr schd: 80000 - inference time (ms/im): - - value: 89.29 - hardware: V100 - backend: PyTorch - batch size: 1 - mode: FP32 - resolution: (512,1024) - Training Memory (GB): 3.6 - Results: - - Task: Semantic Segmentation - Dataset: Cityscapes - Metrics: - mIoU: 70.23 - Config: configs/mobilenet_v2/mobilenet-v2-d8_pspnet_4xb2-80k_cityscapes-512x1024.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/mobilenet_v2/pspnet_m-v2-d8_512x1024_80k_cityscapes/pspnet_m-v2-d8_512x1024_80k_cityscapes_20200825_124817-19e81d51.pth -- Name: mobilenet-v2-d8_deeplabv3_4xb2-80k_cityscapes-512x1024 - In Collection: DeepLabV3 - Metadata: - backbone: M-V2-D8 - crop size: (512,1024) - lr schd: 80000 - inference time (ms/im): - - value: 119.05 - hardware: V100 - backend: PyTorch - batch size: 1 - mode: FP32 - resolution: (512,1024) - Training Memory (GB): 3.9 - Results: - - Task: Semantic Segmentation - Dataset: Cityscapes - Metrics: - mIoU: 73.84 - Config: configs/mobilenet_v2/mobilenet-v2-d8_deeplabv3_4xb2-80k_cityscapes-512x1024.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/mobilenet_v2/deeplabv3_m-v2-d8_512x1024_80k_cityscapes/deeplabv3_m-v2-d8_512x1024_80k_cityscapes_20200825_124836-bef03590.pth -- Name: mobilenet-v2-d8_deeplabv3plus_4xb2-80k_cityscapes-512x1024 - In Collection: DeepLabV3+ - Metadata: - backbone: M-V2-D8 - crop size: (512,1024) - lr schd: 80000 - inference time (ms/im): - - value: 119.05 - hardware: V100 - backend: PyTorch - batch size: 1 - mode: FP32 - resolution: (512,1024) - Training Memory (GB): 5.1 - Results: - - Task: Semantic Segmentation - Dataset: Cityscapes - Metrics: - mIoU: 75.2 - Config: configs/mobilenet_v2/mobilenet-v2-d8_deeplabv3plus_4xb2-80k_cityscapes-512x1024.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/mobilenet_v2/deeplabv3plus_m-v2-d8_512x1024_80k_cityscapes/deeplabv3plus_m-v2-d8_512x1024_80k_cityscapes_20200825_124836-d256dd4b.pth -- Name: mobilenet-v2-d8_fcn_4xb4-160k_ade20k-512x512 - In Collection: FCN - Metadata: - backbone: M-V2-D8 - crop size: (512,512) - lr schd: 160000 - inference time (ms/im): - - value: 15.53 - hardware: V100 - backend: PyTorch - batch size: 1 - mode: FP32 - resolution: (512,512) - Training Memory (GB): 6.5 - Results: - - Task: Semantic Segmentation - Dataset: ADE20K - Metrics: - mIoU: 19.71 - Config: configs/mobilenet_v2/mobilenet-v2-d8_fcn_4xb4-160k_ade20k-512x512.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/mobilenet_v2/fcn_m-v2-d8_512x512_160k_ade20k/fcn_m-v2-d8_512x512_160k_ade20k_20200825_214953-c40e1095.pth -- Name: mobilenet-v2-d8_pspnet_4xb4-160k_ade20k-512x512 - In Collection: PSPNet - Metadata: - backbone: M-V2-D8 - crop size: (512,512) - lr schd: 160000 - inference time (ms/im): - - value: 17.33 - hardware: V100 - backend: PyTorch - batch size: 1 - mode: FP32 - resolution: (512,512) - Training Memory (GB): 6.5 - Results: - - Task: Semantic Segmentation - Dataset: ADE20K - Metrics: - mIoU: 29.68 - Config: configs/mobilenet_v2/mobilenet-v2-d8_pspnet_4xb4-160k_ade20k-512x512.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/mobilenet_v2/pspnet_m-v2-d8_512x512_160k_ade20k/pspnet_m-v2-d8_512x512_160k_ade20k_20200825_214953-f5942f7a.pth -- Name: mobilenet-v2-d8_deeplabv3_4xb4-160k_ade20k-512x512 - In Collection: DeepLabV3 - Metadata: - backbone: M-V2-D8 - crop size: (512,512) - lr schd: 160000 - inference time (ms/im): - - value: 25.06 - hardware: V100 - backend: PyTorch - batch size: 1 - mode: FP32 - resolution: (512,512) - Training Memory (GB): 6.8 - Results: - - Task: Semantic Segmentation - Dataset: ADE20K - Metrics: - mIoU: 34.08 - Config: configs/mobilenet_v2/mobilenet-v2-d8_deeplabv3_4xb4-160k_ade20k-512x512.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/mobilenet_v2/deeplabv3_m-v2-d8_512x512_160k_ade20k/deeplabv3_m-v2-d8_512x512_160k_ade20k_20200825_223255-63986343.pth -- Name: mobilenet-v2-d8_deeplabv3plus_4xb4-160k_ade20k-512x512 - In Collection: DeepLabV3+ - Metadata: - backbone: M-V2-D8 - crop size: (512,512) - lr schd: 160000 - inference time (ms/im): - - value: 23.2 - hardware: V100 - backend: PyTorch - batch size: 1 - mode: FP32 - resolution: (512,512) - Training Memory (GB): 8.2 - Results: - - Task: Semantic Segmentation - Dataset: ADE20K - Metrics: - mIoU: 34.02 - Config: configs/mobilenet_v2/mobilenet-v2-d8_deeplabv3plus_4xb4-160k_ade20k-512x512.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/mobilenet_v2/deeplabv3plus_m-v2-d8_512x512_160k_ade20k/deeplabv3plus_m-v2-d8_512x512_160k_ade20k_20200825_223255-465a01d4.pth diff --git a/configs/mobilenet_v3/README.md b/configs/mobilenet_v3/README.md index c2fed06ccd..3b63db7e50 100644 --- a/configs/mobilenet_v3/README.md +++ b/configs/mobilenet_v3/README.md @@ -1,6 +1,6 @@ # MobileNetV3 -[Searching for MobileNetV3](https://arxiv.org/abs/1905.02244) +> [Searching for MobileNetV3](https://arxiv.org/abs/1905.02244) ## Introduction @@ -24,6 +24,17 @@ We present the next generation of MobileNets based on a combination of complemen +## Results and models + +### Cityscapes + +| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | Device | mIoU | mIoU(ms+flip) | config | download | +| ------ | ------------------ | --------- | ------: | -------: | -------------- | ------ | ----: | ------------- | ---------------------------------------------------------------------------------------------------------------------------------------------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ | +| LRASPP | M-V3-D8 | 512x1024 | 320000 | 8.9 | 15.22 | V100 | 69.54 | 70.89 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/mobilenet_v3/mobilenet-v3-d8_lraspp_4xb4-320k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/mobilenet_v3/lraspp_m-v3-d8_512x1024_320k_cityscapes/lraspp_m-v3-d8_512x1024_320k_cityscapes_20201224_220337-cfe8fb07.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/mobilenet_v3/lraspp_m-v3-d8_512x1024_320k_cityscapes/lraspp_m-v3-d8_512x1024_320k_cityscapes-20201224_220337.log.json) | +| LRASPP | M-V3-D8 (scratch) | 512x1024 | 320000 | 8.9 | 14.77 | V100 | 67.87 | 69.78 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/mobilenet_v3/mobilenet-v3-d8-scratch_lraspp_4xb4-320k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/mobilenet_v3/lraspp_m-v3-d8_scratch_512x1024_320k_cityscapes/lraspp_m-v3-d8_scratch_512x1024_320k_cityscapes_20201224_220337-9f29cd72.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/mobilenet_v3/lraspp_m-v3-d8_scratch_512x1024_320k_cityscapes/lraspp_m-v3-d8_scratch_512x1024_320k_cityscapes-20201224_220337.log.json) | +| LRASPP | M-V3s-D8 | 512x1024 | 320000 | 5.3 | 23.64 | V100 | 64.11 | 66.42 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/mobilenet_v3/mobilenet-v3-d8-s_lraspp_4xb4-320k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/mobilenet_v3/lraspp_m-v3s-d8_512x1024_320k_cityscapes/lraspp_m-v3s-d8_512x1024_320k_cityscapes_20201224_223935-61565b34.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/mobilenet_v3/lraspp_m-v3s-d8_512x1024_320k_cityscapes/lraspp_m-v3s-d8_512x1024_320k_cityscapes-20201224_223935.log.json) | +| LRASPP | M-V3s-D8 (scratch) | 512x1024 | 320000 | 5.3 | 24.50 | V100 | 62.74 | 65.01 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/mobilenet_v3/mobilenet-v3-d8-scratch-s_lraspp_4xb4-320k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/mobilenet_v3/lraspp_m-v3s-d8_scratch_512x1024_320k_cityscapes/lraspp_m-v3s-d8_scratch_512x1024_320k_cityscapes_20201224_223935-03daeabb.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/mobilenet_v3/lraspp_m-v3s-d8_scratch_512x1024_320k_cityscapes/lraspp_m-v3s-d8_scratch_512x1024_320k_cityscapes-20201224_223935.log.json) | + ## Citation ```bibtex @@ -37,14 +48,3 @@ We present the next generation of MobileNets based on a combination of complemen doi={10.1109/ICCV.2019.00140}} } ``` - -## Results and models - -### Cityscapes - -| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | mIoU | mIoU(ms+flip) | config | download | -| ------ | ------------------ | --------- | ------: | -------: | -------------- | ----: | ------------- | ---------------------------------------------------------------------------------------------------------------------------------------------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ | -| LRASPP | M-V3-D8 | 512x1024 | 320000 | 8.9 | 15.22 | 69.54 | 70.89 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/mobilenet_v3/mobilenet-v3-d8_lraspp_4xb4-320k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/mobilenet_v3/lraspp_m-v3-d8_512x1024_320k_cityscapes/lraspp_m-v3-d8_512x1024_320k_cityscapes_20201224_220337-cfe8fb07.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/mobilenet_v3/lraspp_m-v3-d8_512x1024_320k_cityscapes/lraspp_m-v3-d8_512x1024_320k_cityscapes-20201224_220337.log.json) | -| LRASPP | M-V3-D8 (scratch) | 512x1024 | 320000 | 8.9 | 14.77 | 67.87 | 69.78 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/mobilenet_v3/mobilenet-v3-d8-scratch_lraspp_4xb4-320k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/mobilenet_v3/lraspp_m-v3-d8_scratch_512x1024_320k_cityscapes/lraspp_m-v3-d8_scratch_512x1024_320k_cityscapes_20201224_220337-9f29cd72.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/mobilenet_v3/lraspp_m-v3-d8_scratch_512x1024_320k_cityscapes/lraspp_m-v3-d8_scratch_512x1024_320k_cityscapes-20201224_220337.log.json) | -| LRASPP | M-V3s-D8 | 512x1024 | 320000 | 5.3 | 23.64 | 64.11 | 66.42 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/mobilenet_v3/mobilenet-v3-d8-s_lraspp_4xb4-320k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/mobilenet_v3/lraspp_m-v3s-d8_512x1024_320k_cityscapes/lraspp_m-v3s-d8_512x1024_320k_cityscapes_20201224_223935-61565b34.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/mobilenet_v3/lraspp_m-v3s-d8_512x1024_320k_cityscapes/lraspp_m-v3s-d8_512x1024_320k_cityscapes-20201224_223935.log.json) | -| LRASPP | M-V3s-D8 (scratch) | 512x1024 | 320000 | 5.3 | 24.50 | 62.74 | 65.01 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/mobilenet_v3/mobilenet-v3-d8-scratch-s_lraspp_4xb4-320k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/mobilenet_v3/lraspp_m-v3s-d8_scratch_512x1024_320k_cityscapes/lraspp_m-v3s-d8_scratch_512x1024_320k_cityscapes_20201224_223935-03daeabb.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/mobilenet_v3/lraspp_m-v3s-d8_scratch_512x1024_320k_cityscapes/lraspp_m-v3s-d8_scratch_512x1024_320k_cityscapes-20201224_223935.log.json) | diff --git a/configs/mobilenet_v3/metafile.yaml b/configs/mobilenet_v3/metafile.yaml new file mode 100644 index 0000000000..0351d3b8e4 --- /dev/null +++ b/configs/mobilenet_v3/metafile.yaml @@ -0,0 +1,109 @@ +Collections: +- Name: LRASPP + License: Apache License 2.0 + Metadata: + Training Data: + - Cityscapes + Paper: + Title: Searching for MobileNetV3 + URL: https://arxiv.org/abs/1905.02244 + README: configs/mobilenet_v3/README.md + Frameworks: + - PyTorch +Models: +- Name: mobilenet-v3-d8_lraspp_4xb4-320k_cityscapes-512x1024 + In Collection: LRASPP + Results: + Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 69.54 + mIoU(ms+flip): 70.89 + Config: configs/mobilenet_v3/mobilenet-v3-d8_lraspp_4xb4-320k_cityscapes-512x1024.py + Metadata: + Training Data: Cityscapes + Batch Size: 16 + Architecture: + - M-V3-D8 + - LRASPP + Training Resources: 4x V100 GPUS + Memory (GB): 8.9 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/mobilenet_v3/lraspp_m-v3-d8_512x1024_320k_cityscapes/lraspp_m-v3-d8_512x1024_320k_cityscapes_20201224_220337-cfe8fb07.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/mobilenet_v3/lraspp_m-v3-d8_512x1024_320k_cityscapes/lraspp_m-v3-d8_512x1024_320k_cityscapes-20201224_220337.log.json + Paper: + Title: Searching for MobileNetV3 + URL: https://arxiv.org/abs/1905.02244 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/backbones/mobilenet_v3.py#L15 + Framework: PyTorch +- Name: mobilenet-v3-d8-scratch_lraspp_4xb4-320k_cityscapes-512x1024 + In Collection: LRASPP + Results: + Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 67.87 + mIoU(ms+flip): 69.78 + Config: configs/mobilenet_v3/mobilenet-v3-d8-scratch_lraspp_4xb4-320k_cityscapes-512x1024.py + Metadata: + Training Data: Cityscapes + Batch Size: 16 + Architecture: + - M-V3-D8 + - LRASPP + Training Resources: 4x V100 GPUS + Memory (GB): 8.9 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/mobilenet_v3/lraspp_m-v3-d8_scratch_512x1024_320k_cityscapes/lraspp_m-v3-d8_scratch_512x1024_320k_cityscapes_20201224_220337-9f29cd72.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/mobilenet_v3/lraspp_m-v3-d8_scratch_512x1024_320k_cityscapes/lraspp_m-v3-d8_scratch_512x1024_320k_cityscapes-20201224_220337.log.json + Paper: + Title: Searching for MobileNetV3 + URL: https://arxiv.org/abs/1905.02244 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/backbones/mobilenet_v3.py#L15 + Framework: PyTorch +- Name: mobilenet-v3-d8-s_lraspp_4xb4-320k_cityscapes-512x1024 + In Collection: LRASPP + Results: + Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 64.11 + mIoU(ms+flip): 66.42 + Config: configs/mobilenet_v3/mobilenet-v3-d8-s_lraspp_4xb4-320k_cityscapes-512x1024.py + Metadata: + Training Data: Cityscapes + Batch Size: 16 + Architecture: + - M-V3s-D8 + - LRASPP + Training Resources: 4x V100 GPUS + Memory (GB): 5.3 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/mobilenet_v3/lraspp_m-v3s-d8_512x1024_320k_cityscapes/lraspp_m-v3s-d8_512x1024_320k_cityscapes_20201224_223935-61565b34.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/mobilenet_v3/lraspp_m-v3s-d8_512x1024_320k_cityscapes/lraspp_m-v3s-d8_512x1024_320k_cityscapes-20201224_223935.log.json + Paper: + Title: Searching for MobileNetV3 + URL: https://arxiv.org/abs/1905.02244 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/backbones/mobilenet_v3.py#L15 + Framework: PyTorch +- Name: mobilenet-v3-d8-scratch-s_lraspp_4xb4-320k_cityscapes-512x1024 + In Collection: LRASPP + Results: + Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 62.74 + mIoU(ms+flip): 65.01 + Config: configs/mobilenet_v3/mobilenet-v3-d8-scratch-s_lraspp_4xb4-320k_cityscapes-512x1024.py + Metadata: + Training Data: Cityscapes + Batch Size: 16 + Architecture: + - M-V3s-D8 + - LRASPP + Training Resources: 4x V100 GPUS + Memory (GB): 5.3 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/mobilenet_v3/lraspp_m-v3s-d8_scratch_512x1024_320k_cityscapes/lraspp_m-v3s-d8_scratch_512x1024_320k_cityscapes_20201224_223935-03daeabb.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/mobilenet_v3/lraspp_m-v3s-d8_scratch_512x1024_320k_cityscapes/lraspp_m-v3s-d8_scratch_512x1024_320k_cityscapes-20201224_223935.log.json + Paper: + Title: Searching for MobileNetV3 + URL: https://arxiv.org/abs/1905.02244 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/backbones/mobilenet_v3.py#L15 + Framework: PyTorch diff --git a/configs/mobilenet_v3/mobilenet_v3.yml b/configs/mobilenet_v3/mobilenet_v3.yml deleted file mode 100644 index 067a150cea..0000000000 --- a/configs/mobilenet_v3/mobilenet_v3.yml +++ /dev/null @@ -1,103 +0,0 @@ -Collections: -- Name: LRASPP - Metadata: - Training Data: - - Cityscapes - Paper: - URL: https://arxiv.org/abs/1905.02244 - Title: Searching for MobileNetV3 - README: configs/mobilenet_v3/README.md - Code: - URL: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/backbones/mobilenet_v3.py#L15 - Version: v0.17.0 - Converted From: - Code: https://github.com/tensorflow/models/tree/master/research/deeplab -Models: -- Name: mobilenet-v3-d8_lraspp_4xb4-320k_cityscapes-512x1024 - In Collection: LRASPP - Metadata: - backbone: M-V3-D8 - crop size: (512,1024) - lr schd: 320000 - inference time (ms/im): - - value: 65.7 - hardware: V100 - backend: PyTorch - batch size: 1 - mode: FP32 - resolution: (512,1024) - Training Memory (GB): 8.9 - Results: - - Task: Semantic Segmentation - Dataset: Cityscapes - Metrics: - mIoU: 69.54 - mIoU(ms+flip): 70.89 - Config: configs/mobilenet_v3/mobilenet-v3-d8_lraspp_4xb4-320k_cityscapes-512x1024.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/mobilenet_v3/lraspp_m-v3-d8_512x1024_320k_cityscapes/lraspp_m-v3-d8_512x1024_320k_cityscapes_20201224_220337-cfe8fb07.pth -- Name: mobilenet-v3-d8-scratch_lraspp_4xb4-320k_cityscapes-512x1024 - In Collection: LRASPP - Metadata: - backbone: M-V3-D8 (scratch) - crop size: (512,1024) - lr schd: 320000 - inference time (ms/im): - - value: 67.7 - hardware: V100 - backend: PyTorch - batch size: 1 - mode: FP32 - resolution: (512,1024) - Training Memory (GB): 8.9 - Results: - - Task: Semantic Segmentation - Dataset: Cityscapes - Metrics: - mIoU: 67.87 - mIoU(ms+flip): 69.78 - Config: configs/mobilenet_v3/mobilenet-v3-d8-scratch_lraspp_4xb4-320k_cityscapes-512x1024.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/mobilenet_v3/lraspp_m-v3-d8_scratch_512x1024_320k_cityscapes/lraspp_m-v3-d8_scratch_512x1024_320k_cityscapes_20201224_220337-9f29cd72.pth -- Name: mobilenet-v3-d8-s_lraspp_4xb4-320k_cityscapes-512x1024 - In Collection: LRASPP - Metadata: - backbone: M-V3s-D8 - crop size: (512,1024) - lr schd: 320000 - inference time (ms/im): - - value: 42.3 - hardware: V100 - backend: PyTorch - batch size: 1 - mode: FP32 - resolution: (512,1024) - Training Memory (GB): 5.3 - Results: - - Task: Semantic Segmentation - Dataset: Cityscapes - Metrics: - mIoU: 64.11 - mIoU(ms+flip): 66.42 - Config: configs/mobilenet_v3/mobilenet-v3-d8-s_lraspp_4xb4-320k_cityscapes-512x1024.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/mobilenet_v3/lraspp_m-v3s-d8_512x1024_320k_cityscapes/lraspp_m-v3s-d8_512x1024_320k_cityscapes_20201224_223935-61565b34.pth -- Name: mobilenet-v3-d8-scratch-s_lraspp_4xb4-320k_cityscapes-512x1024 - In Collection: LRASPP - Metadata: - backbone: M-V3s-D8 (scratch) - crop size: (512,1024) - lr schd: 320000 - inference time (ms/im): - - value: 40.82 - hardware: V100 - backend: PyTorch - batch size: 1 - mode: FP32 - resolution: (512,1024) - Training Memory (GB): 5.3 - Results: - - Task: Semantic Segmentation - Dataset: Cityscapes - Metrics: - mIoU: 62.74 - mIoU(ms+flip): 65.01 - Config: configs/mobilenet_v3/mobilenet-v3-d8-scratch-s_lraspp_4xb4-320k_cityscapes-512x1024.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/mobilenet_v3/lraspp_m-v3s-d8_scratch_512x1024_320k_cityscapes/lraspp_m-v3s-d8_scratch_512x1024_320k_cityscapes_20201224_223935-03daeabb.pth diff --git a/configs/nonlocal_net/README.md b/configs/nonlocal_net/README.md index 80d45ab589..0a0fcf3725 100644 --- a/configs/nonlocal_net/README.md +++ b/configs/nonlocal_net/README.md @@ -1,6 +1,6 @@ # NonLocal Net -[Non-local Neural Networks](https://arxiv.org/abs/1711.07971) +> [Non-local Neural Networks](https://arxiv.org/abs/1711.07971) ## Introduction @@ -22,6 +22,39 @@ Both convolutional and recurrent operations are building blocks that process one +## Results and models + +### Cityscapes + +| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | Device | mIoU | mIoU(ms+flip) | config | download | +| ----------- | -------- | --------- | ------: | -------- | -------------- | ------ | ----: | ------------- | ----------------------------------------------------------------------------------------------------------------------------------------- | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | +| NonLocalNet | R-50-D8 | 512x1024 | 40000 | 7.4 | 2.72 | V100 | 78.24 | - | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/nonlocal_net/nonlocal_r50-d8_4xb2-40k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/nonlocal_net/nonlocal_r50-d8_512x1024_40k_cityscapes/nonlocal_r50-d8_512x1024_40k_cityscapes_20200605_210748-c75e81e3.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/nonlocal_net/nonlocal_r50-d8_512x1024_40k_cityscapes/nonlocal_r50-d8_512x1024_40k_cityscapes_20200605_210748.log.json) | +| NonLocalNet | R-101-D8 | 512x1024 | 40000 | 10.9 | 1.95 | V100 | 78.66 | - | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/nonlocal_net/nonlocal_r101-d8_4xb2-40k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/nonlocal_net/nonlocal_r101-d8_512x1024_40k_cityscapes/nonlocal_r101-d8_512x1024_40k_cityscapes_20200605_210748-d63729fa.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/nonlocal_net/nonlocal_r101-d8_512x1024_40k_cityscapes/nonlocal_r101-d8_512x1024_40k_cityscapes_20200605_210748.log.json) | +| NonLocalNet | R-50-D8 | 769x769 | 40000 | 8.9 | 1.52 | V100 | 78.33 | 79.92 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/nonlocal_net/nonlocal_r50-d8_4xb2-40k_cityscapes-769x769.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/nonlocal_net/nonlocal_r50-d8_769x769_40k_cityscapes/nonlocal_r50-d8_769x769_40k_cityscapes_20200530_045243-82ef6749.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/nonlocal_net/nonlocal_r50-d8_769x769_40k_cityscapes/nonlocal_r50-d8_769x769_40k_cityscapes_20200530_045243.log.json) | +| NonLocalNet | R-101-D8 | 769x769 | 40000 | 12.8 | 1.05 | V100 | 78.57 | 80.29 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/nonlocal_net/nonlocal_r101-d8_4xb2-40k_cityscapes-769x769.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/nonlocal_net/nonlocal_r101-d8_769x769_40k_cityscapes/nonlocal_r101-d8_769x769_40k_cityscapes_20200530_045348-8fe9a9dc.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/nonlocal_net/nonlocal_r101-d8_769x769_40k_cityscapes/nonlocal_r101-d8_769x769_40k_cityscapes_20200530_045348.log.json) | +| NonLocalNet | R-50-D8 | 512x1024 | 80000 | - | - | V100 | 78.01 | - | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/nonlocal_net/nonlocal_r50-d8_4xb2-80k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/nonlocal_net/nonlocal_r50-d8_512x1024_80k_cityscapes/nonlocal_r50-d8_512x1024_80k_cityscapes_20200607_193518-d6839fae.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/nonlocal_net/nonlocal_r50-d8_512x1024_80k_cityscapes/nonlocal_r50-d8_512x1024_80k_cityscapes_20200607_193518.log.json) | +| NonLocalNet | R-101-D8 | 512x1024 | 80000 | - | - | V100 | 78.93 | - | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/nonlocal_net/nonlocal_r101-d8_4xb2-80k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/nonlocal_net/nonlocal_r101-d8_512x1024_80k_cityscapes/nonlocal_r101-d8_512x1024_80k_cityscapes_20200607_183411-32700183.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/nonlocal_net/nonlocal_r101-d8_512x1024_80k_cityscapes/nonlocal_r101-d8_512x1024_80k_cityscapes_20200607_183411.log.json) | +| NonLocalNet | R-50-D8 | 769x769 | 80000 | - | - | V100 | 79.05 | 80.68 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/nonlocal_net/nonlocal_r50-d8_4xb2-80k_cityscapes-769x769.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/nonlocal_net/nonlocal_r50-d8_769x769_80k_cityscapes/nonlocal_r50-d8_769x769_80k_cityscapes_20200607_193506-1f9792f6.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/nonlocal_net/nonlocal_r50-d8_769x769_80k_cityscapes/nonlocal_r50-d8_769x769_80k_cityscapes_20200607_193506.log.json) | +| NonLocalNet | R-101-D8 | 769x769 | 80000 | - | - | V100 | 79.40 | 80.85 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/nonlocal_net/nonlocal_r101-d8_4xb2-80k_cityscapes-769x769.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/nonlocal_net/nonlocal_r101-d8_769x769_80k_cityscapes/nonlocal_r101-d8_769x769_80k_cityscapes_20200607_183428-0e1fa4f9.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/nonlocal_net/nonlocal_r101-d8_769x769_80k_cityscapes/nonlocal_r101-d8_769x769_80k_cityscapes_20200607_183428.log.json) | + +### ADE20K + +| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | Device | mIoU | mIoU(ms+flip) | config | download | +| ----------- | -------- | --------- | ------: | -------- | -------------- | ------ | ----: | ------------: | ------------------------------------------------------------------------------------------------------------------------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ | +| NonLocalNet | R-50-D8 | 512x512 | 80000 | 9.1 | 21.37 | V100 | 40.75 | 42.05 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/nonlocal_net/nonlocal_r50-d8_4xb4-80k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/nonlocal_net/nonlocal_r50-d8_512x512_80k_ade20k/nonlocal_r50-d8_512x512_80k_ade20k_20200615_015801-5ae0aa33.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/nonlocal_net/nonlocal_r50-d8_512x512_80k_ade20k/nonlocal_r50-d8_512x512_80k_ade20k_20200615_015801.log.json) | +| NonLocalNet | R-101-D8 | 512x512 | 80000 | 12.6 | 13.97 | V100 | 42.90 | 44.27 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/nonlocal_net/nonlocal_r101-d8_4xb4-80k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/nonlocal_net/nonlocal_r101-d8_512x512_80k_ade20k/nonlocal_r101-d8_512x512_80k_ade20k_20200615_015758-24105919.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/nonlocal_net/nonlocal_r101-d8_512x512_80k_ade20k/nonlocal_r101-d8_512x512_80k_ade20k_20200615_015758.log.json) | +| NonLocalNet | R-50-D8 | 512x512 | 160000 | - | - | V100 | 42.03 | 43.04 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/nonlocal_net/nonlocal_r50-d8_4xb4-160k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/nonlocal_net/nonlocal_r50-d8_512x512_160k_ade20k/nonlocal_r50-d8_512x512_160k_ade20k_20200616_005410-baef45e3.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/nonlocal_net/nonlocal_r50-d8_512x512_160k_ade20k/nonlocal_r50-d8_512x512_160k_ade20k_20200616_005410.log.json) | +| NonLocalNet | R-101-D8 | 512x512 | 160000 | - | - | V100 | 44.63 | 45.79 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/nonlocal_net/nonlocal_r101-d8_4xb4-160k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/nonlocal_net/nonlocal_r101-d8_512x512_160k_ade20k/nonlocal_r101-d8_512x512_160k_ade20k_20210827_221502-7881aa1a.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/nonlocal_net/nonlocal_r101-d8_512x512_160k_ade20k/nonlocal_r101-d8_512x512_160k_ade20k_20210827_221502.log.json) | + +### Pascal VOC 2012 + Aug + +| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | Device | mIoU | mIoU(ms+flip) | config | download | +| ----------- | -------- | --------- | ------: | -------- | -------------- | ------ | ----: | ------------: | -------------------------------------------------------------------------------------------------------------------------------------- | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | +| NonLocalNet | R-50-D8 | 512x512 | 20000 | 6.4 | 21.21 | V100 | 76.20 | 77.12 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/nonlocal_net/nonlocal_r50-d8_4xb4-20k_voc12aug-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/nonlocal_net/nonlocal_r50-d8_512x512_20k_voc12aug/nonlocal_r50-d8_512x512_20k_voc12aug_20200617_222613-07f2a57c.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/nonlocal_net/nonlocal_r50-d8_512x512_20k_voc12aug/nonlocal_r50-d8_512x512_20k_voc12aug_20200617_222613.log.json) | +| NonLocalNet | R-101-D8 | 512x512 | 20000 | 9.8 | 14.01 | V100 | 78.15 | 78.86 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/nonlocal_net/nonlocal_r101-d8_4xb4-20k_voc12aug-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/nonlocal_net/nonlocal_r101-d8_512x512_20k_voc12aug/nonlocal_r101-d8_512x512_20k_voc12aug_20200617_222615-948c68ab.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/nonlocal_net/nonlocal_r101-d8_512x512_20k_voc12aug/nonlocal_r101-d8_512x512_20k_voc12aug_20200617_222615.log.json) | +| NonLocalNet | R-50-D8 | 512x512 | 40000 | - | - | V100 | 76.65 | 77.47 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/nonlocal_net/nonlocal_r50-d8_4xb4-40k_voc12aug-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/nonlocal_net/nonlocal_r50-d8_512x512_40k_voc12aug/nonlocal_r50-d8_512x512_40k_voc12aug_20200614_000028-0139d4a9.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/nonlocal_net/nonlocal_r50-d8_512x512_40k_voc12aug/nonlocal_r50-d8_512x512_40k_voc12aug_20200614_000028.log.json) | +| NonLocalNet | R-101-D8 | 512x512 | 40000 | - | - | V100 | 78.27 | 79.12 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/nonlocal_net/nonlocal_r101-d8_4xb4-40k_voc12aug-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/nonlocal_net/nonlocal_r101-d8_512x512_40k_voc12aug/nonlocal_r101-d8_512x512_40k_voc12aug_20200614_000028-7e5ff470.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/nonlocal_net/nonlocal_r101-d8_512x512_40k_voc12aug/nonlocal_r101-d8_512x512_40k_voc12aug_20200614_000028.log.json) | + ## Citation ```bibtex @@ -33,36 +66,3 @@ Both convolutional and recurrent operations are building blocks that process one year={2018} } ``` - -## Results and models - -### Cityscapes - -| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | mIoU | mIoU(ms+flip) | config | download | -| ----------- | -------- | --------- | ------: | -------- | -------------- | ----: | ------------- | ----------------------------------------------------------------------------------------------------------------------------------------- | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | -| NonLocalNet | R-50-D8 | 512x1024 | 40000 | 7.4 | 2.72 | 78.24 | - | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/nonlocal_net/nonlocal_r50-d8_4xb2-40k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/nonlocal_net/nonlocal_r50-d8_512x1024_40k_cityscapes/nonlocal_r50-d8_512x1024_40k_cityscapes_20200605_210748-c75e81e3.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/nonlocal_net/nonlocal_r50-d8_512x1024_40k_cityscapes/nonlocal_r50-d8_512x1024_40k_cityscapes_20200605_210748.log.json) | -| NonLocalNet | R-101-D8 | 512x1024 | 40000 | 10.9 | 1.95 | 78.66 | - | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/nonlocal_net/nonlocal_r101-d8_4xb2-40k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/nonlocal_net/nonlocal_r101-d8_512x1024_40k_cityscapes/nonlocal_r101-d8_512x1024_40k_cityscapes_20200605_210748-d63729fa.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/nonlocal_net/nonlocal_r101-d8_512x1024_40k_cityscapes/nonlocal_r101-d8_512x1024_40k_cityscapes_20200605_210748.log.json) | -| NonLocalNet | R-50-D8 | 769x769 | 40000 | 8.9 | 1.52 | 78.33 | 79.92 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/nonlocal_net/nonlocal_r50-d8_4xb2-40k_cityscapes-769x769.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/nonlocal_net/nonlocal_r50-d8_769x769_40k_cityscapes/nonlocal_r50-d8_769x769_40k_cityscapes_20200530_045243-82ef6749.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/nonlocal_net/nonlocal_r50-d8_769x769_40k_cityscapes/nonlocal_r50-d8_769x769_40k_cityscapes_20200530_045243.log.json) | -| NonLocalNet | R-101-D8 | 769x769 | 40000 | 12.8 | 1.05 | 78.57 | 80.29 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/nonlocal_net/nonlocal_r101-d8_4xb2-40k_cityscapes-769x769.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/nonlocal_net/nonlocal_r101-d8_769x769_40k_cityscapes/nonlocal_r101-d8_769x769_40k_cityscapes_20200530_045348-8fe9a9dc.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/nonlocal_net/nonlocal_r101-d8_769x769_40k_cityscapes/nonlocal_r101-d8_769x769_40k_cityscapes_20200530_045348.log.json) | -| NonLocalNet | R-50-D8 | 512x1024 | 80000 | - | - | 78.01 | - | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/nonlocal_net/nonlocal_r50-d8_4xb2-80k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/nonlocal_net/nonlocal_r50-d8_512x1024_80k_cityscapes/nonlocal_r50-d8_512x1024_80k_cityscapes_20200607_193518-d6839fae.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/nonlocal_net/nonlocal_r50-d8_512x1024_80k_cityscapes/nonlocal_r50-d8_512x1024_80k_cityscapes_20200607_193518.log.json) | -| NonLocalNet | R-101-D8 | 512x1024 | 80000 | - | - | 78.93 | - | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/nonlocal_net/nonlocal_r101-d8_4xb2-80k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/nonlocal_net/nonlocal_r101-d8_512x1024_80k_cityscapes/nonlocal_r101-d8_512x1024_80k_cityscapes_20200607_183411-32700183.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/nonlocal_net/nonlocal_r101-d8_512x1024_80k_cityscapes/nonlocal_r101-d8_512x1024_80k_cityscapes_20200607_183411.log.json) | -| NonLocalNet | R-50-D8 | 769x769 | 80000 | - | - | 79.05 | 80.68 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/nonlocal_net/nonlocal_r50-d8_4xb2-80k_cityscapes-769x769.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/nonlocal_net/nonlocal_r50-d8_769x769_80k_cityscapes/nonlocal_r50-d8_769x769_80k_cityscapes_20200607_193506-1f9792f6.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/nonlocal_net/nonlocal_r50-d8_769x769_80k_cityscapes/nonlocal_r50-d8_769x769_80k_cityscapes_20200607_193506.log.json) | -| NonLocalNet | R-101-D8 | 769x769 | 80000 | - | - | 79.40 | 80.85 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/nonlocal_net/nonlocal_r101-d8_4xb2-80k_cityscapes-769x769.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/nonlocal_net/nonlocal_r101-d8_769x769_80k_cityscapes/nonlocal_r101-d8_769x769_80k_cityscapes_20200607_183428-0e1fa4f9.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/nonlocal_net/nonlocal_r101-d8_769x769_80k_cityscapes/nonlocal_r101-d8_769x769_80k_cityscapes_20200607_183428.log.json) | - -### ADE20K - -| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | mIoU | mIoU(ms+flip) | config | download | -| ----------- | -------- | --------- | ------: | -------- | -------------- | ----: | ------------: | ------------------------------------------------------------------------------------------------------------------------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ | -| NonLocalNet | R-50-D8 | 512x512 | 80000 | 9.1 | 21.37 | 40.75 | 42.05 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/nonlocal_net/nonlocal_r50-d8_4xb4-80k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/nonlocal_net/nonlocal_r50-d8_512x512_80k_ade20k/nonlocal_r50-d8_512x512_80k_ade20k_20200615_015801-5ae0aa33.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/nonlocal_net/nonlocal_r50-d8_512x512_80k_ade20k/nonlocal_r50-d8_512x512_80k_ade20k_20200615_015801.log.json) | -| NonLocalNet | R-101-D8 | 512x512 | 80000 | 12.6 | 13.97 | 42.90 | 44.27 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/nonlocal_net/nonlocal_r101-d8_4xb4-80k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/nonlocal_net/nonlocal_r101-d8_512x512_80k_ade20k/nonlocal_r101-d8_512x512_80k_ade20k_20200615_015758-24105919.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/nonlocal_net/nonlocal_r101-d8_512x512_80k_ade20k/nonlocal_r101-d8_512x512_80k_ade20k_20200615_015758.log.json) | -| NonLocalNet | R-50-D8 | 512x512 | 160000 | - | - | 42.03 | 43.04 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/nonlocal_net/nonlocal_r50-d8_4xb4-160k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/nonlocal_net/nonlocal_r50-d8_512x512_160k_ade20k/nonlocal_r50-d8_512x512_160k_ade20k_20200616_005410-baef45e3.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/nonlocal_net/nonlocal_r50-d8_512x512_160k_ade20k/nonlocal_r50-d8_512x512_160k_ade20k_20200616_005410.log.json) | -| NonLocalNet | R-101-D8 | 512x512 | 160000 | - | - | 44.63 | 45.79 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/nonlocal_net/nonlocal_r101-d8_4xb4-160k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/nonlocal_net/nonlocal_r101-d8_512x512_160k_ade20k/nonlocal_r101-d8_512x512_160k_ade20k_20210827_221502-7881aa1a.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/nonlocal_net/nonlocal_r101-d8_512x512_160k_ade20k/nonlocal_r101-d8_512x512_160k_ade20k_20210827_221502.log.json) | - -### Pascal VOC 2012 + Aug - -| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | mIoU | mIoU(ms+flip) | config | download | -| ----------- | -------- | --------- | ------: | -------- | -------------- | ----: | ------------: | -------------------------------------------------------------------------------------------------------------------------------------- | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | -| NonLocalNet | R-50-D8 | 512x512 | 20000 | 6.4 | 21.21 | 76.20 | 77.12 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/nonlocal_net/nonlocal_r50-d8_4xb4-20k_voc12aug-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/nonlocal_net/nonlocal_r50-d8_512x512_20k_voc12aug/nonlocal_r50-d8_512x512_20k_voc12aug_20200617_222613-07f2a57c.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/nonlocal_net/nonlocal_r50-d8_512x512_20k_voc12aug/nonlocal_r50-d8_512x512_20k_voc12aug_20200617_222613.log.json) | -| NonLocalNet | R-101-D8 | 512x512 | 20000 | 9.8 | 14.01 | 78.15 | 78.86 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/nonlocal_net/nonlocal_r101-d8_4xb4-20k_voc12aug-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/nonlocal_net/nonlocal_r101-d8_512x512_20k_voc12aug/nonlocal_r101-d8_512x512_20k_voc12aug_20200617_222615-948c68ab.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/nonlocal_net/nonlocal_r101-d8_512x512_20k_voc12aug/nonlocal_r101-d8_512x512_20k_voc12aug_20200617_222615.log.json) | -| NonLocalNet | R-50-D8 | 512x512 | 40000 | - | - | 76.65 | 77.47 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/nonlocal_net/nonlocal_r50-d8_4xb4-40k_voc12aug-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/nonlocal_net/nonlocal_r50-d8_512x512_40k_voc12aug/nonlocal_r50-d8_512x512_40k_voc12aug_20200614_000028-0139d4a9.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/nonlocal_net/nonlocal_r50-d8_512x512_40k_voc12aug/nonlocal_r50-d8_512x512_40k_voc12aug_20200614_000028.log.json) | -| NonLocalNet | R-101-D8 | 512x512 | 40000 | - | - | 78.27 | 79.12 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/nonlocal_net/nonlocal_r101-d8_4xb4-40k_voc12aug-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/nonlocal_net/nonlocal_r101-d8_512x512_40k_voc12aug/nonlocal_r101-d8_512x512_40k_voc12aug_20200614_000028-7e5ff470.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/nonlocal_net/nonlocal_r101-d8_512x512_40k_voc12aug/nonlocal_r101-d8_512x512_40k_voc12aug_20200614_000028.log.json) | diff --git a/configs/nonlocal_net/metafile.yaml b/configs/nonlocal_net/metafile.yaml new file mode 100644 index 0000000000..69bd72570b --- /dev/null +++ b/configs/nonlocal_net/metafile.yaml @@ -0,0 +1,387 @@ +Collections: +- Name: NonLocalNet + License: Apache License 2.0 + Metadata: + Training Data: + - Cityscapes + - ADE20K + - Pascal VOC 2012 + Aug + Paper: + Title: Non-local Neural Networks + URL: https://arxiv.org/abs/1711.07971 + README: configs/nonlocal_net/README.md + Frameworks: + - PyTorch +Models: +- Name: nonlocal_r50-d8_4xb2-40k_cityscapes-512x1024 + In Collection: NonLocalNet + Results: + Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 78.24 + Config: configs/nonlocal_net/nonlocal_r50-d8_4xb2-40k_cityscapes-512x1024.py + Metadata: + Training Data: Cityscapes + Batch Size: 8 + Architecture: + - R-50-D8 + - NonLocalNet + Training Resources: 4x V100 GPUS + Memory (GB): 7.4 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/nonlocal_net/nonlocal_r50-d8_512x1024_40k_cityscapes/nonlocal_r50-d8_512x1024_40k_cityscapes_20200605_210748-c75e81e3.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/nonlocal_net/nonlocal_r50-d8_512x1024_40k_cityscapes/nonlocal_r50-d8_512x1024_40k_cityscapes_20200605_210748.log.json + Paper: + Title: Non-local Neural Networks + URL: https://arxiv.org/abs/1711.07971 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/nl_head.py#L10 + Framework: PyTorch +- Name: nonlocal_r101-d8_4xb2-40k_cityscapes-512x1024 + In Collection: NonLocalNet + Results: + Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 78.66 + Config: configs/nonlocal_net/nonlocal_r101-d8_4xb2-40k_cityscapes-512x1024.py + Metadata: + Training Data: Cityscapes + Batch Size: 8 + Architecture: + - R-101-D8 + - NonLocalNet + Training Resources: 4x V100 GPUS + Memory (GB): 10.9 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/nonlocal_net/nonlocal_r101-d8_512x1024_40k_cityscapes/nonlocal_r101-d8_512x1024_40k_cityscapes_20200605_210748-d63729fa.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/nonlocal_net/nonlocal_r101-d8_512x1024_40k_cityscapes/nonlocal_r101-d8_512x1024_40k_cityscapes_20200605_210748.log.json + Paper: + Title: Non-local Neural Networks + URL: https://arxiv.org/abs/1711.07971 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/nl_head.py#L10 + Framework: PyTorch +- Name: nonlocal_r50-d8_4xb2-40k_cityscapes-769x769 + In Collection: NonLocalNet + Results: + Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 78.33 + mIoU(ms+flip): 79.92 + Config: configs/nonlocal_net/nonlocal_r50-d8_4xb2-40k_cityscapes-769x769.py + Metadata: + Training Data: Cityscapes + Batch Size: 8 + Architecture: + - R-50-D8 + - NonLocalNet + Training Resources: 4x V100 GPUS + Memory (GB): 8.9 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/nonlocal_net/nonlocal_r50-d8_769x769_40k_cityscapes/nonlocal_r50-d8_769x769_40k_cityscapes_20200530_045243-82ef6749.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/nonlocal_net/nonlocal_r50-d8_769x769_40k_cityscapes/nonlocal_r50-d8_769x769_40k_cityscapes_20200530_045243.log.json + Paper: + Title: Non-local Neural Networks + URL: https://arxiv.org/abs/1711.07971 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/nl_head.py#L10 + Framework: PyTorch +- Name: nonlocal_r101-d8_4xb2-40k_cityscapes-769x769 + In Collection: NonLocalNet + Results: + Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 78.57 + mIoU(ms+flip): 80.29 + Config: configs/nonlocal_net/nonlocal_r101-d8_4xb2-40k_cityscapes-769x769.py + Metadata: + Training Data: Cityscapes + Batch Size: 8 + Architecture: + - R-101-D8 + - NonLocalNet + Training Resources: 4x V100 GPUS + Memory (GB): 12.8 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/nonlocal_net/nonlocal_r101-d8_769x769_40k_cityscapes/nonlocal_r101-d8_769x769_40k_cityscapes_20200530_045348-8fe9a9dc.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/nonlocal_net/nonlocal_r101-d8_769x769_40k_cityscapes/nonlocal_r101-d8_769x769_40k_cityscapes_20200530_045348.log.json + Paper: + Title: Non-local Neural Networks + URL: https://arxiv.org/abs/1711.07971 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/nl_head.py#L10 + Framework: PyTorch +- Name: nonlocal_r50-d8_4xb2-80k_cityscapes-512x1024 + In Collection: NonLocalNet + Results: + Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 78.01 + Config: configs/nonlocal_net/nonlocal_r50-d8_4xb2-80k_cityscapes-512x1024.py + Metadata: + Training Data: Cityscapes + Batch Size: 8 + Architecture: + - R-50-D8 + - NonLocalNet + Training Resources: 4x V100 GPUS + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/nonlocal_net/nonlocal_r50-d8_512x1024_80k_cityscapes/nonlocal_r50-d8_512x1024_80k_cityscapes_20200607_193518-d6839fae.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/nonlocal_net/nonlocal_r50-d8_512x1024_80k_cityscapes/nonlocal_r50-d8_512x1024_80k_cityscapes_20200607_193518.log.json + Paper: + Title: Non-local Neural Networks + URL: https://arxiv.org/abs/1711.07971 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/nl_head.py#L10 + Framework: PyTorch +- Name: nonlocal_r101-d8_4xb2-80k_cityscapes-512x1024 + In Collection: NonLocalNet + Results: + Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 78.93 + Config: configs/nonlocal_net/nonlocal_r101-d8_4xb2-80k_cityscapes-512x1024.py + Metadata: + Training Data: Cityscapes + Batch Size: 8 + Architecture: + - R-101-D8 + - NonLocalNet + Training Resources: 4x V100 GPUS + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/nonlocal_net/nonlocal_r101-d8_512x1024_80k_cityscapes/nonlocal_r101-d8_512x1024_80k_cityscapes_20200607_183411-32700183.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/nonlocal_net/nonlocal_r101-d8_512x1024_80k_cityscapes/nonlocal_r101-d8_512x1024_80k_cityscapes_20200607_183411.log.json + Paper: + Title: Non-local Neural Networks + URL: https://arxiv.org/abs/1711.07971 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/nl_head.py#L10 + Framework: PyTorch +- Name: nonlocal_r50-d8_4xb2-80k_cityscapes-769x769 + In Collection: NonLocalNet + Results: + Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 79.05 + mIoU(ms+flip): 80.68 + Config: configs/nonlocal_net/nonlocal_r50-d8_4xb2-80k_cityscapes-769x769.py + Metadata: + Training Data: Cityscapes + Batch Size: 8 + Architecture: + - R-50-D8 + - NonLocalNet + Training Resources: 4x V100 GPUS + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/nonlocal_net/nonlocal_r50-d8_769x769_80k_cityscapes/nonlocal_r50-d8_769x769_80k_cityscapes_20200607_193506-1f9792f6.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/nonlocal_net/nonlocal_r50-d8_769x769_80k_cityscapes/nonlocal_r50-d8_769x769_80k_cityscapes_20200607_193506.log.json + Paper: + Title: Non-local Neural Networks + URL: https://arxiv.org/abs/1711.07971 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/nl_head.py#L10 + Framework: PyTorch +- Name: nonlocal_r101-d8_4xb2-80k_cityscapes-769x769 + In Collection: NonLocalNet + Results: + Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 79.4 + mIoU(ms+flip): 80.85 + Config: configs/nonlocal_net/nonlocal_r101-d8_4xb2-80k_cityscapes-769x769.py + Metadata: + Training Data: Cityscapes + Batch Size: 8 + Architecture: + - R-101-D8 + - NonLocalNet + Training Resources: 4x V100 GPUS + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/nonlocal_net/nonlocal_r101-d8_769x769_80k_cityscapes/nonlocal_r101-d8_769x769_80k_cityscapes_20200607_183428-0e1fa4f9.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/nonlocal_net/nonlocal_r101-d8_769x769_80k_cityscapes/nonlocal_r101-d8_769x769_80k_cityscapes_20200607_183428.log.json + Paper: + Title: Non-local Neural Networks + URL: https://arxiv.org/abs/1711.07971 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/nl_head.py#L10 + Framework: PyTorch +- Name: nonlocal_r50-d8_4xb4-80k_ade20k-512x512 + In Collection: NonLocalNet + Results: + Task: Semantic Segmentation + Dataset: ADE20K + Metrics: + mIoU: 40.75 + mIoU(ms+flip): 42.05 + Config: configs/nonlocal_net/nonlocal_r50-d8_4xb4-80k_ade20k-512x512.py + Metadata: + Training Data: ADE20K + Batch Size: 16 + Architecture: + - R-50-D8 + - NonLocalNet + Training Resources: 4x V100 GPUS + Memory (GB): 9.1 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/nonlocal_net/nonlocal_r50-d8_512x512_80k_ade20k/nonlocal_r50-d8_512x512_80k_ade20k_20200615_015801-5ae0aa33.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/nonlocal_net/nonlocal_r50-d8_512x512_80k_ade20k/nonlocal_r50-d8_512x512_80k_ade20k_20200615_015801.log.json + Paper: + Title: Non-local Neural Networks + URL: https://arxiv.org/abs/1711.07971 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/nl_head.py#L10 + Framework: PyTorch +- Name: nonlocal_r101-d8_4xb4-80k_ade20k-512x512 + In Collection: NonLocalNet + Results: + Task: Semantic Segmentation + Dataset: ADE20K + Metrics: + mIoU: 42.9 + mIoU(ms+flip): 44.27 + Config: configs/nonlocal_net/nonlocal_r101-d8_4xb4-80k_ade20k-512x512.py + Metadata: + Training Data: ADE20K + Batch Size: 16 + Architecture: + - R-101-D8 + - NonLocalNet + Training Resources: 4x V100 GPUS + Memory (GB): 12.6 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/nonlocal_net/nonlocal_r101-d8_512x512_80k_ade20k/nonlocal_r101-d8_512x512_80k_ade20k_20200615_015758-24105919.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/nonlocal_net/nonlocal_r101-d8_512x512_80k_ade20k/nonlocal_r101-d8_512x512_80k_ade20k_20200615_015758.log.json + Paper: + Title: Non-local Neural Networks + URL: https://arxiv.org/abs/1711.07971 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/nl_head.py#L10 + Framework: PyTorch +- Name: nonlocal_r50-d8_4xb4-160k_ade20k-512x512 + In Collection: NonLocalNet + Results: + Task: Semantic Segmentation + Dataset: ADE20K + Metrics: + mIoU: 42.03 + mIoU(ms+flip): 43.04 + Config: configs/nonlocal_net/nonlocal_r50-d8_4xb4-160k_ade20k-512x512.py + Metadata: + Training Data: ADE20K + Batch Size: 16 + Architecture: + - R-50-D8 + - NonLocalNet + Training Resources: 4x V100 GPUS + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/nonlocal_net/nonlocal_r50-d8_512x512_160k_ade20k/nonlocal_r50-d8_512x512_160k_ade20k_20200616_005410-baef45e3.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/nonlocal_net/nonlocal_r50-d8_512x512_160k_ade20k/nonlocal_r50-d8_512x512_160k_ade20k_20200616_005410.log.json + Paper: + Title: Non-local Neural Networks + URL: https://arxiv.org/abs/1711.07971 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/nl_head.py#L10 + Framework: PyTorch +- Name: nonlocal_r101-d8_4xb4-160k_ade20k-512x512 + In Collection: NonLocalNet + Results: + Task: Semantic Segmentation + Dataset: ADE20K + Metrics: + mIoU: 44.63 + mIoU(ms+flip): 45.79 + Config: configs/nonlocal_net/nonlocal_r101-d8_4xb4-160k_ade20k-512x512.py + Metadata: + Training Data: ADE20K + Batch Size: 16 + Architecture: + - R-101-D8 + - NonLocalNet + Training Resources: 4x V100 GPUS + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/nonlocal_net/nonlocal_r101-d8_512x512_160k_ade20k/nonlocal_r101-d8_512x512_160k_ade20k_20210827_221502-7881aa1a.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/nonlocal_net/nonlocal_r101-d8_512x512_160k_ade20k/nonlocal_r101-d8_512x512_160k_ade20k_20210827_221502.log.json + Paper: + Title: Non-local Neural Networks + URL: https://arxiv.org/abs/1711.07971 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/nl_head.py#L10 + Framework: PyTorch +- Name: nonlocal_r50-d8_4xb4-20k_voc12aug-512x512 + In Collection: NonLocalNet + Results: + Task: Semantic Segmentation + Dataset: Pascal VOC 2012 + Aug + Metrics: + mIoU: 76.2 + mIoU(ms+flip): 77.12 + Config: configs/nonlocal_net/nonlocal_r50-d8_4xb4-20k_voc12aug-512x512.py + Metadata: + Training Data: Pascal VOC 2012 + Aug + Batch Size: 16 + Architecture: + - R-50-D8 + - NonLocalNet + Training Resources: 4x V100 GPUS + Memory (GB): 6.4 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/nonlocal_net/nonlocal_r50-d8_512x512_20k_voc12aug/nonlocal_r50-d8_512x512_20k_voc12aug_20200617_222613-07f2a57c.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/nonlocal_net/nonlocal_r50-d8_512x512_20k_voc12aug/nonlocal_r50-d8_512x512_20k_voc12aug_20200617_222613.log.json + Paper: + Title: Non-local Neural Networks + URL: https://arxiv.org/abs/1711.07971 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/nl_head.py#L10 + Framework: PyTorch +- Name: nonlocal_r101-d8_4xb4-20k_voc12aug-512x512 + In Collection: NonLocalNet + Results: + Task: Semantic Segmentation + Dataset: Pascal VOC 2012 + Aug + Metrics: + mIoU: 78.15 + mIoU(ms+flip): 78.86 + Config: configs/nonlocal_net/nonlocal_r101-d8_4xb4-20k_voc12aug-512x512.py + Metadata: + Training Data: Pascal VOC 2012 + Aug + Batch Size: 16 + Architecture: + - R-101-D8 + - NonLocalNet + Training Resources: 4x V100 GPUS + Memory (GB): 9.8 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/nonlocal_net/nonlocal_r101-d8_512x512_20k_voc12aug/nonlocal_r101-d8_512x512_20k_voc12aug_20200617_222615-948c68ab.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/nonlocal_net/nonlocal_r101-d8_512x512_20k_voc12aug/nonlocal_r101-d8_512x512_20k_voc12aug_20200617_222615.log.json + Paper: + Title: Non-local Neural Networks + URL: https://arxiv.org/abs/1711.07971 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/nl_head.py#L10 + Framework: PyTorch +- Name: nonlocal_r50-d8_4xb4-40k_voc12aug-512x512 + In Collection: NonLocalNet + Results: + Task: Semantic Segmentation + Dataset: Pascal VOC 2012 + Aug + Metrics: + mIoU: 76.65 + mIoU(ms+flip): 77.47 + Config: configs/nonlocal_net/nonlocal_r50-d8_4xb4-40k_voc12aug-512x512.py + Metadata: + Training Data: Pascal VOC 2012 + Aug + Batch Size: 16 + Architecture: + - R-50-D8 + - NonLocalNet + Training Resources: 4x V100 GPUS + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/nonlocal_net/nonlocal_r50-d8_512x512_40k_voc12aug/nonlocal_r50-d8_512x512_40k_voc12aug_20200614_000028-0139d4a9.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/nonlocal_net/nonlocal_r50-d8_512x512_40k_voc12aug/nonlocal_r50-d8_512x512_40k_voc12aug_20200614_000028.log.json + Paper: + Title: Non-local Neural Networks + URL: https://arxiv.org/abs/1711.07971 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/nl_head.py#L10 + Framework: PyTorch +- Name: nonlocal_r101-d8_4xb4-40k_voc12aug-512x512 + In Collection: NonLocalNet + Results: + Task: Semantic Segmentation + Dataset: Pascal VOC 2012 + Aug + Metrics: + mIoU: 78.27 + mIoU(ms+flip): 79.12 + Config: configs/nonlocal_net/nonlocal_r101-d8_4xb4-40k_voc12aug-512x512.py + Metadata: + Training Data: Pascal VOC 2012 + Aug + Batch Size: 16 + Architecture: + - R-101-D8 + - NonLocalNet + Training Resources: 4x V100 GPUS + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/nonlocal_net/nonlocal_r101-d8_512x512_40k_voc12aug/nonlocal_r101-d8_512x512_40k_voc12aug_20200614_000028-7e5ff470.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/nonlocal_net/nonlocal_r101-d8_512x512_40k_voc12aug/nonlocal_r101-d8_512x512_40k_voc12aug_20200614_000028.log.json + Paper: + Title: Non-local Neural Networks + URL: https://arxiv.org/abs/1711.07971 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/nl_head.py#L10 + Framework: PyTorch diff --git a/configs/nonlocal_net/nonlocal_net.yml b/configs/nonlocal_net/nonlocal_net.yml deleted file mode 100644 index 22f32c5abb..0000000000 --- a/configs/nonlocal_net/nonlocal_net.yml +++ /dev/null @@ -1,301 +0,0 @@ -Collections: -- Name: NonLocalNet - Metadata: - Training Data: - - Cityscapes - - ADE20K - - Pascal VOC 2012 + Aug - Paper: - URL: https://arxiv.org/abs/1711.07971 - Title: Non-local Neural Networks - README: configs/nonlocal_net/README.md - Code: - URL: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/nl_head.py#L10 - Version: v0.17.0 - Converted From: - Code: https://github.com/facebookresearch/video-nonlocal-net -Models: -- Name: nonlocal_r50-d8_4xb2-40k_cityscapes-512x1024 - In Collection: NonLocalNet - Metadata: - backbone: R-50-D8 - crop size: (512,1024) - lr schd: 40000 - inference time (ms/im): - - value: 367.65 - hardware: V100 - backend: PyTorch - batch size: 1 - mode: FP32 - resolution: (512,1024) - Training Memory (GB): 7.4 - Results: - - Task: Semantic Segmentation - Dataset: Cityscapes - Metrics: - mIoU: 78.24 - Config: configs/nonlocal_net/nonlocal_r50-d8_4xb2-40k_cityscapes-512x1024.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/nonlocal_net/nonlocal_r50-d8_512x1024_40k_cityscapes/nonlocal_r50-d8_512x1024_40k_cityscapes_20200605_210748-c75e81e3.pth -- Name: nonlocal_r101-d8_4xb2-40k_cityscapes-512x1024 - In Collection: NonLocalNet - Metadata: - backbone: R-101-D8 - crop size: (512,1024) - lr schd: 40000 - inference time (ms/im): - - value: 512.82 - hardware: V100 - backend: PyTorch - batch size: 1 - mode: FP32 - resolution: (512,1024) - Training Memory (GB): 10.9 - Results: - - Task: Semantic Segmentation - Dataset: Cityscapes - Metrics: - mIoU: 78.66 - Config: configs/nonlocal_net/nonlocal_r101-d8_4xb2-40k_cityscapes-512x1024.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/nonlocal_net/nonlocal_r101-d8_512x1024_40k_cityscapes/nonlocal_r101-d8_512x1024_40k_cityscapes_20200605_210748-d63729fa.pth -- Name: nonlocal_r50-d8_4xb2-40k_cityscapes-769x769 - In Collection: NonLocalNet - Metadata: - backbone: R-50-D8 - crop size: (769,769) - lr schd: 40000 - inference time (ms/im): - - value: 657.89 - hardware: V100 - backend: PyTorch - batch size: 1 - mode: FP32 - resolution: (769,769) - Training Memory (GB): 8.9 - Results: - - Task: Semantic Segmentation - Dataset: Cityscapes - Metrics: - mIoU: 78.33 - mIoU(ms+flip): 79.92 - Config: configs/nonlocal_net/nonlocal_r50-d8_4xb2-40k_cityscapes-769x769.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/nonlocal_net/nonlocal_r50-d8_769x769_40k_cityscapes/nonlocal_r50-d8_769x769_40k_cityscapes_20200530_045243-82ef6749.pth -- Name: nonlocal_r101-d8_4xb2-40k_cityscapes-769x769 - In Collection: NonLocalNet - Metadata: - backbone: R-101-D8 - crop size: (769,769) - lr schd: 40000 - inference time (ms/im): - - value: 952.38 - hardware: V100 - backend: PyTorch - batch size: 1 - mode: FP32 - resolution: (769,769) - Training Memory (GB): 12.8 - Results: - - Task: Semantic Segmentation - Dataset: Cityscapes - Metrics: - mIoU: 78.57 - mIoU(ms+flip): 80.29 - Config: configs/nonlocal_net/nonlocal_r101-d8_4xb2-40k_cityscapes-769x769.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/nonlocal_net/nonlocal_r101-d8_769x769_40k_cityscapes/nonlocal_r101-d8_769x769_40k_cityscapes_20200530_045348-8fe9a9dc.pth -- Name: nonlocal_r50-d8_4xb2-80k_cityscapes-512x1024 - In Collection: NonLocalNet - Metadata: - backbone: R-50-D8 - crop size: (512,1024) - lr schd: 80000 - Results: - - Task: Semantic Segmentation - Dataset: Cityscapes - Metrics: - mIoU: 78.01 - Config: configs/nonlocal_net/nonlocal_r50-d8_4xb2-80k_cityscapes-512x1024.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/nonlocal_net/nonlocal_r50-d8_512x1024_80k_cityscapes/nonlocal_r50-d8_512x1024_80k_cityscapes_20200607_193518-d6839fae.pth -- Name: nonlocal_r101-d8_4xb2-80k_cityscapes-512x1024 - In Collection: NonLocalNet - Metadata: - backbone: R-101-D8 - crop size: (512,1024) - lr schd: 80000 - Results: - - Task: Semantic Segmentation - Dataset: Cityscapes - Metrics: - mIoU: 78.93 - Config: configs/nonlocal_net/nonlocal_r101-d8_4xb2-80k_cityscapes-512x1024.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/nonlocal_net/nonlocal_r101-d8_512x1024_80k_cityscapes/nonlocal_r101-d8_512x1024_80k_cityscapes_20200607_183411-32700183.pth -- Name: nonlocal_r50-d8_4xb2-80k_cityscapes-769x769 - In Collection: NonLocalNet - Metadata: - backbone: R-50-D8 - crop size: (769,769) - lr schd: 80000 - Results: - - Task: Semantic Segmentation - Dataset: Cityscapes - Metrics: - mIoU: 79.05 - mIoU(ms+flip): 80.68 - Config: configs/nonlocal_net/nonlocal_r50-d8_4xb2-80k_cityscapes-769x769.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/nonlocal_net/nonlocal_r50-d8_769x769_80k_cityscapes/nonlocal_r50-d8_769x769_80k_cityscapes_20200607_193506-1f9792f6.pth -- Name: nonlocal_r101-d8_4xb2-80k_cityscapes-769x769 - In Collection: NonLocalNet - Metadata: - backbone: R-101-D8 - crop size: (769,769) - lr schd: 80000 - Results: - - Task: Semantic Segmentation - Dataset: Cityscapes - Metrics: - mIoU: 79.4 - mIoU(ms+flip): 80.85 - Config: configs/nonlocal_net/nonlocal_r101-d8_4xb2-80k_cityscapes-769x769.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/nonlocal_net/nonlocal_r101-d8_769x769_80k_cityscapes/nonlocal_r101-d8_769x769_80k_cityscapes_20200607_183428-0e1fa4f9.pth -- Name: nonlocal_r50-d8_4xb4-80k_ade20k-512x512 - In Collection: NonLocalNet - Metadata: - backbone: R-50-D8 - crop size: (512,512) - lr schd: 80000 - inference time (ms/im): - - value: 46.79 - hardware: V100 - backend: PyTorch - batch size: 1 - mode: FP32 - resolution: (512,512) - Training Memory (GB): 9.1 - Results: - - Task: Semantic Segmentation - Dataset: ADE20K - Metrics: - mIoU: 40.75 - mIoU(ms+flip): 42.05 - Config: configs/nonlocal_net/nonlocal_r50-d8_4xb4-80k_ade20k-512x512.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/nonlocal_net/nonlocal_r50-d8_512x512_80k_ade20k/nonlocal_r50-d8_512x512_80k_ade20k_20200615_015801-5ae0aa33.pth -- Name: nonlocal_r101-d8_4xb4-80k_ade20k-512x512 - In Collection: NonLocalNet - Metadata: - backbone: R-101-D8 - crop size: (512,512) - lr schd: 80000 - inference time (ms/im): - - value: 71.58 - hardware: V100 - backend: PyTorch - batch size: 1 - mode: FP32 - resolution: (512,512) - Training Memory (GB): 12.6 - Results: - - Task: Semantic Segmentation - Dataset: ADE20K - Metrics: - mIoU: 42.9 - mIoU(ms+flip): 44.27 - Config: configs/nonlocal_net/nonlocal_r101-d8_4xb4-80k_ade20k-512x512.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/nonlocal_net/nonlocal_r101-d8_512x512_80k_ade20k/nonlocal_r101-d8_512x512_80k_ade20k_20200615_015758-24105919.pth -- Name: nonlocal_r50-d8_4xb4-160k_ade20k-512x512 - In Collection: NonLocalNet - Metadata: - backbone: R-50-D8 - crop size: (512,512) - lr schd: 160000 - Results: - - Task: Semantic Segmentation - Dataset: ADE20K - Metrics: - mIoU: 42.03 - mIoU(ms+flip): 43.04 - Config: configs/nonlocal_net/nonlocal_r50-d8_4xb4-160k_ade20k-512x512.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/nonlocal_net/nonlocal_r50-d8_512x512_160k_ade20k/nonlocal_r50-d8_512x512_160k_ade20k_20200616_005410-baef45e3.pth -- Name: nonlocal_r101-d8_4xb4-160k_ade20k-512x512 - In Collection: NonLocalNet - Metadata: - backbone: R-101-D8 - crop size: (512,512) - lr schd: 160000 - Results: - - Task: Semantic Segmentation - Dataset: ADE20K - Metrics: - mIoU: 44.63 - mIoU(ms+flip): 45.79 - Config: configs/nonlocal_net/nonlocal_r101-d8_4xb4-160k_ade20k-512x512.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/nonlocal_net/nonlocal_r101-d8_512x512_160k_ade20k/nonlocal_r101-d8_512x512_160k_ade20k_20210827_221502-7881aa1a.pth -- Name: nonlocal_r50-d8_4xb4-20k_voc12aug-512x512 - In Collection: NonLocalNet - Metadata: - backbone: R-50-D8 - crop size: (512,512) - lr schd: 20000 - inference time (ms/im): - - value: 47.15 - hardware: V100 - backend: PyTorch - batch size: 1 - mode: FP32 - resolution: (512,512) - Training Memory (GB): 6.4 - Results: - - Task: Semantic Segmentation - Dataset: Pascal VOC 2012 + Aug - Metrics: - mIoU: 76.2 - mIoU(ms+flip): 77.12 - Config: configs/nonlocal_net/nonlocal_r50-d8_4xb4-20k_voc12aug-512x512.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/nonlocal_net/nonlocal_r50-d8_512x512_20k_voc12aug/nonlocal_r50-d8_512x512_20k_voc12aug_20200617_222613-07f2a57c.pth -- Name: nonlocal_r101-d8_4xb4-20k_voc12aug-512x512 - In Collection: NonLocalNet - Metadata: - backbone: R-101-D8 - crop size: (512,512) - lr schd: 20000 - inference time (ms/im): - - value: 71.38 - hardware: V100 - backend: PyTorch - batch size: 1 - mode: FP32 - resolution: (512,512) - Training Memory (GB): 9.8 - Results: - - Task: Semantic Segmentation - Dataset: Pascal VOC 2012 + Aug - Metrics: - mIoU: 78.15 - mIoU(ms+flip): 78.86 - Config: configs/nonlocal_net/nonlocal_r101-d8_4xb4-20k_voc12aug-512x512.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/nonlocal_net/nonlocal_r101-d8_512x512_20k_voc12aug/nonlocal_r101-d8_512x512_20k_voc12aug_20200617_222615-948c68ab.pth -- Name: nonlocal_r50-d8_4xb4-40k_voc12aug-512x512 - In Collection: NonLocalNet - Metadata: - backbone: R-50-D8 - crop size: (512,512) - lr schd: 40000 - Results: - - Task: Semantic Segmentation - Dataset: Pascal VOC 2012 + Aug - Metrics: - mIoU: 76.65 - mIoU(ms+flip): 77.47 - Config: configs/nonlocal_net/nonlocal_r50-d8_4xb4-40k_voc12aug-512x512.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/nonlocal_net/nonlocal_r50-d8_512x512_40k_voc12aug/nonlocal_r50-d8_512x512_40k_voc12aug_20200614_000028-0139d4a9.pth -- Name: nonlocal_r101-d8_4xb4-40k_voc12aug-512x512 - In Collection: NonLocalNet - Metadata: - backbone: R-101-D8 - crop size: (512,512) - lr schd: 40000 - Results: - - Task: Semantic Segmentation - Dataset: Pascal VOC 2012 + Aug - Metrics: - mIoU: 78.27 - mIoU(ms+flip): 79.12 - Config: configs/nonlocal_net/nonlocal_r101-d8_4xb4-40k_voc12aug-512x512.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/nonlocal_net/nonlocal_r101-d8_512x512_40k_voc12aug/nonlocal_r101-d8_512x512_40k_voc12aug_20200614_000028-7e5ff470.pth diff --git a/configs/ocrnet/README.md b/configs/ocrnet/README.md index 4bd9c7d0b0..5b078f59c2 100644 --- a/configs/ocrnet/README.md +++ b/configs/ocrnet/README.md @@ -1,6 +1,6 @@ # OCRNet -[Object-Contextual Representations for Semantic Segmentation](https://arxiv.org/abs/1909.11065) +> [Object-Contextual Representations for Semantic Segmentation](https://arxiv.org/abs/1909.11065) ## Introduction @@ -22,6 +22,54 @@ In this paper, we address the problem of semantic segmentation and focus on the +## Results and models + +### Cityscapes + +#### HRNet backbone + +| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | Device | mIoU | mIoU(ms+flip) | config | download | +| ------ | ------------------ | --------- | ------: | -------- | -------------- | ------ | ----: | ------------: | -------------------------------------------------------------------------------------------------------------------------------- | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | +| OCRNet | HRNetV2p-W18-Small | 512x1024 | 40000 | 3.5 | 10.45 | A100 | 76.61 | 78.01 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/ocrnet/ocrnet_hr18s_4xb2-40k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr18s_4xb2-40k_cityscapes-512x1024/ocrnet_hr18s_4xb2-40k_cityscapes-512x1024_20230227_145026-6c052a14.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr18s_4xb2-40k_cityscapes-512x1024/ocrnet_hr18s_4xb2-40k_cityscapes-512x1024_20230227_145026.json) | +| OCRNet | HRNetV2p-W18 | 512x1024 | 40000 | 4.7 | 7.50 | V100 | 77.72 | 79.49 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/ocrnet/ocrnet_hr18_4xb2-40k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr18_512x1024_40k_cityscapes/ocrnet_hr18_512x1024_40k_cityscapes_20200601_033320-401c5bdd.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr18_512x1024_40k_cityscapes/ocrnet_hr18_512x1024_40k_cityscapes_20200601_033320.log.json) | +| OCRNet | HRNetV2p-W48 | 512x1024 | 40000 | 8 | 4.22 | V100 | 80.58 | 81.79 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/ocrnet/ocrnet_hr48_4xb2-40k_cityscapes-512x1024.pyy) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr48_512x1024_40k_cityscapes/ocrnet_hr48_512x1024_40k_cityscapes_20200601_033336-55b32491.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr48_512x1024_40k_cityscapes/ocrnet_hr48_512x1024_40k_cityscapes_20200601_033336.log.json) | +| OCRNet | HRNetV2p-W18-Small | 512x1024 | 80000 | - | - | V100 | 77.16 | 78.66 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/ocrnet/ocrnet_hr18s_4xb2-80k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr18s_512x1024_80k_cityscapes/ocrnet_hr18s_512x1024_80k_cityscapes_20200601_222735-55979e63.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr18s_512x1024_80k_cityscapes/ocrnet_hr18s_512x1024_80k_cityscapes_20200601_222735.log.json) | +| OCRNet | HRNetV2p-W18 | 512x1024 | 80000 | - | - | V100 | 78.57 | 80.46 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/ocrnet/ocrnet_hr18_4xb2-80k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr18_512x1024_80k_cityscapes/ocrnet_hr18_512x1024_80k_cityscapes_20200614_230521-c2e1dd4a.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr18_512x1024_80k_cityscapes/ocrnet_hr18_512x1024_80k_cityscapes_20200614_230521.log.json) | +| OCRNet | HRNetV2p-W48 | 512x1024 | 80000 | - | - | V100 | 80.70 | 81.87 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/ocrnet/ocrnet_hr48_4xb2-80k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr48_512x1024_80k_cityscapes/ocrnet_hr48_512x1024_80k_cityscapes_20200601_222752-9076bcdf.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr48_512x1024_80k_cityscapes/ocrnet_hr48_512x1024_80k_cityscapes_20200601_222752.log.json) | +| OCRNet | HRNetV2p-W18-Small | 512x1024 | 160000 | - | - | V100 | 78.45 | 79.97 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/ocrnet/ocrnet_hr18s_4xb2-160k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr18s_512x1024_160k_cityscapes/ocrnet_hr18s_512x1024_160k_cityscapes_20200602_191005-f4a7af28.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr18s_512x1024_160k_cityscapes/ocrnet_hr18s_512x1024_160k_cityscapes_20200602_191005.log.json) | +| OCRNet | HRNetV2p-W18 | 512x1024 | 160000 | - | - | V100 | 79.47 | 80.91 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/ocrnet/ocrnet_hr18_4xb2-160k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr18_512x1024_160k_cityscapes/ocrnet_hr18_512x1024_160k_cityscapes_20200602_191001-b9172d0c.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr18_512x1024_160k_cityscapes/ocrnet_hr18_512x1024_160k_cityscapes_20200602_191001.log.json) | +| OCRNet | HRNetV2p-W48 | 512x1024 | 160000 | - | - | V100 | 81.35 | 82.70 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/ocrnet/ocrnet_hr48_4xb2-160k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr48_512x1024_160k_cityscapes/ocrnet_hr48_512x1024_160k_cityscapes_20200602_191037-dfbf1b0c.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr48_512x1024_160k_cityscapes/ocrnet_hr48_512x1024_160k_cityscapes_20200602_191037.log.json) | + +#### ResNet backbone + +| Method | Backbone | Crop Size | Batch Size | Lr schd | Mem (GB) | Inf time (fps) | Device | mIoU | mIoU(ms+flip) | config | download | +| ------ | -------- | --------- | ---------- | ------- | -------- | -------------- | ------ | ----- | ------------: | --------------------------------------------------------------------------------------------------------------------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ | +| OCRNet | R-101-D8 | 512x1024 | 8 | 40000 | - | - | V100 | 80.09 | - | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/ocrnet/ocrnet_r101-d8_4xb2-40k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_r101-d8_512x1024_40k_b8_cityscapes/ocrnet_r101-d8_512x1024_40k_b8_cityscapes_20200717_110721-02ac0f13.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_r101-d8_512x1024_40k_b8_cityscapes/ocrnet_r101-d8_512x1024_40k_b8_cityscapes_20200717_110721.log.json) | +| OCRNet | R-101-D8 | 512x1024 | 16 | 40000 | 8.8 | 3.02 | V100 | 80.30 | - | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/ocrnet/ocrnet_r101-d8_8xb2-40k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_r101-d8_512x1024_40k_b16_cityscapes/ocrnet_r101-d8_512x1024_40k_b16_cityscapes_20200723_193726-db500f80.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_r101-d8_512x1024_40k_b16_cityscapes/ocrnet_r101-d8_512x1024_40k_b16_cityscapes_20200723_193726.log.json) | +| OCRNet | R-101-D8 | 512x1024 | 16 | 80000 | 8.8 | 3.02 | V100 | 80.81 | - | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/ocrnet/ocrnet_r101-d8_8xb2-80k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_r101-d8_512x1024_80k_b16_cityscapes/ocrnet_r101-d8_512x1024_80k_b16_cityscapes_20200723_192421-78688424.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_r101-d8_512x1024_80k_b16_cityscapes/ocrnet_r101-d8_512x1024_80k_b16_cityscapes_20200723_192421.log.json) | + +### ADE20K + +| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | Device | mIoU | mIoU(ms+flip) | config | download | +| ------ | ------------------ | --------- | ------: | -------- | -------------- | ------ | ----: | ------------: | -------------------------------------------------------------------------------------------------------------------------- | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | +| OCRNet | HRNetV2p-W18-Small | 512x512 | 80000 | 6.7 | 28.98 | V100 | 35.06 | 35.80 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/ocrnet/ocrnet_hr18s_4xb4-80k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr18s_512x512_80k_ade20k/ocrnet_hr18s_512x512_80k_ade20k_20200615_055600-e80b62af.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr18s_512x512_80k_ade20k/ocrnet_hr18s_512x512_80k_ade20k_20200615_055600.log.json) | +| OCRNet | HRNetV2p-W18 | 512x512 | 80000 | 7.9 | 18.93 | V100 | 37.79 | 39.16 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/ocrnet/ocrnet_hr18_4xb4-80k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr18_512x512_80k_ade20k/ocrnet_hr18_512x512_80k_ade20k_20200615_053157-d173d83b.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr18_512x512_80k_ade20k/ocrnet_hr18_512x512_80k_ade20k_20200615_053157.log.json) | +| OCRNet | HRNetV2p-W48 | 512x512 | 80000 | 11.2 | 16.99 | V100 | 43.00 | 44.30 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/ocrnet/ocrnet_hr48_4xb4-80k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr48_512x512_80k_ade20k/ocrnet_hr48_512x512_80k_ade20k_20200615_021518-d168c2d1.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr48_512x512_80k_ade20k/ocrnet_hr48_512x512_80k_ade20k_20200615_021518.log.json) | +| OCRNet | HRNetV2p-W18-Small | 512x512 | 160000 | - | - | V100 | 37.19 | 38.40 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/ocrnet/ocrnet_hr18s_4xb4-80k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr18s_512x512_160k_ade20k/ocrnet_hr18s_512x512_160k_ade20k_20200615_184505-8e913058.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr18s_512x512_160k_ade20k/ocrnet_hr18s_512x512_160k_ade20k_20200615_184505.log.json) | +| OCRNet | HRNetV2p-W18 | 512x512 | 160000 | - | - | V100 | 39.32 | 40.80 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/ocrnet/ocrnet_hr18_4xb4-80k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr18_512x512_160k_ade20k/ocrnet_hr18_512x512_160k_ade20k_20200615_200940-d8fcd9d1.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr18_512x512_160k_ade20k/ocrnet_hr18_512x512_160k_ade20k_20200615_200940.log.json) | +| OCRNet | HRNetV2p-W48 | 512x512 | 160000 | - | - | V100 | 43.25 | 44.88 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/ocrnet/ocrnet_hr48_4xb4-160k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr48_512x512_160k_ade20k/ocrnet_hr48_512x512_160k_ade20k_20200615_184705-a073726d.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr48_512x512_160k_ade20k/ocrnet_hr48_512x512_160k_ade20k_20200615_184705.log.json) | + +### Pascal VOC 2012 + Aug + +| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | Device | mIoU | mIoU(ms+flip) | config | download | +| ------ | ------------------ | --------- | ------: | -------- | -------------- | ------ | ----: | ------------: | ---------------------------------------------------------------------------------------------------------------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ | +| OCRNet | HRNetV2p-W18-Small | 512x512 | 20000 | 3.5 | 31.55 | V100 | 71.70 | 73.84 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/ocrnet/ocrnet_hr18s_4xb4-20k_voc12aug-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr18s_512x512_20k_voc12aug/ocrnet_hr18s_512x512_20k_voc12aug_20200617_233913-02b04fcb.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr18s_512x512_20k_voc12aug/ocrnet_hr18s_512x512_20k_voc12aug_20200617_233913.log.json) | +| OCRNet | HRNetV2p-W18 | 512x512 | 20000 | 4.7 | 19.91 | V100 | 74.75 | 77.11 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/ocrnet/ocrnet_hr18_4xb4-20k_voc12aug-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr18_512x512_20k_voc12aug/ocrnet_hr18_512x512_20k_voc12aug_20200617_233932-8954cbb7.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr18_512x512_20k_voc12aug/ocrnet_hr18_512x512_20k_voc12aug_20200617_233932.log.json) | +| OCRNet | HRNetV2p-W48 | 512x512 | 20000 | 8.1 | 17.83 | V100 | 77.72 | 79.87 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/ocrnet/ocrnet_hr48_4xb4-20k_voc12aug-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr48_512x512_20k_voc12aug/ocrnet_hr48_512x512_20k_voc12aug_20200617_233932-9e82080a.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr48_512x512_20k_voc12aug/ocrnet_hr48_512x512_20k_voc12aug_20200617_233932.log.json) | +| OCRNet | HRNetV2p-W18-Small | 512x512 | 40000 | - | - | V100 | 72.76 | 74.60 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/ocrnet/ocrnet_hr18s_4xb4-40k_voc12aug-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr18s_512x512_40k_voc12aug/ocrnet_hr18s_512x512_40k_voc12aug_20200614_002025-42b587ac.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr18s_512x512_40k_voc12aug/ocrnet_hr18s_512x512_40k_voc12aug_20200614_002025.log.json) | +| OCRNet | HRNetV2p-W18 | 512x512 | 40000 | - | - | V100 | 74.98 | 77.40 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/ocrnet/ocrnet_hr18_4xb4-40k_voc12aug-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr18_512x512_40k_voc12aug/ocrnet_hr18_512x512_40k_voc12aug_20200614_015958-714302be.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr18_512x512_40k_voc12aug/ocrnet_hr18_512x512_40k_voc12aug_20200614_015958.log.json) | +| OCRNet | HRNetV2p-W48 | 512x512 | 40000 | - | - | V100 | 77.14 | 79.71 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/ocrnet/ocrnet_hr48_4xb4-40k_voc12aug-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr48_512x512_40k_voc12aug/ocrnet_hr48_512x512_40k_voc12aug_20200614_015958-255bc5ce.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr48_512x512_40k_voc12aug/ocrnet_hr48_512x512_40k_voc12aug_20200614_015958.log.json) | + ## Citation ```bibtex @@ -39,51 +87,3 @@ In this paper, we address the problem of semantic segmentation and focus on the year={2020} } ``` - -## Results and models - -### Cityscapes - -#### HRNet backbone - -| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | mIoU | mIoU(ms+flip) | config | download | -| ------ | ------------------ | --------- | ------: | -------- | -------------- | ----: | ------------: | -------------------------------------------------------------------------------------------------------------------------------- | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | -| OCRNet | HRNetV2p-W18-Small | 512x1024 | 40000 | 3.5 | 10.45 | 76.61 | 78.01 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/ocrnet/ocrnet_hr18s_4xb2-40k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr18s_4xb2-40k_cityscapes-512x1024/ocrnet_hr18s_4xb2-40k_cityscapes-512x1024_20230227_145026-6c052a14.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr18s_4xb2-40k_cityscapes-512x1024/ocrnet_hr18s_4xb2-40k_cityscapes-512x1024_20230227_145026.json) | -| OCRNet | HRNetV2p-W18 | 512x1024 | 40000 | 4.7 | 7.50 | 77.72 | 79.49 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/ocrnet/ocrnet_hr18_4xb2-40k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr18_512x1024_40k_cityscapes/ocrnet_hr18_512x1024_40k_cityscapes_20200601_033320-401c5bdd.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr18_512x1024_40k_cityscapes/ocrnet_hr18_512x1024_40k_cityscapes_20200601_033320.log.json) | -| OCRNet | HRNetV2p-W48 | 512x1024 | 40000 | 8 | 4.22 | 80.58 | 81.79 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/ocrnet/ocrnet_hr48_4xb2-40k_cityscapes-512x1024.pyy) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr48_512x1024_40k_cityscapes/ocrnet_hr48_512x1024_40k_cityscapes_20200601_033336-55b32491.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr48_512x1024_40k_cityscapes/ocrnet_hr48_512x1024_40k_cityscapes_20200601_033336.log.json) | -| OCRNet | HRNetV2p-W18-Small | 512x1024 | 80000 | - | - | 77.16 | 78.66 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/ocrnet/ocrnet_hr18s_4xb2-80k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr18s_512x1024_80k_cityscapes/ocrnet_hr18s_512x1024_80k_cityscapes_20200601_222735-55979e63.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr18s_512x1024_80k_cityscapes/ocrnet_hr18s_512x1024_80k_cityscapes_20200601_222735.log.json) | -| OCRNet | HRNetV2p-W18 | 512x1024 | 80000 | - | - | 78.57 | 80.46 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/ocrnet/ocrnet_hr18_4xb2-80k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr18_512x1024_80k_cityscapes/ocrnet_hr18_512x1024_80k_cityscapes_20200614_230521-c2e1dd4a.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr18_512x1024_80k_cityscapes/ocrnet_hr18_512x1024_80k_cityscapes_20200614_230521.log.json) | -| OCRNet | HRNetV2p-W48 | 512x1024 | 80000 | - | - | 80.70 | 81.87 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/ocrnet/ocrnet_hr48_4xb2-80k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr48_512x1024_80k_cityscapes/ocrnet_hr48_512x1024_80k_cityscapes_20200601_222752-9076bcdf.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr48_512x1024_80k_cityscapes/ocrnet_hr48_512x1024_80k_cityscapes_20200601_222752.log.json) | -| OCRNet | HRNetV2p-W18-Small | 512x1024 | 160000 | - | - | 78.45 | 79.97 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/ocrnet/ocrnet_hr18s_4xb2-160k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr18s_512x1024_160k_cityscapes/ocrnet_hr18s_512x1024_160k_cityscapes_20200602_191005-f4a7af28.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr18s_512x1024_160k_cityscapes/ocrnet_hr18s_512x1024_160k_cityscapes_20200602_191005.log.json) | -| OCRNet | HRNetV2p-W18 | 512x1024 | 160000 | - | - | 79.47 | 80.91 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/ocrnet/ocrnet_hr18_4xb2-160k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr18_512x1024_160k_cityscapes/ocrnet_hr18_512x1024_160k_cityscapes_20200602_191001-b9172d0c.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr18_512x1024_160k_cityscapes/ocrnet_hr18_512x1024_160k_cityscapes_20200602_191001.log.json) | -| OCRNet | HRNetV2p-W48 | 512x1024 | 160000 | - | - | 81.35 | 82.70 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/ocrnet/ocrnet_hr48_4xb2-160k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr48_512x1024_160k_cityscapes/ocrnet_hr48_512x1024_160k_cityscapes_20200602_191037-dfbf1b0c.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr48_512x1024_160k_cityscapes/ocrnet_hr48_512x1024_160k_cityscapes_20200602_191037.log.json) | - -#### ResNet backbone - -| Method | Backbone | Crop Size | Batch Size | Lr schd | Mem (GB) | Inf time (fps) | mIoU | mIoU(ms+flip) | config | download | -| ------ | -------- | --------- | ---------- | ------- | -------- | -------------- | ----- | ------------: | --------------------------------------------------------------------------------------------------------------------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ | -| OCRNet | R-101-D8 | 512x1024 | 8 | 40000 | - | - | 80.09 | - | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/ocrnet/ocrnet_r101-d8_4xb2-40k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_r101-d8_512x1024_40k_b8_cityscapes/ocrnet_r101-d8_512x1024_40k_b8_cityscapes_20200717_110721-02ac0f13.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_r101-d8_512x1024_40k_b8_cityscapes/ocrnet_r101-d8_512x1024_40k_b8_cityscapes_20200717_110721.log.json) | -| OCRNet | R-101-D8 | 512x1024 | 16 | 40000 | 8.8 | 3.02 | 80.30 | - | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/ocrnet/ocrnet_r101-d8_8xb2-40k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_r101-d8_512x1024_40k_b16_cityscapes/ocrnet_r101-d8_512x1024_40k_b16_cityscapes_20200723_193726-db500f80.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_r101-d8_512x1024_40k_b16_cityscapes/ocrnet_r101-d8_512x1024_40k_b16_cityscapes_20200723_193726.log.json) | -| OCRNet | R-101-D8 | 512x1024 | 16 | 80000 | 8.8 | 3.02 | 80.81 | - | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/ocrnet/ocrnet_r101-d8_8xb2-80k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_r101-d8_512x1024_80k_b16_cityscapes/ocrnet_r101-d8_512x1024_80k_b16_cityscapes_20200723_192421-78688424.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_r101-d8_512x1024_80k_b16_cityscapes/ocrnet_r101-d8_512x1024_80k_b16_cityscapes_20200723_192421.log.json) | - -### ADE20K - -| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | mIoU | mIoU(ms+flip) | config | download | -| ------ | ------------------ | --------- | ------: | -------- | -------------- | ----: | ------------: | -------------------------------------------------------------------------------------------------------------------------- | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | -| OCRNet | HRNetV2p-W18-Small | 512x512 | 80000 | 6.7 | 28.98 | 35.06 | 35.80 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/ocrnet/ocrnet_hr18s_4xb4-80k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr18s_512x512_80k_ade20k/ocrnet_hr18s_512x512_80k_ade20k_20200615_055600-e80b62af.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr18s_512x512_80k_ade20k/ocrnet_hr18s_512x512_80k_ade20k_20200615_055600.log.json) | -| OCRNet | HRNetV2p-W18 | 512x512 | 80000 | 7.9 | 18.93 | 37.79 | 39.16 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/ocrnet/ocrnet_hr18_4xb4-80k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr18_512x512_80k_ade20k/ocrnet_hr18_512x512_80k_ade20k_20200615_053157-d173d83b.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr18_512x512_80k_ade20k/ocrnet_hr18_512x512_80k_ade20k_20200615_053157.log.json) | -| OCRNet | HRNetV2p-W48 | 512x512 | 80000 | 11.2 | 16.99 | 43.00 | 44.30 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/ocrnet/ocrnet_hr48_4xb4-80k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr48_512x512_80k_ade20k/ocrnet_hr48_512x512_80k_ade20k_20200615_021518-d168c2d1.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr48_512x512_80k_ade20k/ocrnet_hr48_512x512_80k_ade20k_20200615_021518.log.json) | -| OCRNet | HRNetV2p-W18-Small | 512x512 | 160000 | - | - | 37.19 | 38.40 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/ocrnet/ocrnet_hr18s_4xb4-80k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr18s_512x512_160k_ade20k/ocrnet_hr18s_512x512_160k_ade20k_20200615_184505-8e913058.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr18s_512x512_160k_ade20k/ocrnet_hr18s_512x512_160k_ade20k_20200615_184505.log.json) | -| OCRNet | HRNetV2p-W18 | 512x512 | 160000 | - | - | 39.32 | 40.80 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/ocrnet/ocrnet_hr18_4xb4-80k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr18_512x512_160k_ade20k/ocrnet_hr18_512x512_160k_ade20k_20200615_200940-d8fcd9d1.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr18_512x512_160k_ade20k/ocrnet_hr18_512x512_160k_ade20k_20200615_200940.log.json) | -| OCRNet | HRNetV2p-W48 | 512x512 | 160000 | - | - | 43.25 | 44.88 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/ocrnet/ocrnet_hr48_4xb4-160k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr48_512x512_160k_ade20k/ocrnet_hr48_512x512_160k_ade20k_20200615_184705-a073726d.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr48_512x512_160k_ade20k/ocrnet_hr48_512x512_160k_ade20k_20200615_184705.log.json) | - -### Pascal VOC 2012 + Aug - -| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | mIoU | mIoU(ms+flip) | config | download | -| ------ | ------------------ | --------- | ------: | -------- | -------------- | ----: | ------------: | ---------------------------------------------------------------------------------------------------------------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ | -| OCRNet | HRNetV2p-W18-Small | 512x512 | 20000 | 3.5 | 31.55 | 71.70 | 73.84 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/ocrnet/ocrnet_hr18s_4xb4-20k_voc12aug-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr18s_512x512_20k_voc12aug/ocrnet_hr18s_512x512_20k_voc12aug_20200617_233913-02b04fcb.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr18s_512x512_20k_voc12aug/ocrnet_hr18s_512x512_20k_voc12aug_20200617_233913.log.json) | -| OCRNet | HRNetV2p-W18 | 512x512 | 20000 | 4.7 | 19.91 | 74.75 | 77.11 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/ocrnet/ocrnet_hr18_4xb4-20k_voc12aug-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr18_512x512_20k_voc12aug/ocrnet_hr18_512x512_20k_voc12aug_20200617_233932-8954cbb7.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr18_512x512_20k_voc12aug/ocrnet_hr18_512x512_20k_voc12aug_20200617_233932.log.json) | -| OCRNet | HRNetV2p-W48 | 512x512 | 20000 | 8.1 | 17.83 | 77.72 | 79.87 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/ocrnet/ocrnet_hr48_4xb4-20k_voc12aug-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr48_512x512_20k_voc12aug/ocrnet_hr48_512x512_20k_voc12aug_20200617_233932-9e82080a.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr48_512x512_20k_voc12aug/ocrnet_hr48_512x512_20k_voc12aug_20200617_233932.log.json) | -| OCRNet | HRNetV2p-W18-Small | 512x512 | 40000 | - | - | 72.76 | 74.60 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/ocrnet/ocrnet_hr18s_4xb4-40k_voc12aug-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr18s_512x512_40k_voc12aug/ocrnet_hr18s_512x512_40k_voc12aug_20200614_002025-42b587ac.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr18s_512x512_40k_voc12aug/ocrnet_hr18s_512x512_40k_voc12aug_20200614_002025.log.json) | -| OCRNet | HRNetV2p-W18 | 512x512 | 40000 | - | - | 74.98 | 77.40 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/ocrnet/ocrnet_hr18_4xb4-40k_voc12aug-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr18_512x512_40k_voc12aug/ocrnet_hr18_512x512_40k_voc12aug_20200614_015958-714302be.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr18_512x512_40k_voc12aug/ocrnet_hr18_512x512_40k_voc12aug_20200614_015958.log.json) | -| OCRNet | HRNetV2p-W48 | 512x512 | 40000 | - | - | 77.14 | 79.71 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/ocrnet/ocrnet_hr48_4xb4-40k_voc12aug-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr48_512x512_40k_voc12aug/ocrnet_hr48_512x512_40k_voc12aug_20200614_015958-255bc5ce.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr48_512x512_40k_voc12aug/ocrnet_hr48_512x512_40k_voc12aug_20200614_015958.log.json) | diff --git a/configs/ocrnet/metafile.yaml b/configs/ocrnet/metafile.yaml new file mode 100644 index 0000000000..5467feb975 --- /dev/null +++ b/configs/ocrnet/metafile.yaml @@ -0,0 +1,577 @@ +Collections: +- Name: OCRNet + License: Apache License 2.0 + Metadata: + Training Data: + - Cityscapes + - '# HRNet backbone' + - '# ResNet backbone' + - ADE20K + - Pascal VOC 2012 + Aug + Paper: + Title: Object-Contextual Representations for Semantic Segmentation + URL: https://arxiv.org/abs/1909.11065 + README: configs/ocrnet/README.md + Frameworks: + - PyTorch +Models: +- Name: ocrnet_hr18s_4xb2-40k_cityscapes-512x1024 + In Collection: OCRNet + Results: + Task: Semantic Segmentation + Dataset: '# HRNet backbone' + Metrics: + mIoU: 76.61 + mIoU(ms+flip): 78.01 + Config: configs/ocrnet/ocrnet_hr18s_4xb2-40k_cityscapes-512x1024.py + Metadata: + Training Data: '# HRNet backbone' + Batch Size: 8 + Architecture: + - HRNetV2p-W18-Small + - OCRNet + Training Resources: 4x A100 GPUS + Memory (GB): 3.5 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr18s_4xb2-40k_cityscapes-512x1024/ocrnet_hr18s_4xb2-40k_cityscapes-512x1024_20230227_145026-6c052a14.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr18s_4xb2-40k_cityscapes-512x1024/ocrnet_hr18s_4xb2-40k_cityscapes-512x1024_20230227_145026.json + Paper: + Title: Object-Contextual Representations for Semantic Segmentation + URL: https://arxiv.org/abs/1909.11065 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/ocr_head.py#L86 + Framework: PyTorch +- Name: ocrnet_hr18_4xb2-40k_cityscapes-512x1024 + In Collection: OCRNet + Results: + Task: Semantic Segmentation + Dataset: '# HRNet backbone' + Metrics: + mIoU: 77.72 + mIoU(ms+flip): 79.49 + Config: configs/ocrnet/ocrnet_hr18_4xb2-40k_cityscapes-512x1024.py + Metadata: + Training Data: '# HRNet backbone' + Batch Size: 8 + Architecture: + - HRNetV2p-W18 + - OCRNet + Training Resources: 4x V100 GPUS + Memory (GB): 4.7 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr18_512x1024_40k_cityscapes/ocrnet_hr18_512x1024_40k_cityscapes_20200601_033320-401c5bdd.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr18_512x1024_40k_cityscapes/ocrnet_hr18_512x1024_40k_cityscapes_20200601_033320.log.json + Paper: + Title: Object-Contextual Representations for Semantic Segmentation + URL: https://arxiv.org/abs/1909.11065 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/ocr_head.py#L86 + Framework: PyTorch +- Name: ocrnet_hr48_4xb2-40k_cityscapes-512x1024 + In Collection: OCRNet + Results: + Task: Semantic Segmentation + Dataset: '# HRNet backbone' + Metrics: + mIoU: 80.58 + mIoU(ms+flip): 81.79 + Config: configs/ocrnet/ocrnet_hr48_4xb2-40k_cityscapes-512x1024.py + Metadata: + Training Data: '# HRNet backbone' + Batch Size: 8 + Architecture: + - HRNetV2p-W48 + - OCRNet + Training Resources: 4x V100 GPUS + Memory (GB): 8.0 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr48_512x1024_40k_cityscapes/ocrnet_hr48_512x1024_40k_cityscapes_20200601_033336-55b32491.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr48_512x1024_40k_cityscapes/ocrnet_hr48_512x1024_40k_cityscapes_20200601_033336.log.json + Paper: + Title: Object-Contextual Representations for Semantic Segmentation + URL: https://arxiv.org/abs/1909.11065 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/ocr_head.py#L86 + Framework: PyTorch +- Name: ocrnet_hr18s_4xb2-80k_cityscapes-512x1024 + In Collection: OCRNet + Results: + Task: Semantic Segmentation + Dataset: '# HRNet backbone' + Metrics: + mIoU: 77.16 + mIoU(ms+flip): 78.66 + Config: configs/ocrnet/ocrnet_hr18s_4xb2-80k_cityscapes-512x1024.py + Metadata: + Training Data: '# HRNet backbone' + Batch Size: 8 + Architecture: + - HRNetV2p-W18-Small + - OCRNet + Training Resources: 4x V100 GPUS + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr18s_512x1024_80k_cityscapes/ocrnet_hr18s_512x1024_80k_cityscapes_20200601_222735-55979e63.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr18s_512x1024_80k_cityscapes/ocrnet_hr18s_512x1024_80k_cityscapes_20200601_222735.log.json + Paper: + Title: Object-Contextual Representations for Semantic Segmentation + URL: https://arxiv.org/abs/1909.11065 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/ocr_head.py#L86 + Framework: PyTorch +- Name: ocrnet_hr18_4xb2-80k_cityscapes-512x1024 + In Collection: OCRNet + Results: + Task: Semantic Segmentation + Dataset: '# HRNet backbone' + Metrics: + mIoU: 78.57 + mIoU(ms+flip): 80.46 + Config: configs/ocrnet/ocrnet_hr18_4xb2-80k_cityscapes-512x1024.py + Metadata: + Training Data: '# HRNet backbone' + Batch Size: 8 + Architecture: + - HRNetV2p-W18 + - OCRNet + Training Resources: 4x V100 GPUS + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr18_512x1024_80k_cityscapes/ocrnet_hr18_512x1024_80k_cityscapes_20200614_230521-c2e1dd4a.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr18_512x1024_80k_cityscapes/ocrnet_hr18_512x1024_80k_cityscapes_20200614_230521.log.json + Paper: + Title: Object-Contextual Representations for Semantic Segmentation + URL: https://arxiv.org/abs/1909.11065 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/ocr_head.py#L86 + Framework: PyTorch +- Name: ocrnet_hr48_4xb2-80k_cityscapes-512x1024 + In Collection: OCRNet + Results: + Task: Semantic Segmentation + Dataset: '# HRNet backbone' + Metrics: + mIoU: 80.7 + mIoU(ms+flip): 81.87 + Config: configs/ocrnet/ocrnet_hr48_4xb2-80k_cityscapes-512x1024.py + Metadata: + Training Data: '# HRNet backbone' + Batch Size: 8 + Architecture: + - HRNetV2p-W48 + - OCRNet + Training Resources: 4x V100 GPUS + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr48_512x1024_80k_cityscapes/ocrnet_hr48_512x1024_80k_cityscapes_20200601_222752-9076bcdf.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr48_512x1024_80k_cityscapes/ocrnet_hr48_512x1024_80k_cityscapes_20200601_222752.log.json + Paper: + Title: Object-Contextual Representations for Semantic Segmentation + URL: https://arxiv.org/abs/1909.11065 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/ocr_head.py#L86 + Framework: PyTorch +- Name: ocrnet_hr18s_4xb2-160k_cityscapes-512x1024 + In Collection: OCRNet + Results: + Task: Semantic Segmentation + Dataset: '# HRNet backbone' + Metrics: + mIoU: 78.45 + mIoU(ms+flip): 79.97 + Config: configs/ocrnet/ocrnet_hr18s_4xb2-160k_cityscapes-512x1024.py + Metadata: + Training Data: '# HRNet backbone' + Batch Size: 8 + Architecture: + - HRNetV2p-W18-Small + - OCRNet + Training Resources: 4x V100 GPUS + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr18s_512x1024_160k_cityscapes/ocrnet_hr18s_512x1024_160k_cityscapes_20200602_191005-f4a7af28.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr18s_512x1024_160k_cityscapes/ocrnet_hr18s_512x1024_160k_cityscapes_20200602_191005.log.json + Paper: + Title: Object-Contextual Representations for Semantic Segmentation + URL: https://arxiv.org/abs/1909.11065 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/ocr_head.py#L86 + Framework: PyTorch +- Name: ocrnet_hr18_4xb2-160k_cityscapes-512x1024 + In Collection: OCRNet + Results: + Task: Semantic Segmentation + Dataset: '# HRNet backbone' + Metrics: + mIoU: 79.47 + mIoU(ms+flip): 80.91 + Config: configs/ocrnet/ocrnet_hr18_4xb2-160k_cityscapes-512x1024.py + Metadata: + Training Data: '# HRNet backbone' + Batch Size: 8 + Architecture: + - HRNetV2p-W18 + - OCRNet + Training Resources: 4x V100 GPUS + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr18_512x1024_160k_cityscapes/ocrnet_hr18_512x1024_160k_cityscapes_20200602_191001-b9172d0c.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr18_512x1024_160k_cityscapes/ocrnet_hr18_512x1024_160k_cityscapes_20200602_191001.log.json + Paper: + Title: Object-Contextual Representations for Semantic Segmentation + URL: https://arxiv.org/abs/1909.11065 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/ocr_head.py#L86 + Framework: PyTorch +- Name: ocrnet_hr48_4xb2-160k_cityscapes-512x1024 + In Collection: OCRNet + Results: + Task: Semantic Segmentation + Dataset: '# HRNet backbone' + Metrics: + mIoU: 81.35 + mIoU(ms+flip): 82.7 + Config: configs/ocrnet/ocrnet_hr48_4xb2-160k_cityscapes-512x1024.py + Metadata: + Training Data: '# HRNet backbone' + Batch Size: 8 + Architecture: + - HRNetV2p-W48 + - OCRNet + Training Resources: 4x V100 GPUS + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr48_512x1024_160k_cityscapes/ocrnet_hr48_512x1024_160k_cityscapes_20200602_191037-dfbf1b0c.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr48_512x1024_160k_cityscapes/ocrnet_hr48_512x1024_160k_cityscapes_20200602_191037.log.json + Paper: + Title: Object-Contextual Representations for Semantic Segmentation + URL: https://arxiv.org/abs/1909.11065 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/ocr_head.py#L86 + Framework: PyTorch +- Name: ocrnet_r101-d8_4xb2-40k_cityscapes-512x1024 + In Collection: OCRNet + Results: + Task: Semantic Segmentation + Dataset: '# ResNet backbone' + Metrics: + mIoU: 80.09 + Config: configs/ocrnet/ocrnet_r101-d8_4xb2-40k_cityscapes-512x1024.py + Metadata: + Training Data: '# ResNet backbone' + Batch Size: 8 + Architecture: + - R-101-D8 + - OCRNet + Training Resources: 4x V100 GPUS + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_r101-d8_512x1024_40k_b8_cityscapes/ocrnet_r101-d8_512x1024_40k_b8_cityscapes_20200717_110721-02ac0f13.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_r101-d8_512x1024_40k_b8_cityscapes/ocrnet_r101-d8_512x1024_40k_b8_cityscapes_20200717_110721.log.json + Paper: + Title: Object-Contextual Representations for Semantic Segmentation + URL: https://arxiv.org/abs/1909.11065 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/ocr_head.py#L86 + Framework: PyTorch +- Name: ocrnet_r101-d8_8xb2-40k_cityscapes-512x1024 + In Collection: OCRNet + Results: + Task: Semantic Segmentation + Dataset: '# ResNet backbone' + Metrics: + mIoU: 80.3 + Config: configs/ocrnet/ocrnet_r101-d8_8xb2-40k_cityscapes-512x1024.py + Metadata: + Training Data: '# ResNet backbone' + Batch Size: 16 + Architecture: + - R-101-D8 + - OCRNet + Training Resources: 8x V100 GPUS + Memory (GB): 8.8 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_r101-d8_512x1024_40k_b16_cityscapes/ocrnet_r101-d8_512x1024_40k_b16_cityscapes_20200723_193726-db500f80.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_r101-d8_512x1024_40k_b16_cityscapes/ocrnet_r101-d8_512x1024_40k_b16_cityscapes_20200723_193726.log.json + Paper: + Title: Object-Contextual Representations for Semantic Segmentation + URL: https://arxiv.org/abs/1909.11065 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/ocr_head.py#L86 + Framework: PyTorch +- Name: ocrnet_r101-d8_8xb2-80k_cityscapes-512x1024 + In Collection: OCRNet + Results: + Task: Semantic Segmentation + Dataset: '# ResNet backbone' + Metrics: + mIoU: 80.81 + Config: configs/ocrnet/ocrnet_r101-d8_8xb2-80k_cityscapes-512x1024.py + Metadata: + Training Data: '# ResNet backbone' + Batch Size: 16 + Architecture: + - R-101-D8 + - OCRNet + Training Resources: 8x V100 GPUS + Memory (GB): 8.8 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_r101-d8_512x1024_80k_b16_cityscapes/ocrnet_r101-d8_512x1024_80k_b16_cityscapes_20200723_192421-78688424.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_r101-d8_512x1024_80k_b16_cityscapes/ocrnet_r101-d8_512x1024_80k_b16_cityscapes_20200723_192421.log.json + Paper: + Title: Object-Contextual Representations for Semantic Segmentation + URL: https://arxiv.org/abs/1909.11065 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/ocr_head.py#L86 + Framework: PyTorch +- Name: ocrnet_hr18s_4xb4-80k_ade20k-512x512 + In Collection: OCRNet + Results: + Task: Semantic Segmentation + Dataset: ADE20K + Metrics: + mIoU: 35.06 + mIoU(ms+flip): 35.8 + Config: configs/ocrnet/ocrnet_hr18s_4xb4-80k_ade20k-512x512.py + Metadata: + Training Data: ADE20K + Batch Size: 16 + Architecture: + - HRNetV2p-W18-Small + - OCRNet + Training Resources: 4x V100 GPUS + Memory (GB): 6.7 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr18s_512x512_80k_ade20k/ocrnet_hr18s_512x512_80k_ade20k_20200615_055600-e80b62af.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr18s_512x512_80k_ade20k/ocrnet_hr18s_512x512_80k_ade20k_20200615_055600.log.json + Paper: + Title: Object-Contextual Representations for Semantic Segmentation + URL: https://arxiv.org/abs/1909.11065 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/ocr_head.py#L86 + Framework: PyTorch +- Name: ocrnet_hr18_4xb4-80k_ade20k-512x512 + In Collection: OCRNet + Results: + Task: Semantic Segmentation + Dataset: ADE20K + Metrics: + mIoU: 37.79 + mIoU(ms+flip): 39.16 + Config: configs/ocrnet/ocrnet_hr18_4xb4-80k_ade20k-512x512.py + Metadata: + Training Data: ADE20K + Batch Size: 16 + Architecture: + - HRNetV2p-W18 + - OCRNet + Training Resources: 4x V100 GPUS + Memory (GB): 7.9 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr18_512x512_80k_ade20k/ocrnet_hr18_512x512_80k_ade20k_20200615_053157-d173d83b.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr18_512x512_80k_ade20k/ocrnet_hr18_512x512_80k_ade20k_20200615_053157.log.json + Paper: + Title: Object-Contextual Representations for Semantic Segmentation + URL: https://arxiv.org/abs/1909.11065 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/ocr_head.py#L86 + Framework: PyTorch +- Name: ocrnet_hr48_4xb4-80k_ade20k-512x512 + In Collection: OCRNet + Results: + Task: Semantic Segmentation + Dataset: ADE20K + Metrics: + mIoU: 43.0 + mIoU(ms+flip): 44.3 + Config: configs/ocrnet/ocrnet_hr48_4xb4-80k_ade20k-512x512.py + Metadata: + Training Data: ADE20K + Batch Size: 16 + Architecture: + - HRNetV2p-W48 + - OCRNet + Training Resources: 4x V100 GPUS + Memory (GB): 11.2 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr48_512x512_80k_ade20k/ocrnet_hr48_512x512_80k_ade20k_20200615_021518-d168c2d1.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr48_512x512_80k_ade20k/ocrnet_hr48_512x512_80k_ade20k_20200615_021518.log.json + Paper: + Title: Object-Contextual Representations for Semantic Segmentation + URL: https://arxiv.org/abs/1909.11065 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/ocr_head.py#L86 + Framework: PyTorch +- Name: ocrnet_hr18s_4xb4-80k_ade20k-512x512 + In Collection: OCRNet + Results: + Task: Semantic Segmentation + Dataset: ADE20K + Metrics: + mIoU: 37.19 + mIoU(ms+flip): 38.4 + Config: configs/ocrnet/ocrnet_hr18s_4xb4-80k_ade20k-512x512.py + Metadata: + Training Data: ADE20K + Batch Size: 16 + Architecture: + - HRNetV2p-W18-Small + - OCRNet + Training Resources: 4x V100 GPUS + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr18s_512x512_160k_ade20k/ocrnet_hr18s_512x512_160k_ade20k_20200615_184505-8e913058.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr18s_512x512_160k_ade20k/ocrnet_hr18s_512x512_160k_ade20k_20200615_184505.log.json + Paper: + Title: Object-Contextual Representations for Semantic Segmentation + URL: https://arxiv.org/abs/1909.11065 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/ocr_head.py#L86 + Framework: PyTorch +- Name: ocrnet_hr18_4xb4-80k_ade20k-512x512 + In Collection: OCRNet + Results: + Task: Semantic Segmentation + Dataset: ADE20K + Metrics: + mIoU: 39.32 + mIoU(ms+flip): 40.8 + Config: configs/ocrnet/ocrnet_hr18_4xb4-80k_ade20k-512x512.py + Metadata: + Training Data: ADE20K + Batch Size: 16 + Architecture: + - HRNetV2p-W18 + - OCRNet + Training Resources: 4x V100 GPUS + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr18_512x512_160k_ade20k/ocrnet_hr18_512x512_160k_ade20k_20200615_200940-d8fcd9d1.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr18_512x512_160k_ade20k/ocrnet_hr18_512x512_160k_ade20k_20200615_200940.log.json + Paper: + Title: Object-Contextual Representations for Semantic Segmentation + URL: https://arxiv.org/abs/1909.11065 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/ocr_head.py#L86 + Framework: PyTorch +- Name: ocrnet_hr48_4xb4-160k_ade20k-512x512 + In Collection: OCRNet + Results: + Task: Semantic Segmentation + Dataset: ADE20K + Metrics: + mIoU: 43.25 + mIoU(ms+flip): 44.88 + Config: configs/ocrnet/ocrnet_hr48_4xb4-160k_ade20k-512x512.py + Metadata: + Training Data: ADE20K + Batch Size: 16 + Architecture: + - HRNetV2p-W48 + - OCRNet + Training Resources: 4x V100 GPUS + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr48_512x512_160k_ade20k/ocrnet_hr48_512x512_160k_ade20k_20200615_184705-a073726d.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr48_512x512_160k_ade20k/ocrnet_hr48_512x512_160k_ade20k_20200615_184705.log.json + Paper: + Title: Object-Contextual Representations for Semantic Segmentation + URL: https://arxiv.org/abs/1909.11065 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/ocr_head.py#L86 + Framework: PyTorch +- Name: ocrnet_hr18s_4xb4-20k_voc12aug-512x512 + In Collection: OCRNet + Results: + Task: Semantic Segmentation + Dataset: Pascal VOC 2012 + Aug + Metrics: + mIoU: 71.7 + mIoU(ms+flip): 73.84 + Config: configs/ocrnet/ocrnet_hr18s_4xb4-20k_voc12aug-512x512.py + Metadata: + Training Data: Pascal VOC 2012 + Aug + Batch Size: 16 + Architecture: + - HRNetV2p-W18-Small + - OCRNet + Training Resources: 4x V100 GPUS + Memory (GB): 3.5 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr18s_512x512_20k_voc12aug/ocrnet_hr18s_512x512_20k_voc12aug_20200617_233913-02b04fcb.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr18s_512x512_20k_voc12aug/ocrnet_hr18s_512x512_20k_voc12aug_20200617_233913.log.json + Paper: + Title: Object-Contextual Representations for Semantic Segmentation + URL: https://arxiv.org/abs/1909.11065 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/ocr_head.py#L86 + Framework: PyTorch +- Name: ocrnet_hr18_4xb4-20k_voc12aug-512x512 + In Collection: OCRNet + Results: + Task: Semantic Segmentation + Dataset: Pascal VOC 2012 + Aug + Metrics: + mIoU: 74.75 + mIoU(ms+flip): 77.11 + Config: configs/ocrnet/ocrnet_hr18_4xb4-20k_voc12aug-512x512.py + Metadata: + Training Data: Pascal VOC 2012 + Aug + Batch Size: 16 + Architecture: + - HRNetV2p-W18 + - OCRNet + Training Resources: 4x V100 GPUS + Memory (GB): 4.7 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr18_512x512_20k_voc12aug/ocrnet_hr18_512x512_20k_voc12aug_20200617_233932-8954cbb7.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr18_512x512_20k_voc12aug/ocrnet_hr18_512x512_20k_voc12aug_20200617_233932.log.json + Paper: + Title: Object-Contextual Representations for Semantic Segmentation + URL: https://arxiv.org/abs/1909.11065 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/ocr_head.py#L86 + Framework: PyTorch +- Name: ocrnet_hr48_4xb4-20k_voc12aug-512x512 + In Collection: OCRNet + Results: + Task: Semantic Segmentation + Dataset: Pascal VOC 2012 + Aug + Metrics: + mIoU: 77.72 + mIoU(ms+flip): 79.87 + Config: configs/ocrnet/ocrnet_hr48_4xb4-20k_voc12aug-512x512.py + Metadata: + Training Data: Pascal VOC 2012 + Aug + Batch Size: 16 + Architecture: + - HRNetV2p-W48 + - OCRNet + Training Resources: 4x V100 GPUS + Memory (GB): 8.1 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr48_512x512_20k_voc12aug/ocrnet_hr48_512x512_20k_voc12aug_20200617_233932-9e82080a.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr48_512x512_20k_voc12aug/ocrnet_hr48_512x512_20k_voc12aug_20200617_233932.log.json + Paper: + Title: Object-Contextual Representations for Semantic Segmentation + URL: https://arxiv.org/abs/1909.11065 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/ocr_head.py#L86 + Framework: PyTorch +- Name: ocrnet_hr18s_4xb4-40k_voc12aug-512x512 + In Collection: OCRNet + Results: + Task: Semantic Segmentation + Dataset: Pascal VOC 2012 + Aug + Metrics: + mIoU: 72.76 + mIoU(ms+flip): 74.6 + Config: configs/ocrnet/ocrnet_hr18s_4xb4-40k_voc12aug-512x512.py + Metadata: + Training Data: Pascal VOC 2012 + Aug + Batch Size: 16 + Architecture: + - HRNetV2p-W18-Small + - OCRNet + Training Resources: 4x V100 GPUS + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr18s_512x512_40k_voc12aug/ocrnet_hr18s_512x512_40k_voc12aug_20200614_002025-42b587ac.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr18s_512x512_40k_voc12aug/ocrnet_hr18s_512x512_40k_voc12aug_20200614_002025.log.json + Paper: + Title: Object-Contextual Representations for Semantic Segmentation + URL: https://arxiv.org/abs/1909.11065 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/ocr_head.py#L86 + Framework: PyTorch +- Name: ocrnet_hr18_4xb4-40k_voc12aug-512x512 + In Collection: OCRNet + Results: + Task: Semantic Segmentation + Dataset: Pascal VOC 2012 + Aug + Metrics: + mIoU: 74.98 + mIoU(ms+flip): 77.4 + Config: configs/ocrnet/ocrnet_hr18_4xb4-40k_voc12aug-512x512.py + Metadata: + Training Data: Pascal VOC 2012 + Aug + Batch Size: 16 + Architecture: + - HRNetV2p-W18 + - OCRNet + Training Resources: 4x V100 GPUS + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr18_512x512_40k_voc12aug/ocrnet_hr18_512x512_40k_voc12aug_20200614_015958-714302be.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr18_512x512_40k_voc12aug/ocrnet_hr18_512x512_40k_voc12aug_20200614_015958.log.json + Paper: + Title: Object-Contextual Representations for Semantic Segmentation + URL: https://arxiv.org/abs/1909.11065 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/ocr_head.py#L86 + Framework: PyTorch +- Name: ocrnet_hr48_4xb4-40k_voc12aug-512x512 + In Collection: OCRNet + Results: + Task: Semantic Segmentation + Dataset: Pascal VOC 2012 + Aug + Metrics: + mIoU: 77.14 + mIoU(ms+flip): 79.71 + Config: configs/ocrnet/ocrnet_hr48_4xb4-40k_voc12aug-512x512.py + Metadata: + Training Data: Pascal VOC 2012 + Aug + Batch Size: 16 + Architecture: + - HRNetV2p-W48 + - OCRNet + Training Resources: 4x V100 GPUS + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr48_512x512_40k_voc12aug/ocrnet_hr48_512x512_40k_voc12aug_20200614_015958-255bc5ce.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr48_512x512_40k_voc12aug/ocrnet_hr48_512x512_40k_voc12aug_20200614_015958.log.json + Paper: + Title: Object-Contextual Representations for Semantic Segmentation + URL: https://arxiv.org/abs/1909.11065 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/ocr_head.py#L86 + Framework: PyTorch diff --git a/configs/ocrnet/ocrnet.yml b/configs/ocrnet/ocrnet.yml deleted file mode 100644 index 20002e8864..0000000000 --- a/configs/ocrnet/ocrnet.yml +++ /dev/null @@ -1,438 +0,0 @@ -Collections: -- Name: OCRNet - Metadata: - Training Data: - - Cityscapes - - ADE20K - - Pascal VOC 2012 + Aug - Paper: - URL: https://arxiv.org/abs/1909.11065 - Title: Object-Contextual Representations for Semantic Segmentation - README: configs/ocrnet/README.md - Code: - URL: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/ocr_head.py#L86 - Version: v0.17.0 - Converted From: - Code: https://github.com/openseg-group/OCNet.pytorch -Models: -- Name: ocrnet_hr18s_4xb2-40k_cityscapes-512x1024 - In Collection: OCRNet - Metadata: - backbone: HRNetV2p-W18-Small - crop size: (512,1024) - lr schd: 40000 - inference time (ms/im): - - value: 95.69 - hardware: V100 - backend: PyTorch - batch size: 1 - mode: FP32 - resolution: (512,1024) - Training Memory (GB): 3.5 - Results: - - Task: Semantic Segmentation - Dataset: Cityscapes - Metrics: - mIoU: 76.61 - mIoU(ms+flip): 78.01 - Config: configs/ocrnet/ocrnet_hr18s_4xb2-40k_cityscapes-512x1024.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr18s_4xb2-40k_cityscapes-512x1024/ocrnet_hr18s_4xb2-40k_cityscapes-512x1024_20230227_145026-6c052a14.pth -- Name: ocrnet_hr18_4xb2-40k_cityscapes-512x1024 - In Collection: OCRNet - Metadata: - backbone: HRNetV2p-W18 - crop size: (512,1024) - lr schd: 40000 - inference time (ms/im): - - value: 133.33 - hardware: V100 - backend: PyTorch - batch size: 1 - mode: FP32 - resolution: (512,1024) - Training Memory (GB): 4.7 - Results: - - Task: Semantic Segmentation - Dataset: Cityscapes - Metrics: - mIoU: 77.72 - mIoU(ms+flip): 79.49 - Config: configs/ocrnet/ocrnet_hr18_4xb2-40k_cityscapes-512x1024.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr18_512x1024_40k_cityscapes/ocrnet_hr18_512x1024_40k_cityscapes_20200601_033320-401c5bdd.pth -- Name: ocrnet_hr48_4xb2-40k_cityscapes-512x1024 - In Collection: OCRNet - Metadata: - backbone: HRNetV2p-W48 - crop size: (512,1024) - lr schd: 40000 - inference time (ms/im): - - value: 236.97 - hardware: V100 - backend: PyTorch - batch size: 1 - mode: FP32 - resolution: (512,1024) - Training Memory (GB): 8.0 - Results: - - Task: Semantic Segmentation - Dataset: Cityscapes - Metrics: - mIoU: 80.58 - mIoU(ms+flip): 81.79 - Config: configs/ocrnet/ocrnet_hr48_4xb2-40k_cityscapes-512x1024.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr48_512x1024_40k_cityscapes/ocrnet_hr48_512x1024_40k_cityscapes_20200601_033336-55b32491.pth -- Name: ocrnet_hr18s_4xb2-80k_cityscapes-512x1024 - In Collection: OCRNet - Metadata: - backbone: HRNetV2p-W18-Small - crop size: (512,1024) - lr schd: 80000 - Results: - - Task: Semantic Segmentation - Dataset: Cityscapes - Metrics: - mIoU: 77.16 - mIoU(ms+flip): 78.66 - Config: configs/ocrnet/ocrnet_hr18s_4xb2-80k_cityscapes-512x1024.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr18s_512x1024_80k_cityscapes/ocrnet_hr18s_512x1024_80k_cityscapes_20200601_222735-55979e63.pth -- Name: ocrnet_hr18_4xb2-80k_cityscapes-512x1024 - In Collection: OCRNet - Metadata: - backbone: HRNetV2p-W18 - crop size: (512,1024) - lr schd: 80000 - Results: - - Task: Semantic Segmentation - Dataset: Cityscapes - Metrics: - mIoU: 78.57 - mIoU(ms+flip): 80.46 - Config: configs/ocrnet/ocrnet_hr18_4xb2-80k_cityscapes-512x1024.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr18_512x1024_80k_cityscapes/ocrnet_hr18_512x1024_80k_cityscapes_20200614_230521-c2e1dd4a.pth -- Name: ocrnet_hr48_4xb2-80k_cityscapes-512x1024 - In Collection: OCRNet - Metadata: - backbone: HRNetV2p-W48 - crop size: (512,1024) - lr schd: 80000 - Results: - - Task: Semantic Segmentation - Dataset: Cityscapes - Metrics: - mIoU: 80.7 - mIoU(ms+flip): 81.87 - Config: configs/ocrnet/ocrnet_hr48_4xb2-80k_cityscapes-512x1024.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr48_512x1024_80k_cityscapes/ocrnet_hr48_512x1024_80k_cityscapes_20200601_222752-9076bcdf.pth -- Name: ocrnet_hr18s_4xb2-160k_cityscapes-512x1024 - In Collection: OCRNet - Metadata: - backbone: HRNetV2p-W18-Small - crop size: (512,1024) - lr schd: 160000 - Results: - - Task: Semantic Segmentation - Dataset: Cityscapes - Metrics: - mIoU: 78.45 - mIoU(ms+flip): 79.97 - Config: configs/ocrnet/ocrnet_hr18s_4xb2-160k_cityscapes-512x1024.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr18s_512x1024_160k_cityscapes/ocrnet_hr18s_512x1024_160k_cityscapes_20200602_191005-f4a7af28.pth -- Name: ocrnet_hr18_4xb2-160k_cityscapes-512x1024 - In Collection: OCRNet - Metadata: - backbone: HRNetV2p-W18 - crop size: (512,1024) - lr schd: 160000 - Results: - - Task: Semantic Segmentation - Dataset: Cityscapes - Metrics: - mIoU: 79.47 - mIoU(ms+flip): 80.91 - Config: configs/ocrnet/ocrnet_hr18_4xb2-160k_cityscapes-512x1024.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr18_512x1024_160k_cityscapes/ocrnet_hr18_512x1024_160k_cityscapes_20200602_191001-b9172d0c.pth -- Name: ocrnet_hr48_4xb2-160k_cityscapes-512x1024 - In Collection: OCRNet - Metadata: - backbone: HRNetV2p-W48 - crop size: (512,1024) - lr schd: 160000 - Results: - - Task: Semantic Segmentation - Dataset: Cityscapes - Metrics: - mIoU: 81.35 - mIoU(ms+flip): 82.7 - Config: configs/ocrnet/ocrnet_hr48_4xb2-160k_cityscapes-512x1024.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr48_512x1024_160k_cityscapes/ocrnet_hr48_512x1024_160k_cityscapes_20200602_191037-dfbf1b0c.pth -- Name: ocrnet_r101-d8_4xb2-40k_cityscapes-512x1024 - In Collection: OCRNet - Metadata: - backbone: R-101-D8 - crop size: (512,1024) - lr schd: 40000 - Results: - - Task: Semantic Segmentation - Dataset: Cityscapes - Metrics: - mIoU: 80.09 - Config: configs/ocrnet/ocrnet_r101-d8_4xb2-40k_cityscapes-512x1024.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_r101-d8_512x1024_40k_b8_cityscapes/ocrnet_r101-d8_512x1024_40k_b8_cityscapes_20200717_110721-02ac0f13.pth -- Name: ocrnet_r101-d8_8xb2-40k_cityscapes-512x1024 - In Collection: OCRNet - Metadata: - backbone: R-101-D8 - crop size: (512,1024) - lr schd: 40000 - inference time (ms/im): - - value: 331.13 - hardware: V100 - backend: PyTorch - batch size: 1 - mode: FP32 - resolution: (512,1024) - Training Memory (GB): 8.8 - Results: - - Task: Semantic Segmentation - Dataset: Cityscapes - Metrics: - mIoU: 80.3 - Config: configs/ocrnet/ocrnet_r101-d8_8xb2-40k_cityscapes-512x1024.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_r101-d8_512x1024_40k_b16_cityscapes/ocrnet_r101-d8_512x1024_40k_b16_cityscapes_20200723_193726-db500f80.pth -- Name: ocrnet_r101-d8_8xb2-80k_cityscapes-512x1024 - In Collection: OCRNet - Metadata: - backbone: R-101-D8 - crop size: (512,1024) - lr schd: 80000 - inference time (ms/im): - - value: 331.13 - hardware: V100 - backend: PyTorch - batch size: 1 - mode: FP32 - resolution: (512,1024) - Training Memory (GB): 8.8 - Results: - - Task: Semantic Segmentation - Dataset: Cityscapes - Metrics: - mIoU: 80.81 - Config: configs/ocrnet/ocrnet_r101-d8_8xb2-80k_cityscapes-512x1024.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_r101-d8_512x1024_80k_b16_cityscapes/ocrnet_r101-d8_512x1024_80k_b16_cityscapes_20200723_192421-78688424.pth -- Name: ocrnet_hr18s_4xb4-80k_ade20k-512x512 - In Collection: OCRNet - Metadata: - backbone: HRNetV2p-W18-Small - crop size: (512,512) - lr schd: 80000 - inference time (ms/im): - - value: 34.51 - hardware: V100 - backend: PyTorch - batch size: 1 - mode: FP32 - resolution: (512,512) - Training Memory (GB): 6.7 - Results: - - Task: Semantic Segmentation - Dataset: ADE20K - Metrics: - mIoU: 35.06 - mIoU(ms+flip): 35.8 - Config: configs/ocrnet/ocrnet_hr18s_4xb4-80k_ade20k-512x512.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr18s_512x512_80k_ade20k/ocrnet_hr18s_512x512_80k_ade20k_20200615_055600-e80b62af.pth -- Name: ocrnet_hr18_4xb4-80k_ade20k-512x512 - In Collection: OCRNet - Metadata: - backbone: HRNetV2p-W18 - crop size: (512,512) - lr schd: 80000 - inference time (ms/im): - - value: 52.83 - hardware: V100 - backend: PyTorch - batch size: 1 - mode: FP32 - resolution: (512,512) - Training Memory (GB): 7.9 - Results: - - Task: Semantic Segmentation - Dataset: ADE20K - Metrics: - mIoU: 37.79 - mIoU(ms+flip): 39.16 - Config: configs/ocrnet/ocrnet_hr18_4xb4-80k_ade20k-512x512.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr18_512x512_80k_ade20k/ocrnet_hr18_512x512_80k_ade20k_20200615_053157-d173d83b.pth -- Name: ocrnet_hr48_4xb4-80k_ade20k-512x512 - In Collection: OCRNet - Metadata: - backbone: HRNetV2p-W48 - crop size: (512,512) - lr schd: 80000 - inference time (ms/im): - - value: 58.86 - hardware: V100 - backend: PyTorch - batch size: 1 - mode: FP32 - resolution: (512,512) - Training Memory (GB): 11.2 - Results: - - Task: Semantic Segmentation - Dataset: ADE20K - Metrics: - mIoU: 43.0 - mIoU(ms+flip): 44.3 - Config: configs/ocrnet/ocrnet_hr48_4xb4-80k_ade20k-512x512.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr48_512x512_80k_ade20k/ocrnet_hr48_512x512_80k_ade20k_20200615_021518-d168c2d1.pth -- Name: ocrnet_hr18s_4xb4-80k_ade20k-512x512 - In Collection: OCRNet - Metadata: - backbone: HRNetV2p-W18-Small - crop size: (512,512) - lr schd: 160000 - Results: - - Task: Semantic Segmentation - Dataset: ADE20K - Metrics: - mIoU: 37.19 - mIoU(ms+flip): 38.4 - Config: configs/ocrnet/ocrnet_hr18s_4xb4-80k_ade20k-512x512.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr18s_512x512_160k_ade20k/ocrnet_hr18s_512x512_160k_ade20k_20200615_184505-8e913058.pth -- Name: ocrnet_hr18_4xb4-80k_ade20k-512x512 - In Collection: OCRNet - Metadata: - backbone: HRNetV2p-W18 - crop size: (512,512) - lr schd: 160000 - Results: - - Task: Semantic Segmentation - Dataset: ADE20K - Metrics: - mIoU: 39.32 - mIoU(ms+flip): 40.8 - Config: configs/ocrnet/ocrnet_hr18_4xb4-80k_ade20k-512x512.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr18_512x512_160k_ade20k/ocrnet_hr18_512x512_160k_ade20k_20200615_200940-d8fcd9d1.pth -- Name: ocrnet_hr48_4xb4-160k_ade20k-512x512 - In Collection: OCRNet - Metadata: - backbone: HRNetV2p-W48 - crop size: (512,512) - lr schd: 160000 - Results: - - Task: Semantic Segmentation - Dataset: ADE20K - Metrics: - mIoU: 43.25 - mIoU(ms+flip): 44.88 - Config: configs/ocrnet/ocrnet_hr48_4xb4-160k_ade20k-512x512.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr48_512x512_160k_ade20k/ocrnet_hr48_512x512_160k_ade20k_20200615_184705-a073726d.pth -- Name: ocrnet_hr18s_4xb4-20k_voc12aug-512x512 - In Collection: OCRNet - Metadata: - backbone: HRNetV2p-W18-Small - crop size: (512,512) - lr schd: 20000 - inference time (ms/im): - - value: 31.7 - hardware: V100 - backend: PyTorch - batch size: 1 - mode: FP32 - resolution: (512,512) - Training Memory (GB): 3.5 - Results: - - Task: Semantic Segmentation - Dataset: Pascal VOC 2012 + Aug - Metrics: - mIoU: 71.7 - mIoU(ms+flip): 73.84 - Config: configs/ocrnet/ocrnet_hr18s_4xb4-20k_voc12aug-512x512.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr18s_512x512_20k_voc12aug/ocrnet_hr18s_512x512_20k_voc12aug_20200617_233913-02b04fcb.pth -- Name: ocrnet_hr18_4xb4-20k_voc12aug-512x512 - In Collection: OCRNet - Metadata: - backbone: HRNetV2p-W18 - crop size: (512,512) - lr schd: 20000 - inference time (ms/im): - - value: 50.23 - hardware: V100 - backend: PyTorch - batch size: 1 - mode: FP32 - resolution: (512,512) - Training Memory (GB): 4.7 - Results: - - Task: Semantic Segmentation - Dataset: Pascal VOC 2012 + Aug - Metrics: - mIoU: 74.75 - mIoU(ms+flip): 77.11 - Config: configs/ocrnet/ocrnet_hr18_4xb4-20k_voc12aug-512x512.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr18_512x512_20k_voc12aug/ocrnet_hr18_512x512_20k_voc12aug_20200617_233932-8954cbb7.pth -- Name: ocrnet_hr48_4xb4-20k_voc12aug-512x512 - In Collection: OCRNet - Metadata: - backbone: HRNetV2p-W48 - crop size: (512,512) - lr schd: 20000 - inference time (ms/im): - - value: 56.09 - hardware: V100 - backend: PyTorch - batch size: 1 - mode: FP32 - resolution: (512,512) - Training Memory (GB): 8.1 - Results: - - Task: Semantic Segmentation - Dataset: Pascal VOC 2012 + Aug - Metrics: - mIoU: 77.72 - mIoU(ms+flip): 79.87 - Config: configs/ocrnet/ocrnet_hr48_4xb4-20k_voc12aug-512x512.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr48_512x512_20k_voc12aug/ocrnet_hr48_512x512_20k_voc12aug_20200617_233932-9e82080a.pth -- Name: ocrnet_hr18s_4xb4-40k_voc12aug-512x512 - In Collection: OCRNet - Metadata: - backbone: HRNetV2p-W18-Small - crop size: (512,512) - lr schd: 40000 - Results: - - Task: Semantic Segmentation - Dataset: Pascal VOC 2012 + Aug - Metrics: - mIoU: 72.76 - mIoU(ms+flip): 74.6 - Config: configs/ocrnet/ocrnet_hr18s_4xb4-40k_voc12aug-512x512.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr18s_512x512_40k_voc12aug/ocrnet_hr18s_512x512_40k_voc12aug_20200614_002025-42b587ac.pth -- Name: ocrnet_hr18_4xb4-40k_voc12aug-512x512 - In Collection: OCRNet - Metadata: - backbone: HRNetV2p-W18 - crop size: (512,512) - lr schd: 40000 - Results: - - Task: Semantic Segmentation - Dataset: Pascal VOC 2012 + Aug - Metrics: - mIoU: 74.98 - mIoU(ms+flip): 77.4 - Config: configs/ocrnet/ocrnet_hr18_4xb4-40k_voc12aug-512x512.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr18_512x512_40k_voc12aug/ocrnet_hr18_512x512_40k_voc12aug_20200614_015958-714302be.pth -- Name: ocrnet_hr48_4xb4-40k_voc12aug-512x512 - In Collection: OCRNet - Metadata: - backbone: HRNetV2p-W48 - crop size: (512,512) - lr schd: 40000 - Results: - - Task: Semantic Segmentation - Dataset: Pascal VOC 2012 + Aug - Metrics: - mIoU: 77.14 - mIoU(ms+flip): 79.71 - Config: configs/ocrnet/ocrnet_hr48_4xb4-40k_voc12aug-512x512.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr48_512x512_40k_voc12aug/ocrnet_hr48_512x512_40k_voc12aug_20200614_015958-255bc5ce.pth diff --git a/configs/pidnet/README.md b/configs/pidnet/README.md index 545b76e8b0..c8c3f24799 100644 --- a/configs/pidnet/README.md +++ b/configs/pidnet/README.md @@ -26,11 +26,11 @@ Two-branch network architecture has shown its efficiency and effectiveness for r ### Cityscapes -| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | mIoU | mIoU(ms+flip) | config | download | -| ------ | -------- | --------- | ------- | -------- | -------------- | ----- | ------------- | ----------------------------------------------------------------------------------------------------------------------------- | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | -| PIDNet | PIDNet-S | 1024x1024 | 120000 | 3.38 | 80.82 | 78.74 | 80.87 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/pidnet/pidnet-s_2xb6-120k_1024x1024-cityscapes.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/pidnet/pidnet-s_2xb6-120k_1024x1024-cityscapes/pidnet-s_2xb6-120k_1024x1024-cityscapes_20230302_191700-bb8e3bcc.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/pidnet/pidnet-s_2xb6-120k_1024x1024-cityscapes/pidnet-s_2xb6-120k_1024x1024-cityscapes_20230302_191700.json) | -| PIDNet | PIDNet-M | 1024x1024 | 120000 | 5.14 | 71.98 | 80.22 | 82.05 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/pidnet/pidnet-m_2xb6-120k_1024x1024-cityscapes.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/pidnet/pidnet-m_2xb6-120k_1024x1024-cityscapes/pidnet-m_2xb6-120k_1024x1024-cityscapes_20230301_143452-f9bcdbf3.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/pidnet/pidnet-m_2xb6-120k_1024x1024-cityscapes/pidnet-m_2xb6-120k_1024x1024-cityscapes_20230301_143452.json) | -| PIDNet | PIDNet-L | 1024x1024 | 120000 | 5.83 | 60.06 | 80.89 | 82.37 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/pidnet/pidnet-l_2xb6-120k_1024x1024-cityscapes.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/pidnet/pidnet-l_2xb6-120k_1024x1024-cityscapes/pidnet-l_2xb6-120k_1024x1024-cityscapes_20230303_114514-0783ca6b.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/pidnet/pidnet-l_2xb6-120k_1024x1024-cityscapes/pidnet-l_2xb6-120k_1024x1024-cityscapes_20230303_114514.json) | +| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | Device | mIoU | mIoU(ms+flip) | config | download | +| ------ | -------- | --------- | ------- | -------- | -------------- | ------ | ----- | ------------- | ----------------------------------------------------------------------------------------------------------------------------- | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | +| PIDNet | PIDNet-S | 1024x1024 | 120000 | 3.38 | 80.82 | A100 | 78.74 | 80.87 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/pidnet/pidnet-s_2xb6-120k_1024x1024-cityscapes.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/pidnet/pidnet-s_2xb6-120k_1024x1024-cityscapes/pidnet-s_2xb6-120k_1024x1024-cityscapes_20230302_191700-bb8e3bcc.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/pidnet/pidnet-s_2xb6-120k_1024x1024-cityscapes/pidnet-s_2xb6-120k_1024x1024-cityscapes_20230302_191700.json) | +| PIDNet | PIDNet-M | 1024x1024 | 120000 | 5.14 | 71.98 | A100 | 80.22 | 82.05 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/pidnet/pidnet-m_2xb6-120k_1024x1024-cityscapes.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/pidnet/pidnet-m_2xb6-120k_1024x1024-cityscapes/pidnet-m_2xb6-120k_1024x1024-cityscapes_20230301_143452-f9bcdbf3.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/pidnet/pidnet-m_2xb6-120k_1024x1024-cityscapes/pidnet-m_2xb6-120k_1024x1024-cityscapes_20230301_143452.json) | +| PIDNet | PIDNet-L | 1024x1024 | 120000 | 5.83 | 60.06 | A100 | 80.89 | 82.37 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/pidnet/pidnet-l_2xb6-120k_1024x1024-cityscapes.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/pidnet/pidnet-l_2xb6-120k_1024x1024-cityscapes/pidnet-l_2xb6-120k_1024x1024-cityscapes_20230303_114514-0783ca6b.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/pidnet/pidnet-l_2xb6-120k_1024x1024-cityscapes/pidnet-l_2xb6-120k_1024x1024-cityscapes_20230303_114514.json) | ## Notes diff --git a/configs/pidnet/metafile.yaml b/configs/pidnet/metafile.yaml new file mode 100644 index 0000000000..9102ec51c5 --- /dev/null +++ b/configs/pidnet/metafile.yaml @@ -0,0 +1,85 @@ +Collections: +- Name: PIDNet + License: Apache License 2.0 + Metadata: + Training Data: + - Cityscapes + Paper: + Title: 'PIDNet: A Real-time Semantic Segmentation Network Inspired from PID Controller' + URL: https://arxiv.org/pdf/2206.02066.pdf + README: configs/pidnet/README.md + Frameworks: + - PyTorch +Models: +- Name: pidnet-s_2xb6-120k_1024x1024-cityscapes + In Collection: PIDNet + Results: + Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 78.74 + mIoU(ms+flip): 80.87 + Config: configs/pidnet/pidnet-s_2xb6-120k_1024x1024-cityscapes.py + Metadata: + Training Data: Cityscapes + Batch Size: 12 + Architecture: + - PIDNet-S + - PIDNet + Training Resources: 2x A100 GPUS + Memory (GB): 3.38 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/pidnet/pidnet-s_2xb6-120k_1024x1024-cityscapes/pidnet-s_2xb6-120k_1024x1024-cityscapes_20230302_191700-bb8e3bcc.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/pidnet/pidnet-s_2xb6-120k_1024x1024-cityscapes/pidnet-s_2xb6-120k_1024x1024-cityscapes_20230302_191700.json + Paper: + Title: 'PIDNet: A Real-time Semantic Segmentation Network Inspired from PID Controller' + URL: https://arxiv.org/pdf/2206.02066.pdf + Code: https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/mmseg/models/backbones/pidnet.py + Framework: PyTorch +- Name: pidnet-m_2xb6-120k_1024x1024-cityscapes + In Collection: PIDNet + Results: + Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 80.22 + mIoU(ms+flip): 82.05 + Config: configs/pidnet/pidnet-m_2xb6-120k_1024x1024-cityscapes.py + Metadata: + Training Data: Cityscapes + Batch Size: 12 + Architecture: + - PIDNet-M + - PIDNet + Training Resources: 2x A100 GPUS + Memory (GB): 5.14 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/pidnet/pidnet-m_2xb6-120k_1024x1024-cityscapes/pidnet-m_2xb6-120k_1024x1024-cityscapes_20230301_143452-f9bcdbf3.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/pidnet/pidnet-m_2xb6-120k_1024x1024-cityscapes/pidnet-m_2xb6-120k_1024x1024-cityscapes_20230301_143452.json + Paper: + Title: 'PIDNet: A Real-time Semantic Segmentation Network Inspired from PID Controller' + URL: https://arxiv.org/pdf/2206.02066.pdf + Code: https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/mmseg/models/backbones/pidnet.py + Framework: PyTorch +- Name: pidnet-l_2xb6-120k_1024x1024-cityscapes + In Collection: PIDNet + Results: + Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 80.89 + mIoU(ms+flip): 82.37 + Config: configs/pidnet/pidnet-l_2xb6-120k_1024x1024-cityscapes.py + Metadata: + Training Data: Cityscapes + Batch Size: 12 + Architecture: + - PIDNet-L + - PIDNet + Training Resources: 2x A100 GPUS + Memory (GB): 5.83 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/pidnet/pidnet-l_2xb6-120k_1024x1024-cityscapes/pidnet-l_2xb6-120k_1024x1024-cityscapes_20230303_114514-0783ca6b.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/pidnet/pidnet-l_2xb6-120k_1024x1024-cityscapes/pidnet-l_2xb6-120k_1024x1024-cityscapes_20230303_114514.json + Paper: + Title: 'PIDNet: A Real-time Semantic Segmentation Network Inspired from PID Controller' + URL: https://arxiv.org/pdf/2206.02066.pdf + Code: https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/mmseg/models/backbones/pidnet.py + Framework: PyTorch diff --git a/configs/pidnet/pidnet.yml b/configs/pidnet/pidnet.yml deleted file mode 100644 index 7fe818ca7c..0000000000 --- a/configs/pidnet/pidnet.yml +++ /dev/null @@ -1,81 +0,0 @@ -Collections: -- Name: PIDNet - Metadata: - Training Data: - - Cityscapes - Paper: - URL: https://arxiv.org/pdf/2206.02066.pdf - Title: 'PIDNet: A Real-time Semantic Segmentation Network Inspired from PID Controller' - README: configs/pidnet/README.md - Code: - URL: https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/mmseg/models/backbones/pidnet.py - Version: dev-1.x - Converted From: - Code: https://github.com/XuJiacong/PIDNet -Models: -- Name: pidnet-s_2xb6-120k_1024x1024-cityscapes - In Collection: PIDNet - Metadata: - backbone: PIDNet-S - crop size: (1024,1024) - lr schd: 120000 - inference time (ms/im): - - value: 12.37 - hardware: V100 - backend: PyTorch - batch size: 1 - mode: FP32 - resolution: (1024,1024) - Training Memory (GB): 3.38 - Results: - - Task: Semantic Segmentation - Dataset: Cityscapes - Metrics: - mIoU: 78.74 - mIoU(ms+flip): 80.87 - Config: configs/pidnet/pidnet-s_2xb6-120k_1024x1024-cityscapes.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/pidnet/pidnet-s_2xb6-120k_1024x1024-cityscapes/pidnet-s_2xb6-120k_1024x1024-cityscapes_20230302_191700-bb8e3bcc.pth -- Name: pidnet-m_2xb6-120k_1024x1024-cityscapes - In Collection: PIDNet - Metadata: - backbone: PIDNet-M - crop size: (1024,1024) - lr schd: 120000 - inference time (ms/im): - - value: 13.89 - hardware: V100 - backend: PyTorch - batch size: 1 - mode: FP32 - resolution: (1024,1024) - Training Memory (GB): 5.14 - Results: - - Task: Semantic Segmentation - Dataset: Cityscapes - Metrics: - mIoU: 80.22 - mIoU(ms+flip): 82.05 - Config: configs/pidnet/pidnet-m_2xb6-120k_1024x1024-cityscapes.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/pidnet/pidnet-m_2xb6-120k_1024x1024-cityscapes/pidnet-m_2xb6-120k_1024x1024-cityscapes_20230301_143452-f9bcdbf3.pth -- Name: pidnet-l_2xb6-120k_1024x1024-cityscapes - In Collection: PIDNet - Metadata: - backbone: PIDNet-L - crop size: (1024,1024) - lr schd: 120000 - inference time (ms/im): - - value: 16.65 - hardware: V100 - backend: PyTorch - batch size: 1 - mode: FP32 - resolution: (1024,1024) - Training Memory (GB): 5.83 - Results: - - Task: Semantic Segmentation - Dataset: Cityscapes - Metrics: - mIoU: 80.89 - mIoU(ms+flip): 82.37 - Config: configs/pidnet/pidnet-l_2xb6-120k_1024x1024-cityscapes.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/pidnet/pidnet-l_2xb6-120k_1024x1024-cityscapes/pidnet-l_2xb6-120k_1024x1024-cityscapes_20230303_114514-0783ca6b.pth diff --git a/configs/point_rend/README.md b/configs/point_rend/README.md index 2690e7b9e6..9aab8e03ee 100644 --- a/configs/point_rend/README.md +++ b/configs/point_rend/README.md @@ -1,6 +1,6 @@ # PointRend -[PointRend: Image Segmentation as Rendering](https://arxiv.org/abs/1912.08193) +> [PointRend: Image Segmentation as Rendering](https://arxiv.org/abs/1912.08193) ## Introduction @@ -22,6 +22,22 @@ We present a new method for efficient high-quality image segmentation of objects +## Results and models + +### Cityscapes + +| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | Device | mIoU | mIoU(ms+flip) | config | download | +| --------- | -------- | --------- | ------: | -------: | -------------- | ------ | ----: | ------------- | ------------------------------------------------------------------------------------------------------------------------------------- | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | +| PointRend | R-50 | 512x1024 | 80000 | 3.1 | 8.48 | V100 | 76.47 | 78.13 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/point_rend/pointrend_r50_4xb2-80k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/point_rend/pointrend_r50_512x1024_80k_cityscapes/pointrend_r50_512x1024_80k_cityscapes_20200711_015821-bb1ff523.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/point_rend/pointrend_r50_512x1024_80k_cityscapes/pointrend_r50_512x1024_80k_cityscapes-20200715_214714.log.json) | +| PointRend | R-101 | 512x1024 | 80000 | 4.2 | 7.00 | V100 | 78.30 | 79.97 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/point_rend/pointrend_r101_4xb2-80k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/point_rend/pointrend_r101_512x1024_80k_cityscapes/pointrend_r101_512x1024_80k_cityscapes_20200711_170850-d0ca84be.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/point_rend/pointrend_r101_512x1024_80k_cityscapes/pointrend_r101_512x1024_80k_cityscapes-20200715_214824.log.json) | + +### ADE20K + +| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | Device | mIoU | mIoU(ms+flip) | config | download | +| --------- | -------- | --------- | ------: | -------: | -------------- | ------ | ----: | ------------- | --------------------------------------------------------------------------------------------------------------------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ | +| PointRend | R-50 | 512x512 | 160000 | 5.1 | 17.31 | V100 | 37.64 | 39.17 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/point_rend/pointrend_r50_4xb4-160k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/point_rend/pointrend_r50_512x512_160k_ade20k/pointrend_r50_512x512_160k_ade20k_20200807_232644-ac3febf2.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/point_rend/pointrend_r50_512x512_160k_ade20k/pointrend_r50_512x512_160k_ade20k-20200807_232644.log.json) | +| PointRend | R-101 | 512x512 | 160000 | 6.1 | 15.50 | V100 | 40.02 | 41.60 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/point_rend/pointrend_r101_4xb4-160k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/point_rend/pointrend_r101_512x512_160k_ade20k/pointrend_r101_512x512_160k_ade20k_20200808_030852-8834902a.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/point_rend/pointrend_r101_512x512_160k_ade20k/pointrend_r101_512x512_160k_ade20k-20200808_030852.log.json) | + ## Citation ```bibtex @@ -33,19 +49,3 @@ We present a new method for efficient high-quality image segmentation of objects year={2020} } ``` - -## Results and models - -### Cityscapes - -| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | mIoU | mIoU(ms+flip) | config | download | -| --------- | -------- | --------- | ------: | -------: | -------------- | ----: | ------------- | ------------------------------------------------------------------------------------------------------------------------------------- | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | -| PointRend | R-50 | 512x1024 | 80000 | 3.1 | 8.48 | 76.47 | 78.13 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/point_rend/pointrend_r50_4xb2-80k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/point_rend/pointrend_r50_512x1024_80k_cityscapes/pointrend_r50_512x1024_80k_cityscapes_20200711_015821-bb1ff523.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/point_rend/pointrend_r50_512x1024_80k_cityscapes/pointrend_r50_512x1024_80k_cityscapes-20200715_214714.log.json) | -| PointRend | R-101 | 512x1024 | 80000 | 4.2 | 7.00 | 78.30 | 79.97 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/point_rend/pointrend_r101_4xb2-80k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/point_rend/pointrend_r101_512x1024_80k_cityscapes/pointrend_r101_512x1024_80k_cityscapes_20200711_170850-d0ca84be.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/point_rend/pointrend_r101_512x1024_80k_cityscapes/pointrend_r101_512x1024_80k_cityscapes-20200715_214824.log.json) | - -### ADE20K - -| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | mIoU | mIoU(ms+flip) | config | download | -| --------- | -------- | --------- | ------: | -------: | -------------- | ----: | ------------- | --------------------------------------------------------------------------------------------------------------------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ | -| PointRend | R-50 | 512x512 | 160000 | 5.1 | 17.31 | 37.64 | 39.17 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/point_rend/pointrend_r50_4xb4-160k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/point_rend/pointrend_r50_512x512_160k_ade20k/pointrend_r50_512x512_160k_ade20k_20200807_232644-ac3febf2.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/point_rend/pointrend_r50_512x512_160k_ade20k/pointrend_r50_512x512_160k_ade20k-20200807_232644.log.json) | -| PointRend | R-101 | 512x512 | 160000 | 6.1 | 15.50 | 40.02 | 41.60 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/point_rend/pointrend_r101_4xb4-160k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/point_rend/pointrend_r101_512x512_160k_ade20k/pointrend_r101_512x512_160k_ade20k_20200808_030852-8834902a.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/point_rend/pointrend_r101_512x512_160k_ade20k/pointrend_r101_512x512_160k_ade20k-20200808_030852.log.json) | diff --git a/configs/point_rend/metafile.yaml b/configs/point_rend/metafile.yaml new file mode 100644 index 0000000000..064717c9df --- /dev/null +++ b/configs/point_rend/metafile.yaml @@ -0,0 +1,110 @@ +Collections: +- Name: PointRend + License: Apache License 2.0 + Metadata: + Training Data: + - Cityscapes + - ADE20K + Paper: + Title: 'PointRend: Image Segmentation as Rendering' + URL: https://arxiv.org/abs/1912.08193 + README: configs/point_rend/README.md + Frameworks: + - PyTorch +Models: +- Name: pointrend_r50_4xb2-80k_cityscapes-512x1024 + In Collection: PointRend + Results: + Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 76.47 + mIoU(ms+flip): 78.13 + Config: configs/point_rend/pointrend_r50_4xb2-80k_cityscapes-512x1024.py + Metadata: + Training Data: Cityscapes + Batch Size: 8 + Architecture: + - R-50 + - PointRend + Training Resources: 4x V100 GPUS + Memory (GB): 3.1 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/point_rend/pointrend_r50_512x1024_80k_cityscapes/pointrend_r50_512x1024_80k_cityscapes_20200711_015821-bb1ff523.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/point_rend/pointrend_r50_512x1024_80k_cityscapes/pointrend_r50_512x1024_80k_cityscapes-20200715_214714.log.json + Paper: + Title: 'PointRend: Image Segmentation as Rendering' + URL: https://arxiv.org/abs/1912.08193 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/point_head.py#L36 + Framework: PyTorch +- Name: pointrend_r101_4xb2-80k_cityscapes-512x1024 + In Collection: PointRend + Results: + Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 78.3 + mIoU(ms+flip): 79.97 + Config: configs/point_rend/pointrend_r101_4xb2-80k_cityscapes-512x1024.py + Metadata: + Training Data: Cityscapes + Batch Size: 8 + Architecture: + - R-101 + - PointRend + Training Resources: 4x V100 GPUS + Memory (GB): 4.2 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/point_rend/pointrend_r101_512x1024_80k_cityscapes/pointrend_r101_512x1024_80k_cityscapes_20200711_170850-d0ca84be.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/point_rend/pointrend_r101_512x1024_80k_cityscapes/pointrend_r101_512x1024_80k_cityscapes-20200715_214824.log.json + Paper: + Title: 'PointRend: Image Segmentation as Rendering' + URL: https://arxiv.org/abs/1912.08193 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/point_head.py#L36 + Framework: PyTorch +- Name: pointrend_r50_4xb4-160k_ade20k-512x512 + In Collection: PointRend + Results: + Task: Semantic Segmentation + Dataset: ADE20K + Metrics: + mIoU: 37.64 + mIoU(ms+flip): 39.17 + Config: configs/point_rend/pointrend_r50_4xb4-160k_ade20k-512x512.py + Metadata: + Training Data: ADE20K + Batch Size: 16 + Architecture: + - R-50 + - PointRend + Training Resources: 4x V100 GPUS + Memory (GB): 5.1 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/point_rend/pointrend_r50_512x512_160k_ade20k/pointrend_r50_512x512_160k_ade20k_20200807_232644-ac3febf2.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/point_rend/pointrend_r50_512x512_160k_ade20k/pointrend_r50_512x512_160k_ade20k-20200807_232644.log.json + Paper: + Title: 'PointRend: Image Segmentation as Rendering' + URL: https://arxiv.org/abs/1912.08193 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/point_head.py#L36 + Framework: PyTorch +- Name: pointrend_r101_4xb4-160k_ade20k-512x512 + In Collection: PointRend + Results: + Task: Semantic Segmentation + Dataset: ADE20K + Metrics: + mIoU: 40.02 + mIoU(ms+flip): 41.6 + Config: configs/point_rend/pointrend_r101_4xb4-160k_ade20k-512x512.py + Metadata: + Training Data: ADE20K + Batch Size: 16 + Architecture: + - R-101 + - PointRend + Training Resources: 4x V100 GPUS + Memory (GB): 6.1 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/point_rend/pointrend_r101_512x512_160k_ade20k/pointrend_r101_512x512_160k_ade20k_20200808_030852-8834902a.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/point_rend/pointrend_r101_512x512_160k_ade20k/pointrend_r101_512x512_160k_ade20k-20200808_030852.log.json + Paper: + Title: 'PointRend: Image Segmentation as Rendering' + URL: https://arxiv.org/abs/1912.08193 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/point_head.py#L36 + Framework: PyTorch diff --git a/configs/point_rend/point_rend.yml b/configs/point_rend/point_rend.yml deleted file mode 100644 index a4539081f3..0000000000 --- a/configs/point_rend/point_rend.yml +++ /dev/null @@ -1,104 +0,0 @@ -Collections: -- Name: PointRend - Metadata: - Training Data: - - Cityscapes - - ADE20K - Paper: - URL: https://arxiv.org/abs/1912.08193 - Title: 'PointRend: Image Segmentation as Rendering' - README: configs/point_rend/README.md - Code: - URL: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/point_head.py#L36 - Version: v0.17.0 - Converted From: - Code: https://github.com/facebookresearch/detectron2/tree/master/projects/PointRend -Models: -- Name: pointrend_r50_4xb2-80k_cityscapes-512x1024 - In Collection: PointRend - Metadata: - backbone: R-50 - crop size: (512,1024) - lr schd: 80000 - inference time (ms/im): - - value: 117.92 - hardware: V100 - backend: PyTorch - batch size: 1 - mode: FP32 - resolution: (512,1024) - Training Memory (GB): 3.1 - Results: - - Task: Semantic Segmentation - Dataset: Cityscapes - Metrics: - mIoU: 76.47 - mIoU(ms+flip): 78.13 - Config: configs/point_rend/pointrend_r50_4xb2-80k_cityscapes-512x1024.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/point_rend/pointrend_r50_512x1024_80k_cityscapes/pointrend_r50_512x1024_80k_cityscapes_20200711_015821-bb1ff523.pth -- Name: pointrend_r101_4xb2-80k_cityscapes-512x1024 - In Collection: PointRend - Metadata: - backbone: R-101 - crop size: (512,1024) - lr schd: 80000 - inference time (ms/im): - - value: 142.86 - hardware: V100 - backend: PyTorch - batch size: 1 - mode: FP32 - resolution: (512,1024) - Training Memory (GB): 4.2 - Results: - - Task: Semantic Segmentation - Dataset: Cityscapes - Metrics: - mIoU: 78.3 - mIoU(ms+flip): 79.97 - Config: configs/point_rend/pointrend_r101_4xb2-80k_cityscapes-512x1024.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/point_rend/pointrend_r101_512x1024_80k_cityscapes/pointrend_r101_512x1024_80k_cityscapes_20200711_170850-d0ca84be.pth -- Name: pointrend_r50_4xb4-160k_ade20k-512x512 - In Collection: PointRend - Metadata: - backbone: R-50 - crop size: (512,512) - lr schd: 160000 - inference time (ms/im): - - value: 57.77 - hardware: V100 - backend: PyTorch - batch size: 1 - mode: FP32 - resolution: (512,512) - Training Memory (GB): 5.1 - Results: - - Task: Semantic Segmentation - Dataset: ADE20K - Metrics: - mIoU: 37.64 - mIoU(ms+flip): 39.17 - Config: configs/point_rend/pointrend_r50_4xb4-160k_ade20k-512x512.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/point_rend/pointrend_r50_512x512_160k_ade20k/pointrend_r50_512x512_160k_ade20k_20200807_232644-ac3febf2.pth -- Name: pointrend_r101_4xb4-160k_ade20k-512x512 - In Collection: PointRend - Metadata: - backbone: R-101 - crop size: (512,512) - lr schd: 160000 - inference time (ms/im): - - value: 64.52 - hardware: V100 - backend: PyTorch - batch size: 1 - mode: FP32 - resolution: (512,512) - Training Memory (GB): 6.1 - Results: - - Task: Semantic Segmentation - Dataset: ADE20K - Metrics: - mIoU: 40.02 - mIoU(ms+flip): 41.6 - Config: configs/point_rend/pointrend_r101_4xb4-160k_ade20k-512x512.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/point_rend/pointrend_r101_512x512_160k_ade20k/pointrend_r101_512x512_160k_ade20k_20200808_030852-8834902a.pth diff --git a/configs/poolformer/README.md b/configs/poolformer/README.md index 3bdd2ba3f1..ba563a9928 100644 --- a/configs/poolformer/README.md +++ b/configs/poolformer/README.md @@ -1,6 +1,6 @@ # PoolFormer -[MetaFormer is Actually What You Need for Vision](https://arxiv.org/abs/2111.11418) +> [MetaFormer is Actually What You Need for Vision](https://arxiv.org/abs/2111.11418) ## Introduction @@ -48,13 +48,13 @@ pip install "mmcls>=1.0.0rc0" ### ADE20K -| Method | Backbone | Crop Size | pretrain | Batch Size | Lr schd | Mem (GB) | Inf time (fps) | mIoU | mIoU(ms+flip) | mIoU\* | mIoU\*(ms+flip) | config | download | -| ------ | -------------- | --------- | ----------- | ---------- | ------- | -------- | -------------- | ----- | ------------: | ------ | --------------: | ------------------------------------------------------------------------------------------------------------------------------------ | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | -| FPN | PoolFormer-S12 | 512x512 | ImageNet-1K | 32 | 40000 | 4.17 | 23.48 | 36.68 | - | 37.07 | - | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/poolformer/fpn_poolformer_s12_8xb4-40k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/poolformer/fpn_poolformer_s12_8x4_512x512_40k_ade20k/fpn_poolformer_s12_8x4_512x512_40k_ade20k_20220501_115154-b5aa2f49.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/poolformer/fpn_poolformer_s12_8x4_512x512_40k_ade20k/fpn_poolformer_s12_8x4_512x512_40k_ade20k_20220501_115154.log.json) | -| FPN | PoolFormer-S24 | 512x512 | ImageNet-1K | 32 | 40000 | 5.47 | 15.74 | 40.12 | - | 40.36 | - | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/poolformer/fpn_poolformer_s24_8xb4-40k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/poolformer/fpn_poolformer_s24_8x4_512x512_40k_ade20k/fpn_poolformer_s24_8x4_512x512_40k_ade20k_20220503_222049-394a7cf7.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/poolformer/fpn_poolformer_s24_8x4_512x512_40k_ade20k/fpn_poolformer_s24_8x4_512x512_40k_ade20k_20220503_222049.log.json) | -| FPN | PoolFormer-S36 | 512x512 | ImageNet-1K | 32 | 40000 | 6.77 | 11.34 | 41.61 | - | 41.81 | - | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/poolformer/fpn_poolformer_s36_8xb4-40k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/poolformer/fpn_poolformer_s36_8x4_512x512_40k_ade20k/fpn_poolformer_s36_8x4_512x512_40k_ade20k_20220501_151122-b47e607d.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/poolformer/fpn_poolformer_s36_8x4_512x512_40k_ade20k/fpn_poolformer_s36_8x4_512x512_40k_ade20k_20220501_151122.log.json) | -| FPN | PoolFormer-M36 | 512x512 | ImageNet-1K | 32 | 40000 | 8.59 | 8.97 | 41.95 | - | 42.35 | - | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/poolformer/fpn_poolformer_m36_8xb4-40k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/poolformer/fpn_poolformer_m36_8x4_512x512_40k_ade20k/fpn_poolformer_m36_8x4_512x512_40k_ade20k_20220501_164230-3dc83921.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/poolformer/fpn_poolformer_m36_8x4_512x512_40k_ade20k/fpn_poolformer_m36_8x4_512x512_40k_ade20k_20220501_164230.log.json) | -| FPN | PoolFormer-M48 | 512x512 | ImageNet-1K | 32 | 40000 | 10.48 | 6.69 | 42.43 | - | 42.76 | - | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/poolformer/fpn_poolformer_m48_8xb4-40k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/poolformer/fpn_poolformer_m48_8x4_512x512_40k_ade20k/fpn_poolformer_m48_8x4_512x512_40k_ade20k_20220504_003923-64168d3b.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/poolformer/fpn_poolformer_m48_8x4_512x512_40k_ade20k/fpn_poolformer_m48_8x4_512x512_40k_ade20k_20220504_003923.log.json) | +| Method | Backbone | Crop Size | pretrain | Batch Size | Lr schd | Mem (GB) | Inf time (fps) | Device | mIoU | mIoU(ms+flip) | mIoU\* | mIoU\*(ms+flip) | config | download | +| ------ | -------------- | --------- | ----------- | ---------- | ------- | -------- | -------------- | ------ | ----- | ------------: | ------ | --------------: | ------------------------------------------------------------------------------------------------------------------------------------ | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | +| FPN | PoolFormer-S12 | 512x512 | ImageNet-1K | 32 | 40000 | 4.17 | 23.48 | V100 | 36.68 | - | 37.07 | - | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/poolformer/fpn_poolformer_s12_8xb4-40k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/poolformer/fpn_poolformer_s12_8x4_512x512_40k_ade20k/fpn_poolformer_s12_8x4_512x512_40k_ade20k_20220501_115154-b5aa2f49.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/poolformer/fpn_poolformer_s12_8x4_512x512_40k_ade20k/fpn_poolformer_s12_8x4_512x512_40k_ade20k_20220501_115154.log.json) | +| FPN | PoolFormer-S24 | 512x512 | ImageNet-1K | 32 | 40000 | 5.47 | 15.74 | V100 | 40.12 | - | 40.36 | - | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/poolformer/fpn_poolformer_s24_8xb4-40k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/poolformer/fpn_poolformer_s24_8x4_512x512_40k_ade20k/fpn_poolformer_s24_8x4_512x512_40k_ade20k_20220503_222049-394a7cf7.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/poolformer/fpn_poolformer_s24_8x4_512x512_40k_ade20k/fpn_poolformer_s24_8x4_512x512_40k_ade20k_20220503_222049.log.json) | +| FPN | PoolFormer-S36 | 512x512 | ImageNet-1K | 32 | 40000 | 6.77 | 11.34 | V100 | 41.61 | - | 41.81 | - | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/poolformer/fpn_poolformer_s36_8xb4-40k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/poolformer/fpn_poolformer_s36_8x4_512x512_40k_ade20k/fpn_poolformer_s36_8x4_512x512_40k_ade20k_20220501_151122-b47e607d.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/poolformer/fpn_poolformer_s36_8x4_512x512_40k_ade20k/fpn_poolformer_s36_8x4_512x512_40k_ade20k_20220501_151122.log.json) | +| FPN | PoolFormer-M36 | 512x512 | ImageNet-1K | 32 | 40000 | 8.59 | 8.97 | V100 | 41.95 | - | 42.35 | - | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/poolformer/fpn_poolformer_m36_8xb4-40k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/poolformer/fpn_poolformer_m36_8x4_512x512_40k_ade20k/fpn_poolformer_m36_8x4_512x512_40k_ade20k_20220501_164230-3dc83921.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/poolformer/fpn_poolformer_m36_8x4_512x512_40k_ade20k/fpn_poolformer_m36_8x4_512x512_40k_ade20k_20220501_164230.log.json) | +| FPN | PoolFormer-M48 | 512x512 | ImageNet-1K | 32 | 40000 | 10.48 | 6.69 | V100 | 42.43 | - | 42.76 | - | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/poolformer/fpn_poolformer_m48_8xb4-40k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/poolformer/fpn_poolformer_m48_8x4_512x512_40k_ade20k/fpn_poolformer_m48_8x4_512x512_40k_ade20k_20220504_003923-64168d3b.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/poolformer/fpn_poolformer_m48_8x4_512x512_40k_ade20k/fpn_poolformer_m48_8x4_512x512_40k_ade20k_20220504_003923.log.json) | Note: diff --git a/configs/poolformer/metafile.yaml b/configs/poolformer/metafile.yaml new file mode 100644 index 0000000000..12f402be65 --- /dev/null +++ b/configs/poolformer/metafile.yaml @@ -0,0 +1,116 @@ +Models: +- Name: fpn_poolformer_s12_8xb4-40k_ade20k-512x512 + In Collection: FPN + Results: + Task: Semantic Segmentation + Dataset: ADE20K + Metrics: + mIoU: 36.68 + Config: configs/poolformer/fpn_poolformer_s12_8xb4-40k_ade20k-512x512.py + Metadata: + Training Data: ADE20K + Batch Size: 32 + Architecture: + - PoolFormer-S12 + - FPN + Training Resources: 8x V100 GPUS + Memory (GB): 4.17 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/poolformer/fpn_poolformer_s12_8x4_512x512_40k_ade20k/fpn_poolformer_s12_8x4_512x512_40k_ade20k_20220501_115154-b5aa2f49.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/poolformer/fpn_poolformer_s12_8x4_512x512_40k_ade20k/fpn_poolformer_s12_8x4_512x512_40k_ade20k_20220501_115154.log.json + Paper: + Title: MetaFormer is Actually What You Need for Vision + URL: https://arxiv.org/abs/2111.11418 + Code: https://github.com/open-mmlab/mmclassification/blob/v0.23.0/mmcls/models/backbones/poolformer.py#L198 + Framework: PyTorch +- Name: fpn_poolformer_s24_8xb4-40k_ade20k-512x512 + In Collection: FPN + Results: + Task: Semantic Segmentation + Dataset: ADE20K + Metrics: + mIoU: 40.12 + Config: configs/poolformer/fpn_poolformer_s24_8xb4-40k_ade20k-512x512.py + Metadata: + Training Data: ADE20K + Batch Size: 32 + Architecture: + - PoolFormer-S24 + - FPN + Training Resources: 8x V100 GPUS + Memory (GB): 5.47 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/poolformer/fpn_poolformer_s24_8x4_512x512_40k_ade20k/fpn_poolformer_s24_8x4_512x512_40k_ade20k_20220503_222049-394a7cf7.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/poolformer/fpn_poolformer_s24_8x4_512x512_40k_ade20k/fpn_poolformer_s24_8x4_512x512_40k_ade20k_20220503_222049.log.json + Paper: + Title: MetaFormer is Actually What You Need for Vision + URL: https://arxiv.org/abs/2111.11418 + Code: https://github.com/open-mmlab/mmclassification/blob/v0.23.0/mmcls/models/backbones/poolformer.py#L198 + Framework: PyTorch +- Name: fpn_poolformer_s36_8xb4-40k_ade20k-512x512 + In Collection: FPN + Results: + Task: Semantic Segmentation + Dataset: ADE20K + Metrics: + mIoU: 41.61 + Config: configs/poolformer/fpn_poolformer_s36_8xb4-40k_ade20k-512x512.py + Metadata: + Training Data: ADE20K + Batch Size: 32 + Architecture: + - PoolFormer-S36 + - FPN + Training Resources: 8x V100 GPUS + Memory (GB): 6.77 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/poolformer/fpn_poolformer_s36_8x4_512x512_40k_ade20k/fpn_poolformer_s36_8x4_512x512_40k_ade20k_20220501_151122-b47e607d.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/poolformer/fpn_poolformer_s36_8x4_512x512_40k_ade20k/fpn_poolformer_s36_8x4_512x512_40k_ade20k_20220501_151122.log.json + Paper: + Title: MetaFormer is Actually What You Need for Vision + URL: https://arxiv.org/abs/2111.11418 + Code: https://github.com/open-mmlab/mmclassification/blob/v0.23.0/mmcls/models/backbones/poolformer.py#L198 + Framework: PyTorch +- Name: fpn_poolformer_m36_8xb4-40k_ade20k-512x512 + In Collection: FPN + Results: + Task: Semantic Segmentation + Dataset: ADE20K + Metrics: + mIoU: 41.95 + Config: configs/poolformer/fpn_poolformer_m36_8xb4-40k_ade20k-512x512.py + Metadata: + Training Data: ADE20K + Batch Size: 32 + Architecture: + - PoolFormer-M36 + - FPN + Training Resources: 8x V100 GPUS + Memory (GB): 8.59 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/poolformer/fpn_poolformer_m36_8x4_512x512_40k_ade20k/fpn_poolformer_m36_8x4_512x512_40k_ade20k_20220501_164230-3dc83921.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/poolformer/fpn_poolformer_m36_8x4_512x512_40k_ade20k/fpn_poolformer_m36_8x4_512x512_40k_ade20k_20220501_164230.log.json + Paper: + Title: MetaFormer is Actually What You Need for Vision + URL: https://arxiv.org/abs/2111.11418 + Code: https://github.com/open-mmlab/mmclassification/blob/v0.23.0/mmcls/models/backbones/poolformer.py#L198 + Framework: PyTorch +- Name: fpn_poolformer_m48_8xb4-40k_ade20k-512x512 + In Collection: FPN + Results: + Task: Semantic Segmentation + Dataset: ADE20K + Metrics: + mIoU: 42.43 + Config: configs/poolformer/fpn_poolformer_m48_8xb4-40k_ade20k-512x512.py + Metadata: + Training Data: ADE20K + Batch Size: 32 + Architecture: + - PoolFormer-M48 + - FPN + Training Resources: 8x V100 GPUS + Memory (GB): 10.48 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/poolformer/fpn_poolformer_m48_8x4_512x512_40k_ade20k/fpn_poolformer_m48_8x4_512x512_40k_ade20k_20220504_003923-64168d3b.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/poolformer/fpn_poolformer_m48_8x4_512x512_40k_ade20k/fpn_poolformer_m48_8x4_512x512_40k_ade20k_20220504_003923.log.json + Paper: + Title: MetaFormer is Actually What You Need for Vision + URL: https://arxiv.org/abs/2111.11418 + Code: https://github.com/open-mmlab/mmclassification/blob/v0.23.0/mmcls/models/backbones/poolformer.py#L198 + Framework: PyTorch diff --git a/configs/poolformer/poolformer.yml b/configs/poolformer/poolformer.yml deleted file mode 100644 index fa5fc30125..0000000000 --- a/configs/poolformer/poolformer.yml +++ /dev/null @@ -1,106 +0,0 @@ -Models: -- Name: fpn_poolformer_s12_8xb4-40k_ade20k-512x512 - In Collection: FPN - Metadata: - backbone: PoolFormer-S12 - crop size: (512,512) - lr schd: 40000 - inference time (ms/im): - - value: 42.59 - hardware: V100 - backend: PyTorch - batch size: 1 - mode: FP32 - resolution: (512,512) - Training Memory (GB): 4.17 - Results: - - Task: Semantic Segmentation - Dataset: ADE20K - Metrics: - mIoU: 36.68 - Config: configs/poolformer/fpn_poolformer_s12_8xb4-40k_ade20k-512x512.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/poolformer/fpn_poolformer_s12_8x4_512x512_40k_ade20k/fpn_poolformer_s12_8x4_512x512_40k_ade20k_20220501_115154-b5aa2f49.pth -- Name: fpn_poolformer_s24_8xb4-40k_ade20k-512x512 - In Collection: FPN - Metadata: - backbone: PoolFormer-S24 - crop size: (512,512) - lr schd: 40000 - inference time (ms/im): - - value: 63.53 - hardware: V100 - backend: PyTorch - batch size: 1 - mode: FP32 - resolution: (512,512) - Training Memory (GB): 5.47 - Results: - - Task: Semantic Segmentation - Dataset: ADE20K - Metrics: - mIoU: 40.12 - Config: configs/poolformer/fpn_poolformer_s24_8xb4-40k_ade20k-512x512.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/poolformer/fpn_poolformer_s24_8x4_512x512_40k_ade20k/fpn_poolformer_s24_8x4_512x512_40k_ade20k_20220503_222049-394a7cf7.pth -- Name: '' - In Collection: FPN - Metadata: - backbone: PoolFormer-S36 - crop size: (512,512) - lr schd: 40000 - inference time (ms/im): - - value: 88.18 - hardware: V100 - backend: PyTorch - batch size: 1 - mode: FP32 - resolution: (512,512) - Training Memory (GB): 6.77 - Results: - - Task: Semantic Segmentation - Dataset: ADE20K - Metrics: - mIoU: 41.61 - Config: '' - Weights: '' -- Name: fpn_poolformer_m36_8xb4-40k_ade20k-512x512 - In Collection: FPN - Metadata: - backbone: PoolFormer-M36 - crop size: (512,512) - lr schd: 40000 - inference time (ms/im): - - value: 111.48 - hardware: V100 - backend: PyTorch - batch size: 1 - mode: FP32 - resolution: (512,512) - Training Memory (GB): 8.59 - Results: - - Task: Semantic Segmentation - Dataset: ADE20K - Metrics: - mIoU: 41.95 - Config: configs/poolformer/fpn_poolformer_m36_8xb4-40k_ade20k-512x512.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/poolformer/fpn_poolformer_m36_8x4_512x512_40k_ade20k/fpn_poolformer_m36_8x4_512x512_40k_ade20k_20220501_164230-3dc83921.pth -- Name: fpn_poolformer_m48_8xb4-40k_ade20k-512x512 - In Collection: FPN - Metadata: - backbone: PoolFormer-M48 - crop size: (512,512) - lr schd: 40000 - inference time (ms/im): - - value: 149.48 - hardware: V100 - backend: PyTorch - batch size: 1 - mode: FP32 - resolution: (512,512) - Training Memory (GB): 10.48 - Results: - - Task: Semantic Segmentation - Dataset: ADE20K - Metrics: - mIoU: 42.43 - Config: configs/poolformer/fpn_poolformer_m48_8xb4-40k_ade20k-512x512.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/poolformer/fpn_poolformer_m48_8x4_512x512_40k_ade20k/fpn_poolformer_m48_8x4_512x512_40k_ade20k_20220504_003923-64168d3b.pth diff --git a/configs/psanet/README.md b/configs/psanet/README.md index 7182e500a1..d657326120 100644 --- a/configs/psanet/README.md +++ b/configs/psanet/README.md @@ -1,6 +1,6 @@ # PSANet -[PSANet: Point-wise Spatial Attention Network for Scene Parsing](https://openaccess.thecvf.com/content_ECCV_2018/papers/Hengshuang_Zhao_PSANet_Point-wise_Spatial_ECCV_2018_paper.pdf) +> [PSANet: Point-wise Spatial Attention Network for Scene Parsing](https://openaccess.thecvf.com/content_ECCV_2018/papers/Hengshuang_Zhao_PSANet_Point-wise_Spatial_ECCV_2018_paper.pdf) ## Introduction @@ -22,6 +22,39 @@ We notice information flow in convolutional neural networksis restricted insid +## Results and models + +### Cityscapes + +| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | Device | mIoU | mIoU(ms+flip) | config | download | +| ------ | -------- | --------- | ------: | -------- | -------------- | ------ | ----: | ------------: | --------------------------------------------------------------------------------------------------------------------------------- | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | +| PSANet | R-50-D8 | 512x1024 | 40000 | 7 | 3.17 | V100 | 77.63 | 79.04 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/psanet/psanet_r50-d8_4xb2-40k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/psanet/psanet_r50-d8_512x1024_40k_cityscapes/psanet_r50-d8_512x1024_40k_cityscapes_20200606_103117-99fac37c.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/psanet/psanet_r50-d8_512x1024_40k_cityscapes/psanet_r50-d8_512x1024_40k_cityscapes_20200606_103117.log.json) | +| PSANet | R-101-D8 | 512x1024 | 40000 | 10.5 | 2.20 | V100 | 79.14 | 80.19 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/psanet/psanet_r101-d8_4xb2-40k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/psanet/psanet_r101-d8_512x1024_40k_cityscapes/psanet_r101-d8_512x1024_40k_cityscapes_20200606_001418-27b9cfa7.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/psanet/psanet_r101-d8_512x1024_40k_cityscapes/psanet_r101-d8_512x1024_40k_cityscapes_20200606_001418.log.json) | +| PSANet | R-50-D8 | 769x769 | 40000 | 7.9 | 1.40 | V100 | 77.99 | 79.64 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/psanet/psanet_r50-d8_4xb2-40k_cityscapes-769x769.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/psanet/psanet_r50-d8_769x769_40k_cityscapes/psanet_r50-d8_769x769_40k_cityscapes_20200530_033717-d5365506.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/psanet/psanet_r50-d8_769x769_40k_cityscapes/psanet_r50-d8_769x769_40k_cityscapes_20200530_033717.log.json) | +| PSANet | R-101-D8 | 769x769 | 40000 | 11.9 | 0.98 | V100 | 78.43 | 80.26 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/psanet/psanet_r101-d8_4xb2-40k_cityscapes-769x769.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/psanet/psanet_r101-d8_769x769_40k_cityscapes/psanet_r101-d8_769x769_40k_cityscapes_20200530_035107-997da1e6.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/psanet/psanet_r101-d8_769x769_40k_cityscapes/psanet_r101-d8_769x769_40k_cityscapes_20200530_035107.log.json) | +| PSANet | R-50-D8 | 512x1024 | 80000 | - | - | V100 | 77.24 | 78.69 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/psanet/psanet_r50-d8_4xb2-80k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/psanet/psanet_r50-d8_512x1024_80k_cityscapes/psanet_r50-d8_512x1024_80k_cityscapes_20200606_161842-ab60a24f.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/psanet/psanet_r50-d8_512x1024_80k_cityscapes/psanet_r50-d8_512x1024_80k_cityscapes_20200606_161842.log.json) | +| PSANet | R-101-D8 | 512x1024 | 80000 | - | - | V100 | 79.31 | 80.53 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/psanet/psanet_r101-d8_4xb2-80k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/psanet/psanet_r101-d8_512x1024_80k_cityscapes/psanet_r101-d8_512x1024_80k_cityscapes_20200606_161823-0f73a169.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/psanet/psanet_r101-d8_512x1024_80k_cityscapes/psanet_r101-d8_512x1024_80k_cityscapes_20200606_161823.log.json) | +| PSANet | R-50-D8 | 769x769 | 80000 | - | - | V100 | 79.31 | 80.91 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/psanet/psanet_r50-d8_4xb2-80k_cityscapes-769x769.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/psanet/psanet_r50-d8_769x769_80k_cityscapes/psanet_r50-d8_769x769_80k_cityscapes_20200606_225134-fe42f49e.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/psanet/psanet_r50-d8_769x769_80k_cityscapes/psanet_r50-d8_769x769_80k_cityscapes_20200606_225134.log.json) | +| PSANet | R-101-D8 | 769x769 | 80000 | - | - | V100 | 79.69 | 80.89 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/psanet/psanet_r101-d8_4xb2-80k_cityscapes-769x769.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/psanet/psanet_r101-d8_769x769_80k_cityscapes/psanet_r101-d8_769x769_80k_cityscapes_20200606_214550-7665827b.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/psanet/psanet_r101-d8_769x769_80k_cityscapes/psanet_r101-d8_769x769_80k_cityscapes_20200606_214550.log.json) | + +### ADE20K + +| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | Device | mIoU | mIoU(ms+flip) | config | download | +| ------ | -------- | --------- | ------: | -------- | -------------- | ------ | ----: | ------------: | ----------------------------------------------------------------------------------------------------------------------------- | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | +| PSANet | R-50-D8 | 512x512 | 80000 | 9 | 18.91 | V100 | 41.14 | 41.91 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/psanet/psanet_r50-d8_4xb4-80k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/psanet/psanet_r50-d8_512x512_80k_ade20k/psanet_r50-d8_512x512_80k_ade20k_20200614_144141-835e4b97.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/psanet/psanet_r50-d8_512x512_80k_ade20k/psanet_r50-d8_512x512_80k_ade20k_20200614_144141.log.json) | +| PSANet | R-101-D8 | 512x512 | 80000 | 12.5 | 13.13 | V100 | 43.80 | 44.75 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/psanet/psanet_r101-d8_4xb4-80k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/psanet/psanet_r101-d8_512x512_80k_ade20k/psanet_r101-d8_512x512_80k_ade20k_20200614_185117-1fab60d4.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/psanet/psanet_r101-d8_512x512_80k_ade20k/psanet_r101-d8_512x512_80k_ade20k_20200614_185117.log.json) | +| PSANet | R-50-D8 | 512x512 | 160000 | - | - | V100 | 41.67 | 42.95 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/psanet/psanet_r50-d8_4xb4-160k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/psanet/psanet_r50-d8_512x512_160k_ade20k/psanet_r50-d8_512x512_160k_ade20k_20200615_161258-148077dd.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/psanet/psanet_r50-d8_512x512_160k_ade20k/psanet_r50-d8_512x512_160k_ade20k_20200615_161258.log.json) | +| PSANet | R-101-D8 | 512x512 | 160000 | - | - | V100 | 43.74 | 45.38 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/psanet/psanet_r101-d8_4xb4-160k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/psanet/psanet_r101-d8_512x512_160k_ade20k/psanet_r101-d8_512x512_160k_ade20k_20200615_161537-dbfa564c.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/psanet/psanet_r101-d8_512x512_160k_ade20k/psanet_r101-d8_512x512_160k_ade20k_20200615_161537.log.json) | + +### Pascal VOC 2012 + Aug + +| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | Device | mIoU | mIoU(ms+flip) | config | download | +| ------ | -------- | --------- | ------: | -------- | -------------- | ------ | ----: | ------------: | ------------------------------------------------------------------------------------------------------------------------------ | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | +| PSANet | R-50-D8 | 512x512 | 20000 | 6.9 | 18.24 | V100 | 76.39 | 77.34 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/psanet/psanet_r50-d8_4xb4-20k_voc12aug-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/psanet/psanet_r50-d8_512x512_20k_voc12aug/psanet_r50-d8_512x512_20k_voc12aug_20200617_102413-2f1bbaa1.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/psanet/psanet_r50-d8_512x512_20k_voc12aug/psanet_r50-d8_512x512_20k_voc12aug_20200617_102413.log.json) | +| PSANet | R-101-D8 | 512x512 | 20000 | 10.4 | 12.63 | V100 | 77.91 | 79.30 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/psanet/psanet_r101-d8_4xb4-20k_voc12aug-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/psanet/psanet_r101-d8_512x512_20k_voc12aug/psanet_r101-d8_512x512_20k_voc12aug_20200617_110624-946fef11.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/psanet/psanet_r101-d8_512x512_20k_voc12aug/psanet_r101-d8_512x512_20k_voc12aug_20200617_110624.log.json) | +| PSANet | R-50-D8 | 512x512 | 40000 | - | - | V100 | 76.30 | 77.35 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/psanet/psanet_r50-d8_4xb4-40k_voc12aug-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/psanet/psanet_r50-d8_512x512_40k_voc12aug/psanet_r50-d8_512x512_40k_voc12aug_20200613_161946-f596afb5.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/psanet/psanet_r50-d8_512x512_40k_voc12aug/psanet_r50-d8_512x512_40k_voc12aug_20200613_161946.log.json) | +| PSANet | R-101-D8 | 512x512 | 40000 | - | - | V100 | 77.73 | 79.05 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/psanet/psanet_r101-d8_4xb4-40k_voc12aug-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/psanet/psanet_r101-d8_512x512_40k_voc12aug/psanet_r101-d8_512x512_40k_voc12aug_20200613_161946-1f560f9e.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/psanet/psanet_r101-d8_512x512_40k_voc12aug/psanet_r101-d8_512x512_40k_voc12aug_20200613_161946.log.json) | + ## Citation ```bibtex @@ -33,36 +66,3 @@ We notice information flow in convolutional neural networksis restricted insid year={2018} } ``` - -## Results and models - -### Cityscapes - -| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | mIoU | mIoU(ms+flip) | config | download | -| ------ | -------- | --------- | ------: | -------- | -------------- | ----: | ------------: | --------------------------------------------------------------------------------------------------------------------------------- | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | -| PSANet | R-50-D8 | 512x1024 | 40000 | 7 | 3.17 | 77.63 | 79.04 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/psanet/psanet_r50-d8_4xb2-40k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/psanet/psanet_r50-d8_512x1024_40k_cityscapes/psanet_r50-d8_512x1024_40k_cityscapes_20200606_103117-99fac37c.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/psanet/psanet_r50-d8_512x1024_40k_cityscapes/psanet_r50-d8_512x1024_40k_cityscapes_20200606_103117.log.json) | -| PSANet | R-101-D8 | 512x1024 | 40000 | 10.5 | 2.20 | 79.14 | 80.19 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/psanet/psanet_r101-d8_4xb2-40k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/psanet/psanet_r101-d8_512x1024_40k_cityscapes/psanet_r101-d8_512x1024_40k_cityscapes_20200606_001418-27b9cfa7.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/psanet/psanet_r101-d8_512x1024_40k_cityscapes/psanet_r101-d8_512x1024_40k_cityscapes_20200606_001418.log.json) | -| PSANet | R-50-D8 | 769x769 | 40000 | 7.9 | 1.40 | 77.99 | 79.64 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/psanet/psanet_r50-d8_4xb2-40k_cityscapes-769x769.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/psanet/psanet_r50-d8_769x769_40k_cityscapes/psanet_r50-d8_769x769_40k_cityscapes_20200530_033717-d5365506.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/psanet/psanet_r50-d8_769x769_40k_cityscapes/psanet_r50-d8_769x769_40k_cityscapes_20200530_033717.log.json) | -| PSANet | R-101-D8 | 769x769 | 40000 | 11.9 | 0.98 | 78.43 | 80.26 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/psanet/psanet_r101-d8_4xb2-40k_cityscapes-769x769.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/psanet/psanet_r101-d8_769x769_40k_cityscapes/psanet_r101-d8_769x769_40k_cityscapes_20200530_035107-997da1e6.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/psanet/psanet_r101-d8_769x769_40k_cityscapes/psanet_r101-d8_769x769_40k_cityscapes_20200530_035107.log.json) | -| PSANet | R-50-D8 | 512x1024 | 80000 | - | - | 77.24 | 78.69 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/psanet/psanet_r50-d8_4xb2-80k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/psanet/psanet_r50-d8_512x1024_80k_cityscapes/psanet_r50-d8_512x1024_80k_cityscapes_20200606_161842-ab60a24f.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/psanet/psanet_r50-d8_512x1024_80k_cityscapes/psanet_r50-d8_512x1024_80k_cityscapes_20200606_161842.log.json) | -| PSANet | R-101-D8 | 512x1024 | 80000 | - | - | 79.31 | 80.53 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/psanet/psanet_r101-d8_4xb2-80k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/psanet/psanet_r101-d8_512x1024_80k_cityscapes/psanet_r101-d8_512x1024_80k_cityscapes_20200606_161823-0f73a169.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/psanet/psanet_r101-d8_512x1024_80k_cityscapes/psanet_r101-d8_512x1024_80k_cityscapes_20200606_161823.log.json) | -| PSANet | R-50-D8 | 769x769 | 80000 | - | - | 79.31 | 80.91 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/psanet/psanet_r50-d8_4xb2-80k_cityscapes-769x769.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/psanet/psanet_r50-d8_769x769_80k_cityscapes/psanet_r50-d8_769x769_80k_cityscapes_20200606_225134-fe42f49e.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/psanet/psanet_r50-d8_769x769_80k_cityscapes/psanet_r50-d8_769x769_80k_cityscapes_20200606_225134.log.json) | -| PSANet | R-101-D8 | 769x769 | 80000 | - | - | 79.69 | 80.89 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/psanet/psanet_r101-d8_4xb2-80k_cityscapes-769x769.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/psanet/psanet_r101-d8_769x769_80k_cityscapes/psanet_r101-d8_769x769_80k_cityscapes_20200606_214550-7665827b.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/psanet/psanet_r101-d8_769x769_80k_cityscapes/psanet_r101-d8_769x769_80k_cityscapes_20200606_214550.log.json) | - -### ADE20K - -| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | mIoU | mIoU(ms+flip) | config | download | -| ------ | -------- | --------- | ------: | -------- | -------------- | ----: | ------------: | ----------------------------------------------------------------------------------------------------------------------------- | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | -| PSANet | R-50-D8 | 512x512 | 80000 | 9 | 18.91 | 41.14 | 41.91 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/psanet/psanet_r50-d8_4xb4-80k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/psanet/psanet_r50-d8_512x512_80k_ade20k/psanet_r50-d8_512x512_80k_ade20k_20200614_144141-835e4b97.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/psanet/psanet_r50-d8_512x512_80k_ade20k/psanet_r50-d8_512x512_80k_ade20k_20200614_144141.log.json) | -| PSANet | R-101-D8 | 512x512 | 80000 | 12.5 | 13.13 | 43.80 | 44.75 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/psanet/psanet_r101-d8_4xb4-80k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/psanet/psanet_r101-d8_512x512_80k_ade20k/psanet_r101-d8_512x512_80k_ade20k_20200614_185117-1fab60d4.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/psanet/psanet_r101-d8_512x512_80k_ade20k/psanet_r101-d8_512x512_80k_ade20k_20200614_185117.log.json) | -| PSANet | R-50-D8 | 512x512 | 160000 | - | - | 41.67 | 42.95 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/psanet/psanet_r50-d8_4xb4-160k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/psanet/psanet_r50-d8_512x512_160k_ade20k/psanet_r50-d8_512x512_160k_ade20k_20200615_161258-148077dd.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/psanet/psanet_r50-d8_512x512_160k_ade20k/psanet_r50-d8_512x512_160k_ade20k_20200615_161258.log.json) | -| PSANet | R-101-D8 | 512x512 | 160000 | - | - | 43.74 | 45.38 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/psanet/psanet_r101-d8_4xb4-160k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/psanet/psanet_r101-d8_512x512_160k_ade20k/psanet_r101-d8_512x512_160k_ade20k_20200615_161537-dbfa564c.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/psanet/psanet_r101-d8_512x512_160k_ade20k/psanet_r101-d8_512x512_160k_ade20k_20200615_161537.log.json) | - -### Pascal VOC 2012 + Aug - -| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | mIoU | mIoU(ms+flip) | config | download | -| ------ | -------- | --------- | ------: | -------- | -------------- | ----: | ------------: | ------------------------------------------------------------------------------------------------------------------------------ | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | -| PSANet | R-50-D8 | 512x512 | 20000 | 6.9 | 18.24 | 76.39 | 77.34 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/psanet/psanet_r50-d8_4xb4-20k_voc12aug-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/psanet/psanet_r50-d8_512x512_20k_voc12aug/psanet_r50-d8_512x512_20k_voc12aug_20200617_102413-2f1bbaa1.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/psanet/psanet_r50-d8_512x512_20k_voc12aug/psanet_r50-d8_512x512_20k_voc12aug_20200617_102413.log.json) | -| PSANet | R-101-D8 | 512x512 | 20000 | 10.4 | 12.63 | 77.91 | 79.30 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/psanet/psanet_r101-d8_4xb4-20k_voc12aug-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/psanet/psanet_r101-d8_512x512_20k_voc12aug/psanet_r101-d8_512x512_20k_voc12aug_20200617_110624-946fef11.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/psanet/psanet_r101-d8_512x512_20k_voc12aug/psanet_r101-d8_512x512_20k_voc12aug_20200617_110624.log.json) | -| PSANet | R-50-D8 | 512x512 | 40000 | - | - | 76.30 | 77.35 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/psanet/psanet_r50-d8_4xb4-40k_voc12aug-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/psanet/psanet_r50-d8_512x512_40k_voc12aug/psanet_r50-d8_512x512_40k_voc12aug_20200613_161946-f596afb5.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/psanet/psanet_r50-d8_512x512_40k_voc12aug/psanet_r50-d8_512x512_40k_voc12aug_20200613_161946.log.json) | -| PSANet | R-101-D8 | 512x512 | 40000 | - | - | 77.73 | 79.05 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/psanet/psanet_r101-d8_4xb4-40k_voc12aug-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/psanet/psanet_r101-d8_512x512_40k_voc12aug/psanet_r101-d8_512x512_40k_voc12aug_20200613_161946-1f560f9e.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/psanet/psanet_r101-d8_512x512_40k_voc12aug/psanet_r101-d8_512x512_40k_voc12aug_20200613_161946.log.json) | diff --git a/configs/psanet/metafile.yaml b/configs/psanet/metafile.yaml new file mode 100644 index 0000000000..3fbe6f6d3e --- /dev/null +++ b/configs/psanet/metafile.yaml @@ -0,0 +1,391 @@ +Collections: +- Name: PSANet + License: Apache License 2.0 + Metadata: + Training Data: + - Cityscapes + - ADE20K + - Pascal VOC 2012 + Aug + Paper: + Title: 'PSANet: Point-wise Spatial Attention Network for Scene Parsing' + URL: https://openaccess.thecvf.com/content_ECCV_2018/papers/Hengshuang_Zhao_PSANet_Point-wise_Spatial_ECCV_2018_paper.pdf + README: configs/psanet/README.md + Frameworks: + - PyTorch +Models: +- Name: psanet_r50-d8_4xb2-40k_cityscapes-512x1024 + In Collection: PSANet + Results: + Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 77.63 + mIoU(ms+flip): 79.04 + Config: configs/psanet/psanet_r50-d8_4xb2-40k_cityscapes-512x1024.py + Metadata: + Training Data: Cityscapes + Batch Size: 8 + Architecture: + - R-50-D8 + - PSANet + Training Resources: 4x V100 GPUS + Memory (GB): 7.0 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/psanet/psanet_r50-d8_512x1024_40k_cityscapes/psanet_r50-d8_512x1024_40k_cityscapes_20200606_103117-99fac37c.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/psanet/psanet_r50-d8_512x1024_40k_cityscapes/psanet_r50-d8_512x1024_40k_cityscapes_20200606_103117.log.json + Paper: + Title: 'PSANet: Point-wise Spatial Attention Network for Scene Parsing' + URL: https://openaccess.thecvf.com/content_ECCV_2018/papers/Hengshuang_Zhao_PSANet_Point-wise_Spatial_ECCV_2018_paper.pdf + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/psa_head.py#L18 + Framework: PyTorch +- Name: psanet_r101-d8_4xb2-40k_cityscapes-512x1024 + In Collection: PSANet + Results: + Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 79.14 + mIoU(ms+flip): 80.19 + Config: configs/psanet/psanet_r101-d8_4xb2-40k_cityscapes-512x1024.py + Metadata: + Training Data: Cityscapes + Batch Size: 8 + Architecture: + - R-101-D8 + - PSANet + Training Resources: 4x V100 GPUS + Memory (GB): 10.5 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/psanet/psanet_r101-d8_512x1024_40k_cityscapes/psanet_r101-d8_512x1024_40k_cityscapes_20200606_001418-27b9cfa7.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/psanet/psanet_r101-d8_512x1024_40k_cityscapes/psanet_r101-d8_512x1024_40k_cityscapes_20200606_001418.log.json + Paper: + Title: 'PSANet: Point-wise Spatial Attention Network for Scene Parsing' + URL: https://openaccess.thecvf.com/content_ECCV_2018/papers/Hengshuang_Zhao_PSANet_Point-wise_Spatial_ECCV_2018_paper.pdf + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/psa_head.py#L18 + Framework: PyTorch +- Name: psanet_r50-d8_4xb2-40k_cityscapes-769x769 + In Collection: PSANet + Results: + Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 77.99 + mIoU(ms+flip): 79.64 + Config: configs/psanet/psanet_r50-d8_4xb2-40k_cityscapes-769x769.py + Metadata: + Training Data: Cityscapes + Batch Size: 8 + Architecture: + - R-50-D8 + - PSANet + Training Resources: 4x V100 GPUS + Memory (GB): 7.9 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/psanet/psanet_r50-d8_769x769_40k_cityscapes/psanet_r50-d8_769x769_40k_cityscapes_20200530_033717-d5365506.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/psanet/psanet_r50-d8_769x769_40k_cityscapes/psanet_r50-d8_769x769_40k_cityscapes_20200530_033717.log.json + Paper: + Title: 'PSANet: Point-wise Spatial Attention Network for Scene Parsing' + URL: https://openaccess.thecvf.com/content_ECCV_2018/papers/Hengshuang_Zhao_PSANet_Point-wise_Spatial_ECCV_2018_paper.pdf + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/psa_head.py#L18 + Framework: PyTorch +- Name: psanet_r101-d8_4xb2-40k_cityscapes-769x769 + In Collection: PSANet + Results: + Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 78.43 + mIoU(ms+flip): 80.26 + Config: configs/psanet/psanet_r101-d8_4xb2-40k_cityscapes-769x769.py + Metadata: + Training Data: Cityscapes + Batch Size: 8 + Architecture: + - R-101-D8 + - PSANet + Training Resources: 4x V100 GPUS + Memory (GB): 11.9 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/psanet/psanet_r101-d8_769x769_40k_cityscapes/psanet_r101-d8_769x769_40k_cityscapes_20200530_035107-997da1e6.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/psanet/psanet_r101-d8_769x769_40k_cityscapes/psanet_r101-d8_769x769_40k_cityscapes_20200530_035107.log.json + Paper: + Title: 'PSANet: Point-wise Spatial Attention Network for Scene Parsing' + URL: https://openaccess.thecvf.com/content_ECCV_2018/papers/Hengshuang_Zhao_PSANet_Point-wise_Spatial_ECCV_2018_paper.pdf + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/psa_head.py#L18 + Framework: PyTorch +- Name: psanet_r50-d8_4xb2-80k_cityscapes-512x1024 + In Collection: PSANet + Results: + Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 77.24 + mIoU(ms+flip): 78.69 + Config: configs/psanet/psanet_r50-d8_4xb2-80k_cityscapes-512x1024.py + Metadata: + Training Data: Cityscapes + Batch Size: 8 + Architecture: + - R-50-D8 + - PSANet + Training Resources: 4x V100 GPUS + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/psanet/psanet_r50-d8_512x1024_80k_cityscapes/psanet_r50-d8_512x1024_80k_cityscapes_20200606_161842-ab60a24f.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/psanet/psanet_r50-d8_512x1024_80k_cityscapes/psanet_r50-d8_512x1024_80k_cityscapes_20200606_161842.log.json + Paper: + Title: 'PSANet: Point-wise Spatial Attention Network for Scene Parsing' + URL: https://openaccess.thecvf.com/content_ECCV_2018/papers/Hengshuang_Zhao_PSANet_Point-wise_Spatial_ECCV_2018_paper.pdf + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/psa_head.py#L18 + Framework: PyTorch +- Name: psanet_r101-d8_4xb2-80k_cityscapes-512x1024 + In Collection: PSANet + Results: + Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 79.31 + mIoU(ms+flip): 80.53 + Config: configs/psanet/psanet_r101-d8_4xb2-80k_cityscapes-512x1024.py + Metadata: + Training Data: Cityscapes + Batch Size: 8 + Architecture: + - R-101-D8 + - PSANet + Training Resources: 4x V100 GPUS + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/psanet/psanet_r101-d8_512x1024_80k_cityscapes/psanet_r101-d8_512x1024_80k_cityscapes_20200606_161823-0f73a169.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/psanet/psanet_r101-d8_512x1024_80k_cityscapes/psanet_r101-d8_512x1024_80k_cityscapes_20200606_161823.log.json + Paper: + Title: 'PSANet: Point-wise Spatial Attention Network for Scene Parsing' + URL: https://openaccess.thecvf.com/content_ECCV_2018/papers/Hengshuang_Zhao_PSANet_Point-wise_Spatial_ECCV_2018_paper.pdf + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/psa_head.py#L18 + Framework: PyTorch +- Name: psanet_r50-d8_4xb2-80k_cityscapes-769x769 + In Collection: PSANet + Results: + Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 79.31 + mIoU(ms+flip): 80.91 + Config: configs/psanet/psanet_r50-d8_4xb2-80k_cityscapes-769x769.py + Metadata: + Training Data: Cityscapes + Batch Size: 8 + Architecture: + - R-50-D8 + - PSANet + Training Resources: 4x V100 GPUS + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/psanet/psanet_r50-d8_769x769_80k_cityscapes/psanet_r50-d8_769x769_80k_cityscapes_20200606_225134-fe42f49e.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/psanet/psanet_r50-d8_769x769_80k_cityscapes/psanet_r50-d8_769x769_80k_cityscapes_20200606_225134.log.json + Paper: + Title: 'PSANet: Point-wise Spatial Attention Network for Scene Parsing' + URL: https://openaccess.thecvf.com/content_ECCV_2018/papers/Hengshuang_Zhao_PSANet_Point-wise_Spatial_ECCV_2018_paper.pdf + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/psa_head.py#L18 + Framework: PyTorch +- Name: psanet_r101-d8_4xb2-80k_cityscapes-769x769 + In Collection: PSANet + Results: + Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 79.69 + mIoU(ms+flip): 80.89 + Config: configs/psanet/psanet_r101-d8_4xb2-80k_cityscapes-769x769.py + Metadata: + Training Data: Cityscapes + Batch Size: 8 + Architecture: + - R-101-D8 + - PSANet + Training Resources: 4x V100 GPUS + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/psanet/psanet_r101-d8_769x769_80k_cityscapes/psanet_r101-d8_769x769_80k_cityscapes_20200606_214550-7665827b.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/psanet/psanet_r101-d8_769x769_80k_cityscapes/psanet_r101-d8_769x769_80k_cityscapes_20200606_214550.log.json + Paper: + Title: 'PSANet: Point-wise Spatial Attention Network for Scene Parsing' + URL: https://openaccess.thecvf.com/content_ECCV_2018/papers/Hengshuang_Zhao_PSANet_Point-wise_Spatial_ECCV_2018_paper.pdf + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/psa_head.py#L18 + Framework: PyTorch +- Name: psanet_r50-d8_4xb4-80k_ade20k-512x512 + In Collection: PSANet + Results: + Task: Semantic Segmentation + Dataset: ADE20K + Metrics: + mIoU: 41.14 + mIoU(ms+flip): 41.91 + Config: configs/psanet/psanet_r50-d8_4xb4-80k_ade20k-512x512.py + Metadata: + Training Data: ADE20K + Batch Size: 16 + Architecture: + - R-50-D8 + - PSANet + Training Resources: 4x V100 GPUS + Memory (GB): 9.0 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/psanet/psanet_r50-d8_512x512_80k_ade20k/psanet_r50-d8_512x512_80k_ade20k_20200614_144141-835e4b97.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/psanet/psanet_r50-d8_512x512_80k_ade20k/psanet_r50-d8_512x512_80k_ade20k_20200614_144141.log.json + Paper: + Title: 'PSANet: Point-wise Spatial Attention Network for Scene Parsing' + URL: https://openaccess.thecvf.com/content_ECCV_2018/papers/Hengshuang_Zhao_PSANet_Point-wise_Spatial_ECCV_2018_paper.pdf + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/psa_head.py#L18 + Framework: PyTorch +- Name: psanet_r101-d8_4xb4-80k_ade20k-512x512 + In Collection: PSANet + Results: + Task: Semantic Segmentation + Dataset: ADE20K + Metrics: + mIoU: 43.8 + mIoU(ms+flip): 44.75 + Config: configs/psanet/psanet_r101-d8_4xb4-80k_ade20k-512x512.py + Metadata: + Training Data: ADE20K + Batch Size: 16 + Architecture: + - R-101-D8 + - PSANet + Training Resources: 4x V100 GPUS + Memory (GB): 12.5 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/psanet/psanet_r101-d8_512x512_80k_ade20k/psanet_r101-d8_512x512_80k_ade20k_20200614_185117-1fab60d4.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/psanet/psanet_r101-d8_512x512_80k_ade20k/psanet_r101-d8_512x512_80k_ade20k_20200614_185117.log.json + Paper: + Title: 'PSANet: Point-wise Spatial Attention Network for Scene Parsing' + URL: https://openaccess.thecvf.com/content_ECCV_2018/papers/Hengshuang_Zhao_PSANet_Point-wise_Spatial_ECCV_2018_paper.pdf + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/psa_head.py#L18 + Framework: PyTorch +- Name: psanet_r50-d8_4xb4-160k_ade20k-512x512 + In Collection: PSANet + Results: + Task: Semantic Segmentation + Dataset: ADE20K + Metrics: + mIoU: 41.67 + mIoU(ms+flip): 42.95 + Config: configs/psanet/psanet_r50-d8_4xb4-160k_ade20k-512x512.py + Metadata: + Training Data: ADE20K + Batch Size: 16 + Architecture: + - R-50-D8 + - PSANet + Training Resources: 4x V100 GPUS + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/psanet/psanet_r50-d8_512x512_160k_ade20k/psanet_r50-d8_512x512_160k_ade20k_20200615_161258-148077dd.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/psanet/psanet_r50-d8_512x512_160k_ade20k/psanet_r50-d8_512x512_160k_ade20k_20200615_161258.log.json + Paper: + Title: 'PSANet: Point-wise Spatial Attention Network for Scene Parsing' + URL: https://openaccess.thecvf.com/content_ECCV_2018/papers/Hengshuang_Zhao_PSANet_Point-wise_Spatial_ECCV_2018_paper.pdf + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/psa_head.py#L18 + Framework: PyTorch +- Name: psanet_r101-d8_4xb4-160k_ade20k-512x512 + In Collection: PSANet + Results: + Task: Semantic Segmentation + Dataset: ADE20K + Metrics: + mIoU: 43.74 + mIoU(ms+flip): 45.38 + Config: configs/psanet/psanet_r101-d8_4xb4-160k_ade20k-512x512.py + Metadata: + Training Data: ADE20K + Batch Size: 16 + Architecture: + - R-101-D8 + - PSANet + Training Resources: 4x V100 GPUS + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/psanet/psanet_r101-d8_512x512_160k_ade20k/psanet_r101-d8_512x512_160k_ade20k_20200615_161537-dbfa564c.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/psanet/psanet_r101-d8_512x512_160k_ade20k/psanet_r101-d8_512x512_160k_ade20k_20200615_161537.log.json + Paper: + Title: 'PSANet: Point-wise Spatial Attention Network for Scene Parsing' + URL: https://openaccess.thecvf.com/content_ECCV_2018/papers/Hengshuang_Zhao_PSANet_Point-wise_Spatial_ECCV_2018_paper.pdf + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/psa_head.py#L18 + Framework: PyTorch +- Name: psanet_r50-d8_4xb4-20k_voc12aug-512x512 + In Collection: PSANet + Results: + Task: Semantic Segmentation + Dataset: Pascal VOC 2012 + Aug + Metrics: + mIoU: 76.39 + mIoU(ms+flip): 77.34 + Config: configs/psanet/psanet_r50-d8_4xb4-20k_voc12aug-512x512.py + Metadata: + Training Data: Pascal VOC 2012 + Aug + Batch Size: 16 + Architecture: + - R-50-D8 + - PSANet + Training Resources: 4x V100 GPUS + Memory (GB): 6.9 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/psanet/psanet_r50-d8_512x512_20k_voc12aug/psanet_r50-d8_512x512_20k_voc12aug_20200617_102413-2f1bbaa1.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/psanet/psanet_r50-d8_512x512_20k_voc12aug/psanet_r50-d8_512x512_20k_voc12aug_20200617_102413.log.json + Paper: + Title: 'PSANet: Point-wise Spatial Attention Network for Scene Parsing' + URL: https://openaccess.thecvf.com/content_ECCV_2018/papers/Hengshuang_Zhao_PSANet_Point-wise_Spatial_ECCV_2018_paper.pdf + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/psa_head.py#L18 + Framework: PyTorch +- Name: psanet_r101-d8_4xb4-20k_voc12aug-512x512 + In Collection: PSANet + Results: + Task: Semantic Segmentation + Dataset: Pascal VOC 2012 + Aug + Metrics: + mIoU: 77.91 + mIoU(ms+flip): 79.3 + Config: configs/psanet/psanet_r101-d8_4xb4-20k_voc12aug-512x512.py + Metadata: + Training Data: Pascal VOC 2012 + Aug + Batch Size: 16 + Architecture: + - R-101-D8 + - PSANet + Training Resources: 4x V100 GPUS + Memory (GB): 10.4 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/psanet/psanet_r101-d8_512x512_20k_voc12aug/psanet_r101-d8_512x512_20k_voc12aug_20200617_110624-946fef11.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/psanet/psanet_r101-d8_512x512_20k_voc12aug/psanet_r101-d8_512x512_20k_voc12aug_20200617_110624.log.json + Paper: + Title: 'PSANet: Point-wise Spatial Attention Network for Scene Parsing' + URL: https://openaccess.thecvf.com/content_ECCV_2018/papers/Hengshuang_Zhao_PSANet_Point-wise_Spatial_ECCV_2018_paper.pdf + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/psa_head.py#L18 + Framework: PyTorch +- Name: psanet_r50-d8_4xb4-40k_voc12aug-512x512 + In Collection: PSANet + Results: + Task: Semantic Segmentation + Dataset: Pascal VOC 2012 + Aug + Metrics: + mIoU: 76.3 + mIoU(ms+flip): 77.35 + Config: configs/psanet/psanet_r50-d8_4xb4-40k_voc12aug-512x512.py + Metadata: + Training Data: Pascal VOC 2012 + Aug + Batch Size: 16 + Architecture: + - R-50-D8 + - PSANet + Training Resources: 4x V100 GPUS + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/psanet/psanet_r50-d8_512x512_40k_voc12aug/psanet_r50-d8_512x512_40k_voc12aug_20200613_161946-f596afb5.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/psanet/psanet_r50-d8_512x512_40k_voc12aug/psanet_r50-d8_512x512_40k_voc12aug_20200613_161946.log.json + Paper: + Title: 'PSANet: Point-wise Spatial Attention Network for Scene Parsing' + URL: https://openaccess.thecvf.com/content_ECCV_2018/papers/Hengshuang_Zhao_PSANet_Point-wise_Spatial_ECCV_2018_paper.pdf + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/psa_head.py#L18 + Framework: PyTorch +- Name: psanet_r101-d8_4xb4-40k_voc12aug-512x512 + In Collection: PSANet + Results: + Task: Semantic Segmentation + Dataset: Pascal VOC 2012 + Aug + Metrics: + mIoU: 77.73 + mIoU(ms+flip): 79.05 + Config: configs/psanet/psanet_r101-d8_4xb4-40k_voc12aug-512x512.py + Metadata: + Training Data: Pascal VOC 2012 + Aug + Batch Size: 16 + Architecture: + - R-101-D8 + - PSANet + Training Resources: 4x V100 GPUS + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/psanet/psanet_r101-d8_512x512_40k_voc12aug/psanet_r101-d8_512x512_40k_voc12aug_20200613_161946-1f560f9e.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/psanet/psanet_r101-d8_512x512_40k_voc12aug/psanet_r101-d8_512x512_40k_voc12aug_20200613_161946.log.json + Paper: + Title: 'PSANet: Point-wise Spatial Attention Network for Scene Parsing' + URL: https://openaccess.thecvf.com/content_ECCV_2018/papers/Hengshuang_Zhao_PSANet_Point-wise_Spatial_ECCV_2018_paper.pdf + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/psa_head.py#L18 + Framework: PyTorch diff --git a/configs/psanet/psanet.yml b/configs/psanet/psanet.yml deleted file mode 100644 index fca1ac1b40..0000000000 --- a/configs/psanet/psanet.yml +++ /dev/null @@ -1,305 +0,0 @@ -Collections: -- Name: PSANet - Metadata: - Training Data: - - Cityscapes - - ADE20K - - Pascal VOC 2012 + Aug - Paper: - URL: https://openaccess.thecvf.com/content_ECCV_2018/papers/Hengshuang_Zhao_PSANet_Point-wise_Spatial_ECCV_2018_paper.pdf - Title: 'PSANet: Point-wise Spatial Attention Network for Scene Parsing' - README: configs/psanet/README.md - Code: - URL: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/psa_head.py#L18 - Version: v0.17.0 - Converted From: - Code: https://github.com/hszhao/PSANet -Models: -- Name: psanet_r50-d8_4xb2-40k_cityscapes-512x1024 - In Collection: PSANet - Metadata: - backbone: R-50-D8 - crop size: (512,1024) - lr schd: 40000 - inference time (ms/im): - - value: 315.46 - hardware: V100 - backend: PyTorch - batch size: 1 - mode: FP32 - resolution: (512,1024) - Training Memory (GB): 7.0 - Results: - - Task: Semantic Segmentation - Dataset: Cityscapes - Metrics: - mIoU: 77.63 - mIoU(ms+flip): 79.04 - Config: configs/psanet/psanet_r50-d8_4xb2-40k_cityscapes-512x1024.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/psanet/psanet_r50-d8_512x1024_40k_cityscapes/psanet_r50-d8_512x1024_40k_cityscapes_20200606_103117-99fac37c.pth -- Name: psanet_r101-d8_4xb2-40k_cityscapes-512x1024 - In Collection: PSANet - Metadata: - backbone: R-101-D8 - crop size: (512,1024) - lr schd: 40000 - inference time (ms/im): - - value: 454.55 - hardware: V100 - backend: PyTorch - batch size: 1 - mode: FP32 - resolution: (512,1024) - Training Memory (GB): 10.5 - Results: - - Task: Semantic Segmentation - Dataset: Cityscapes - Metrics: - mIoU: 79.14 - mIoU(ms+flip): 80.19 - Config: configs/psanet/psanet_r101-d8_4xb2-40k_cityscapes-512x1024.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/psanet/psanet_r101-d8_512x1024_40k_cityscapes/psanet_r101-d8_512x1024_40k_cityscapes_20200606_001418-27b9cfa7.pth -- Name: psanet_r50-d8_4xb2-40k_cityscapes-769x769 - In Collection: PSANet - Metadata: - backbone: R-50-D8 - crop size: (769,769) - lr schd: 40000 - inference time (ms/im): - - value: 714.29 - hardware: V100 - backend: PyTorch - batch size: 1 - mode: FP32 - resolution: (769,769) - Training Memory (GB): 7.9 - Results: - - Task: Semantic Segmentation - Dataset: Cityscapes - Metrics: - mIoU: 77.99 - mIoU(ms+flip): 79.64 - Config: configs/psanet/psanet_r50-d8_4xb2-40k_cityscapes-769x769.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/psanet/psanet_r50-d8_769x769_40k_cityscapes/psanet_r50-d8_769x769_40k_cityscapes_20200530_033717-d5365506.pth -- Name: psanet_r101-d8_4xb2-40k_cityscapes-769x769 - In Collection: PSANet - Metadata: - backbone: R-101-D8 - crop size: (769,769) - lr schd: 40000 - inference time (ms/im): - - value: 1020.41 - hardware: V100 - backend: PyTorch - batch size: 1 - mode: FP32 - resolution: (769,769) - Training Memory (GB): 11.9 - Results: - - Task: Semantic Segmentation - Dataset: Cityscapes - Metrics: - mIoU: 78.43 - mIoU(ms+flip): 80.26 - Config: configs/psanet/psanet_r101-d8_4xb2-40k_cityscapes-769x769.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/psanet/psanet_r101-d8_769x769_40k_cityscapes/psanet_r101-d8_769x769_40k_cityscapes_20200530_035107-997da1e6.pth -- Name: psanet_r50-d8_4xb2-80k_cityscapes-512x1024 - In Collection: PSANet - Metadata: - backbone: R-50-D8 - crop size: (512,1024) - lr schd: 80000 - Results: - - Task: Semantic Segmentation - Dataset: Cityscapes - Metrics: - mIoU: 77.24 - mIoU(ms+flip): 78.69 - Config: configs/psanet/psanet_r50-d8_4xb2-80k_cityscapes-512x1024.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/psanet/psanet_r50-d8_512x1024_80k_cityscapes/psanet_r50-d8_512x1024_80k_cityscapes_20200606_161842-ab60a24f.pth -- Name: psanet_r101-d8_4xb2-80k_cityscapes-512x1024 - In Collection: PSANet - Metadata: - backbone: R-101-D8 - crop size: (512,1024) - lr schd: 80000 - Results: - - Task: Semantic Segmentation - Dataset: Cityscapes - Metrics: - mIoU: 79.31 - mIoU(ms+flip): 80.53 - Config: configs/psanet/psanet_r101-d8_4xb2-80k_cityscapes-512x1024.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/psanet/psanet_r101-d8_512x1024_80k_cityscapes/psanet_r101-d8_512x1024_80k_cityscapes_20200606_161823-0f73a169.pth -- Name: psanet_r50-d8_4xb2-80k_cityscapes-769x769 - In Collection: PSANet - Metadata: - backbone: R-50-D8 - crop size: (769,769) - lr schd: 80000 - Results: - - Task: Semantic Segmentation - Dataset: Cityscapes - Metrics: - mIoU: 79.31 - mIoU(ms+flip): 80.91 - Config: configs/psanet/psanet_r50-d8_4xb2-80k_cityscapes-769x769.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/psanet/psanet_r50-d8_769x769_80k_cityscapes/psanet_r50-d8_769x769_80k_cityscapes_20200606_225134-fe42f49e.pth -- Name: psanet_r101-d8_4xb2-80k_cityscapes-769x769 - In Collection: PSANet - Metadata: - backbone: R-101-D8 - crop size: (769,769) - lr schd: 80000 - Results: - - Task: Semantic Segmentation - Dataset: Cityscapes - Metrics: - mIoU: 79.69 - mIoU(ms+flip): 80.89 - Config: configs/psanet/psanet_r101-d8_4xb2-80k_cityscapes-769x769.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/psanet/psanet_r101-d8_769x769_80k_cityscapes/psanet_r101-d8_769x769_80k_cityscapes_20200606_214550-7665827b.pth -- Name: psanet_r50-d8_4xb4-80k_ade20k-512x512 - In Collection: PSANet - Metadata: - backbone: R-50-D8 - crop size: (512,512) - lr schd: 80000 - inference time (ms/im): - - value: 52.88 - hardware: V100 - backend: PyTorch - batch size: 1 - mode: FP32 - resolution: (512,512) - Training Memory (GB): 9.0 - Results: - - Task: Semantic Segmentation - Dataset: ADE20K - Metrics: - mIoU: 41.14 - mIoU(ms+flip): 41.91 - Config: configs/psanet/psanet_r50-d8_4xb4-80k_ade20k-512x512.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/psanet/psanet_r50-d8_512x512_80k_ade20k/psanet_r50-d8_512x512_80k_ade20k_20200614_144141-835e4b97.pth -- Name: psanet_r101-d8_4xb4-80k_ade20k-512x512 - In Collection: PSANet - Metadata: - backbone: R-101-D8 - crop size: (512,512) - lr schd: 80000 - inference time (ms/im): - - value: 76.16 - hardware: V100 - backend: PyTorch - batch size: 1 - mode: FP32 - resolution: (512,512) - Training Memory (GB): 12.5 - Results: - - Task: Semantic Segmentation - Dataset: ADE20K - Metrics: - mIoU: 43.8 - mIoU(ms+flip): 44.75 - Config: configs/psanet/psanet_r101-d8_4xb4-80k_ade20k-512x512.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/psanet/psanet_r101-d8_512x512_80k_ade20k/psanet_r101-d8_512x512_80k_ade20k_20200614_185117-1fab60d4.pth -- Name: psanet_r50-d8_4xb4-160k_ade20k-512x512 - In Collection: PSANet - Metadata: - backbone: R-50-D8 - crop size: (512,512) - lr schd: 160000 - Results: - - Task: Semantic Segmentation - Dataset: ADE20K - Metrics: - mIoU: 41.67 - mIoU(ms+flip): 42.95 - Config: configs/psanet/psanet_r50-d8_4xb4-160k_ade20k-512x512.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/psanet/psanet_r50-d8_512x512_160k_ade20k/psanet_r50-d8_512x512_160k_ade20k_20200615_161258-148077dd.pth -- Name: psanet_r101-d8_4xb4-160k_ade20k-512x512 - In Collection: PSANet - Metadata: - backbone: R-101-D8 - crop size: (512,512) - lr schd: 160000 - Results: - - Task: Semantic Segmentation - Dataset: ADE20K - Metrics: - mIoU: 43.74 - mIoU(ms+flip): 45.38 - Config: configs/psanet/psanet_r101-d8_4xb4-160k_ade20k-512x512.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/psanet/psanet_r101-d8_512x512_160k_ade20k/psanet_r101-d8_512x512_160k_ade20k_20200615_161537-dbfa564c.pth -- Name: psanet_r50-d8_4xb4-20k_voc12aug-512x512 - In Collection: PSANet - Metadata: - backbone: R-50-D8 - crop size: (512,512) - lr schd: 20000 - inference time (ms/im): - - value: 54.82 - hardware: V100 - backend: PyTorch - batch size: 1 - mode: FP32 - resolution: (512,512) - Training Memory (GB): 6.9 - Results: - - Task: Semantic Segmentation - Dataset: Pascal VOC 2012 + Aug - Metrics: - mIoU: 76.39 - mIoU(ms+flip): 77.34 - Config: configs/psanet/psanet_r50-d8_4xb4-20k_voc12aug-512x512.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/psanet/psanet_r50-d8_512x512_20k_voc12aug/psanet_r50-d8_512x512_20k_voc12aug_20200617_102413-2f1bbaa1.pth -- Name: psanet_r101-d8_4xb4-20k_voc12aug-512x512 - In Collection: PSANet - Metadata: - backbone: R-101-D8 - crop size: (512,512) - lr schd: 20000 - inference time (ms/im): - - value: 79.18 - hardware: V100 - backend: PyTorch - batch size: 1 - mode: FP32 - resolution: (512,512) - Training Memory (GB): 10.4 - Results: - - Task: Semantic Segmentation - Dataset: Pascal VOC 2012 + Aug - Metrics: - mIoU: 77.91 - mIoU(ms+flip): 79.3 - Config: configs/psanet/psanet_r101-d8_4xb4-20k_voc12aug-512x512.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/psanet/psanet_r101-d8_512x512_20k_voc12aug/psanet_r101-d8_512x512_20k_voc12aug_20200617_110624-946fef11.pth -- Name: psanet_r50-d8_4xb4-40k_voc12aug-512x512 - In Collection: PSANet - Metadata: - backbone: R-50-D8 - crop size: (512,512) - lr schd: 40000 - Results: - - Task: Semantic Segmentation - Dataset: Pascal VOC 2012 + Aug - Metrics: - mIoU: 76.3 - mIoU(ms+flip): 77.35 - Config: configs/psanet/psanet_r50-d8_4xb4-40k_voc12aug-512x512.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/psanet/psanet_r50-d8_512x512_40k_voc12aug/psanet_r50-d8_512x512_40k_voc12aug_20200613_161946-f596afb5.pth -- Name: psanet_r101-d8_4xb4-40k_voc12aug-512x512 - In Collection: PSANet - Metadata: - backbone: R-101-D8 - crop size: (512,512) - lr schd: 40000 - Results: - - Task: Semantic Segmentation - Dataset: Pascal VOC 2012 + Aug - Metrics: - mIoU: 77.73 - mIoU(ms+flip): 79.05 - Config: configs/psanet/psanet_r101-d8_4xb4-40k_voc12aug-512x512.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/psanet/psanet_r101-d8_512x512_40k_voc12aug/psanet_r101-d8_512x512_40k_voc12aug_20200613_161946-1f560f9e.pth diff --git a/configs/pspnet/README.md b/configs/pspnet/README.md index 9135091102..e1c2c112cb 100644 --- a/configs/pspnet/README.md +++ b/configs/pspnet/README.md @@ -1,6 +1,6 @@ # PSPNet -[Pyramid Scene Parsing Network](https://arxiv.org/abs/1612.01105) +> [Pyramid Scene Parsing Network](https://arxiv.org/abs/1612.01105) ## Introduction @@ -27,85 +27,65 @@ Scene parsing is challenging for unrestricted open vocabulary and diverse scenes PSPNet-R50 D8 model structure -## Citation - -```bibtex -@inproceedings{zhao2017pspnet, - title={Pyramid Scene Parsing Network}, - author={Zhao, Hengshuang and Shi, Jianping and Qi, Xiaojuan and Wang, Xiaogang and Jia, Jiaya}, - booktitle={CVPR}, - year={2017} -} -``` - -```bibtex -@article{wightman2021resnet, - title={Resnet strikes back: An improved training procedure in timm}, - author={Wightman, Ross and Touvron, Hugo and J{\'e}gou, Herv{\'e}}, - journal={arXiv preprint arXiv:2110.00476}, - year={2021} -} -``` - ## Results and models ### Cityscapes -| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | mIoU | mIoU(ms+flip) | config | download | -| ------------- | ------------- | --------- | ------: | -------- | -------------- | ----: | ------------: | ------------------------------------------------------------------------------------------------------------------------------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ | -| PSPNet | R-50-D8 | 512x1024 | 40000 | 6.1 | 4.07 | 77.85 | 79.18 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/pspnet/pspnet_r50-d8_4xb2-40k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r50-d8_512x1024_40k_cityscapes/pspnet_r50-d8_512x1024_40k_cityscapes_20200605_003338-2966598c.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r50-d8_512x1024_40k_cityscapes/pspnet_r50-d8_512x1024_40k_cityscapes_20200605_003338.log.json) | -| PSPNet | R-101-D8 | 512x1024 | 40000 | 9.6 | 2.68 | 78.34 | 79.74 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/pspnet/pspnet_r101-d8_4xb2-40k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101-d8_512x1024_40k_cityscapes/pspnet_r101-d8_512x1024_40k_cityscapes_20200604_232751-467e7cf4.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101-d8_512x1024_40k_cityscapes/pspnet_r101-d8_512x1024_40k_cityscapes_20200604_232751.log.json) | -| PSPNet | R-50-D8 | 769x769 | 40000 | 6.9 | 1.76 | 78.26 | 79.88 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/pspnet/pspnet_r50-d8_4xb2-40k_cityscapes-769x769.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r50-d8_769x769_40k_cityscapes/pspnet_r50-d8_769x769_40k_cityscapes_20200606_112725-86638686.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r50-d8_769x769_40k_cityscapes/pspnet_r50-d8_769x769_40k_cityscapes_20200606_112725.log.json) | -| PSPNet | R-101-D8 | 769x769 | 40000 | 10.9 | 1.15 | 79.08 | 80.28 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/pspnet/pspnet_r101-d8_4xb2-40k_cityscapes-769x769.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101-d8_769x769_40k_cityscapes/pspnet_r101-d8_769x769_40k_cityscapes_20200606_112753-61c6f5be.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101-d8_769x769_40k_cityscapes/pspnet_r101-d8_769x769_40k_cityscapes_20200606_112753.log.json) | -| PSPNet | R-18-D8 | 512x1024 | 80000 | 1.7 | 15.71 | 74.87 | 76.04 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/pspnet/pspnet_r18-d8_4xb2-80k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r18-d8_512x1024_80k_cityscapes/pspnet_r18-d8_512x1024_80k_cityscapes_20201225_021458-09ffa746.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r18-d8_512x1024_80k_cityscapes/pspnet_r18-d8_512x1024_80k_cityscapes-20201225_021458.log.json) | -| PSPNet | R-50-D8 | 512x1024 | 80000 | - | - | 78.55 | 79.79 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/pspnet/pspnet_r50-d8_4xb2-80k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r50-d8_512x1024_80k_cityscapes/pspnet_r50-d8_512x1024_80k_cityscapes_20200606_112131-2376f12b.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r50-d8_512x1024_80k_cityscapes/pspnet_r50-d8_512x1024_80k_cityscapes_20200606_112131.log.json) | -| PSPNet | R-50b-D8 rsb | 512x1024 | 80000 | 6.2 | 3.82 | 78.47 | 79.45 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/pspnet/pspnet_r50-d8-rsb_4xb2-adamw-80k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r50-d8_512x1024_80k_cityscapes/pspnet_r50-d8_rsb-pretrain_512x1024_adamw_80k_cityscapes_20220315_123238-588c30be.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r50-d8_512x1024_80k_cityscapes/pspnet_r50-d8_rsb-pretrain_512x1024_adamw_80k_cityscapes_20220315_123238.log.json) | -| PSPNet | R-101-D8 | 512x1024 | 80000 | - | - | 79.76 | 81.01 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/pspnet/pspnet_r101-d8_4xb2-80k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101-d8_512x1024_80k_cityscapes/pspnet_r101-d8_512x1024_80k_cityscapes_20200606_112211-e1e1100f.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101-d8_512x1024_80k_cityscapes/pspnet_r101-d8_512x1024_80k_cityscapes_20200606_112211.log.json) | -| PSPNet (FP16) | R-101-D8 | 512x1024 | 80000 | 5.34 | 8.77 | 79.46 | - | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/pspnet/pspnet_r101-d8_4xb2-amp-80k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101-d8_fp16_512x1024_80k_cityscapes/pspnet_r101-d8_fp16_512x1024_80k_cityscapes_20200717_230919-a0875e5c.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101-d8_fp16_512x1024_80k_cityscapes/pspnet_r101-d8_fp16_512x1024_80k_cityscapes_20200717_230919.log.json) | -| PSPNet | R-18-D8 | 769x769 | 80000 | 1.9 | 6.20 | 75.90 | 77.86 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/pspnet/pspnet_r18-d8_4xb2-80k_cityscapes-769x769.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r18-d8_769x769_80k_cityscapes/pspnet_r18-d8_769x769_80k_cityscapes_20201225_021458-3deefc62.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r18-d8_769x769_80k_cityscapes/pspnet_r18-d8_769x769_80k_cityscapes-20201225_021458.log.json) | -| PSPNet | R-50-D8 | 769x769 | 80000 | - | - | 79.59 | 80.69 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/pspnet/pspnet_r50-d8_4xb2-80k_cityscapes-769x769.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r50-d8_769x769_80k_cityscapes/pspnet_r50-d8_769x769_80k_cityscapes_20200606_210121-5ccf03dd.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r50-d8_769x769_80k_cityscapes/pspnet_r50-d8_769x769_80k_cityscapes_20200606_210121.log.json) | -| PSPNet | R-101-D8 | 769x769 | 80000 | - | - | 79.77 | 81.06 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/pspnet/pspnet_r101-d8_4xb2-80k_cityscapes-769x769.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101-d8_769x769_80k_cityscapes/pspnet_r101-d8_769x769_80k_cityscapes_20200606_225055-dba412fa.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101-d8_769x769_80k_cityscapes/pspnet_r101-d8_769x769_80k_cityscapes_20200606_225055.log.json) | -| PSPNet | R-18b-D8 | 512x1024 | 80000 | 1.5 | 16.28 | 74.23 | 75.79 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/pspnet/pspnet_r18b-d8_4xb2-80k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r18b-d8_512x1024_80k_cityscapes/pspnet_r18b-d8_512x1024_80k_cityscapes_20201226_063116-26928a60.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r18b-d8_512x1024_80k_cityscapes/pspnet_r18b-d8_512x1024_80k_cityscapes-20201226_063116.log.json) | -| PSPNet | R-50b-D8 | 512x1024 | 80000 | 6.0 | 4.30 | 78.22 | 79.46 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/pspnet/pspnet_r50b-d8_4xb2-80k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r50b-d8_512x1024_80k_cityscapes/pspnet_r50b-d8_512x1024_80k_cityscapes_20201225_094315-6344287a.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r50b-d8_512x1024_80k_cityscapes/pspnet_r50b-d8_512x1024_80k_cityscapes-20201225_094315.log.json) | -| PSPNet | R-101b-D8 | 512x1024 | 80000 | 9.5 | 2.76 | 79.69 | 80.79 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/pspnet/pspnet_r101b-d8_4xb2-80k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101b-d8_512x1024_80k_cityscapes/pspnet_r101b-d8_512x1024_80k_cityscapes_20201226_170012-3a4d38ab.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101b-d8_512x1024_80k_cityscapes/pspnet_r101b-d8_512x1024_80k_cityscapes-20201226_170012.log.json) | -| PSPNet | R-18b-D8 | 769x769 | 80000 | 1.7 | 6.41 | 74.92 | 76.90 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/pspnet/pspnet_r18b-d8_4xb2-80k_cityscapes-769x769.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r18b-d8_769x769_80k_cityscapes/pspnet_r18b-d8_769x769_80k_cityscapes_20201226_080942-bf98d186.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r18b-d8_769x769_80k_cityscapes/pspnet_r18b-d8_769x769_80k_cityscapes-20201226_080942.log.json) | -| PSPNet | R-50b-D8 | 769x769 | 80000 | 6.8 | 1.88 | 78.50 | 79.96 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/pspnet/pspnet_r50b-d8_4xb2-80k_cityscapes-769x769.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r50b-d8_769x769_80k_cityscapes/pspnet_r50b-d8_769x769_80k_cityscapes_20201225_094316-4c643cf6.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r50b-d8_769x769_80k_cityscapes/pspnet_r50b-d8_769x769_80k_cityscapes-20201225_094316.log.json) | -| PSPNet | R-101b-D8 | 769x769 | 80000 | 10.8 | 1.17 | 78.87 | 80.04 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/pspnet/pspnet_r101b-d8_4xb2-80k_cityscapes-769x769.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101b-d8_769x769_80k_cityscapes/pspnet_r101b-d8_769x769_80k_cityscapes_20201226_171823-f0e7c293.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101b-d8_769x769_80k_cityscapes/pspnet_r101b-d8_769x769_80k_cityscapes-20201226_171823.log.json) | -| PSPNet | R-50-D32 | 512x1024 | 80000 | 3.0 | 15.21 | 73.88 | 76.85 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/pspnet/pspnet_r50b-d32_4xb2-80k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r50-d32_512x1024_80k_cityscapes/pspnet_r50-d32_512x1024_80k_cityscapes_20220316_224840-9092b254.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r50-d32_512x1024_80k_cityscapes/pspnet_r50-d32_512x1024_80k_cityscapes_20220316_224840.log.json) | -| PSPNet | R-50b-D32 rsb | 512x1024 | 80000 | 3.1 | 16.08 | 74.09 | 77.18 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/pspnet/pspnet_r50-d32_rsb_4xb2-adamw-80k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r50-d32_rsb-pretrain_512x1024_adamw_80k_cityscapes/pspnet_r50-d32_rsb-pretrain_512x1024_adamw_80k_cityscapes_20220316_141229-dd9c9610.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r50-d32_rsb-pretrain_512x1024_adamw_80k_cityscapes/pspnet_r50-d32_rsb-pretrain_512x1024_adamw_80k_cityscapes_20220316_141229.log.json) | -| PSPNet | R-50b-D32 | 512x1024 | 80000 | 2.9 | 15.41 | 72.61 | 75.51 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/pspnet/pspnet_r50b-d32_4xb2-80k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r50b-d32_512x1024_80k_cityscapes/pspnet_r50b-d32_512x1024_80k_cityscapes_20220311_152152-23bcaf8c.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r50b-d32_512x1024_80k_cityscapes/pspnet_r50b-d32_512x1024_80k_cityscapes_20220311_152152.log.json) | +| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | Device | mIoU | mIoU(ms+flip) | config | download | +| ------------- | ------------- | --------- | ------: | -------- | -------------- | ------ | ----: | ------------: | ------------------------------------------------------------------------------------------------------------------------------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ | +| PSPNet | R-50-D8 | 512x1024 | 40000 | 6.1 | 4.07 | V100 | 77.85 | 79.18 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/pspnet/pspnet_r50-d8_4xb2-40k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r50-d8_512x1024_40k_cityscapes/pspnet_r50-d8_512x1024_40k_cityscapes_20200605_003338-2966598c.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r50-d8_512x1024_40k_cityscapes/pspnet_r50-d8_512x1024_40k_cityscapes_20200605_003338.log.json) | +| PSPNet | R-101-D8 | 512x1024 | 40000 | 9.6 | 2.68 | V100 | 78.34 | 79.74 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/pspnet/pspnet_r101-d8_4xb2-40k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101-d8_512x1024_40k_cityscapes/pspnet_r101-d8_512x1024_40k_cityscapes_20200604_232751-467e7cf4.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101-d8_512x1024_40k_cityscapes/pspnet_r101-d8_512x1024_40k_cityscapes_20200604_232751.log.json) | +| PSPNet | R-50-D8 | 769x769 | 40000 | 6.9 | 1.76 | V100 | 78.26 | 79.88 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/pspnet/pspnet_r50-d8_4xb2-40k_cityscapes-769x769.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r50-d8_769x769_40k_cityscapes/pspnet_r50-d8_769x769_40k_cityscapes_20200606_112725-86638686.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r50-d8_769x769_40k_cityscapes/pspnet_r50-d8_769x769_40k_cityscapes_20200606_112725.log.json) | +| PSPNet | R-101-D8 | 769x769 | 40000 | 10.9 | 1.15 | V100 | 79.08 | 80.28 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/pspnet/pspnet_r101-d8_4xb2-40k_cityscapes-769x769.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101-d8_769x769_40k_cityscapes/pspnet_r101-d8_769x769_40k_cityscapes_20200606_112753-61c6f5be.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101-d8_769x769_40k_cityscapes/pspnet_r101-d8_769x769_40k_cityscapes_20200606_112753.log.json) | +| PSPNet | R-18-D8 | 512x1024 | 80000 | 1.7 | 15.71 | V100 | 74.87 | 76.04 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/pspnet/pspnet_r18-d8_4xb2-80k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r18-d8_512x1024_80k_cityscapes/pspnet_r18-d8_512x1024_80k_cityscapes_20201225_021458-09ffa746.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r18-d8_512x1024_80k_cityscapes/pspnet_r18-d8_512x1024_80k_cityscapes-20201225_021458.log.json) | +| PSPNet | R-50-D8 | 512x1024 | 80000 | - | - | V100 | 78.55 | 79.79 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/pspnet/pspnet_r50-d8_4xb2-80k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r50-d8_512x1024_80k_cityscapes/pspnet_r50-d8_512x1024_80k_cityscapes_20200606_112131-2376f12b.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r50-d8_512x1024_80k_cityscapes/pspnet_r50-d8_512x1024_80k_cityscapes_20200606_112131.log.json) | +| PSPNet | R-50b-D8 rsb | 512x1024 | 80000 | 6.2 | 3.82 | V100 | 78.47 | 79.45 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/pspnet/pspnet_r50-d8-rsb_4xb2-adamw-80k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r50-d8_512x1024_80k_cityscapes/pspnet_r50-d8_rsb-pretrain_512x1024_adamw_80k_cityscapes_20220315_123238-588c30be.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r50-d8_512x1024_80k_cityscapes/pspnet_r50-d8_rsb-pretrain_512x1024_adamw_80k_cityscapes_20220315_123238.log.json) | +| PSPNet | R-101-D8 | 512x1024 | 80000 | - | - | V100 | 79.76 | 81.01 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/pspnet/pspnet_r101-d8_4xb2-80k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101-d8_512x1024_80k_cityscapes/pspnet_r101-d8_512x1024_80k_cityscapes_20200606_112211-e1e1100f.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101-d8_512x1024_80k_cityscapes/pspnet_r101-d8_512x1024_80k_cityscapes_20200606_112211.log.json) | +| PSPNet (FP16) | R-101-D8 | 512x1024 | 80000 | 5.34 | 8.77 | V100 | 79.46 | - | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/pspnet/pspnet_r101-d8_4xb2-amp-80k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101-d8_fp16_512x1024_80k_cityscapes/pspnet_r101-d8_fp16_512x1024_80k_cityscapes_20200717_230919-a0875e5c.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101-d8_fp16_512x1024_80k_cityscapes/pspnet_r101-d8_fp16_512x1024_80k_cityscapes_20200717_230919.log.json) | +| PSPNet | R-18-D8 | 769x769 | 80000 | 1.9 | 6.20 | V100 | 75.90 | 77.86 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/pspnet/pspnet_r18-d8_4xb2-80k_cityscapes-769x769.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r18-d8_769x769_80k_cityscapes/pspnet_r18-d8_769x769_80k_cityscapes_20201225_021458-3deefc62.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r18-d8_769x769_80k_cityscapes/pspnet_r18-d8_769x769_80k_cityscapes-20201225_021458.log.json) | +| PSPNet | R-50-D8 | 769x769 | 80000 | - | - | V100 | 79.59 | 80.69 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/pspnet/pspnet_r50-d8_4xb2-80k_cityscapes-769x769.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r50-d8_769x769_80k_cityscapes/pspnet_r50-d8_769x769_80k_cityscapes_20200606_210121-5ccf03dd.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r50-d8_769x769_80k_cityscapes/pspnet_r50-d8_769x769_80k_cityscapes_20200606_210121.log.json) | +| PSPNet | R-101-D8 | 769x769 | 80000 | - | - | V100 | 79.77 | 81.06 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/pspnet/pspnet_r101-d8_4xb2-80k_cityscapes-769x769.py) | [model](https://download.oz1z1penmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101-d8_769x769_80k_cityscapes/pspnet_r101-d8_769x769_80k_cityscapes_20200606_225055-dba412fa.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101-d8_769x769_80k_cityscapes/pspnet_r101-d8_769x769_80k_cityscapes_20200606_225055.log.json) | +| PSPNet | R-18b-D8 | 512x1024 | 80000 | 1.5 | 16.28 | V100 | 74.23 | 75.79 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/pspnet/pspnet_r18b-d8_4xb2-80k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r18b-d8_512x1024_80k_cityscapes/pspnet_r18b-d8_512x1024_80k_cityscapes_20201226_063116-26928a60.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r18b-d8_512x1024_80k_cityscapes/pspnet_r18b-d8_512x1024_80k_cityscapes-20201226_063116.log.json) | +| PSPNet | R-50b-D8 | 512x1024 | 80000 | 6.0 | 4.30 | V100 | 78.22 | 79.46 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/pspnet/pspnet_r50b-d8_4xb2-80k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r50b-d8_512x1024_80k_cityscapes/pspnet_r50b-d8_512x1024_80k_cityscapes_20201225_094315-6344287a.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r50b-d8_512x1024_80k_cityscapes/pspnet_r50b-d8_512x1024_80k_cityscapes-20201225_094315.log.json) | +| PSPNet | R-101b-D8 | 512x1024 | 80000 | 9.5 | 2.76 | V100 | 79.69 | 80.79 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/pspnet/pspnet_r101b-d8_4xb2-80k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101b-d8_512x1024_80k_cityscapes/pspnet_r101b-d8_512x1024_80k_cityscapes_20201226_170012-3a4d38ab.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101b-d8_512x1024_80k_cityscapes/pspnet_r101b-d8_512x1024_80k_cityscapes-20201226_170012.log.json) | +| PSPNet | R-18b-D8 | 769x769 | 80000 | 1.7 | 6.41 | V100 | 74.92 | 76.90 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/pspnet/pspnet_r18b-d8_4xb2-80k_cityscapes-769x769.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r18b-d8_769x769_80k_cityscapes/pspnet_r18b-d8_769x769_80k_cityscapes_20201226_080942-bf98d186.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r18b-d8_769x769_80k_cityscapes/pspnet_r18b-d8_769x769_80k_cityscapes-20201226_080942.log.json) | +| PSPNet | R-50b-D8 | 769x769 | 80000 | 6.8 | 1.88 | V100 | 78.50 | 79.96 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/pspnet/pspnet_r50b-d8_4xb2-80k_cityscapes-769x769.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r50b-d8_769x769_80k_cityscapes/pspnet_r50b-d8_769x769_80k_cityscapes_20201225_094316-4c643cf6.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r50b-d8_769x769_80k_cityscapes/pspnet_r50b-d8_769x769_80k_cityscapes-20201225_094316.log.json) | +| PSPNet | R-101b-D8 | 769x769 | 80000 | 10.8 | 1.17 | V100 | 78.87 | 80.04 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/pspnet/pspnet_r101b-d8_4xb2-80k_cityscapes-769x769.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101b-d8_769x769_80k_cityscapes/pspnet_r101b-d8_769x769_80k_cityscapes_20201226_171823-f0e7c293.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101b-d8_769x769_80k_cityscapes/pspnet_r101b-d8_769x769_80k_cityscapes-20201226_171823.log.json) | +| PSPNet | R-50-D32 | 512x1024 | 80000 | 3.0 | 15.21 | V100 | 73.88 | 76.85 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/pspnet/pspnet_r50b-d32_4xb2-80k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r50-d32_512x1024_80k_cityscapes/pspnet_r50-d32_512x1024_80k_cityscapes_20220316_224840-9092b254.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r50-d32_512x1024_80k_cityscapes/pspnet_r50-d32_512x1024_80k_cityscapes_20220316_224840.log.json) | +| PSPNet | R-50b-D32 rsb | 512x1024 | 80000 | 3.1 | 16.08 | V100 | 74.09 | 77.18 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/pspnet/pspnet_r50-d32_rsb_4xb2-adamw-80k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r50-d32_rsb-pretrain_512x1024_adamw_80k_cityscapes/pspnet_r50-d32_rsb-pretrain_512x1024_adamw_80k_cityscapes_20220316_141229-dd9c9610.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r50-d32_rsb-pretrain_512x1024_adamw_80k_cityscapes/pspnet_r50-d32_rsb-pretrain_512x1024_adamw_80k_cityscapes_20220316_141229.log.json) | +| PSPNet | R-50b-D32 | 512x1024 | 80000 | 2.9 | 15.41 | V100 | 72.61 | 75.51 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/pspnet/pspnet_r50b-d32_4xb2-80k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r50b-d32_512x1024_80k_cityscapes/pspnet_r50b-d32_512x1024_80k_cityscapes_20220311_152152-23bcaf8c.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r50b-d32_512x1024_80k_cityscapes/pspnet_r50b-d32_512x1024_80k_cityscapes_20220311_152152.log.json) | ### ADE20K -| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | mIoU | mIoU(ms+flip) | config | download | -| ------ | -------- | --------- | ------: | -------- | -------------- | ----: | ------------: | ----------------------------------------------------------------------------------------------------------------------------- | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | -| PSPNet | R-50-D8 | 512x512 | 80000 | 8.5 | 23.53 | 41.13 | 41.94 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/pspnet/pspnet_r50-d8_4xb4-80k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r50-d8_512x512_80k_ade20k/pspnet_r50-d8_512x512_80k_ade20k_20200615_014128-15a8b914.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r50-d8_512x512_80k_ade20k/pspnet_r50-d8_512x512_80k_ade20k_20200615_014128.log.json) | -| PSPNet | R-101-D8 | 512x512 | 80000 | 12 | 15.30 | 43.57 | 44.35 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/pspnet/pspnet_r101-d8_4xb4-80k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101-d8_512x512_80k_ade20k/pspnet_r101-d8_512x512_80k_ade20k_20200614_031423-b6e782f0.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101-d8_512x512_80k_ade20k/pspnet_r101-d8_512x512_80k_ade20k_20200614_031423.log.json) | -| PSPNet | R-50-D8 | 512x512 | 160000 | - | - | 42.48 | 43.44 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/pspnet/pspnet_r50-d8_4xb4-160k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r50-d8_512x512_160k_ade20k/pspnet_r50-d8_512x512_160k_ade20k_20200615_184358-1890b0bd.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r50-d8_512x512_160k_ade20k/pspnet_r50-d8_512x512_160k_ade20k_20200615_184358.log.json) | -| PSPNet | R-101-D8 | 512x512 | 160000 | - | - | 44.39 | 45.35 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/pspnet/pspnet_r101-d8_4xb4-160k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101-d8_512x512_160k_ade20k/pspnet_r101-d8_512x512_160k_ade20k_20200615_100650-967c316f.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101-d8_512x512_160k_ade20k/pspnet_r101-d8_512x512_160k_ade20k_20200615_100650.log.json) | +| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | Device | mIoU | mIoU(ms+flip) | config | download | +| ------ | -------- | --------- | ------: | -------- | -------------- | ------ | ----: | ------------: | ----------------------------------------------------------------------------------------------------------------------------- | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | +| PSPNet | R-50-D8 | 512x512 | 80000 | 8.5 | 23.53 | V100 | 41.13 | 41.94 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/pspnet/pspnet_r50-d8_4xb4-80k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r50-d8_512x512_80k_ade20k/pspnet_r50-d8_512x512_80k_ade20k_20200615_014128-15a8b914.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r50-d8_512x512_80k_ade20k/pspnet_r50-d8_512x512_80k_ade20k_20200615_014128.log.json) | +| PSPNet | R-101-D8 | 512x512 | 80000 | 12 | 15.30 | V100 | 43.57 | 44.35 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/pspnet/pspnet_r101-d8_4xb4-80k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101-d8_512x512_80k_ade20k/pspnet_r101-d8_512x512_80k_ade20k_20200614_031423-b6e782f0.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101-d8_512x512_80k_ade20k/pspnet_r101-d8_512x512_80k_ade20k_20200614_031423.log.json) | +| PSPNet | R-50-D8 | 512x512 | 160000 | - | - | V100 | 42.48 | 43.44 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/pspnet/pspnet_r50-d8_4xb4-160k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r50-d8_512x512_160k_ade20k/pspnet_r50-d8_512x512_160k_ade20k_20200615_184358-1890b0bd.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r50-d8_512x512_160k_ade20k/pspnet_r50-d8_512x512_160k_ade20k_20200615_184358.log.json) | +| PSPNet | R-101-D8 | 512x512 | 160000 | - | - | V100 | 44.39 | 45.35 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/pspnet/pspnet_r101-d8_4xb4-160k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101-d8_512x512_160k_ade20k/pspnet_r101-d8_512x512_160k_ade20k_20200615_100650-967c316f.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101-d8_512x512_160k_ade20k/pspnet_r101-d8_512x512_160k_ade20k_20200615_100650.log.json) | ### Pascal VOC 2012 + Aug -| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | mIoU | mIoU(ms+flip) | config | download | -| ------ | -------- | --------- | ------: | -------- | -------------- | ----: | ------------: | ------------------------------------------------------------------------------------------------------------------------------ | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | -| PSPNet | R-50-D8 | 512x512 | 20000 | 6.1 | 23.59 | 76.78 | 77.61 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/pspnet/pspnet_r50-d8_4xb4-20k_voc12aug-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r50-d8_512x512_20k_voc12aug/pspnet_r50-d8_512x512_20k_voc12aug_20200617_101958-ed5dfbd9.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r50-d8_512x512_20k_voc12aug/pspnet_r50-d8_512x512_20k_voc12aug_20200617_101958.log.json) | -| PSPNet | R-101-D8 | 512x512 | 20000 | 9.6 | 15.02 | 78.47 | 79.25 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/pspnet/pspnet_r101-d8_4xb4-20k_voc12aug-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101-d8_512x512_20k_voc12aug/pspnet_r101-d8_512x512_20k_voc12aug_20200617_102003-4aef3c9a.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101-d8_512x512_20k_voc12aug/pspnet_r101-d8_512x512_20k_voc12aug_20200617_102003.log.json) | -| PSPNet | R-50-D8 | 512x512 | 40000 | - | - | 77.29 | 78.48 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/pspnet/pspnet_r50-d8_4xb4-40k_voc12aug-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r50-d8_512x512_40k_voc12aug/pspnet_r50-d8_512x512_40k_voc12aug_20200613_161222-ae9c1b8c.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r50-d8_512x512_40k_voc12aug/pspnet_r50-d8_512x512_40k_voc12aug_20200613_161222.log.json) | -| PSPNet | R-101-D8 | 512x512 | 40000 | - | - | 78.52 | 79.57 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/pspnet/pspnet_r101-d8_4xb4-40k_voc12aug-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101-d8_512x512_40k_voc12aug/pspnet_r101-d8_512x512_40k_voc12aug_20200613_161222-bc933b18.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101-d8_512x512_40k_voc12aug/pspnet_r101-d8_512x512_40k_voc12aug_20200613_161222.log.json) | +| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | Device | mIoU | mIoU(ms+flip) | config | download | +| ------ | -------- | --------- | ------: | -------- | -------------- | ------ | ----: | ------------: | ------------------------------------------------------------------------------------------------------------------------------ | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | +| PSPNet | R-50-D8 | 512x512 | 20000 | 6.1 | 23.59 | V100 | 76.78 | 77.61 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/pspnet/pspnet_r50-d8_4xb4-20k_voc12aug-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r50-d8_512x512_20k_voc12aug/pspnet_r50-d8_512x512_20k_voc12aug_20200617_101958-ed5dfbd9.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r50-d8_512x512_20k_voc12aug/pspnet_r50-d8_512x512_20k_voc12aug_20200617_101958.log.json) | +| PSPNet | R-101-D8 | 512x512 | 20000 | 9.6 | 15.02 | V100 | 78.47 | 79.25 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/pspnet/pspnet_r101-d8_4xb4-20k_voc12aug-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101-d8_512x512_20k_voc12aug/pspnet_r101-d8_512x512_20k_voc12aug_20200617_102003-4aef3c9a.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101-d8_512x512_20k_voc12aug/pspnet_r101-d8_512x512_20k_voc12aug_20200617_102003.log.json) | +| PSPNet | R-50-D8 | 512x512 | 40000 | - | - | V100 | 77.29 | 78.48 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/pspnet/pspnet_r50-d8_4xb4-40k_voc12aug-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r50-d8_512x512_40k_voc12aug/pspnet_r50-d8_512x512_40k_voc12aug_20200613_161222-ae9c1b8c.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r50-d8_512x512_40k_voc12aug/pspnet_r50-d8_512x512_40k_voc12aug_20200613_161222.log.json) | +| PSPNet | R-101-D8 | 512x512 | 40000 | - | - | V100 | 78.52 | 79.57 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/pspnet/pspnet_r101-d8_4xb4-40k_voc12aug-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101-d8_512x512_40k_voc12aug/pspnet_r101-d8_512x512_40k_voc12aug_20200613_161222-bc933b18.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101-d8_512x512_40k_voc12aug/pspnet_r101-d8_512x512_40k_voc12aug_20200613_161222.log.json) | ### Pascal Context -| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | mIoU | mIoU(ms+flip) | config | download | -| ------ | -------- | --------- | ------: | -------- | -------------- | ----: | ------------: | ------------------------------------------------------------------------------------------------------------------------------------ | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | -| PSPNet | R-101-D8 | 480x480 | 40000 | 8.8 | 9.68 | 46.60 | 47.78 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/pspnet/pspnet_r101-d8_4xb4-40k_pascal-context-480x480.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101-d8_480x480_40k_pascal_context/pspnet_r101-d8_480x480_40k_pascal_context_20200911_211210-bf0f5d7c.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101-d8_480x480_40k_pascal_context/pspnet_r101-d8_480x480_40k_pascal_context-20200911_211210.log.json) | -| PSPNet | R-101-D8 | 480x480 | 80000 | - | - | 46.03 | 47.15 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/pspnet/pspnet_r101-d8_4xb4-80k_pascal-context-480x480.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101-d8_480x480_80k_pascal_context/pspnet_r101-d8_480x480_80k_pascal_context_20200911_190530-c86d6233.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101-d8_480x480_80k_pascal_context/pspnet_r101-d8_480x480_80k_pascal_context-20200911_190530.log.json) | +| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | Device | mIoU | mIoU(ms+flip) | config | download | +| ------ | -------- | --------- | ------: | -------- | -------------- | ------ | ----: | ------------: | ------------------------------------------------------------------------------------------------------------------------------------ | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | +| PSPNet | R-101-D8 | 480x480 | 40000 | 8.8 | 9.68 | V100 | 46.60 | 47.78 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/pspnet/pspnet_r101-d8_4xb4-40k_pascal-context-480x480.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101-d8_480x480_40k_pascal_context/pspnet_r101-d8_480x480_40k_pascal_context_20200911_211210-bf0f5d7c.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101-d8_480x480_40k_pascal_context/pspnet_r101-d8_480x480_40k_pascal_context-20200911_211210.log.json) | +| PSPNet | R-101-D8 | 480x480 | 80000 | - | - | V100 | 46.03 | 47.15 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/pspnet/pspnet_r101-d8_4xb4-80k_pascal-context-480x480.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101-d8_480x480_80k_pascal_context/pspnet_r101-d8_480x480_80k_pascal_context_20200911_190530-c86d6233.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101-d8_480x480_80k_pascal_context/pspnet_r101-d8_480x480_80k_pascal_context-20200911_190530.log.json) | ### Pascal Context 59 -| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | mIoU | mIoU(ms+flip) | config | download | -| ------ | -------- | --------- | ------: | -------- | -------------- | ----: | ------------: | --------------------------------------------------------------------------------------------------------------------------------------- | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | -| PSPNet | R-101-D8 | 480x480 | 40000 | - | - | 52.02 | 53.54 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/pspnet/pspnet_r101-d8_4xb4-40k_pascal-context-59-480x480.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101-d8_480x480_40k_pascal_context_59/pspnet_r101-d8_480x480_40k_pascal_context_59_20210416_114524-86d44cd4.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101-d8_480x480_40k_pascal_context_59/pspnet_r101-d8_480x480_40k_pascal_context_59-20210416_114524.log.json) | -| PSPNet | R-101-D8 | 480x480 | 80000 | - | - | 52.47 | 53.99 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/pspnet/pspnet_r101-d8_4xb4-80k_pascal-context-59-480x480.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101-d8_480x480_80k_pascal_context_59/pspnet_r101-d8_480x480_80k_pascal_context_59_20210416_114418-fa6caaa2.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101-d8_480x480_80k_pascal_context_59/pspnet_r101-d8_480x480_80k_pascal_context_59-20210416_114418.log.json) | +| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | Device | mIoU | mIoU(ms+flip) | config | download | +| ------ | -------- | --------- | ------: | -------- | -------------- | ------ | ----: | ------------: | --------------------------------------------------------------------------------------------------------------------------------------- | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | +| PSPNet | R-101-D8 | 480x480 | 40000 | - | - | V100 | 52.02 | 53.54 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/pspnet/pspnet_r101-d8_4xb4-40k_pascal-context-59-480x480.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101-d8_480x480_40k_pascal_context_59/pspnet_r101-d8_480x480_40k_pascal_context_59_20210416_114524-86d44cd4.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101-d8_480x480_40k_pascal_context_59/pspnet_r101-d8_480x480_40k_pascal_context_59-20210416_114524.log.json) | +| PSPNet | R-101-D8 | 480x480 | 80000 | - | - | V100 | 52.47 | 53.99 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/pspnet/pspnet_r101-d8_4xb4-80k_pascal-context-59-480x480.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101-d8_480x480_80k_pascal_context_59/pspnet_r101-d8_480x480_80k_pascal_context_59_20210416_114418-fa6caaa2.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101-d8_480x480_80k_pascal_context_59/pspnet_r101-d8_480x480_80k_pascal_context_59-20210416_114418.log.json) | ### Dark Zurich and Nighttime Driving @@ -125,54 +105,54 @@ We support evaluation results on these two datasets using models above trained o ### COCO-Stuff 10k -| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | mIoU | mIoU(ms+flip) | config | download | -| ------ | -------- | --------- | ------: | -------- | -------------- | ----: | ------------: | ----------------------------------------------------------------------------------------------------------------------------------- | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | -| PSPNet | R-50-D8 | 512x512 | 20000 | 9.6 | 20.5 | 35.69 | 36.62 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/pspnet/pspnet_r50-d8_4xb4-20k_coco-stuff10k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r50-d8_512x512_4x4_20k_coco-stuff10k/pspnet_r50-d8_512x512_4x4_20k_coco-stuff10k_20210820_203258-b88df27f.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r50-d8_512x512_4x4_20k_coco-stuff10k/pspnet_r50-d8_512x512_4x4_20k_coco-stuff10k_20210820_203258.log.json) | -| PSPNet | R-101-D8 | 512x512 | 20000 | 13.2 | 11.1 | 37.26 | 38.52 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/pspnet/pspnet_r101-d8_4xb4-20k_coco-stuff10k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101-d8_512x512_4x4_20k_coco-stuff10k/pspnet_r101-d8_512x512_4x4_20k_coco-stuff10k_20210820_232135-76aae482.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101-d8_512x512_4x4_20k_coco-stuff10k/pspnet_r101-d8_512x512_4x4_20k_coco-stuff10k_20210820_232135.log.json) | -| PSPNet | R-50-D8 | 512x512 | 40000 | - | - | 36.33 | 37.24 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/pspnet/pspnet_r50-d8_4xb4-40k_coco-stuff10k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r50-d8_512x512_4x4_40k_coco-stuff10k/pspnet_r50-d8_512x512_4x4_40k_coco-stuff10k_20210821_030857-92e2902b.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r50-d8_512x512_4x4_40k_coco-stuff10k/pspnet_r50-d8_512x512_4x4_40k_coco-stuff10k_20210821_030857.log.json) | -| PSPNet | R-101-D8 | 512x512 | 40000 | - | - | 37.76 | 38.86 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/pspnet/pspnet_r101-d8_4xb4-40k_coco-stuff10k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101-d8_512x512_4x4_40k_coco-stuff10k/pspnet_r101-d8_512x512_4x4_40k_coco-stuff10k_20210821_014022-831aec95.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101-d8_512x512_4x4_40k_coco-stuff10k/pspnet_r101-d8_512x512_4x4_40k_coco-stuff10k_20210821_014022.log.json) | +| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | Device | mIoU | mIoU(ms+flip) | config | download | +| ------ | -------- | --------- | ------: | -------- | -------------- | ------ | ----: | ------------: | ----------------------------------------------------------------------------------------------------------------------------------- | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | +| PSPNet | R-50-D8 | 512x512 | 20000 | 9.6 | 20.5 | V100 | 35.69 | 36.62 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/pspnet/pspnet_r50-d8_4xb4-20k_coco-stuff10k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r50-d8_512x512_4x4_20k_coco-stuff10k/pspnet_r50-d8_512x512_4x4_20k_coco-stuff10k_20210820_203258-b88df27f.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r50-d8_512x512_4x4_20k_coco-stuff10k/pspnet_r50-d8_512x512_4x4_20k_coco-stuff10k_20210820_203258.log.json) | +| PSPNet | R-101-D8 | 512x512 | 20000 | 13.2 | 11.1 | V100 | 37.26 | 38.52 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/pspnet/pspnet_r101-d8_4xb4-20k_coco-stuff10k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101-d8_512x512_4x4_20k_coco-stuff10k/pspnet_r101-d8_512x512_4x4_20k_coco-stuff10k_20210820_232135-76aae482.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101-d8_512x512_4x4_20k_coco-stuff10k/pspnet_r101-d8_512x512_4x4_20k_coco-stuff10k_20210820_232135.log.json) | +| PSPNet | R-50-D8 | 512x512 | 40000 | - | - | V100 | 36.33 | 37.24 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/pspnet/pspnet_r50-d8_4xb4-40k_coco-stuff10k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r50-d8_512x512_4x4_40k_coco-stuff10k/pspnet_r50-d8_512x512_4x4_40k_coco-stuff10k_20210821_030857-92e2902b.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r50-d8_512x512_4x4_40k_coco-stuff10k/pspnet_r50-d8_512x512_4x4_40k_coco-stuff10k_20210821_030857.log.json) | +| PSPNet | R-101-D8 | 512x512 | 40000 | - | - | V100 | 37.76 | 38.86 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/pspnet/pspnet_r101-d8_4xb4-40k_coco-stuff10k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101-d8_512x512_4x4_40k_coco-stuff10k/pspnet_r101-d8_512x512_4x4_40k_coco-stuff10k_20210821_014022-831aec95.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101-d8_512x512_4x4_40k_coco-stuff10k/pspnet_r101-d8_512x512_4x4_40k_coco-stuff10k_20210821_014022.log.json) | ### COCO-Stuff 164k -| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | mIoU | mIoU(ms+flip) | config | download | -| ------ | -------- | --------- | ------: | -------- | -------------- | ----: | ------------: | ------------------------------------------------------------------------------------------------------------------------------------- | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | -| PSPNet | R-50-D8 | 512x512 | 80000 | 9.6 | 20.5 | 38.80 | 39.19 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/pspnet/pspnet_r50-d8_4xb4-80k_coco-stuff164k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r50-d8_512x512_4x4_80k_coco-stuff164k/pspnet_r50-d8_512x512_4x4_80k_coco-stuff164k_20210707_152034-0e41b2db.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r50-d8_512x512_4x4_80k_coco-stuff164k/pspnet_r50-d8_512x512_4x4_80k_coco-stuff164k_20210707_152034.log.json) | -| PSPNet | R-101-D8 | 512x512 | 80000 | 13.2 | 11.1 | 40.34 | 40.79 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/pspnet/pspnet_r101-d8_4xb4-80k_coco-stuff164k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101-d8_512x512_4x4_80k_coco-stuff164k/pspnet_r101-d8_512x512_4x4_80k_coco-stuff164k_20210707_152034-7eb41789.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101-d8_512x512_4x4_80k_coco-stuff164k/pspnet_r101-d8_512x512_4x4_80k_coco-stuff164k_20210707_152034.log.json) | -| PSPNet | R-50-D8 | 512x512 | 160000 | - | - | 39.64 | 39.97 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/pspnet/pspnet_r50-d8_4xb4-160k_coco-stuff164k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r50-d8_512x512_4x4_160k_coco-stuff164k/pspnet_r50-d8_512x512_4x4_160k_coco-stuff164k_20210707_152004-51276a57.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r50-d8_512x512_4x4_160k_coco-stuff164k/pspnet_r50-d8_512x512_4x4_160k_coco-stuff164k_20210707_152004.log.json) | -| PSPNet | R-101-D8 | 512x512 | 160000 | - | - | 41.28 | 41.66 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/pspnet/pspnet_r101-d8_4xb4-160k_coco-stuff164k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101-d8_512x512_4x4_160k_coco-stuff164k/pspnet_r101-d8_512x512_4x4_160k_coco-stuff164k_20210707_152004-4af9621b.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101-d8_512x512_4x4_160k_coco-stuff164k/pspnet_r101-d8_512x512_4x4_160k_coco-stuff164k_20210707_152004.log.json) | -| PSPNet | R-50-D8 | 512x512 | 320000 | - | - | 40.53 | 40.75 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/pspnet/pspnet_r50-d8_4xb4-320k_coco-stuff164k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r50-d8_512x512_4x4_320k_coco-stuff164k/pspnet_r50-d8_512x512_4x4_320k_coco-stuff164k_20210707_152004-be9610cc.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r50-d8_512x512_4x4_320k_coco-stuff164k/pspnet_r50-d8_512x512_4x4_320k_coco-stuff164k_20210707_152004.log.json) | -| PSPNet | R-101-D8 | 512x512 | 320000 | - | - | 41.95 | 42.42 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/pspnet/pspnet_r101-d8_4xb4-320k_coco-stuff164k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101-d8_512x512_4x4_320k_coco-stuff164k/pspnet_r101-d8_512x512_4x4_320k_coco-stuff164k_20210707_152004-72220c60.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101-d8_512x512_4x4_320k_coco-stuff164k/pspnet_r101-d8_512x512_4x4_320k_coco-stuff164k_20210707_152004.log.json) | +| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | Device | mIoU | mIoU(ms+flip) | config | download | +| ------ | -------- | --------- | ------: | -------- | -------------- | ------ | ----: | ------------: | ------------------------------------------------------------------------------------------------------------------------------------- | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | +| PSPNet | R-50-D8 | 512x512 | 80000 | 9.6 | 20.5 | V100 | 38.80 | 39.19 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/pspnet/pspnet_r50-d8_4xb4-80k_coco-stuff164k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r50-d8_512x512_4x4_80k_coco-stuff164k/pspnet_r50-d8_512x512_4x4_80k_coco-stuff164k_20210707_152034-0e41b2db.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r50-d8_512x512_4x4_80k_coco-stuff164k/pspnet_r50-d8_512x512_4x4_80k_coco-stuff164k_20210707_152034.log.json) | +| PSPNet | R-101-D8 | 512x512 | 80000 | 13.2 | 11.1 | V100 | 40.34 | 40.79 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/pspnet/pspnet_r101-d8_4xb4-80k_coco-stuff164k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101-d8_512x512_4x4_80k_coco-stuff164k/pspnet_r101-d8_512x512_4x4_80k_coco-stuff164k_20210707_152034-7eb41789.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101-d8_512x512_4x4_80k_coco-stuff164k/pspnet_r101-d8_512x512_4x4_80k_coco-stuff164k_20210707_152034.log.json) | +| PSPNet | R-50-D8 | 512x512 | 160000 | - | - | V100 | 39.64 | 39.97 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/pspnet/pspnet_r50-d8_4xb4-160k_coco-stuff164k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r50-d8_512x512_4x4_160k_coco-stuff164k/pspnet_r50-d8_512x512_4x4_160k_coco-stuff164k_20210707_152004-51276a57.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r50-d8_512x512_4x4_160k_coco-stuff164k/pspnet_r50-d8_512x512_4x4_160k_coco-stuff164k_20210707_152004.log.json) | +| PSPNet | R-101-D8 | 512x512 | 160000 | - | - | V100 | 41.28 | 41.66 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/pspnet/pspnet_r101-d8_4xb4-160k_coco-stuff164k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101-d8_512x512_4x4_160k_coco-stuff164k/pspnet_r101-d8_512x512_4x4_160k_coco-stuff164k_20210707_152004-4af9621b.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101-d8_512x512_4x4_160k_coco-stuff164k/pspnet_r101-d8_512x512_4x4_160k_coco-stuff164k_20210707_152004.log.json) | +| PSPNet | R-50-D8 | 512x512 | 320000 | - | - | V100 | 40.53 | 40.75 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/pspnet/pspnet_r50-d8_4xb4-320k_coco-stuff164k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r50-d8_512x512_4x4_320k_coco-stuff164k/pspnet_r50-d8_512x512_4x4_320k_coco-stuff164k_20210707_152004-be9610cc.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r50-d8_512x512_4x4_320k_coco-stuff164k/pspnet_r50-d8_512x512_4x4_320k_coco-stuff164k_20210707_152004.log.json) | +| PSPNet | R-101-D8 | 512x512 | 320000 | - | - | V100 | 41.95 | 42.42 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/pspnet/pspnet_r101-d8_4xb4-320k_coco-stuff164k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101-d8_512x512_4x4_320k_coco-stuff164k/pspnet_r101-d8_512x512_4x4_320k_coco-stuff164k_20210707_152004-72220c60.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101-d8_512x512_4x4_320k_coco-stuff164k/pspnet_r101-d8_512x512_4x4_320k_coco-stuff164k_20210707_152004.log.json) | ### LoveDA -| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | mIoU | mIoU(ms+flip) | config | download | -| ------ | -------- | --------- | ------: | -------- | -------------- | ----: | ------------: | ---------------------------------------------------------------------------------------------------------------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ | -| PSPNet | R-18-D8 | 512x512 | 80000 | 1.45 | 26.87 | 48.62 | 47.57 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/pspnet/pspnet_r18-d8_4xb4-80k_loveda-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r18-d8_512x512_80k_loveda/pspnet_r18-d8_512x512_80k_loveda_20211105_052100-b97697f1.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r18-d8_512x512_80k_loveda/pspnet_r18-d8_512x512_80k_loveda_20211105_052100.log.json) | -| PSPNet | R-50-D8 | 512x512 | 80000 | 6.14 | 6.60 | 50.46 | 50.19 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/pspnet/pspnet_r50-d8_4xb4-80k_loveda-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r50-d8_512x512_80k_loveda/pspnet_r50-d8_512x512_80k_loveda_20211104_155728-88610f9f.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r50-d8_512x512_80k_loveda/pspnet_r50-d8_512x512_80k_loveda_20211104_155728.log.json) | -| PSPNet | R-101-D8 | 512x512 | 80000 | 9.61 | 4.58 | 51.86 | 51.34 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/pspnet/pspnet_r101-d8_4xb4-80k_loveda-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101-d8_512x512_80k_loveda/pspnet_r101-d8_512x512_80k_loveda_20211104_153212-1c06c6a8.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101-d8_512x512_80k_loveda/pspnet_r101-d8_512x512_80k_loveda_20211104_153212.log.json) | +| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | Device | mIoU | mIoU(ms+flip) | config | download | +| ------ | -------- | --------- | ------: | -------- | -------------- | ------ | ----: | ------------: | ---------------------------------------------------------------------------------------------------------------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ | +| PSPNet | R-18-D8 | 512x512 | 80000 | 1.45 | 26.87 | V100 | 48.62 | 47.57 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/pspnet/pspnet_r18-d8_4xb4-80k_loveda-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r18-d8_512x512_80k_loveda/pspnet_r18-d8_512x512_80k_loveda_20211105_052100-b97697f1.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r18-d8_512x512_80k_loveda/pspnet_r18-d8_512x512_80k_loveda_20211105_052100.log.json) | +| PSPNet | R-50-D8 | 512x512 | 80000 | 6.14 | 6.60 | V100 | 50.46 | 50.19 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/pspnet/pspnet_r50-d8_4xb4-80k_loveda-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r50-d8_512x512_80k_loveda/pspnet_r50-d8_512x512_80k_loveda_20211104_155728-88610f9f.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r50-d8_512x512_80k_loveda/pspnet_r50-d8_512x512_80k_loveda_20211104_155728.log.json) | +| PSPNet | R-101-D8 | 512x512 | 80000 | 9.61 | 4.58 | V100 | 51.86 | 51.34 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/pspnet/pspnet_r101-d8_4xb4-80k_loveda-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101-d8_512x512_80k_loveda/pspnet_r101-d8_512x512_80k_loveda_20211104_153212-1c06c6a8.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101-d8_512x512_80k_loveda/pspnet_r101-d8_512x512_80k_loveda_20211104_153212.log.json) | ### Potsdam -| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | mIoU | mIoU(ms+flip) | config | download | -| ------ | -------- | --------- | ------: | -------- | -------------- | ----: | ------------: | ----------------------------------------------------------------------------------------------------------------------------- | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | -| PSPNet | R-18-D8 | 512x512 | 80000 | 1.50 | 85.12 | 77.09 | 78.30 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/pspnet/pspnet_r18-d8_4xb4-80k_potsdam-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r18-d8_4x4_512x512_80k_potsdam/pspnet_r18-d8_4x4_512x512_80k_potsdam_20211220_125612-7cd046e1.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r18-d8_4x4_512x512_80k_potsdam/pspnet_r18-d8_4x4_512x512_80k_potsdam_20211220_125612.log.json) | -| PSPNet | R-50-D8 | 512x512 | 80000 | 6.14 | 30.21 | 78.12 | 78.98 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/pspnet/pspnet_r50-d8_4xb4-80k_potsdam-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r50-d8_4x4_512x512_80k_potsdam/pspnet_r50-d8_4x4_512x512_80k_potsdam_20211219_043541-2dd5fe67.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r50-d8_4x4_512x512_80k_potsdam/pspnet_r50-d8_4x4_512x512_80k_potsdam_20211219_043541.log.json) | -| PSPNet | R-101-D8 | 512x512 | 80000 | 9.61 | 19.40 | 78.62 | 79.47 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/pspnet/pspnet_r101-d8_4xb4-80k_potsdam-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101-d8_4x4_512x512_80k_potsdam/pspnet_r101-d8_4x4_512x512_80k_potsdam_20211220_125612-aed036c4.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101-d8_4x4_512x512_80k_potsdam/pspnet_r101-d8_4x4_512x512_80k_potsdam_20211220_125612.log.json) | +| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | Device | mIoU | mIoU(ms+flip) | config | download | +| ------ | -------- | --------- | ------: | -------- | -------------- | ------ | ----: | ------------: | ----------------------------------------------------------------------------------------------------------------------------- | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | +| PSPNet | R-18-D8 | 512x512 | 80000 | 1.50 | 85.12 | V100 | 77.09 | 78.30 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/pspnet/pspnet_r18-d8_4xb4-80k_potsdam-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r18-d8_4x4_512x512_80k_potsdam/pspnet_r18-d8_4x4_512x512_80k_potsdam_20211220_125612-7cd046e1.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r18-d8_4x4_512x512_80k_potsdam/pspnet_r18-d8_4x4_512x512_80k_potsdam_20211220_125612.log.json) | +| PSPNet | R-50-D8 | 512x512 | 80000 | 6.14 | 30.21 | V100 | 78.12 | 78.98 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/pspnet/pspnet_r50-d8_4xb4-80k_potsdam-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r50-d8_4x4_512x512_80k_potsdam/pspnet_r50-d8_4x4_512x512_80k_potsdam_20211219_043541-2dd5fe67.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r50-d8_4x4_512x512_80k_potsdam/pspnet_r50-d8_4x4_512x512_80k_potsdam_20211219_043541.log.json) | +| PSPNet | R-101-D8 | 512x512 | 80000 | 9.61 | 19.40 | V100 | 78.62 | 79.47 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/pspnet/pspnet_r101-d8_4xb4-80k_potsdam-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101-d8_4x4_512x512_80k_potsdam/pspnet_r101-d8_4x4_512x512_80k_potsdam_20211220_125612-aed036c4.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101-d8_4x4_512x512_80k_potsdam/pspnet_r101-d8_4x4_512x512_80k_potsdam_20211220_125612.log.json) | ### Vaihingen -| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | mIoU | mIoU(ms+flip) | config | download | -| ------ | -------- | --------- | ------: | -------- | -------------- | ----: | ------------: | ------------------------------------------------------------------------------------------------------------------------------- | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | -| PSPNet | R-18-D8 | 512x512 | 80000 | 1.45 | 85.06 | 71.46 | 73.36 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/pspnet/pspnet_r18-d8_4xb4-80k_vaihingen-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r18-d8_4x4_512x512_80k_vaihingen/pspnet_r18-d8_4x4_512x512_80k_vaihingen_20211228_160355-52a8a6f6.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r18-d8_4x4_512x512_80k_vaihingen/pspnet_r18-d8_4x4_512x512_80k_vaihingen_20211228_160355.log.json) | -| PSPNet | R-50-D8 | 512x512 | 80000 | 6.14 | 30.29 | 72.36 | 73.75 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/pspnet/pspnet_r50-d8_4xb4-80k_vaihingen-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r50-d8_4x4_512x512_80k_vaihingen/pspnet_r50-d8_4x4_512x512_80k_vaihingen_20211228_160355-382f8f5b.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r50-d8_4x4_512x512_80k_vaihingen/pspnet_r50-d8_4x4_512x512_80k_vaihingen_20211228_160355.log.json) | -| PSPNet | R-101-D8 | 512x512 | 80000 | 9.61 | 19.97 | 72.61 | 74.18 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/pspnet/pspnet_r101-d8_4xb4-80k_vaihingen-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101-d8_4x4_512x512_80k_vaihingen/pspnet_r101-d8_4x4_512x512_80k_vaihingen_20211231_230806-8eba0a09.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101-d8_4x4_512x512_80k_vaihingen/pspnet_r101-d8_4x4_512x512_80k_vaihingen_20211231_230806.log.json) | +| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | Device | mIoU | mIoU(ms+flip) | config | download | +| ------ | -------- | --------- | ------: | -------- | -------------- | ------ | ----: | ------------: | ------------------------------------------------------------------------------------------------------------------------------- | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | +| PSPNet | R-18-D8 | 512x512 | 80000 | 1.45 | 85.06 | V100 | 71.46 | 73.36 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/pspnet/pspnet_r18-d8_4xb4-80k_vaihingen-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r18-d8_4x4_512x512_80k_vaihingen/pspnet_r18-d8_4x4_512x512_80k_vaihingen_20211228_160355-52a8a6f6.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r18-d8_4x4_512x512_80k_vaihingen/pspnet_r18-d8_4x4_512x512_80k_vaihingen_20211228_160355.log.json) | +| PSPNet | R-50-D8 | 512x512 | 80000 | 6.14 | 30.29 | V100 | 72.36 | 73.75 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/pspnet/pspnet_r50-d8_4xb4-80k_vaihingen-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r50-d8_4x4_512x512_80k_vaihingen/pspnet_r50-d8_4x4_512x512_80k_vaihingen_20211228_160355-382f8f5b.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r50-d8_4x4_512x512_80k_vaihingen/pspnet_r50-d8_4x4_512x512_80k_vaihingen_20211228_160355.log.json) | +| PSPNet | R-101-D8 | 512x512 | 80000 | 9.61 | 19.97 | V100 | 72.61 | 74.18 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/pspnet/pspnet_r101-d8_4xb4-80k_vaihingen-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101-d8_4x4_512x512_80k_vaihingen/pspnet_r101-d8_4x4_512x512_80k_vaihingen_20211231_230806-8eba0a09.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101-d8_4x4_512x512_80k_vaihingen/pspnet_r101-d8_4x4_512x512_80k_vaihingen_20211231_230806.log.json) | ### iSAID -| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | mIoU | mIoU(ms+flip) | config | download | -| ------ | -------- | --------- | ------: | -------- | -------------- | ----: | ------------: | -------------------------------------------------------------------------------------------------------------------------- | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | -| PSPNet | R-18-D8 | 896x896 | 80000 | 4.52 | 26.91 | 60.22 | 61.25 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/pspnet/pspnet_r18-d8_4xb4-80k_isaid-896x896.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r18-d8_4x4_896x896_80k_isaid/pspnet_r18-d8_4x4_896x896_80k_isaid_20220110_180526-e84c0b6a.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r18-d8_4x4_896x896_80k_isaid/pspnet_r18-d8_4x4_896x896_80k_isaid_20220110_180526.log.json) | -| PSPNet | R-50-D8 | 896x896 | 80000 | 16.58 | 8.88 | 65.36 | 66.48 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/pspnet/pspnet_r50-d8_4xb4-80k_isaid-896x896.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r50-d8_4x4_896x896_80k_isaid/pspnet_r50-d8_4x4_896x896_80k_isaid_20220110_180629-1f21dc32.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r50-d8_4x4_896x896_80k_isaid/pspnet_r50-d8_4x4_896x896_80k_isaid_20220110_180629.log.json) | +| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | Device | mIoU | mIoU(ms+flip) | config | download | +| ------ | -------- | --------- | ------: | -------- | -------------- | ------ | ----: | ------------: | -------------------------------------------------------------------------------------------------------------------------- | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | +| PSPNet | R-18-D8 | 896x896 | 80000 | 4.52 | 26.91 | V100 | 60.22 | 61.25 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/pspnet/pspnet_r18-d8_4xb4-80k_isaid-896x896.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r18-d8_4x4_896x896_80k_isaid/pspnet_r18-d8_4x4_896x896_80k_isaid_20220110_180526-e84c0b6a.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r18-d8_4x4_896x896_80k_isaid/pspnet_r18-d8_4x4_896x896_80k_isaid_20220110_180526.log.json) | +| PSPNet | R-50-D8 | 896x896 | 80000 | 16.58 | 8.88 | V100 | 65.36 | 66.48 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/pspnet/pspnet_r50-d8_4xb4-80k_isaid-896x896.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r50-d8_4x4_896x896_80k_isaid/pspnet_r50-d8_4x4_896x896_80k_isaid_20220110_180629-1f21dc32.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r50-d8_4x4_896x896_80k_isaid/pspnet_r50-d8_4x4_896x896_80k_isaid_20220110_180629.log.json) | Note: @@ -180,3 +160,23 @@ Note: - `896x896` is the Crop Size of iSAID dataset, which is followed by the implementation of [PointFlow: Flowing Semantics Through Points for Aerial Image Segmentation](https://arxiv.org/pdf/2103.06564.pdf) - `rsb` is short for 'Resnet strikes back'. - The `b` in `R-50b` means ResNetV1b, which is a standard ResNet backbone. In MMSegmentation, default backbone is ResNetV1c, which usually performs better in semantic segmentation task. + +## Citation + +```bibtex +@inproceedings{zhao2017pspnet, + title={Pyramid Scene Parsing Network}, + author={Zhao, Hengshuang and Shi, Jianping and Qi, Xiaojuan and Wang, Xiaogang and Jia, Jiaya}, + booktitle={CVPR}, + year={2017} +} +``` + +```bibtex +@article{wightman2021resnet, + title={Resnet strikes back: An improved training procedure in timm}, + author={Wightman, Ross and Touvron, Hugo and J{\'e}gou, Herv{\'e}}, + journal={arXiv preprint arXiv:2110.00476}, + year={2021} +} +``` diff --git a/configs/pspnet/metafile.yaml b/configs/pspnet/metafile.yaml new file mode 100644 index 0000000000..d00b89d5cf --- /dev/null +++ b/configs/pspnet/metafile.yaml @@ -0,0 +1,1303 @@ +Collections: +- Name: PSPNet + License: Apache License 2.0 + Metadata: + Training Data: + - Cityscapes + - ADE20K + - Pascal VOC 2012 + Aug + - Pascal Context + - Pascal Context 59 + - Dark Zurich and Nighttime Driving + - COCO-Stuff 10k + - COCO-Stuff 164k + - LoveDA + - Potsdam + - Vaihingen + - iSAID + Paper: + Title: Pyramid Scene Parsing Network + URL: https://arxiv.org/abs/1612.01105 + README: configs/pspnet/README.md + Frameworks: + - PyTorch +Models: +- Name: pspnet_r50-d8_4xb2-40k_cityscapes-512x1024 + In Collection: PSPNet + Results: + Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 77.85 + mIoU(ms+flip): 79.18 + Config: configs/pspnet/pspnet_r50-d8_4xb2-40k_cityscapes-512x1024.py + Metadata: + Training Data: Cityscapes + Batch Size: 8 + Architecture: + - R-50-D8 + - PSPNet + Training Resources: 4x V100 GPUS + Memory (GB): 6.1 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r50-d8_512x1024_40k_cityscapes/pspnet_r50-d8_512x1024_40k_cityscapes_20200605_003338-2966598c.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r50-d8_512x1024_40k_cityscapes/pspnet_r50-d8_512x1024_40k_cityscapes_20200605_003338.log.json + Paper: + Title: Pyramid Scene Parsing Network + URL: https://arxiv.org/abs/1612.01105 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/psp_head.py#L63 + Framework: PyTorch +- Name: pspnet_r101-d8_4xb2-40k_cityscapes-512x1024 + In Collection: PSPNet + Results: + Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 78.34 + mIoU(ms+flip): 79.74 + Config: configs/pspnet/pspnet_r101-d8_4xb2-40k_cityscapes-512x1024.py + Metadata: + Training Data: Cityscapes + Batch Size: 8 + Architecture: + - R-101-D8 + - PSPNet + Training Resources: 4x V100 GPUS + Memory (GB): 9.6 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101-d8_512x1024_40k_cityscapes/pspnet_r101-d8_512x1024_40k_cityscapes_20200604_232751-467e7cf4.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101-d8_512x1024_40k_cityscapes/pspnet_r101-d8_512x1024_40k_cityscapes_20200604_232751.log.json + Paper: + Title: Pyramid Scene Parsing Network + URL: https://arxiv.org/abs/1612.01105 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/psp_head.py#L63 + Framework: PyTorch +- Name: pspnet_r50-d8_4xb2-40k_cityscapes-769x769 + In Collection: PSPNet + Results: + Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 78.26 + mIoU(ms+flip): 79.88 + Config: configs/pspnet/pspnet_r50-d8_4xb2-40k_cityscapes-769x769.py + Metadata: + Training Data: Cityscapes + Batch Size: 8 + Architecture: + - R-50-D8 + - PSPNet + Training Resources: 4x V100 GPUS + Memory (GB): 6.9 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r50-d8_769x769_40k_cityscapes/pspnet_r50-d8_769x769_40k_cityscapes_20200606_112725-86638686.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r50-d8_769x769_40k_cityscapes/pspnet_r50-d8_769x769_40k_cityscapes_20200606_112725.log.json + Paper: + Title: Pyramid Scene Parsing Network + URL: https://arxiv.org/abs/1612.01105 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/psp_head.py#L63 + Framework: PyTorch +- Name: pspnet_r101-d8_4xb2-40k_cityscapes-769x769 + In Collection: PSPNet + Results: + Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 79.08 + mIoU(ms+flip): 80.28 + Config: configs/pspnet/pspnet_r101-d8_4xb2-40k_cityscapes-769x769.py + Metadata: + Training Data: Cityscapes + Batch Size: 8 + Architecture: + - R-101-D8 + - PSPNet + Training Resources: 4x V100 GPUS + Memory (GB): 10.9 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101-d8_769x769_40k_cityscapes/pspnet_r101-d8_769x769_40k_cityscapes_20200606_112753-61c6f5be.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101-d8_769x769_40k_cityscapes/pspnet_r101-d8_769x769_40k_cityscapes_20200606_112753.log.json + Paper: + Title: Pyramid Scene Parsing Network + URL: https://arxiv.org/abs/1612.01105 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/psp_head.py#L63 + Framework: PyTorch +- Name: pspnet_r18-d8_4xb2-80k_cityscapes-512x1024 + In Collection: PSPNet + Results: + Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 74.87 + mIoU(ms+flip): 76.04 + Config: configs/pspnet/pspnet_r18-d8_4xb2-80k_cityscapes-512x1024.py + Metadata: + Training Data: Cityscapes + Batch Size: 8 + Architecture: + - R-18-D8 + - PSPNet + Training Resources: 4x V100 GPUS + Memory (GB): 1.7 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r18-d8_512x1024_80k_cityscapes/pspnet_r18-d8_512x1024_80k_cityscapes_20201225_021458-09ffa746.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r18-d8_512x1024_80k_cityscapes/pspnet_r18-d8_512x1024_80k_cityscapes-20201225_021458.log.json + Paper: + Title: Pyramid Scene Parsing Network + URL: https://arxiv.org/abs/1612.01105 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/psp_head.py#L63 + Framework: PyTorch +- Name: pspnet_r50-d8_4xb2-80k_cityscapes-512x1024 + In Collection: PSPNet + Results: + Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 78.55 + mIoU(ms+flip): 79.79 + Config: configs/pspnet/pspnet_r50-d8_4xb2-80k_cityscapes-512x1024.py + Metadata: + Training Data: Cityscapes + Batch Size: 8 + Architecture: + - R-50-D8 + - PSPNet + Training Resources: 4x V100 GPUS + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r50-d8_512x1024_80k_cityscapes/pspnet_r50-d8_512x1024_80k_cityscapes_20200606_112131-2376f12b.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r50-d8_512x1024_80k_cityscapes/pspnet_r50-d8_512x1024_80k_cityscapes_20200606_112131.log.json + Paper: + Title: Pyramid Scene Parsing Network + URL: https://arxiv.org/abs/1612.01105 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/psp_head.py#L63 + Framework: PyTorch +- Name: pspnet_r50-d8-rsb_4xb2-adamw-80k_cityscapes-512x1024 + In Collection: PSPNet + Results: + Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 78.47 + mIoU(ms+flip): 79.45 + Config: configs/pspnet/pspnet_r50-d8-rsb_4xb2-adamw-80k_cityscapes-512x1024.py + Metadata: + Training Data: Cityscapes + Batch Size: 8 + Architecture: + - R-50b-D8 + - PSPNet + Training Resources: 4x V100 GPUS + Memory (GB): 6.2 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r50-d8_512x1024_80k_cityscapes/pspnet_r50-d8_rsb-pretrain_512x1024_adamw_80k_cityscapes_20220315_123238-588c30be.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r50-d8_512x1024_80k_cityscapes/pspnet_r50-d8_rsb-pretrain_512x1024_adamw_80k_cityscapes_20220315_123238.log.json + Paper: + Title: Pyramid Scene Parsing Network + URL: https://arxiv.org/abs/1612.01105 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/psp_head.py#L63 + Framework: PyTorch +- Name: pspnet_r101-d8_4xb2-80k_cityscapes-512x1024 + In Collection: PSPNet + Results: + Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 79.76 + mIoU(ms+flip): 81.01 + Config: configs/pspnet/pspnet_r101-d8_4xb2-80k_cityscapes-512x1024.py + Metadata: + Training Data: Cityscapes + Batch Size: 8 + Architecture: + - R-101-D8 + - PSPNet + Training Resources: 4x V100 GPUS + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101-d8_512x1024_80k_cityscapes/pspnet_r101-d8_512x1024_80k_cityscapes_20200606_112211-e1e1100f.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101-d8_512x1024_80k_cityscapes/pspnet_r101-d8_512x1024_80k_cityscapes_20200606_112211.log.json + Paper: + Title: Pyramid Scene Parsing Network + URL: https://arxiv.org/abs/1612.01105 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/psp_head.py#L63 + Framework: PyTorch +- Name: pspnet_r101-d8_4xb2-amp-80k_cityscapes-512x1024 + In Collection: PSPNet + Results: + Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 79.46 + Config: configs/pspnet/pspnet_r101-d8_4xb2-amp-80k_cityscapes-512x1024.py + Metadata: + Training Data: Cityscapes + Batch Size: 8 + Architecture: + - R-101-D8 + - PSPNet + - (FP16) + Training Resources: 4x V100 GPUS + Memory (GB): 5.34 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101-d8_fp16_512x1024_80k_cityscapes/pspnet_r101-d8_fp16_512x1024_80k_cityscapes_20200717_230919-a0875e5c.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101-d8_fp16_512x1024_80k_cityscapes/pspnet_r101-d8_fp16_512x1024_80k_cityscapes_20200717_230919.log.json + Paper: + Title: Pyramid Scene Parsing Network + URL: https://arxiv.org/abs/1612.01105 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/psp_head.py#L63 + Framework: PyTorch +- Name: pspnet_r18-d8_4xb2-80k_cityscapes-769x769 + In Collection: PSPNet + Results: + Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 75.9 + mIoU(ms+flip): 77.86 + Config: configs/pspnet/pspnet_r18-d8_4xb2-80k_cityscapes-769x769.py + Metadata: + Training Data: Cityscapes + Batch Size: 8 + Architecture: + - R-18-D8 + - PSPNet + Training Resources: 4x V100 GPUS + Memory (GB): 1.9 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r18-d8_769x769_80k_cityscapes/pspnet_r18-d8_769x769_80k_cityscapes_20201225_021458-3deefc62.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r18-d8_769x769_80k_cityscapes/pspnet_r18-d8_769x769_80k_cityscapes-20201225_021458.log.json + Paper: + Title: Pyramid Scene Parsing Network + URL: https://arxiv.org/abs/1612.01105 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/psp_head.py#L63 + Framework: PyTorch +- Name: pspnet_r50-d8_4xb2-80k_cityscapes-769x769 + In Collection: PSPNet + Results: + Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 79.59 + mIoU(ms+flip): 80.69 + Config: configs/pspnet/pspnet_r50-d8_4xb2-80k_cityscapes-769x769.py + Metadata: + Training Data: Cityscapes + Batch Size: 8 + Architecture: + - R-50-D8 + - PSPNet + Training Resources: 4x V100 GPUS + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r50-d8_769x769_80k_cityscapes/pspnet_r50-d8_769x769_80k_cityscapes_20200606_210121-5ccf03dd.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r50-d8_769x769_80k_cityscapes/pspnet_r50-d8_769x769_80k_cityscapes_20200606_210121.log.json + Paper: + Title: Pyramid Scene Parsing Network + URL: https://arxiv.org/abs/1612.01105 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/psp_head.py#L63 + Framework: PyTorch +- Name: pspnet_r101-d8_4xb2-80k_cityscapes-769x769 + In Collection: PSPNet + Results: + Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 79.77 + mIoU(ms+flip): 81.06 + Config: configs/pspnet/pspnet_r101-d8_4xb2-80k_cityscapes-769x769.py + Metadata: + Training Data: Cityscapes + Batch Size: 8 + Architecture: + - R-101-D8 + - PSPNet + Training Resources: 4x V100 GPUS + Weights: https://download.oz1z1penmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101-d8_769x769_80k_cityscapes/pspnet_r101-d8_769x769_80k_cityscapes_20200606_225055-dba412fa.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101-d8_769x769_80k_cityscapes/pspnet_r101-d8_769x769_80k_cityscapes_20200606_225055.log.json + Paper: + Title: Pyramid Scene Parsing Network + URL: https://arxiv.org/abs/1612.01105 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/psp_head.py#L63 + Framework: PyTorch +- Name: pspnet_r18b-d8_4xb2-80k_cityscapes-512x1024 + In Collection: PSPNet + Results: + Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 74.23 + mIoU(ms+flip): 75.79 + Config: configs/pspnet/pspnet_r18b-d8_4xb2-80k_cityscapes-512x1024.py + Metadata: + Training Data: Cityscapes + Batch Size: 8 + Architecture: + - R-18b-D8 + - PSPNet + Training Resources: 4x V100 GPUS + Memory (GB): 1.5 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r18b-d8_512x1024_80k_cityscapes/pspnet_r18b-d8_512x1024_80k_cityscapes_20201226_063116-26928a60.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r18b-d8_512x1024_80k_cityscapes/pspnet_r18b-d8_512x1024_80k_cityscapes-20201226_063116.log.json + Paper: + Title: Pyramid Scene Parsing Network + URL: https://arxiv.org/abs/1612.01105 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/psp_head.py#L63 + Framework: PyTorch +- Name: pspnet_r50b-d8_4xb2-80k_cityscapes-512x1024 + In Collection: PSPNet + Results: + Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 78.22 + mIoU(ms+flip): 79.46 + Config: configs/pspnet/pspnet_r50b-d8_4xb2-80k_cityscapes-512x1024.py + Metadata: + Training Data: Cityscapes + Batch Size: 8 + Architecture: + - R-50b-D8 + - PSPNet + Training Resources: 4x V100 GPUS + Memory (GB): 6.0 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r50b-d8_512x1024_80k_cityscapes/pspnet_r50b-d8_512x1024_80k_cityscapes_20201225_094315-6344287a.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r50b-d8_512x1024_80k_cityscapes/pspnet_r50b-d8_512x1024_80k_cityscapes-20201225_094315.log.json + Paper: + Title: Pyramid Scene Parsing Network + URL: https://arxiv.org/abs/1612.01105 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/psp_head.py#L63 + Framework: PyTorch +- Name: pspnet_r101b-d8_4xb2-80k_cityscapes-512x1024 + In Collection: PSPNet + Results: + Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 79.69 + mIoU(ms+flip): 80.79 + Config: configs/pspnet/pspnet_r101b-d8_4xb2-80k_cityscapes-512x1024.py + Metadata: + Training Data: Cityscapes + Batch Size: 8 + Architecture: + - R-101b-D8 + - PSPNet + Training Resources: 4x V100 GPUS + Memory (GB): 9.5 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101b-d8_512x1024_80k_cityscapes/pspnet_r101b-d8_512x1024_80k_cityscapes_20201226_170012-3a4d38ab.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101b-d8_512x1024_80k_cityscapes/pspnet_r101b-d8_512x1024_80k_cityscapes-20201226_170012.log.json + Paper: + Title: Pyramid Scene Parsing Network + URL: https://arxiv.org/abs/1612.01105 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/psp_head.py#L63 + Framework: PyTorch +- Name: pspnet_r18b-d8_4xb2-80k_cityscapes-769x769 + In Collection: PSPNet + Results: + Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 74.92 + mIoU(ms+flip): 76.9 + Config: configs/pspnet/pspnet_r18b-d8_4xb2-80k_cityscapes-769x769.py + Metadata: + Training Data: Cityscapes + Batch Size: 8 + Architecture: + - R-18b-D8 + - PSPNet + Training Resources: 4x V100 GPUS + Memory (GB): 1.7 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r18b-d8_769x769_80k_cityscapes/pspnet_r18b-d8_769x769_80k_cityscapes_20201226_080942-bf98d186.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r18b-d8_769x769_80k_cityscapes/pspnet_r18b-d8_769x769_80k_cityscapes-20201226_080942.log.json + Paper: + Title: Pyramid Scene Parsing Network + URL: https://arxiv.org/abs/1612.01105 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/psp_head.py#L63 + Framework: PyTorch +- Name: pspnet_r50b-d8_4xb2-80k_cityscapes-769x769 + In Collection: PSPNet + Results: + Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 78.5 + mIoU(ms+flip): 79.96 + Config: configs/pspnet/pspnet_r50b-d8_4xb2-80k_cityscapes-769x769.py + Metadata: + Training Data: Cityscapes + Batch Size: 8 + Architecture: + - R-50b-D8 + - PSPNet + Training Resources: 4x V100 GPUS + Memory (GB): 6.8 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r50b-d8_769x769_80k_cityscapes/pspnet_r50b-d8_769x769_80k_cityscapes_20201225_094316-4c643cf6.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r50b-d8_769x769_80k_cityscapes/pspnet_r50b-d8_769x769_80k_cityscapes-20201225_094316.log.json + Paper: + Title: Pyramid Scene Parsing Network + URL: https://arxiv.org/abs/1612.01105 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/psp_head.py#L63 + Framework: PyTorch +- Name: pspnet_r101b-d8_4xb2-80k_cityscapes-769x769 + In Collection: PSPNet + Results: + Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 78.87 + mIoU(ms+flip): 80.04 + Config: configs/pspnet/pspnet_r101b-d8_4xb2-80k_cityscapes-769x769.py + Metadata: + Training Data: Cityscapes + Batch Size: 8 + Architecture: + - R-101b-D8 + - PSPNet + Training Resources: 4x V100 GPUS + Memory (GB): 10.8 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101b-d8_769x769_80k_cityscapes/pspnet_r101b-d8_769x769_80k_cityscapes_20201226_171823-f0e7c293.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101b-d8_769x769_80k_cityscapes/pspnet_r101b-d8_769x769_80k_cityscapes-20201226_171823.log.json + Paper: + Title: Pyramid Scene Parsing Network + URL: https://arxiv.org/abs/1612.01105 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/psp_head.py#L63 + Framework: PyTorch +- Name: pspnet_r50b-d32_4xb2-80k_cityscapes-512x1024 + In Collection: PSPNet + Results: + Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 73.88 + mIoU(ms+flip): 76.85 + Config: configs/pspnet/pspnet_r50b-d32_4xb2-80k_cityscapes-512x1024.py + Metadata: + Training Data: Cityscapes + Batch Size: 8 + Architecture: + - R-50-D32 + - PSPNet + Training Resources: 4x V100 GPUS + Memory (GB): 3.0 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r50-d32_512x1024_80k_cityscapes/pspnet_r50-d32_512x1024_80k_cityscapes_20220316_224840-9092b254.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r50-d32_512x1024_80k_cityscapes/pspnet_r50-d32_512x1024_80k_cityscapes_20220316_224840.log.json + Paper: + Title: Pyramid Scene Parsing Network + URL: https://arxiv.org/abs/1612.01105 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/psp_head.py#L63 + Framework: PyTorch +- Name: pspnet_r50-d32_rsb_4xb2-adamw-80k_cityscapes-512x1024 + In Collection: PSPNet + Results: + Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 74.09 + mIoU(ms+flip): 77.18 + Config: configs/pspnet/pspnet_r50-d32_rsb_4xb2-adamw-80k_cityscapes-512x1024.py + Metadata: + Training Data: Cityscapes + Batch Size: 8 + Architecture: + - R-50b-D32 + - PSPNet + Training Resources: 4x V100 GPUS + Memory (GB): 3.1 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r50-d32_rsb-pretrain_512x1024_adamw_80k_cityscapes/pspnet_r50-d32_rsb-pretrain_512x1024_adamw_80k_cityscapes_20220316_141229-dd9c9610.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r50-d32_rsb-pretrain_512x1024_adamw_80k_cityscapes/pspnet_r50-d32_rsb-pretrain_512x1024_adamw_80k_cityscapes_20220316_141229.log.json + Paper: + Title: Pyramid Scene Parsing Network + URL: https://arxiv.org/abs/1612.01105 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/psp_head.py#L63 + Framework: PyTorch +- Name: pspnet_r50b-d32_4xb2-80k_cityscapes-512x1024 + In Collection: PSPNet + Results: + Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 72.61 + mIoU(ms+flip): 75.51 + Config: configs/pspnet/pspnet_r50b-d32_4xb2-80k_cityscapes-512x1024.py + Metadata: + Training Data: Cityscapes + Batch Size: 8 + Architecture: + - R-50b-D32 + - PSPNet + Training Resources: 4x V100 GPUS + Memory (GB): 2.9 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r50b-d32_512x1024_80k_cityscapes/pspnet_r50b-d32_512x1024_80k_cityscapes_20220311_152152-23bcaf8c.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r50b-d32_512x1024_80k_cityscapes/pspnet_r50b-d32_512x1024_80k_cityscapes_20220311_152152.log.json + Paper: + Title: Pyramid Scene Parsing Network + URL: https://arxiv.org/abs/1612.01105 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/psp_head.py#L63 + Framework: PyTorch +- Name: pspnet_r50-d8_4xb4-80k_ade20k-512x512 + In Collection: PSPNet + Results: + Task: Semantic Segmentation + Dataset: ADE20K + Metrics: + mIoU: 41.13 + mIoU(ms+flip): 41.94 + Config: configs/pspnet/pspnet_r50-d8_4xb4-80k_ade20k-512x512.py + Metadata: + Training Data: ADE20K + Batch Size: 16 + Architecture: + - R-50-D8 + - PSPNet + Training Resources: 4x V100 GPUS + Memory (GB): 8.5 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r50-d8_512x512_80k_ade20k/pspnet_r50-d8_512x512_80k_ade20k_20200615_014128-15a8b914.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r50-d8_512x512_80k_ade20k/pspnet_r50-d8_512x512_80k_ade20k_20200615_014128.log.json + Paper: + Title: Pyramid Scene Parsing Network + URL: https://arxiv.org/abs/1612.01105 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/psp_head.py#L63 + Framework: PyTorch +- Name: pspnet_r101-d8_4xb4-80k_ade20k-512x512 + In Collection: PSPNet + Results: + Task: Semantic Segmentation + Dataset: ADE20K + Metrics: + mIoU: 43.57 + mIoU(ms+flip): 44.35 + Config: configs/pspnet/pspnet_r101-d8_4xb4-80k_ade20k-512x512.py + Metadata: + Training Data: ADE20K + Batch Size: 16 + Architecture: + - R-101-D8 + - PSPNet + Training Resources: 4x V100 GPUS + Memory (GB): 12.0 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101-d8_512x512_80k_ade20k/pspnet_r101-d8_512x512_80k_ade20k_20200614_031423-b6e782f0.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101-d8_512x512_80k_ade20k/pspnet_r101-d8_512x512_80k_ade20k_20200614_031423.log.json + Paper: + Title: Pyramid Scene Parsing Network + URL: https://arxiv.org/abs/1612.01105 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/psp_head.py#L63 + Framework: PyTorch +- Name: pspnet_r50-d8_4xb4-160k_ade20k-512x512 + In Collection: PSPNet + Results: + Task: Semantic Segmentation + Dataset: ADE20K + Metrics: + mIoU: 42.48 + mIoU(ms+flip): 43.44 + Config: configs/pspnet/pspnet_r50-d8_4xb4-160k_ade20k-512x512.py + Metadata: + Training Data: ADE20K + Batch Size: 16 + Architecture: + - R-50-D8 + - PSPNet + Training Resources: 4x V100 GPUS + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r50-d8_512x512_160k_ade20k/pspnet_r50-d8_512x512_160k_ade20k_20200615_184358-1890b0bd.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r50-d8_512x512_160k_ade20k/pspnet_r50-d8_512x512_160k_ade20k_20200615_184358.log.json + Paper: + Title: Pyramid Scene Parsing Network + URL: https://arxiv.org/abs/1612.01105 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/psp_head.py#L63 + Framework: PyTorch +- Name: pspnet_r101-d8_4xb4-160k_ade20k-512x512 + In Collection: PSPNet + Results: + Task: Semantic Segmentation + Dataset: ADE20K + Metrics: + mIoU: 44.39 + mIoU(ms+flip): 45.35 + Config: configs/pspnet/pspnet_r101-d8_4xb4-160k_ade20k-512x512.py + Metadata: + Training Data: ADE20K + Batch Size: 16 + Architecture: + - R-101-D8 + - PSPNet + Training Resources: 4x V100 GPUS + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101-d8_512x512_160k_ade20k/pspnet_r101-d8_512x512_160k_ade20k_20200615_100650-967c316f.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101-d8_512x512_160k_ade20k/pspnet_r101-d8_512x512_160k_ade20k_20200615_100650.log.json + Paper: + Title: Pyramid Scene Parsing Network + URL: https://arxiv.org/abs/1612.01105 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/psp_head.py#L63 + Framework: PyTorch +- Name: pspnet_r50-d8_4xb4-20k_voc12aug-512x512 + In Collection: PSPNet + Results: + Task: Semantic Segmentation + Dataset: Pascal VOC 2012 + Aug + Metrics: + mIoU: 76.78 + mIoU(ms+flip): 77.61 + Config: configs/pspnet/pspnet_r50-d8_4xb4-20k_voc12aug-512x512.py + Metadata: + Training Data: Pascal VOC 2012 + Aug + Batch Size: 16 + Architecture: + - R-50-D8 + - PSPNet + Training Resources: 4x V100 GPUS + Memory (GB): 6.1 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r50-d8_512x512_20k_voc12aug/pspnet_r50-d8_512x512_20k_voc12aug_20200617_101958-ed5dfbd9.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r50-d8_512x512_20k_voc12aug/pspnet_r50-d8_512x512_20k_voc12aug_20200617_101958.log.json + Paper: + Title: Pyramid Scene Parsing Network + URL: https://arxiv.org/abs/1612.01105 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/psp_head.py#L63 + Framework: PyTorch +- Name: pspnet_r101-d8_4xb4-20k_voc12aug-512x512 + In Collection: PSPNet + Results: + Task: Semantic Segmentation + Dataset: Pascal VOC 2012 + Aug + Metrics: + mIoU: 78.47 + mIoU(ms+flip): 79.25 + Config: configs/pspnet/pspnet_r101-d8_4xb4-20k_voc12aug-512x512.py + Metadata: + Training Data: Pascal VOC 2012 + Aug + Batch Size: 16 + Architecture: + - R-101-D8 + - PSPNet + Training Resources: 4x V100 GPUS + Memory (GB): 9.6 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101-d8_512x512_20k_voc12aug/pspnet_r101-d8_512x512_20k_voc12aug_20200617_102003-4aef3c9a.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101-d8_512x512_20k_voc12aug/pspnet_r101-d8_512x512_20k_voc12aug_20200617_102003.log.json + Paper: + Title: Pyramid Scene Parsing Network + URL: https://arxiv.org/abs/1612.01105 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/psp_head.py#L63 + Framework: PyTorch +- Name: pspnet_r50-d8_4xb4-40k_voc12aug-512x512 + In Collection: PSPNet + Results: + Task: Semantic Segmentation + Dataset: Pascal VOC 2012 + Aug + Metrics: + mIoU: 77.29 + mIoU(ms+flip): 78.48 + Config: configs/pspnet/pspnet_r50-d8_4xb4-40k_voc12aug-512x512.py + Metadata: + Training Data: Pascal VOC 2012 + Aug + Batch Size: 16 + Architecture: + - R-50-D8 + - PSPNet + Training Resources: 4x V100 GPUS + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r50-d8_512x512_40k_voc12aug/pspnet_r50-d8_512x512_40k_voc12aug_20200613_161222-ae9c1b8c.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r50-d8_512x512_40k_voc12aug/pspnet_r50-d8_512x512_40k_voc12aug_20200613_161222.log.json + Paper: + Title: Pyramid Scene Parsing Network + URL: https://arxiv.org/abs/1612.01105 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/psp_head.py#L63 + Framework: PyTorch +- Name: pspnet_r101-d8_4xb4-40k_voc12aug-512x512 + In Collection: PSPNet + Results: + Task: Semantic Segmentation + Dataset: Pascal VOC 2012 + Aug + Metrics: + mIoU: 78.52 + mIoU(ms+flip): 79.57 + Config: configs/pspnet/pspnet_r101-d8_4xb4-40k_voc12aug-512x512.py + Metadata: + Training Data: Pascal VOC 2012 + Aug + Batch Size: 16 + Architecture: + - R-101-D8 + - PSPNet + Training Resources: 4x V100 GPUS + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101-d8_512x512_40k_voc12aug/pspnet_r101-d8_512x512_40k_voc12aug_20200613_161222-bc933b18.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101-d8_512x512_40k_voc12aug/pspnet_r101-d8_512x512_40k_voc12aug_20200613_161222.log.json + Paper: + Title: Pyramid Scene Parsing Network + URL: https://arxiv.org/abs/1612.01105 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/psp_head.py#L63 + Framework: PyTorch +- Name: pspnet_r101-d8_4xb4-40k_pascal-context-480x480 + In Collection: PSPNet + Results: + Task: Semantic Segmentation + Dataset: Pascal Context + Metrics: + mIoU: 46.6 + mIoU(ms+flip): 47.78 + Config: configs/pspnet/pspnet_r101-d8_4xb4-40k_pascal-context-480x480.py + Metadata: + Training Data: Pascal Context + Batch Size: 16 + Architecture: + - R-101-D8 + - PSPNet + Training Resources: 4x V100 GPUS + Memory (GB): 8.8 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101-d8_480x480_40k_pascal_context/pspnet_r101-d8_480x480_40k_pascal_context_20200911_211210-bf0f5d7c.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101-d8_480x480_40k_pascal_context/pspnet_r101-d8_480x480_40k_pascal_context-20200911_211210.log.json + Paper: + Title: Pyramid Scene Parsing Network + URL: https://arxiv.org/abs/1612.01105 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/psp_head.py#L63 + Framework: PyTorch +- Name: pspnet_r101-d8_4xb4-80k_pascal-context-480x480 + In Collection: PSPNet + Results: + Task: Semantic Segmentation + Dataset: Pascal Context + Metrics: + mIoU: 46.03 + mIoU(ms+flip): 47.15 + Config: configs/pspnet/pspnet_r101-d8_4xb4-80k_pascal-context-480x480.py + Metadata: + Training Data: Pascal Context + Batch Size: 16 + Architecture: + - R-101-D8 + - PSPNet + Training Resources: 4x V100 GPUS + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101-d8_480x480_80k_pascal_context/pspnet_r101-d8_480x480_80k_pascal_context_20200911_190530-c86d6233.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101-d8_480x480_80k_pascal_context/pspnet_r101-d8_480x480_80k_pascal_context-20200911_190530.log.json + Paper: + Title: Pyramid Scene Parsing Network + URL: https://arxiv.org/abs/1612.01105 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/psp_head.py#L63 + Framework: PyTorch +- Name: pspnet_r101-d8_4xb4-40k_pascal-context-59-480x480 + In Collection: PSPNet + Results: + Task: Semantic Segmentation + Dataset: Pascal Context 59 + Metrics: + mIoU: 52.02 + mIoU(ms+flip): 53.54 + Config: configs/pspnet/pspnet_r101-d8_4xb4-40k_pascal-context-59-480x480.py + Metadata: + Training Data: Pascal Context 59 + Batch Size: 16 + Architecture: + - R-101-D8 + - PSPNet + Training Resources: 4x V100 GPUS + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101-d8_480x480_40k_pascal_context_59/pspnet_r101-d8_480x480_40k_pascal_context_59_20210416_114524-86d44cd4.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101-d8_480x480_40k_pascal_context_59/pspnet_r101-d8_480x480_40k_pascal_context_59-20210416_114524.log.json + Paper: + Title: Pyramid Scene Parsing Network + URL: https://arxiv.org/abs/1612.01105 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/psp_head.py#L63 + Framework: PyTorch +- Name: pspnet_r101-d8_4xb4-80k_pascal-context-59-480x480 + In Collection: PSPNet + Results: + Task: Semantic Segmentation + Dataset: Pascal Context 59 + Metrics: + mIoU: 52.47 + mIoU(ms+flip): 53.99 + Config: configs/pspnet/pspnet_r101-d8_4xb4-80k_pascal-context-59-480x480.py + Metadata: + Training Data: Pascal Context 59 + Batch Size: 16 + Architecture: + - R-101-D8 + - PSPNet + Training Resources: 4x V100 GPUS + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101-d8_480x480_80k_pascal_context_59/pspnet_r101-d8_480x480_80k_pascal_context_59_20210416_114418-fa6caaa2.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101-d8_480x480_80k_pascal_context_59/pspnet_r101-d8_480x480_80k_pascal_context_59-20210416_114418.log.json + Paper: + Title: Pyramid Scene Parsing Network + URL: https://arxiv.org/abs/1612.01105 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/psp_head.py#L63 + Framework: PyTorch +- Name: pspnet_r50-d8_4xb4-20k_coco-stuff10k-512x512 + In Collection: PSPNet + Results: + Task: Semantic Segmentation + Dataset: COCO-Stuff 10k + Metrics: + mIoU: 35.69 + mIoU(ms+flip): 36.62 + Config: configs/pspnet/pspnet_r50-d8_4xb4-20k_coco-stuff10k-512x512.py + Metadata: + Training Data: COCO-Stuff 10k + Batch Size: 16 + Architecture: + - R-50-D8 + - PSPNet + Training Resources: 4x V100 GPUS + Memory (GB): 9.6 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r50-d8_512x512_4x4_20k_coco-stuff10k/pspnet_r50-d8_512x512_4x4_20k_coco-stuff10k_20210820_203258-b88df27f.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r50-d8_512x512_4x4_20k_coco-stuff10k/pspnet_r50-d8_512x512_4x4_20k_coco-stuff10k_20210820_203258.log.json + Paper: + Title: Pyramid Scene Parsing Network + URL: https://arxiv.org/abs/1612.01105 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/psp_head.py#L63 + Framework: PyTorch +- Name: pspnet_r101-d8_4xb4-20k_coco-stuff10k-512x512 + In Collection: PSPNet + Results: + Task: Semantic Segmentation + Dataset: COCO-Stuff 10k + Metrics: + mIoU: 37.26 + mIoU(ms+flip): 38.52 + Config: configs/pspnet/pspnet_r101-d8_4xb4-20k_coco-stuff10k-512x512.py + Metadata: + Training Data: COCO-Stuff 10k + Batch Size: 16 + Architecture: + - R-101-D8 + - PSPNet + Training Resources: 4x V100 GPUS + Memory (GB): 13.2 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101-d8_512x512_4x4_20k_coco-stuff10k/pspnet_r101-d8_512x512_4x4_20k_coco-stuff10k_20210820_232135-76aae482.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101-d8_512x512_4x4_20k_coco-stuff10k/pspnet_r101-d8_512x512_4x4_20k_coco-stuff10k_20210820_232135.log.json + Paper: + Title: Pyramid Scene Parsing Network + URL: https://arxiv.org/abs/1612.01105 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/psp_head.py#L63 + Framework: PyTorch +- Name: pspnet_r50-d8_4xb4-40k_coco-stuff10k-512x512 + In Collection: PSPNet + Results: + Task: Semantic Segmentation + Dataset: COCO-Stuff 10k + Metrics: + mIoU: 36.33 + mIoU(ms+flip): 37.24 + Config: configs/pspnet/pspnet_r50-d8_4xb4-40k_coco-stuff10k-512x512.py + Metadata: + Training Data: COCO-Stuff 10k + Batch Size: 16 + Architecture: + - R-50-D8 + - PSPNet + Training Resources: 4x V100 GPUS + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r50-d8_512x512_4x4_40k_coco-stuff10k/pspnet_r50-d8_512x512_4x4_40k_coco-stuff10k_20210821_030857-92e2902b.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r50-d8_512x512_4x4_40k_coco-stuff10k/pspnet_r50-d8_512x512_4x4_40k_coco-stuff10k_20210821_030857.log.json + Paper: + Title: Pyramid Scene Parsing Network + URL: https://arxiv.org/abs/1612.01105 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/psp_head.py#L63 + Framework: PyTorch +- Name: pspnet_r101-d8_4xb4-40k_coco-stuff10k-512x512 + In Collection: PSPNet + Results: + Task: Semantic Segmentation + Dataset: COCO-Stuff 10k + Metrics: + mIoU: 37.76 + mIoU(ms+flip): 38.86 + Config: configs/pspnet/pspnet_r101-d8_4xb4-40k_coco-stuff10k-512x512.py + Metadata: + Training Data: COCO-Stuff 10k + Batch Size: 16 + Architecture: + - R-101-D8 + - PSPNet + Training Resources: 4x V100 GPUS + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101-d8_512x512_4x4_40k_coco-stuff10k/pspnet_r101-d8_512x512_4x4_40k_coco-stuff10k_20210821_014022-831aec95.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101-d8_512x512_4x4_40k_coco-stuff10k/pspnet_r101-d8_512x512_4x4_40k_coco-stuff10k_20210821_014022.log.json + Paper: + Title: Pyramid Scene Parsing Network + URL: https://arxiv.org/abs/1612.01105 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/psp_head.py#L63 + Framework: PyTorch +- Name: pspnet_r50-d8_4xb4-80k_coco-stuff164k-512x512 + In Collection: PSPNet + Results: + Task: Semantic Segmentation + Dataset: COCO-Stuff 164k + Metrics: + mIoU: 38.8 + mIoU(ms+flip): 39.19 + Config: configs/pspnet/pspnet_r50-d8_4xb4-80k_coco-stuff164k-512x512.py + Metadata: + Training Data: COCO-Stuff 164k + Batch Size: 16 + Architecture: + - R-50-D8 + - PSPNet + Training Resources: 4x V100 GPUS + Memory (GB): 9.6 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r50-d8_512x512_4x4_80k_coco-stuff164k/pspnet_r50-d8_512x512_4x4_80k_coco-stuff164k_20210707_152034-0e41b2db.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r50-d8_512x512_4x4_80k_coco-stuff164k/pspnet_r50-d8_512x512_4x4_80k_coco-stuff164k_20210707_152034.log.json + Paper: + Title: Pyramid Scene Parsing Network + URL: https://arxiv.org/abs/1612.01105 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/psp_head.py#L63 + Framework: PyTorch +- Name: pspnet_r101-d8_4xb4-80k_coco-stuff164k-512x512 + In Collection: PSPNet + Results: + Task: Semantic Segmentation + Dataset: COCO-Stuff 164k + Metrics: + mIoU: 40.34 + mIoU(ms+flip): 40.79 + Config: configs/pspnet/pspnet_r101-d8_4xb4-80k_coco-stuff164k-512x512.py + Metadata: + Training Data: COCO-Stuff 164k + Batch Size: 16 + Architecture: + - R-101-D8 + - PSPNet + Training Resources: 4x V100 GPUS + Memory (GB): 13.2 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101-d8_512x512_4x4_80k_coco-stuff164k/pspnet_r101-d8_512x512_4x4_80k_coco-stuff164k_20210707_152034-7eb41789.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101-d8_512x512_4x4_80k_coco-stuff164k/pspnet_r101-d8_512x512_4x4_80k_coco-stuff164k_20210707_152034.log.json + Paper: + Title: Pyramid Scene Parsing Network + URL: https://arxiv.org/abs/1612.01105 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/psp_head.py#L63 + Framework: PyTorch +- Name: pspnet_r50-d8_4xb4-160k_coco-stuff164k-512x512 + In Collection: PSPNet + Results: + Task: Semantic Segmentation + Dataset: COCO-Stuff 164k + Metrics: + mIoU: 39.64 + mIoU(ms+flip): 39.97 + Config: configs/pspnet/pspnet_r50-d8_4xb4-160k_coco-stuff164k-512x512.py + Metadata: + Training Data: COCO-Stuff 164k + Batch Size: 16 + Architecture: + - R-50-D8 + - PSPNet + Training Resources: 4x V100 GPUS + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r50-d8_512x512_4x4_160k_coco-stuff164k/pspnet_r50-d8_512x512_4x4_160k_coco-stuff164k_20210707_152004-51276a57.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r50-d8_512x512_4x4_160k_coco-stuff164k/pspnet_r50-d8_512x512_4x4_160k_coco-stuff164k_20210707_152004.log.json + Paper: + Title: Pyramid Scene Parsing Network + URL: https://arxiv.org/abs/1612.01105 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/psp_head.py#L63 + Framework: PyTorch +- Name: pspnet_r101-d8_4xb4-160k_coco-stuff164k-512x512 + In Collection: PSPNet + Results: + Task: Semantic Segmentation + Dataset: COCO-Stuff 164k + Metrics: + mIoU: 41.28 + mIoU(ms+flip): 41.66 + Config: configs/pspnet/pspnet_r101-d8_4xb4-160k_coco-stuff164k-512x512.py + Metadata: + Training Data: COCO-Stuff 164k + Batch Size: 16 + Architecture: + - R-101-D8 + - PSPNet + Training Resources: 4x V100 GPUS + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101-d8_512x512_4x4_160k_coco-stuff164k/pspnet_r101-d8_512x512_4x4_160k_coco-stuff164k_20210707_152004-4af9621b.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101-d8_512x512_4x4_160k_coco-stuff164k/pspnet_r101-d8_512x512_4x4_160k_coco-stuff164k_20210707_152004.log.json + Paper: + Title: Pyramid Scene Parsing Network + URL: https://arxiv.org/abs/1612.01105 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/psp_head.py#L63 + Framework: PyTorch +- Name: pspnet_r50-d8_4xb4-320k_coco-stuff164k-512x512 + In Collection: PSPNet + Results: + Task: Semantic Segmentation + Dataset: COCO-Stuff 164k + Metrics: + mIoU: 40.53 + mIoU(ms+flip): 40.75 + Config: configs/pspnet/pspnet_r50-d8_4xb4-320k_coco-stuff164k-512x512.py + Metadata: + Training Data: COCO-Stuff 164k + Batch Size: 16 + Architecture: + - R-50-D8 + - PSPNet + Training Resources: 4x V100 GPUS + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r50-d8_512x512_4x4_320k_coco-stuff164k/pspnet_r50-d8_512x512_4x4_320k_coco-stuff164k_20210707_152004-be9610cc.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r50-d8_512x512_4x4_320k_coco-stuff164k/pspnet_r50-d8_512x512_4x4_320k_coco-stuff164k_20210707_152004.log.json + Paper: + Title: Pyramid Scene Parsing Network + URL: https://arxiv.org/abs/1612.01105 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/psp_head.py#L63 + Framework: PyTorch +- Name: pspnet_r101-d8_4xb4-320k_coco-stuff164k-512x512 + In Collection: PSPNet + Results: + Task: Semantic Segmentation + Dataset: COCO-Stuff 164k + Metrics: + mIoU: 41.95 + mIoU(ms+flip): 42.42 + Config: configs/pspnet/pspnet_r101-d8_4xb4-320k_coco-stuff164k-512x512.py + Metadata: + Training Data: COCO-Stuff 164k + Batch Size: 16 + Architecture: + - R-101-D8 + - PSPNet + Training Resources: 4x V100 GPUS + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101-d8_512x512_4x4_320k_coco-stuff164k/pspnet_r101-d8_512x512_4x4_320k_coco-stuff164k_20210707_152004-72220c60.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101-d8_512x512_4x4_320k_coco-stuff164k/pspnet_r101-d8_512x512_4x4_320k_coco-stuff164k_20210707_152004.log.json + Paper: + Title: Pyramid Scene Parsing Network + URL: https://arxiv.org/abs/1612.01105 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/psp_head.py#L63 + Framework: PyTorch +- Name: pspnet_r18-d8_4xb4-80k_loveda-512x512 + In Collection: PSPNet + Results: + Task: Semantic Segmentation + Dataset: LoveDA + Metrics: + mIoU: 48.62 + mIoU(ms+flip): 47.57 + Config: configs/pspnet/pspnet_r18-d8_4xb4-80k_loveda-512x512.py + Metadata: + Training Data: LoveDA + Batch Size: 16 + Architecture: + - R-18-D8 + - PSPNet + Training Resources: 4x V100 GPUS + Memory (GB): 1.45 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r18-d8_512x512_80k_loveda/pspnet_r18-d8_512x512_80k_loveda_20211105_052100-b97697f1.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r18-d8_512x512_80k_loveda/pspnet_r18-d8_512x512_80k_loveda_20211105_052100.log.json + Paper: + Title: Pyramid Scene Parsing Network + URL: https://arxiv.org/abs/1612.01105 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/psp_head.py#L63 + Framework: PyTorch +- Name: pspnet_r50-d8_4xb4-80k_loveda-512x512 + In Collection: PSPNet + Results: + Task: Semantic Segmentation + Dataset: LoveDA + Metrics: + mIoU: 50.46 + mIoU(ms+flip): 50.19 + Config: configs/pspnet/pspnet_r50-d8_4xb4-80k_loveda-512x512.py + Metadata: + Training Data: LoveDA + Batch Size: 16 + Architecture: + - R-50-D8 + - PSPNet + Training Resources: 4x V100 GPUS + Memory (GB): 6.14 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r50-d8_512x512_80k_loveda/pspnet_r50-d8_512x512_80k_loveda_20211104_155728-88610f9f.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r50-d8_512x512_80k_loveda/pspnet_r50-d8_512x512_80k_loveda_20211104_155728.log.json + Paper: + Title: Pyramid Scene Parsing Network + URL: https://arxiv.org/abs/1612.01105 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/psp_head.py#L63 + Framework: PyTorch +- Name: pspnet_r101-d8_4xb4-80k_loveda-512x512 + In Collection: PSPNet + Results: + Task: Semantic Segmentation + Dataset: LoveDA + Metrics: + mIoU: 51.86 + mIoU(ms+flip): 51.34 + Config: configs/pspnet/pspnet_r101-d8_4xb4-80k_loveda-512x512.py + Metadata: + Training Data: LoveDA + Batch Size: 16 + Architecture: + - R-101-D8 + - PSPNet + Training Resources: 4x V100 GPUS + Memory (GB): 9.61 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101-d8_512x512_80k_loveda/pspnet_r101-d8_512x512_80k_loveda_20211104_153212-1c06c6a8.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101-d8_512x512_80k_loveda/pspnet_r101-d8_512x512_80k_loveda_20211104_153212.log.json + Paper: + Title: Pyramid Scene Parsing Network + URL: https://arxiv.org/abs/1612.01105 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/psp_head.py#L63 + Framework: PyTorch +- Name: pspnet_r18-d8_4xb4-80k_potsdam-512x512 + In Collection: PSPNet + Results: + Task: Semantic Segmentation + Dataset: Potsdam + Metrics: + mIoU: 77.09 + mIoU(ms+flip): 78.3 + Config: configs/pspnet/pspnet_r18-d8_4xb4-80k_potsdam-512x512.py + Metadata: + Training Data: Potsdam + Batch Size: 16 + Architecture: + - R-18-D8 + - PSPNet + Training Resources: 4x V100 GPUS + Memory (GB): 1.5 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r18-d8_4x4_512x512_80k_potsdam/pspnet_r18-d8_4x4_512x512_80k_potsdam_20211220_125612-7cd046e1.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r18-d8_4x4_512x512_80k_potsdam/pspnet_r18-d8_4x4_512x512_80k_potsdam_20211220_125612.log.json + Paper: + Title: Pyramid Scene Parsing Network + URL: https://arxiv.org/abs/1612.01105 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/psp_head.py#L63 + Framework: PyTorch +- Name: pspnet_r50-d8_4xb4-80k_potsdam-512x512 + In Collection: PSPNet + Results: + Task: Semantic Segmentation + Dataset: Potsdam + Metrics: + mIoU: 78.12 + mIoU(ms+flip): 78.98 + Config: configs/pspnet/pspnet_r50-d8_4xb4-80k_potsdam-512x512.py + Metadata: + Training Data: Potsdam + Batch Size: 16 + Architecture: + - R-50-D8 + - PSPNet + Training Resources: 4x V100 GPUS + Memory (GB): 6.14 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r50-d8_4x4_512x512_80k_potsdam/pspnet_r50-d8_4x4_512x512_80k_potsdam_20211219_043541-2dd5fe67.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r50-d8_4x4_512x512_80k_potsdam/pspnet_r50-d8_4x4_512x512_80k_potsdam_20211219_043541.log.json + Paper: + Title: Pyramid Scene Parsing Network + URL: https://arxiv.org/abs/1612.01105 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/psp_head.py#L63 + Framework: PyTorch +- Name: pspnet_r101-d8_4xb4-80k_potsdam-512x512 + In Collection: PSPNet + Results: + Task: Semantic Segmentation + Dataset: Potsdam + Metrics: + mIoU: 78.62 + mIoU(ms+flip): 79.47 + Config: configs/pspnet/pspnet_r101-d8_4xb4-80k_potsdam-512x512.py + Metadata: + Training Data: Potsdam + Batch Size: 16 + Architecture: + - R-101-D8 + - PSPNet + Training Resources: 4x V100 GPUS + Memory (GB): 9.61 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101-d8_4x4_512x512_80k_potsdam/pspnet_r101-d8_4x4_512x512_80k_potsdam_20211220_125612-aed036c4.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101-d8_4x4_512x512_80k_potsdam/pspnet_r101-d8_4x4_512x512_80k_potsdam_20211220_125612.log.json + Paper: + Title: Pyramid Scene Parsing Network + URL: https://arxiv.org/abs/1612.01105 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/psp_head.py#L63 + Framework: PyTorch +- Name: pspnet_r18-d8_4xb4-80k_vaihingen-512x512 + In Collection: PSPNet + Results: + Task: Semantic Segmentation + Dataset: Vaihingen + Metrics: + mIoU: 71.46 + mIoU(ms+flip): 73.36 + Config: configs/pspnet/pspnet_r18-d8_4xb4-80k_vaihingen-512x512.py + Metadata: + Training Data: Vaihingen + Batch Size: 16 + Architecture: + - R-18-D8 + - PSPNet + Training Resources: 4x V100 GPUS + Memory (GB): 1.45 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r18-d8_4x4_512x512_80k_vaihingen/pspnet_r18-d8_4x4_512x512_80k_vaihingen_20211228_160355-52a8a6f6.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r18-d8_4x4_512x512_80k_vaihingen/pspnet_r18-d8_4x4_512x512_80k_vaihingen_20211228_160355.log.json + Paper: + Title: Pyramid Scene Parsing Network + URL: https://arxiv.org/abs/1612.01105 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/psp_head.py#L63 + Framework: PyTorch +- Name: pspnet_r50-d8_4xb4-80k_vaihingen-512x512 + In Collection: PSPNet + Results: + Task: Semantic Segmentation + Dataset: Vaihingen + Metrics: + mIoU: 72.36 + mIoU(ms+flip): 73.75 + Config: configs/pspnet/pspnet_r50-d8_4xb4-80k_vaihingen-512x512.py + Metadata: + Training Data: Vaihingen + Batch Size: 16 + Architecture: + - R-50-D8 + - PSPNet + Training Resources: 4x V100 GPUS + Memory (GB): 6.14 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r50-d8_4x4_512x512_80k_vaihingen/pspnet_r50-d8_4x4_512x512_80k_vaihingen_20211228_160355-382f8f5b.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r50-d8_4x4_512x512_80k_vaihingen/pspnet_r50-d8_4x4_512x512_80k_vaihingen_20211228_160355.log.json + Paper: + Title: Pyramid Scene Parsing Network + URL: https://arxiv.org/abs/1612.01105 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/psp_head.py#L63 + Framework: PyTorch +- Name: pspnet_r101-d8_4xb4-80k_vaihingen-512x512 + In Collection: PSPNet + Results: + Task: Semantic Segmentation + Dataset: Vaihingen + Metrics: + mIoU: 72.61 + mIoU(ms+flip): 74.18 + Config: configs/pspnet/pspnet_r101-d8_4xb4-80k_vaihingen-512x512.py + Metadata: + Training Data: Vaihingen + Batch Size: 16 + Architecture: + - R-101-D8 + - PSPNet + Training Resources: 4x V100 GPUS + Memory (GB): 9.61 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101-d8_4x4_512x512_80k_vaihingen/pspnet_r101-d8_4x4_512x512_80k_vaihingen_20211231_230806-8eba0a09.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101-d8_4x4_512x512_80k_vaihingen/pspnet_r101-d8_4x4_512x512_80k_vaihingen_20211231_230806.log.json + Paper: + Title: Pyramid Scene Parsing Network + URL: https://arxiv.org/abs/1612.01105 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/psp_head.py#L63 + Framework: PyTorch +- Name: pspnet_r18-d8_4xb4-80k_isaid-896x896 + In Collection: PSPNet + Results: + Task: Semantic Segmentation + Dataset: iSAID + Metrics: + mIoU: 60.22 + mIoU(ms+flip): 61.25 + Config: configs/pspnet/pspnet_r18-d8_4xb4-80k_isaid-896x896.py + Metadata: + Training Data: iSAID + Batch Size: 16 + Architecture: + - R-18-D8 + - PSPNet + Training Resources: 4x V100 GPUS + Memory (GB): 4.52 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r18-d8_4x4_896x896_80k_isaid/pspnet_r18-d8_4x4_896x896_80k_isaid_20220110_180526-e84c0b6a.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r18-d8_4x4_896x896_80k_isaid/pspnet_r18-d8_4x4_896x896_80k_isaid_20220110_180526.log.json + Paper: + Title: Pyramid Scene Parsing Network + URL: https://arxiv.org/abs/1612.01105 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/psp_head.py#L63 + Framework: PyTorch +- Name: pspnet_r50-d8_4xb4-80k_isaid-896x896 + In Collection: PSPNet + Results: + Task: Semantic Segmentation + Dataset: iSAID + Metrics: + mIoU: 65.36 + mIoU(ms+flip): 66.48 + Config: configs/pspnet/pspnet_r50-d8_4xb4-80k_isaid-896x896.py + Metadata: + Training Data: iSAID + Batch Size: 16 + Architecture: + - R-50-D8 + - PSPNet + Training Resources: 4x V100 GPUS + Memory (GB): 16.58 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r50-d8_4x4_896x896_80k_isaid/pspnet_r50-d8_4x4_896x896_80k_isaid_20220110_180629-1f21dc32.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r50-d8_4x4_896x896_80k_isaid/pspnet_r50-d8_4x4_896x896_80k_isaid_20220110_180629.log.json + Paper: + Title: Pyramid Scene Parsing Network + URL: https://arxiv.org/abs/1612.01105 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/psp_head.py#L63 + Framework: PyTorch diff --git a/configs/pspnet/pspnet.yml b/configs/pspnet/pspnet.yml deleted file mode 100644 index 7f811efd0f..0000000000 --- a/configs/pspnet/pspnet.yml +++ /dev/null @@ -1,1077 +0,0 @@ -Collections: -- Name: PSPNet - Metadata: - Training Data: - - Cityscapes - - ADE20K - - Pascal VOC 2012 + Aug - - Pascal Context - - Pascal Context 59 - - Dark Zurich and Nighttime Driving - - COCO-Stuff 10k - - COCO-Stuff 164k - - LoveDA - - Potsdam - - Vaihingen - - iSAID - Paper: - URL: https://arxiv.org/abs/1612.01105 - Title: Pyramid Scene Parsing Network - README: configs/pspnet/README.md - Code: - URL: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/psp_head.py#L63 - Version: v0.17.0 - Converted From: - Code: https://github.com/hszhao/PSPNet -Models: -- Name: pspnet_r50-d8_4xb2-40k_cityscapes-512x1024 - In Collection: PSPNet - Metadata: - backbone: R-50-D8 - crop size: (512,1024) - lr schd: 40000 - inference time (ms/im): - - value: 245.7 - hardware: V100 - backend: PyTorch - batch size: 1 - mode: FP32 - resolution: (512,1024) - Training Memory (GB): 6.1 - Results: - - Task: Semantic Segmentation - Dataset: Cityscapes - Metrics: - mIoU: 77.85 - mIoU(ms+flip): 79.18 - Config: configs/pspnet/pspnet_r50-d8_4xb2-40k_cityscapes-512x1024.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r50-d8_512x1024_40k_cityscapes/pspnet_r50-d8_512x1024_40k_cityscapes_20200605_003338-2966598c.pth -- Name: pspnet_r101-d8_4xb2-40k_cityscapes-512x1024 - In Collection: PSPNet - Metadata: - backbone: R-101-D8 - crop size: (512,1024) - lr schd: 40000 - inference time (ms/im): - - value: 373.13 - hardware: V100 - backend: PyTorch - batch size: 1 - mode: FP32 - resolution: (512,1024) - Training Memory (GB): 9.6 - Results: - - Task: Semantic Segmentation - Dataset: Cityscapes - Metrics: - mIoU: 78.34 - mIoU(ms+flip): 79.74 - Config: configs/pspnet/pspnet_r101-d8_4xb2-40k_cityscapes-512x1024.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101-d8_512x1024_40k_cityscapes/pspnet_r101-d8_512x1024_40k_cityscapes_20200604_232751-467e7cf4.pth -- Name: pspnet_r50-d8_4xb2-40k_cityscapes-769x769 - In Collection: PSPNet - Metadata: - backbone: R-50-D8 - crop size: (769,769) - lr schd: 40000 - inference time (ms/im): - - value: 568.18 - hardware: V100 - backend: PyTorch - batch size: 1 - mode: FP32 - resolution: (769,769) - Training Memory (GB): 6.9 - Results: - - Task: Semantic Segmentation - Dataset: Cityscapes - Metrics: - mIoU: 78.26 - mIoU(ms+flip): 79.88 - Config: configs/pspnet/pspnet_r50-d8_4xb2-40k_cityscapes-769x769.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r50-d8_769x769_40k_cityscapes/pspnet_r50-d8_769x769_40k_cityscapes_20200606_112725-86638686.pth -- Name: pspnet_r101-d8_4xb2-40k_cityscapes-769x769 - In Collection: PSPNet - Metadata: - backbone: R-101-D8 - crop size: (769,769) - lr schd: 40000 - inference time (ms/im): - - value: 869.57 - hardware: V100 - backend: PyTorch - batch size: 1 - mode: FP32 - resolution: (769,769) - Training Memory (GB): 10.9 - Results: - - Task: Semantic Segmentation - Dataset: Cityscapes - Metrics: - mIoU: 79.08 - mIoU(ms+flip): 80.28 - Config: configs/pspnet/pspnet_r101-d8_4xb2-40k_cityscapes-769x769.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101-d8_769x769_40k_cityscapes/pspnet_r101-d8_769x769_40k_cityscapes_20200606_112753-61c6f5be.pth -- Name: pspnet_r18-d8_4xb2-80k_cityscapes-512x1024 - In Collection: PSPNet - Metadata: - backbone: R-18-D8 - crop size: (512,1024) - lr schd: 80000 - inference time (ms/im): - - value: 63.65 - hardware: V100 - backend: PyTorch - batch size: 1 - mode: FP32 - resolution: (512,1024) - Training Memory (GB): 1.7 - Results: - - Task: Semantic Segmentation - Dataset: Cityscapes - Metrics: - mIoU: 74.87 - mIoU(ms+flip): 76.04 - Config: configs/pspnet/pspnet_r18-d8_4xb2-80k_cityscapes-512x1024.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r18-d8_512x1024_80k_cityscapes/pspnet_r18-d8_512x1024_80k_cityscapes_20201225_021458-09ffa746.pth -- Name: pspnet_r50-d8_4xb2-80k_cityscapes-512x1024 - In Collection: PSPNet - Metadata: - backbone: R-50-D8 - crop size: (512,1024) - lr schd: 80000 - Results: - - Task: Semantic Segmentation - Dataset: Cityscapes - Metrics: - mIoU: 78.55 - mIoU(ms+flip): 79.79 - Config: configs/pspnet/pspnet_r50-d8_4xb2-80k_cityscapes-512x1024.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r50-d8_512x1024_80k_cityscapes/pspnet_r50-d8_512x1024_80k_cityscapes_20200606_112131-2376f12b.pth -- Name: pspnet_r50-d8-rsb_4xb2-adamw-80k_cityscapes-512x1024 - In Collection: PSPNet - Metadata: - backbone: R-50b-D8 rsb - crop size: (512,1024) - lr schd: 80000 - inference time (ms/im): - - value: 261.78 - hardware: V100 - backend: PyTorch - batch size: 1 - mode: FP32 - resolution: (512,1024) - Training Memory (GB): 6.2 - Results: - - Task: Semantic Segmentation - Dataset: Cityscapes - Metrics: - mIoU: 78.47 - mIoU(ms+flip): 79.45 - Config: configs/pspnet/pspnet_r50-d8-rsb_4xb2-adamw-80k_cityscapes-512x1024.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r50-d8_512x1024_80k_cityscapes/pspnet_r50-d8_rsb-pretrain_512x1024_adamw_80k_cityscapes_20220315_123238-588c30be.pth -- Name: pspnet_r101-d8_4xb2-80k_cityscapes-512x1024 - In Collection: PSPNet - Metadata: - backbone: R-101-D8 - crop size: (512,1024) - lr schd: 80000 - Results: - - Task: Semantic Segmentation - Dataset: Cityscapes - Metrics: - mIoU: 79.76 - mIoU(ms+flip): 81.01 - Config: configs/pspnet/pspnet_r101-d8_4xb2-80k_cityscapes-512x1024.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101-d8_512x1024_80k_cityscapes/pspnet_r101-d8_512x1024_80k_cityscapes_20200606_112211-e1e1100f.pth -- Name: pspnet_r101-d8_4xb2-amp-80k_cityscapes-512x1024 - In Collection: PSPNet - Metadata: - backbone: R-101-D8 - crop size: (512,1024) - lr schd: 80000 - inference time (ms/im): - - value: 114.03 - hardware: V100 - backend: PyTorch - batch size: 1 - mode: AMP - resolution: (512,1024) - Training Memory (GB): 5.34 - Results: - - Task: Semantic Segmentation - Dataset: Cityscapes - Metrics: - mIoU: 79.46 - Config: configs/pspnet/pspnet_r101-d8_4xb2-amp-80k_cityscapes-512x1024.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101-d8_fp16_512x1024_80k_cityscapes/pspnet_r101-d8_fp16_512x1024_80k_cityscapes_20200717_230919-a0875e5c.pth -- Name: pspnet_r18-d8_4xb2-80k_cityscapes-769x769 - In Collection: PSPNet - Metadata: - backbone: R-18-D8 - crop size: (769,769) - lr schd: 80000 - inference time (ms/im): - - value: 161.29 - hardware: V100 - backend: PyTorch - batch size: 1 - mode: FP32 - resolution: (769,769) - Training Memory (GB): 1.9 - Results: - - Task: Semantic Segmentation - Dataset: Cityscapes - Metrics: - mIoU: 75.9 - mIoU(ms+flip): 77.86 - Config: configs/pspnet/pspnet_r18-d8_4xb2-80k_cityscapes-769x769.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r18-d8_769x769_80k_cityscapes/pspnet_r18-d8_769x769_80k_cityscapes_20201225_021458-3deefc62.pth -- Name: pspnet_r50-d8_4xb2-80k_cityscapes-769x769 - In Collection: PSPNet - Metadata: - backbone: R-50-D8 - crop size: (769,769) - lr schd: 80000 - Results: - - Task: Semantic Segmentation - Dataset: Cityscapes - Metrics: - mIoU: 79.59 - mIoU(ms+flip): 80.69 - Config: configs/pspnet/pspnet_r50-d8_4xb2-80k_cityscapes-769x769.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r50-d8_769x769_80k_cityscapes/pspnet_r50-d8_769x769_80k_cityscapes_20200606_210121-5ccf03dd.pth -- Name: pspnet_r101-d8_4xb2-80k_cityscapes-769x769 - In Collection: PSPNet - Metadata: - backbone: R-101-D8 - crop size: (769,769) - lr schd: 80000 - Results: - - Task: Semantic Segmentation - Dataset: Cityscapes - Metrics: - mIoU: 79.77 - mIoU(ms+flip): 81.06 - Config: configs/pspnet/pspnet_r101-d8_4xb2-80k_cityscapes-769x769.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101-d8_769x769_80k_cityscapes/pspnet_r101-d8_769x769_80k_cityscapes_20200606_225055-dba412fa.pth -- Name: pspnet_r18b-d8_4xb2-80k_cityscapes-512x1024 - In Collection: PSPNet - Metadata: - backbone: R-18b-D8 - crop size: (512,1024) - lr schd: 80000 - inference time (ms/im): - - value: 61.43 - hardware: V100 - backend: PyTorch - batch size: 1 - mode: FP32 - resolution: (512,1024) - Training Memory (GB): 1.5 - Results: - - Task: Semantic Segmentation - Dataset: Cityscapes - Metrics: - mIoU: 74.23 - mIoU(ms+flip): 75.79 - Config: configs/pspnet/pspnet_r18b-d8_4xb2-80k_cityscapes-512x1024.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r18b-d8_512x1024_80k_cityscapes/pspnet_r18b-d8_512x1024_80k_cityscapes_20201226_063116-26928a60.pth -- Name: pspnet_r50b-d8_4xb2-80k_cityscapes-512x1024 - In Collection: PSPNet - Metadata: - backbone: R-50b-D8 - crop size: (512,1024) - lr schd: 80000 - inference time (ms/im): - - value: 232.56 - hardware: V100 - backend: PyTorch - batch size: 1 - mode: FP32 - resolution: (512,1024) - Training Memory (GB): 6.0 - Results: - - Task: Semantic Segmentation - Dataset: Cityscapes - Metrics: - mIoU: 78.22 - mIoU(ms+flip): 79.46 - Config: configs/pspnet/pspnet_r50b-d8_4xb2-80k_cityscapes-512x1024.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r50b-d8_512x1024_80k_cityscapes/pspnet_r50b-d8_512x1024_80k_cityscapes_20201225_094315-6344287a.pth -- Name: pspnet_r101b-d8_4xb2-80k_cityscapes-512x1024 - In Collection: PSPNet - Metadata: - backbone: R-101b-D8 - crop size: (512,1024) - lr schd: 80000 - inference time (ms/im): - - value: 362.32 - hardware: V100 - backend: PyTorch - batch size: 1 - mode: FP32 - resolution: (512,1024) - Training Memory (GB): 9.5 - Results: - - Task: Semantic Segmentation - Dataset: Cityscapes - Metrics: - mIoU: 79.69 - mIoU(ms+flip): 80.79 - Config: configs/pspnet/pspnet_r101b-d8_4xb2-80k_cityscapes-512x1024.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101b-d8_512x1024_80k_cityscapes/pspnet_r101b-d8_512x1024_80k_cityscapes_20201226_170012-3a4d38ab.pth -- Name: pspnet_r18b-d8_4xb2-80k_cityscapes-769x769 - In Collection: PSPNet - Metadata: - backbone: R-18b-D8 - crop size: (769,769) - lr schd: 80000 - inference time (ms/im): - - value: 156.01 - hardware: V100 - backend: PyTorch - batch size: 1 - mode: FP32 - resolution: (769,769) - Training Memory (GB): 1.7 - Results: - - Task: Semantic Segmentation - Dataset: Cityscapes - Metrics: - mIoU: 74.92 - mIoU(ms+flip): 76.9 - Config: configs/pspnet/pspnet_r18b-d8_4xb2-80k_cityscapes-769x769.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r18b-d8_769x769_80k_cityscapes/pspnet_r18b-d8_769x769_80k_cityscapes_20201226_080942-bf98d186.pth -- Name: pspnet_r50b-d8_4xb2-80k_cityscapes-769x769 - In Collection: PSPNet - Metadata: - backbone: R-50b-D8 - crop size: (769,769) - lr schd: 80000 - inference time (ms/im): - - value: 531.91 - hardware: V100 - backend: PyTorch - batch size: 1 - mode: FP32 - resolution: (769,769) - Training Memory (GB): 6.8 - Results: - - Task: Semantic Segmentation - Dataset: Cityscapes - Metrics: - mIoU: 78.5 - mIoU(ms+flip): 79.96 - Config: configs/pspnet/pspnet_r50b-d8_4xb2-80k_cityscapes-769x769.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r50b-d8_769x769_80k_cityscapes/pspnet_r50b-d8_769x769_80k_cityscapes_20201225_094316-4c643cf6.pth -- Name: pspnet_r101b-d8_4xb2-80k_cityscapes-769x769 - In Collection: PSPNet - Metadata: - backbone: R-101b-D8 - crop size: (769,769) - lr schd: 80000 - inference time (ms/im): - - value: 854.7 - hardware: V100 - backend: PyTorch - batch size: 1 - mode: FP32 - resolution: (769,769) - Training Memory (GB): 10.8 - Results: - - Task: Semantic Segmentation - Dataset: Cityscapes - Metrics: - mIoU: 78.87 - mIoU(ms+flip): 80.04 - Config: configs/pspnet/pspnet_r101b-d8_4xb2-80k_cityscapes-769x769.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101b-d8_769x769_80k_cityscapes/pspnet_r101b-d8_769x769_80k_cityscapes_20201226_171823-f0e7c293.pth -- Name: pspnet_r50b-d32_4xb2-80k_cityscapes-512x1024 - In Collection: PSPNet - Metadata: - backbone: R-50-D32 - crop size: (512,1024) - lr schd: 80000 - inference time (ms/im): - - value: 65.75 - hardware: V100 - backend: PyTorch - batch size: 1 - mode: FP32 - resolution: (512,1024) - Training Memory (GB): 3.0 - Results: - - Task: Semantic Segmentation - Dataset: Cityscapes - Metrics: - mIoU: 73.88 - mIoU(ms+flip): 76.85 - Config: configs/pspnet/pspnet_r50b-d32_4xb2-80k_cityscapes-512x1024.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r50-d32_512x1024_80k_cityscapes/pspnet_r50-d32_512x1024_80k_cityscapes_20220316_224840-9092b254.pth -- Name: pspnet_r50-d32_rsb_4xb2-adamw-80k_cityscapes-512x1024 - In Collection: PSPNet - Metadata: - backbone: R-50b-D32 rsb - crop size: (512,1024) - lr schd: 80000 - inference time (ms/im): - - value: 62.19 - hardware: V100 - backend: PyTorch - batch size: 1 - mode: FP32 - resolution: (512,1024) - Training Memory (GB): 3.1 - Results: - - Task: Semantic Segmentation - Dataset: Cityscapes - Metrics: - mIoU: 74.09 - mIoU(ms+flip): 77.18 - Config: configs/pspnet/pspnet_r50-d32_rsb_4xb2-adamw-80k_cityscapes-512x1024.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r50-d32_rsb-pretrain_512x1024_adamw_80k_cityscapes/pspnet_r50-d32_rsb-pretrain_512x1024_adamw_80k_cityscapes_20220316_141229-dd9c9610.pth -- Name: pspnet_r50b-d32_4xb2-80k_cityscapes-512x1024 - In Collection: PSPNet - Metadata: - backbone: R-50b-D32 - crop size: (512,1024) - lr schd: 80000 - inference time (ms/im): - - value: 64.89 - hardware: V100 - backend: PyTorch - batch size: 1 - mode: FP32 - resolution: (512,1024) - Training Memory (GB): 2.9 - Results: - - Task: Semantic Segmentation - Dataset: Cityscapes - Metrics: - mIoU: 72.61 - mIoU(ms+flip): 75.51 - Config: configs/pspnet/pspnet_r50b-d32_4xb2-80k_cityscapes-512x1024.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r50b-d32_512x1024_80k_cityscapes/pspnet_r50b-d32_512x1024_80k_cityscapes_20220311_152152-23bcaf8c.pth -- Name: pspnet_r50-d8_4xb4-80k_ade20k-512x512 - In Collection: PSPNet - Metadata: - backbone: R-50-D8 - crop size: (512,512) - lr schd: 80000 - inference time (ms/im): - - value: 42.5 - hardware: V100 - backend: PyTorch - batch size: 1 - mode: FP32 - resolution: (512,512) - Training Memory (GB): 8.5 - Results: - - Task: Semantic Segmentation - Dataset: ADE20K - Metrics: - mIoU: 41.13 - mIoU(ms+flip): 41.94 - Config: configs/pspnet/pspnet_r50-d8_4xb4-80k_ade20k-512x512.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r50-d8_512x512_80k_ade20k/pspnet_r50-d8_512x512_80k_ade20k_20200615_014128-15a8b914.pth -- Name: pspnet_r101-d8_4xb4-80k_ade20k-512x512 - In Collection: PSPNet - Metadata: - backbone: R-101-D8 - crop size: (512,512) - lr schd: 80000 - inference time (ms/im): - - value: 65.36 - hardware: V100 - backend: PyTorch - batch size: 1 - mode: FP32 - resolution: (512,512) - Training Memory (GB): 12.0 - Results: - - Task: Semantic Segmentation - Dataset: ADE20K - Metrics: - mIoU: 43.57 - mIoU(ms+flip): 44.35 - Config: configs/pspnet/pspnet_r101-d8_4xb4-80k_ade20k-512x512.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101-d8_512x512_80k_ade20k/pspnet_r101-d8_512x512_80k_ade20k_20200614_031423-b6e782f0.pth -- Name: pspnet_r50-d8_4xb4-160k_ade20k-512x512 - In Collection: PSPNet - Metadata: - backbone: R-50-D8 - crop size: (512,512) - lr schd: 160000 - Results: - - Task: Semantic Segmentation - Dataset: ADE20K - Metrics: - mIoU: 42.48 - mIoU(ms+flip): 43.44 - Config: configs/pspnet/pspnet_r50-d8_4xb4-160k_ade20k-512x512.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r50-d8_512x512_160k_ade20k/pspnet_r50-d8_512x512_160k_ade20k_20200615_184358-1890b0bd.pth -- Name: pspnet_r101-d8_4xb4-160k_ade20k-512x512 - In Collection: PSPNet - Metadata: - backbone: R-101-D8 - crop size: (512,512) - lr schd: 160000 - Results: - - Task: Semantic Segmentation - Dataset: ADE20K - Metrics: - mIoU: 44.39 - mIoU(ms+flip): 45.35 - Config: configs/pspnet/pspnet_r101-d8_4xb4-160k_ade20k-512x512.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101-d8_512x512_160k_ade20k/pspnet_r101-d8_512x512_160k_ade20k_20200615_100650-967c316f.pth -- Name: pspnet_r50-d8_4xb4-20k_voc12aug-512x512 - In Collection: PSPNet - Metadata: - backbone: R-50-D8 - crop size: (512,512) - lr schd: 20000 - inference time (ms/im): - - value: 42.39 - hardware: V100 - backend: PyTorch - batch size: 1 - mode: FP32 - resolution: (512,512) - Training Memory (GB): 6.1 - Results: - - Task: Semantic Segmentation - Dataset: Pascal VOC 2012 + Aug - Metrics: - mIoU: 76.78 - mIoU(ms+flip): 77.61 - Config: configs/pspnet/pspnet_r50-d8_4xb4-20k_voc12aug-512x512.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r50-d8_512x512_20k_voc12aug/pspnet_r50-d8_512x512_20k_voc12aug_20200617_101958-ed5dfbd9.pth -- Name: pspnet_r101-d8_4xb4-20k_voc12aug-512x512 - In Collection: PSPNet - Metadata: - backbone: R-101-D8 - crop size: (512,512) - lr schd: 20000 - inference time (ms/im): - - value: 66.58 - hardware: V100 - backend: PyTorch - batch size: 1 - mode: FP32 - resolution: (512,512) - Training Memory (GB): 9.6 - Results: - - Task: Semantic Segmentation - Dataset: Pascal VOC 2012 + Aug - Metrics: - mIoU: 78.47 - mIoU(ms+flip): 79.25 - Config: configs/pspnet/pspnet_r101-d8_4xb4-20k_voc12aug-512x512.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101-d8_512x512_20k_voc12aug/pspnet_r101-d8_512x512_20k_voc12aug_20200617_102003-4aef3c9a.pth -- Name: pspnet_r50-d8_4xb4-40k_voc12aug-512x512 - In Collection: PSPNet - Metadata: - backbone: R-50-D8 - crop size: (512,512) - lr schd: 40000 - Results: - - Task: Semantic Segmentation - Dataset: Pascal VOC 2012 + Aug - Metrics: - mIoU: 77.29 - mIoU(ms+flip): 78.48 - Config: configs/pspnet/pspnet_r50-d8_4xb4-40k_voc12aug-512x512.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r50-d8_512x512_40k_voc12aug/pspnet_r50-d8_512x512_40k_voc12aug_20200613_161222-ae9c1b8c.pth -- Name: pspnet_r101-d8_4xb4-40k_voc12aug-512x512 - In Collection: PSPNet - Metadata: - backbone: R-101-D8 - crop size: (512,512) - lr schd: 40000 - Results: - - Task: Semantic Segmentation - Dataset: Pascal VOC 2012 + Aug - Metrics: - mIoU: 78.52 - mIoU(ms+flip): 79.57 - Config: configs/pspnet/pspnet_r101-d8_4xb4-40k_voc12aug-512x512.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101-d8_512x512_40k_voc12aug/pspnet_r101-d8_512x512_40k_voc12aug_20200613_161222-bc933b18.pth -- Name: pspnet_r101-d8_4xb4-40k_pascal-context-480x480 - In Collection: PSPNet - Metadata: - backbone: R-101-D8 - crop size: (480,480) - lr schd: 40000 - inference time (ms/im): - - value: 103.31 - hardware: V100 - backend: PyTorch - batch size: 1 - mode: FP32 - resolution: (480,480) - Training Memory (GB): 8.8 - Results: - - Task: Semantic Segmentation - Dataset: Pascal Context - Metrics: - mIoU: 46.6 - mIoU(ms+flip): 47.78 - Config: configs/pspnet/pspnet_r101-d8_4xb4-40k_pascal-context-480x480.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101-d8_480x480_40k_pascal_context/pspnet_r101-d8_480x480_40k_pascal_context_20200911_211210-bf0f5d7c.pth -- Name: pspnet_r101-d8_4xb4-80k_pascal-context-480x480 - In Collection: PSPNet - Metadata: - backbone: R-101-D8 - crop size: (480,480) - lr schd: 80000 - Results: - - Task: Semantic Segmentation - Dataset: Pascal Context - Metrics: - mIoU: 46.03 - mIoU(ms+flip): 47.15 - Config: configs/pspnet/pspnet_r101-d8_4xb4-80k_pascal-context-480x480.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101-d8_480x480_80k_pascal_context/pspnet_r101-d8_480x480_80k_pascal_context_20200911_190530-c86d6233.pth -- Name: pspnet_r101-d8_4xb4-40k_pascal-context-59-480x480 - In Collection: PSPNet - Metadata: - backbone: R-101-D8 - crop size: (480,480) - lr schd: 40000 - Results: - - Task: Semantic Segmentation - Dataset: Pascal Context 59 - Metrics: - mIoU: 52.02 - mIoU(ms+flip): 53.54 - Config: configs/pspnet/pspnet_r101-d8_4xb4-40k_pascal-context-59-480x480.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101-d8_480x480_40k_pascal_context_59/pspnet_r101-d8_480x480_40k_pascal_context_59_20210416_114524-86d44cd4.pth -- Name: pspnet_r101-d8_4xb4-80k_pascal-context-59-480x480 - In Collection: PSPNet - Metadata: - backbone: R-101-D8 - crop size: (480,480) - lr schd: 80000 - Results: - - Task: Semantic Segmentation - Dataset: Pascal Context 59 - Metrics: - mIoU: 52.47 - mIoU(ms+flip): 53.99 - Config: configs/pspnet/pspnet_r101-d8_4xb4-80k_pascal-context-59-480x480.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101-d8_480x480_80k_pascal_context_59/pspnet_r101-d8_480x480_80k_pascal_context_59_20210416_114418-fa6caaa2.pth -- Name: pspnet_r50-d8_4xb4-20k_coco-stuff10k-512x512 - In Collection: PSPNet - Metadata: - backbone: R-50-D8 - crop size: (512,512) - lr schd: 20000 - inference time (ms/im): - - value: 48.78 - hardware: V100 - backend: PyTorch - batch size: 1 - mode: FP32 - resolution: (512,512) - Training Memory (GB): 9.6 - Results: - - Task: Semantic Segmentation - Dataset: COCO-Stuff 10k - Metrics: - mIoU: 35.69 - mIoU(ms+flip): 36.62 - Config: configs/pspnet/pspnet_r50-d8_4xb4-20k_coco-stuff10k-512x512.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r50-d8_512x512_4x4_20k_coco-stuff10k/pspnet_r50-d8_512x512_4x4_20k_coco-stuff10k_20210820_203258-b88df27f.pth -- Name: pspnet_r101-d8_4xb4-20k_coco-stuff10k-512x512 - In Collection: PSPNet - Metadata: - backbone: R-101-D8 - crop size: (512,512) - lr schd: 20000 - inference time (ms/im): - - value: 90.09 - hardware: V100 - backend: PyTorch - batch size: 1 - mode: FP32 - resolution: (512,512) - Training Memory (GB): 13.2 - Results: - - Task: Semantic Segmentation - Dataset: COCO-Stuff 10k - Metrics: - mIoU: 37.26 - mIoU(ms+flip): 38.52 - Config: configs/pspnet/pspnet_r101-d8_4xb4-20k_coco-stuff10k-512x512.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101-d8_512x512_4x4_20k_coco-stuff10k/pspnet_r101-d8_512x512_4x4_20k_coco-stuff10k_20210820_232135-76aae482.pth -- Name: pspnet_r50-d8_4xb4-40k_coco-stuff10k-512x512 - In Collection: PSPNet - Metadata: - backbone: R-50-D8 - crop size: (512,512) - lr schd: 40000 - Results: - - Task: Semantic Segmentation - Dataset: COCO-Stuff 10k - Metrics: - mIoU: 36.33 - mIoU(ms+flip): 37.24 - Config: configs/pspnet/pspnet_r50-d8_4xb4-40k_coco-stuff10k-512x512.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r50-d8_512x512_4x4_40k_coco-stuff10k/pspnet_r50-d8_512x512_4x4_40k_coco-stuff10k_20210821_030857-92e2902b.pth -- Name: pspnet_r101-d8_4xb4-40k_coco-stuff10k-512x512 - In Collection: PSPNet - Metadata: - backbone: R-101-D8 - crop size: (512,512) - lr schd: 40000 - Results: - - Task: Semantic Segmentation - Dataset: COCO-Stuff 10k - Metrics: - mIoU: 37.76 - mIoU(ms+flip): 38.86 - Config: configs/pspnet/pspnet_r101-d8_4xb4-40k_coco-stuff10k-512x512.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101-d8_512x512_4x4_40k_coco-stuff10k/pspnet_r101-d8_512x512_4x4_40k_coco-stuff10k_20210821_014022-831aec95.pth -- Name: pspnet_r50-d8_4xb4-80k_coco-stuff164k-512x512 - In Collection: PSPNet - Metadata: - backbone: R-50-D8 - crop size: (512,512) - lr schd: 80000 - inference time (ms/im): - - value: 48.78 - hardware: V100 - backend: PyTorch - batch size: 1 - mode: FP32 - resolution: (512,512) - Training Memory (GB): 9.6 - Results: - - Task: Semantic Segmentation - Dataset: COCO-Stuff 164k - Metrics: - mIoU: 38.8 - mIoU(ms+flip): 39.19 - Config: configs/pspnet/pspnet_r50-d8_4xb4-80k_coco-stuff164k-512x512.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r50-d8_512x512_4x4_80k_coco-stuff164k/pspnet_r50-d8_512x512_4x4_80k_coco-stuff164k_20210707_152034-0e41b2db.pth -- Name: pspnet_r101-d8_4xb4-80k_coco-stuff164k-512x512 - In Collection: PSPNet - Metadata: - backbone: R-101-D8 - crop size: (512,512) - lr schd: 80000 - inference time (ms/im): - - value: 90.09 - hardware: V100 - backend: PyTorch - batch size: 1 - mode: FP32 - resolution: (512,512) - Training Memory (GB): 13.2 - Results: - - Task: Semantic Segmentation - Dataset: COCO-Stuff 164k - Metrics: - mIoU: 40.34 - mIoU(ms+flip): 40.79 - Config: configs/pspnet/pspnet_r101-d8_4xb4-80k_coco-stuff164k-512x512.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101-d8_512x512_4x4_80k_coco-stuff164k/pspnet_r101-d8_512x512_4x4_80k_coco-stuff164k_20210707_152034-7eb41789.pth -- Name: pspnet_r50-d8_4xb4-160k_coco-stuff164k-512x512 - In Collection: PSPNet - Metadata: - backbone: R-50-D8 - crop size: (512,512) - lr schd: 160000 - Results: - - Task: Semantic Segmentation - Dataset: COCO-Stuff 164k - Metrics: - mIoU: 39.64 - mIoU(ms+flip): 39.97 - Config: configs/pspnet/pspnet_r50-d8_4xb4-160k_coco-stuff164k-512x512.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r50-d8_512x512_4x4_160k_coco-stuff164k/pspnet_r50-d8_512x512_4x4_160k_coco-stuff164k_20210707_152004-51276a57.pth -- Name: pspnet_r101-d8_4xb4-160k_coco-stuff164k-512x512 - In Collection: PSPNet - Metadata: - backbone: R-101-D8 - crop size: (512,512) - lr schd: 160000 - Results: - - Task: Semantic Segmentation - Dataset: COCO-Stuff 164k - Metrics: - mIoU: 41.28 - mIoU(ms+flip): 41.66 - Config: configs/pspnet/pspnet_r101-d8_4xb4-160k_coco-stuff164k-512x512.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101-d8_512x512_4x4_160k_coco-stuff164k/pspnet_r101-d8_512x512_4x4_160k_coco-stuff164k_20210707_152004-4af9621b.pth -- Name: pspnet_r50-d8_4xb4-320k_coco-stuff164k-512x512 - In Collection: PSPNet - Metadata: - backbone: R-50-D8 - crop size: (512,512) - lr schd: 320000 - Results: - - Task: Semantic Segmentation - Dataset: COCO-Stuff 164k - Metrics: - mIoU: 40.53 - mIoU(ms+flip): 40.75 - Config: configs/pspnet/pspnet_r50-d8_4xb4-320k_coco-stuff164k-512x512.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r50-d8_512x512_4x4_320k_coco-stuff164k/pspnet_r50-d8_512x512_4x4_320k_coco-stuff164k_20210707_152004-be9610cc.pth -- Name: pspnet_r101-d8_4xb4-320k_coco-stuff164k-512x512 - In Collection: PSPNet - Metadata: - backbone: R-101-D8 - crop size: (512,512) - lr schd: 320000 - Results: - - Task: Semantic Segmentation - Dataset: COCO-Stuff 164k - Metrics: - mIoU: 41.95 - mIoU(ms+flip): 42.42 - Config: configs/pspnet/pspnet_r101-d8_4xb4-320k_coco-stuff164k-512x512.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101-d8_512x512_4x4_320k_coco-stuff164k/pspnet_r101-d8_512x512_4x4_320k_coco-stuff164k_20210707_152004-72220c60.pth -- Name: pspnet_r18-d8_4xb4-80k_loveda-512x512 - In Collection: PSPNet - Metadata: - backbone: R-18-D8 - crop size: (512,512) - lr schd: 80000 - inference time (ms/im): - - value: 37.22 - hardware: V100 - backend: PyTorch - batch size: 1 - mode: FP32 - resolution: (512,512) - Training Memory (GB): 1.45 - Results: - - Task: Semantic Segmentation - Dataset: LoveDA - Metrics: - mIoU: 48.62 - mIoU(ms+flip): 47.57 - Config: configs/pspnet/pspnet_r18-d8_4xb4-80k_loveda-512x512.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r18-d8_512x512_80k_loveda/pspnet_r18-d8_512x512_80k_loveda_20211105_052100-b97697f1.pth -- Name: pspnet_r50-d8_4xb4-80k_loveda-512x512 - In Collection: PSPNet - Metadata: - backbone: R-50-D8 - crop size: (512,512) - lr schd: 80000 - inference time (ms/im): - - value: 151.52 - hardware: V100 - backend: PyTorch - batch size: 1 - mode: FP32 - resolution: (512,512) - Training Memory (GB): 6.14 - Results: - - Task: Semantic Segmentation - Dataset: LoveDA - Metrics: - mIoU: 50.46 - mIoU(ms+flip): 50.19 - Config: configs/pspnet/pspnet_r50-d8_4xb4-80k_loveda-512x512.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r50-d8_512x512_80k_loveda/pspnet_r50-d8_512x512_80k_loveda_20211104_155728-88610f9f.pth -- Name: pspnet_r101-d8_4xb4-80k_loveda-512x512 - In Collection: PSPNet - Metadata: - backbone: R-101-D8 - crop size: (512,512) - lr schd: 80000 - inference time (ms/im): - - value: 218.34 - hardware: V100 - backend: PyTorch - batch size: 1 - mode: FP32 - resolution: (512,512) - Training Memory (GB): 9.61 - Results: - - Task: Semantic Segmentation - Dataset: LoveDA - Metrics: - mIoU: 51.86 - mIoU(ms+flip): 51.34 - Config: configs/pspnet/pspnet_r101-d8_4xb4-80k_loveda-512x512.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101-d8_512x512_80k_loveda/pspnet_r101-d8_512x512_80k_loveda_20211104_153212-1c06c6a8.pth -- Name: pspnet_r18-d8_4xb4-80k_potsdam-512x512 - In Collection: PSPNet - Metadata: - backbone: R-18-D8 - crop size: (512,512) - lr schd: 80000 - inference time (ms/im): - - value: 11.75 - hardware: V100 - backend: PyTorch - batch size: 1 - mode: FP32 - resolution: (512,512) - Training Memory (GB): 1.5 - Results: - - Task: Semantic Segmentation - Dataset: Potsdam - Metrics: - mIoU: 77.09 - mIoU(ms+flip): 78.3 - Config: configs/pspnet/pspnet_r18-d8_4xb4-80k_potsdam-512x512.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r18-d8_4x4_512x512_80k_potsdam/pspnet_r18-d8_4x4_512x512_80k_potsdam_20211220_125612-7cd046e1.pth -- Name: pspnet_r50-d8_4xb4-80k_potsdam-512x512 - In Collection: PSPNet - Metadata: - backbone: R-50-D8 - crop size: (512,512) - lr schd: 80000 - inference time (ms/im): - - value: 33.1 - hardware: V100 - backend: PyTorch - batch size: 1 - mode: FP32 - resolution: (512,512) - Training Memory (GB): 6.14 - Results: - - Task: Semantic Segmentation - Dataset: Potsdam - Metrics: - mIoU: 78.12 - mIoU(ms+flip): 78.98 - Config: configs/pspnet/pspnet_r50-d8_4xb4-80k_potsdam-512x512.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r50-d8_4x4_512x512_80k_potsdam/pspnet_r50-d8_4x4_512x512_80k_potsdam_20211219_043541-2dd5fe67.pth -- Name: pspnet_r101-d8_4xb4-80k_potsdam-512x512 - In Collection: PSPNet - Metadata: - backbone: R-101-D8 - crop size: (512,512) - lr schd: 80000 - inference time (ms/im): - - value: 51.55 - hardware: V100 - backend: PyTorch - batch size: 1 - mode: FP32 - resolution: (512,512) - Training Memory (GB): 9.61 - Results: - - Task: Semantic Segmentation - Dataset: Potsdam - Metrics: - mIoU: 78.62 - mIoU(ms+flip): 79.47 - Config: configs/pspnet/pspnet_r101-d8_4xb4-80k_potsdam-512x512.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101-d8_4x4_512x512_80k_potsdam/pspnet_r101-d8_4x4_512x512_80k_potsdam_20211220_125612-aed036c4.pth -- Name: pspnet_r18-d8_4xb4-80k_vaihingen-512x512 - In Collection: PSPNet - Metadata: - backbone: R-18-D8 - crop size: (512,512) - lr schd: 80000 - inference time (ms/im): - - value: 11.76 - hardware: V100 - backend: PyTorch - batch size: 1 - mode: FP32 - resolution: (512,512) - Training Memory (GB): 1.45 - Results: - - Task: Semantic Segmentation - Dataset: Vaihingen - Metrics: - mIoU: 71.46 - mIoU(ms+flip): 73.36 - Config: configs/pspnet/pspnet_r18-d8_4xb4-80k_vaihingen-512x512.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r18-d8_4x4_512x512_80k_vaihingen/pspnet_r18-d8_4x4_512x512_80k_vaihingen_20211228_160355-52a8a6f6.pth -- Name: pspnet_r50-d8_4xb4-80k_vaihingen-512x512 - In Collection: PSPNet - Metadata: - backbone: R-50-D8 - crop size: (512,512) - lr schd: 80000 - inference time (ms/im): - - value: 33.01 - hardware: V100 - backend: PyTorch - batch size: 1 - mode: FP32 - resolution: (512,512) - Training Memory (GB): 6.14 - Results: - - Task: Semantic Segmentation - Dataset: Vaihingen - Metrics: - mIoU: 72.36 - mIoU(ms+flip): 73.75 - Config: configs/pspnet/pspnet_r50-d8_4xb4-80k_vaihingen-512x512.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r50-d8_4x4_512x512_80k_vaihingen/pspnet_r50-d8_4x4_512x512_80k_vaihingen_20211228_160355-382f8f5b.pth -- Name: pspnet_r101-d8_4xb4-80k_vaihingen-512x512 - In Collection: PSPNet - Metadata: - backbone: R-101-D8 - crop size: (512,512) - lr schd: 80000 - inference time (ms/im): - - value: 50.08 - hardware: V100 - backend: PyTorch - batch size: 1 - mode: FP32 - resolution: (512,512) - Training Memory (GB): 9.61 - Results: - - Task: Semantic Segmentation - Dataset: Vaihingen - Metrics: - mIoU: 72.61 - mIoU(ms+flip): 74.18 - Config: configs/pspnet/pspnet_r101-d8_4xb4-80k_vaihingen-512x512.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101-d8_4x4_512x512_80k_vaihingen/pspnet_r101-d8_4x4_512x512_80k_vaihingen_20211231_230806-8eba0a09.pth -- Name: pspnet_r18-d8_4xb4-80k_isaid-896x896 - In Collection: PSPNet - Metadata: - backbone: R-18-D8 - crop size: (896,896) - lr schd: 80000 - inference time (ms/im): - - value: 37.16 - hardware: V100 - backend: PyTorch - batch size: 1 - mode: FP32 - resolution: (896,896) - Training Memory (GB): 4.52 - Results: - - Task: Semantic Segmentation - Dataset: iSAID - Metrics: - mIoU: 60.22 - mIoU(ms+flip): 61.25 - Config: configs/pspnet/pspnet_r18-d8_4xb4-80k_isaid-896x896.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r18-d8_4x4_896x896_80k_isaid/pspnet_r18-d8_4x4_896x896_80k_isaid_20220110_180526-e84c0b6a.pth -- Name: pspnet_r50-d8_4xb4-80k_isaid-896x896 - In Collection: PSPNet - Metadata: - backbone: R-50-D8 - crop size: (896,896) - lr schd: 80000 - inference time (ms/im): - - value: 112.61 - hardware: V100 - backend: PyTorch - batch size: 1 - mode: FP32 - resolution: (896,896) - Training Memory (GB): 16.58 - Results: - - Task: Semantic Segmentation - Dataset: iSAID - Metrics: - mIoU: 65.36 - mIoU(ms+flip): 66.48 - Config: configs/pspnet/pspnet_r50-d8_4xb4-80k_isaid-896x896.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r50-d8_4x4_896x896_80k_isaid/pspnet_r50-d8_4x4_896x896_80k_isaid_20220110_180629-1f21dc32.pth diff --git a/configs/resnest/README.md b/configs/resnest/README.md index 7f07d147b7..d27bbe2807 100644 --- a/configs/resnest/README.md +++ b/configs/resnest/README.md @@ -1,6 +1,6 @@ # ResNeSt -[ResNeSt: Split-Attention Networks](https://arxiv.org/abs/2004.08955) +> [ResNeSt: Split-Attention Networks](https://arxiv.org/abs/2004.08955) ## Introduction @@ -22,6 +22,26 @@ It is well known that featuremap attention and multi-path representation are imp +## Results and models + +### Cityscapes + +| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | Device | mIoU | mIoU(ms+flip) | config | download | +| ---------- | -------- | --------- | ------: | -------: | -------------- | ------ | ----: | ------------- | ------------------------------------------------------------------------------------------------------------------------------------------------- | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | +| FCN | S-101-D8 | 512x1024 | 80000 | 11.4 | 2.39 | V100 | 77.56 | 78.98 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/resnest/resnest_s101-d8_fcn_4xb2-80k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/resnest/fcn_s101-d8_512x1024_80k_cityscapes/fcn_s101-d8_512x1024_80k_cityscapes_20200807_140631-f8d155b3.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/resnest/fcn_s101-d8_512x1024_80k_cityscapes/fcn_s101-d8_512x1024_80k_cityscapes-20200807_140631.log.json) | +| PSPNet | S-101-D8 | 512x1024 | 80000 | 11.8 | 2.52 | V100 | 78.57 | 79.19 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/resnest/resnest_s101-d8_pspnet_4xb2-80k_cityscapes512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/resnest/pspnet_s101-d8_512x1024_80k_cityscapes/pspnet_s101-d8_512x1024_80k_cityscapes_20200807_140631-c75f3b99.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/resnest/pspnet_s101-d8_512x1024_80k_cityscapes/pspnet_s101-d8_512x1024_80k_cityscapes-20200807_140631.log.json) | +| DeepLabV3 | S-101-D8 | 512x1024 | 80000 | 11.9 | 1.88 | V100 | 79.67 | 80.51 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/resnest/resnest_s101-d8_deeplabv3_4xb2-80k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/resnest/deeplabv3_s101-d8_512x1024_80k_cityscapes/deeplabv3_s101-d8_512x1024_80k_cityscapes_20200807_144429-b73c4270.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/resnest/deeplabv3_s101-d8_512x1024_80k_cityscapes/deeplabv3_s101-d8_512x1024_80k_cityscapes-20200807_144429.log.json) | +| DeepLabV3+ | S-101-D8 | 512x1024 | 80000 | 13.2 | 2.36 | V100 | 79.62 | 80.27 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/resnest/resnest_s101-d8_deeplabv3plus_4xb2-80k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/resnest/deeplabv3plus_s101-d8_512x1024_80k_cityscapes/deeplabv3plus_s101-d8_512x1024_80k_cityscapes_20200807_144429-1239eb43.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/resnest/deeplabv3plus_s101-d8_512x1024_80k_cityscapes/deeplabv3plus_s101-d8_512x1024_80k_cityscapes-20200807_144429.log.json) | + +### ADE20K + +| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | Device | mIoU | mIoU(ms+flip) | config | download | +| ---------- | -------- | --------- | ------: | -------: | -------------- | ------ | ----: | ------------- | --------------------------------------------------------------------------------------------------------------------------------------------- | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | +| FCN | S-101-D8 | 512x512 | 160000 | 14.2 | 12.86 | V100 | 45.62 | 46.16 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/resnest/resnest_s101-d8_fcn_4xb4-160k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/resnest/fcn_s101-d8_512x512_160k_ade20k/fcn_s101-d8_512x512_160k_ade20k_20200807_145416-d3160329.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/resnest/fcn_s101-d8_512x512_160k_ade20k/fcn_s101-d8_512x512_160k_ade20k-20200807_145416.log.json) | +| PSPNet | S-101-D8 | 512x512 | 160000 | 14.2 | 13.02 | V100 | 45.44 | 46.28 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/resnest/resnest_s101-d8_pspnet_4xb4-160k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/resnest/pspnet_s101-d8_512x512_160k_ade20k/pspnet_s101-d8_512x512_160k_ade20k_20200807_145416-a6daa92a.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/resnest/pspnet_s101-d8_512x512_160k_ade20k/pspnet_s101-d8_512x512_160k_ade20k-20200807_145416.log.json) | +| DeepLabV3 | S-101-D8 | 512x512 | 160000 | 14.6 | 9.28 | V100 | 45.71 | 46.59 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/resnest/resnest_s101-d8_deeplabv3_4xb4-160k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/resnest/deeplabv3_s101-d8_512x512_160k_ade20k/deeplabv3_s101-d8_512x512_160k_ade20k_20200807_144503-17ecabe5.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/resnest/deeplabv3_s101-d8_512x512_160k_ade20k/deeplabv3_s101-d8_512x512_160k_ade20k-20200807_144503.log.json) | +| DeepLabV3+ | S-101-D8 | 512x512 | 160000 | 16.2 | 11.96 | V100 | 46.47 | 47.27 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/resnest/resnest_s101-d8_deeplabv3plus_4xb4-160k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/resnest/deeplabv3plus_s101-d8_512x512_160k_ade20k/deeplabv3plus_s101-d8_512x512_160k_ade20k_20200807_144503-27b26226.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/resnest/deeplabv3plus_s101-d8_512x512_160k_ade20k/deeplabv3plus_s101-d8_512x512_160k_ade20k-20200807_144503.log.json) | + ## Citation ```bibtex @@ -32,23 +52,3 @@ journal={arXiv preprint arXiv:2004.08955}, year={2020} } ``` - -## Results and models - -### Cityscapes - -| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | mIoU | mIoU(ms+flip) | config | download | -| ---------- | -------- | --------- | ------: | -------: | -------------- | ----: | ------------- | ------------------------------------------------------------------------------------------------------------------------------------------------- | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | -| FCN | S-101-D8 | 512x1024 | 80000 | 11.4 | 2.39 | 77.56 | 78.98 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/resnest/resnest_s101-d8_fcn_4xb2-80k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/resnest/fcn_s101-d8_512x1024_80k_cityscapes/fcn_s101-d8_512x1024_80k_cityscapes_20200807_140631-f8d155b3.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/resnest/fcn_s101-d8_512x1024_80k_cityscapes/fcn_s101-d8_512x1024_80k_cityscapes-20200807_140631.log.json) | -| PSPNet | S-101-D8 | 512x1024 | 80000 | 11.8 | 2.52 | 78.57 | 79.19 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/resnest/resnest_s101-d8_pspnet_4xb2-80k_cityscapes512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/resnest/pspnet_s101-d8_512x1024_80k_cityscapes/pspnet_s101-d8_512x1024_80k_cityscapes_20200807_140631-c75f3b99.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/resnest/pspnet_s101-d8_512x1024_80k_cityscapes/pspnet_s101-d8_512x1024_80k_cityscapes-20200807_140631.log.json) | -| DeepLabV3 | S-101-D8 | 512x1024 | 80000 | 11.9 | 1.88 | 79.67 | 80.51 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/resnest/resnest_s101-d8_deeplabv3_4xb2-80k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/resnest/deeplabv3_s101-d8_512x1024_80k_cityscapes/deeplabv3_s101-d8_512x1024_80k_cityscapes_20200807_144429-b73c4270.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/resnest/deeplabv3_s101-d8_512x1024_80k_cityscapes/deeplabv3_s101-d8_512x1024_80k_cityscapes-20200807_144429.log.json) | -| DeepLabV3+ | S-101-D8 | 512x1024 | 80000 | 13.2 | 2.36 | 79.62 | 80.27 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/resnest/resnest_s101-d8_deeplabv3plus_4xb2-80k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/resnest/deeplabv3plus_s101-d8_512x1024_80k_cityscapes/deeplabv3plus_s101-d8_512x1024_80k_cityscapes_20200807_144429-1239eb43.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/resnest/deeplabv3plus_s101-d8_512x1024_80k_cityscapes/deeplabv3plus_s101-d8_512x1024_80k_cityscapes-20200807_144429.log.json) | - -### ADE20K - -| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | mIoU | mIoU(ms+flip) | config | download | -| ---------- | -------- | --------- | ------: | -------: | -------------- | ----: | ------------- | --------------------------------------------------------------------------------------------------------------------------------------------- | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | -| FCN | S-101-D8 | 512x512 | 160000 | 14.2 | 12.86 | 45.62 | 46.16 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/resnest/resnest_s101-d8_fcn_4xb4-160k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/resnest/fcn_s101-d8_512x512_160k_ade20k/fcn_s101-d8_512x512_160k_ade20k_20200807_145416-d3160329.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/resnest/fcn_s101-d8_512x512_160k_ade20k/fcn_s101-d8_512x512_160k_ade20k-20200807_145416.log.json) | -| PSPNet | S-101-D8 | 512x512 | 160000 | 14.2 | 13.02 | 45.44 | 46.28 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/resnest/resnest_s101-d8_pspnet_4xb4-160k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/resnest/pspnet_s101-d8_512x512_160k_ade20k/pspnet_s101-d8_512x512_160k_ade20k_20200807_145416-a6daa92a.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/resnest/pspnet_s101-d8_512x512_160k_ade20k/pspnet_s101-d8_512x512_160k_ade20k-20200807_145416.log.json) | -| DeepLabV3 | S-101-D8 | 512x512 | 160000 | 14.6 | 9.28 | 45.71 | 46.59 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/resnest/resnest_s101-d8_deeplabv3_4xb4-160k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/resnest/deeplabv3_s101-d8_512x512_160k_ade20k/deeplabv3_s101-d8_512x512_160k_ade20k_20200807_144503-17ecabe5.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/resnest/deeplabv3_s101-d8_512x512_160k_ade20k/deeplabv3_s101-d8_512x512_160k_ade20k-20200807_144503.log.json) | -| DeepLabV3+ | S-101-D8 | 512x512 | 160000 | 16.2 | 11.96 | 46.47 | 47.27 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/resnest/resnest_s101-d8_deeplabv3plus_4xb4-160k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/resnest/deeplabv3plus_s101-d8_512x512_160k_ade20k/deeplabv3plus_s101-d8_512x512_160k_ade20k_20200807_144503-27b26226.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/resnest/deeplabv3plus_s101-d8_512x512_160k_ade20k/deeplabv3plus_s101-d8_512x512_160k_ade20k-20200807_144503.log.json) | diff --git a/configs/resnest/metafile.yaml b/configs/resnest/metafile.yaml new file mode 100644 index 0000000000..0b8d41ebfd --- /dev/null +++ b/configs/resnest/metafile.yaml @@ -0,0 +1,193 @@ +Models: +- Name: resnest_s101-d8_fcn_4xb2-80k_cityscapes-512x1024 + In Collection: FCN + Results: + Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 77.56 + mIoU(ms+flip): 78.98 + Config: configs/resnest/resnest_s101-d8_fcn_4xb2-80k_cityscapes-512x1024.py + Metadata: + Training Data: Cityscapes + Batch Size: 8 + Architecture: + - S-101-D8 + - FCN + Training Resources: 4x V100 GPUS + Memory (GB): 11.4 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/resnest/fcn_s101-d8_512x1024_80k_cityscapes/fcn_s101-d8_512x1024_80k_cityscapes_20200807_140631-f8d155b3.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/resnest/fcn_s101-d8_512x1024_80k_cityscapes/fcn_s101-d8_512x1024_80k_cityscapes-20200807_140631.log.json + Paper: + Title: 'ResNeSt: Split-Attention Networks' + URL: https://arxiv.org/abs/2004.08955 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/backbones/resnest.py#L271 + Framework: PyTorch +- Name: resnest_s101-d8_pspnet_4xb2-80k_cityscapes512x1024 + In Collection: PSPNet + Results: + Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 78.57 + mIoU(ms+flip): 79.19 + Config: configs/resnest/resnest_s101-d8_pspnet_4xb2-80k_cityscapes512x1024.py + Metadata: + Training Data: Cityscapes + Batch Size: 8 + Architecture: + - S-101-D8 + - PSPNet + Training Resources: 4x V100 GPUS + Memory (GB): 11.8 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/resnest/pspnet_s101-d8_512x1024_80k_cityscapes/pspnet_s101-d8_512x1024_80k_cityscapes_20200807_140631-c75f3b99.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/resnest/pspnet_s101-d8_512x1024_80k_cityscapes/pspnet_s101-d8_512x1024_80k_cityscapes-20200807_140631.log.json + Paper: + Title: 'ResNeSt: Split-Attention Networks' + URL: https://arxiv.org/abs/2004.08955 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/backbones/resnest.py#L271 + Framework: PyTorch +- Name: resnest_s101-d8_deeplabv3_4xb2-80k_cityscapes-512x1024 + In Collection: DeepLabV3 + Results: + Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 79.67 + mIoU(ms+flip): 80.51 + Config: configs/resnest/resnest_s101-d8_deeplabv3_4xb2-80k_cityscapes-512x1024.py + Metadata: + Training Data: Cityscapes + Batch Size: 8 + Architecture: + - S-101-D8 + - DeepLabV3 + Training Resources: 4x V100 GPUS + Memory (GB): 11.9 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/resnest/deeplabv3_s101-d8_512x1024_80k_cityscapes/deeplabv3_s101-d8_512x1024_80k_cityscapes_20200807_144429-b73c4270.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/resnest/deeplabv3_s101-d8_512x1024_80k_cityscapes/deeplabv3_s101-d8_512x1024_80k_cityscapes-20200807_144429.log.json + Paper: + Title: 'ResNeSt: Split-Attention Networks' + URL: https://arxiv.org/abs/2004.08955 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/backbones/resnest.py#L271 + Framework: PyTorch +- Name: resnest_s101-d8_deeplabv3plus_4xb2-80k_cityscapes-512x1024 + In Collection: DeepLabV3+ + Results: + Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 79.62 + mIoU(ms+flip): 80.27 + Config: configs/resnest/resnest_s101-d8_deeplabv3plus_4xb2-80k_cityscapes-512x1024.py + Metadata: + Training Data: Cityscapes + Batch Size: 8 + Architecture: + - S-101-D8 + - DeepLabV3+ + Training Resources: 4x V100 GPUS + Memory (GB): 13.2 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/resnest/deeplabv3plus_s101-d8_512x1024_80k_cityscapes/deeplabv3plus_s101-d8_512x1024_80k_cityscapes_20200807_144429-1239eb43.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/resnest/deeplabv3plus_s101-d8_512x1024_80k_cityscapes/deeplabv3plus_s101-d8_512x1024_80k_cityscapes-20200807_144429.log.json + Paper: + Title: 'ResNeSt: Split-Attention Networks' + URL: https://arxiv.org/abs/2004.08955 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/backbones/resnest.py#L271 + Framework: PyTorch +- Name: resnest_s101-d8_fcn_4xb4-160k_ade20k-512x512 + In Collection: FCN + Results: + Task: Semantic Segmentation + Dataset: ADE20K + Metrics: + mIoU: 45.62 + mIoU(ms+flip): 46.16 + Config: configs/resnest/resnest_s101-d8_fcn_4xb4-160k_ade20k-512x512.py + Metadata: + Training Data: ADE20K + Batch Size: 16 + Architecture: + - S-101-D8 + - FCN + Training Resources: 4x V100 GPUS + Memory (GB): 14.2 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/resnest/fcn_s101-d8_512x512_160k_ade20k/fcn_s101-d8_512x512_160k_ade20k_20200807_145416-d3160329.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/resnest/fcn_s101-d8_512x512_160k_ade20k/fcn_s101-d8_512x512_160k_ade20k-20200807_145416.log.json + Paper: + Title: 'ResNeSt: Split-Attention Networks' + URL: https://arxiv.org/abs/2004.08955 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/backbones/resnest.py#L271 + Framework: PyTorch +- Name: resnest_s101-d8_pspnet_4xb4-160k_ade20k-512x512 + In Collection: PSPNet + Results: + Task: Semantic Segmentation + Dataset: ADE20K + Metrics: + mIoU: 45.44 + mIoU(ms+flip): 46.28 + Config: configs/resnest/resnest_s101-d8_pspnet_4xb4-160k_ade20k-512x512.py + Metadata: + Training Data: ADE20K + Batch Size: 16 + Architecture: + - S-101-D8 + - PSPNet + Training Resources: 4x V100 GPUS + Memory (GB): 14.2 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/resnest/pspnet_s101-d8_512x512_160k_ade20k/pspnet_s101-d8_512x512_160k_ade20k_20200807_145416-a6daa92a.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/resnest/pspnet_s101-d8_512x512_160k_ade20k/pspnet_s101-d8_512x512_160k_ade20k-20200807_145416.log.json + Paper: + Title: 'ResNeSt: Split-Attention Networks' + URL: https://arxiv.org/abs/2004.08955 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/backbones/resnest.py#L271 + Framework: PyTorch +- Name: resnest_s101-d8_deeplabv3_4xb4-160k_ade20k-512x512 + In Collection: DeepLabV3 + Results: + Task: Semantic Segmentation + Dataset: ADE20K + Metrics: + mIoU: 45.71 + mIoU(ms+flip): 46.59 + Config: configs/resnest/resnest_s101-d8_deeplabv3_4xb4-160k_ade20k-512x512.py + Metadata: + Training Data: ADE20K + Batch Size: 16 + Architecture: + - S-101-D8 + - DeepLabV3 + Training Resources: 4x V100 GPUS + Memory (GB): 14.6 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/resnest/deeplabv3_s101-d8_512x512_160k_ade20k/deeplabv3_s101-d8_512x512_160k_ade20k_20200807_144503-17ecabe5.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/resnest/deeplabv3_s101-d8_512x512_160k_ade20k/deeplabv3_s101-d8_512x512_160k_ade20k-20200807_144503.log.json + Paper: + Title: 'ResNeSt: Split-Attention Networks' + URL: https://arxiv.org/abs/2004.08955 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/backbones/resnest.py#L271 + Framework: PyTorch +- Name: resnest_s101-d8_deeplabv3plus_4xb4-160k_ade20k-512x512 + In Collection: DeepLabV3+ + Results: + Task: Semantic Segmentation + Dataset: ADE20K + Metrics: + mIoU: 46.47 + mIoU(ms+flip): 47.27 + Config: configs/resnest/resnest_s101-d8_deeplabv3plus_4xb4-160k_ade20k-512x512.py + Metadata: + Training Data: ADE20K + Batch Size: 16 + Architecture: + - S-101-D8 + - DeepLabV3+ + Training Resources: 4x V100 GPUS + Memory (GB): 16.2 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/resnest/deeplabv3plus_s101-d8_512x512_160k_ade20k/deeplabv3plus_s101-d8_512x512_160k_ade20k_20200807_144503-27b26226.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/resnest/deeplabv3plus_s101-d8_512x512_160k_ade20k/deeplabv3plus_s101-d8_512x512_160k_ade20k-20200807_144503.log.json + Paper: + Title: 'ResNeSt: Split-Attention Networks' + URL: https://arxiv.org/abs/2004.08955 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/backbones/resnest.py#L271 + Framework: PyTorch diff --git a/configs/resnest/resnest.yml b/configs/resnest/resnest.yml deleted file mode 100644 index ab897e3bd5..0000000000 --- a/configs/resnest/resnest.yml +++ /dev/null @@ -1,177 +0,0 @@ -Models: -- Name: resnest_s101-d8_fcn_4xb2-80k_cityscapes-512x1024 - In Collection: FCN - Metadata: - backbone: S-101-D8 - crop size: (512,1024) - lr schd: 80000 - inference time (ms/im): - - value: 418.41 - hardware: V100 - backend: PyTorch - batch size: 1 - mode: FP32 - resolution: (512,1024) - Training Memory (GB): 11.4 - Results: - - Task: Semantic Segmentation - Dataset: Cityscapes - Metrics: - mIoU: 77.56 - mIoU(ms+flip): 78.98 - Config: configs/resnest/resnest_s101-d8_fcn_4xb2-80k_cityscapes-512x1024.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/resnest/fcn_s101-d8_512x1024_80k_cityscapes/fcn_s101-d8_512x1024_80k_cityscapes_20200807_140631-f8d155b3.pth -- Name: resnest_s101-d8_pspnet_4xb2-80k_cityscapes512x1024 - In Collection: PSPNet - Metadata: - backbone: S-101-D8 - crop size: (512,1024) - lr schd: 80000 - inference time (ms/im): - - value: 396.83 - hardware: V100 - backend: PyTorch - batch size: 1 - mode: FP32 - resolution: (512,1024) - Training Memory (GB): 11.8 - Results: - - Task: Semantic Segmentation - Dataset: Cityscapes - Metrics: - mIoU: 78.57 - mIoU(ms+flip): 79.19 - Config: configs/resnest/resnest_s101-d8_pspnet_4xb2-80k_cityscapes512x1024.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/resnest/pspnet_s101-d8_512x1024_80k_cityscapes/pspnet_s101-d8_512x1024_80k_cityscapes_20200807_140631-c75f3b99.pth -- Name: resnest_s101-d8_deeplabv3_4xb2-80k_cityscapes-512x1024 - In Collection: DeepLabV3 - Metadata: - backbone: S-101-D8 - crop size: (512,1024) - lr schd: 80000 - inference time (ms/im): - - value: 531.91 - hardware: V100 - backend: PyTorch - batch size: 1 - mode: FP32 - resolution: (512,1024) - Training Memory (GB): 11.9 - Results: - - Task: Semantic Segmentation - Dataset: Cityscapes - Metrics: - mIoU: 79.67 - mIoU(ms+flip): 80.51 - Config: configs/resnest/resnest_s101-d8_deeplabv3_4xb2-80k_cityscapes-512x1024.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/resnest/deeplabv3_s101-d8_512x1024_80k_cityscapes/deeplabv3_s101-d8_512x1024_80k_cityscapes_20200807_144429-b73c4270.pth -- Name: resnest_s101-d8_deeplabv3plus_4xb2-80k_cityscapes-512x1024 - In Collection: DeepLabV3+ - Metadata: - backbone: S-101-D8 - crop size: (512,1024) - lr schd: 80000 - inference time (ms/im): - - value: 423.73 - hardware: V100 - backend: PyTorch - batch size: 1 - mode: FP32 - resolution: (512,1024) - Training Memory (GB): 13.2 - Results: - - Task: Semantic Segmentation - Dataset: Cityscapes - Metrics: - mIoU: 79.62 - mIoU(ms+flip): 80.27 - Config: configs/resnest/resnest_s101-d8_deeplabv3plus_4xb2-80k_cityscapes-512x1024.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/resnest/deeplabv3plus_s101-d8_512x1024_80k_cityscapes/deeplabv3plus_s101-d8_512x1024_80k_cityscapes_20200807_144429-1239eb43.pth -- Name: resnest_s101-d8_fcn_4xb4-160k_ade20k-512x512 - In Collection: FCN - Metadata: - backbone: S-101-D8 - crop size: (512,512) - lr schd: 160000 - inference time (ms/im): - - value: 77.76 - hardware: V100 - backend: PyTorch - batch size: 1 - mode: FP32 - resolution: (512,512) - Training Memory (GB): 14.2 - Results: - - Task: Semantic Segmentation - Dataset: ADE20K - Metrics: - mIoU: 45.62 - mIoU(ms+flip): 46.16 - Config: configs/resnest/resnest_s101-d8_fcn_4xb4-160k_ade20k-512x512.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/resnest/fcn_s101-d8_512x512_160k_ade20k/fcn_s101-d8_512x512_160k_ade20k_20200807_145416-d3160329.pth -- Name: resnest_s101-d8_pspnet_4xb4-160k_ade20k-512x512 - In Collection: PSPNet - Metadata: - backbone: S-101-D8 - crop size: (512,512) - lr schd: 160000 - inference time (ms/im): - - value: 76.8 - hardware: V100 - backend: PyTorch - batch size: 1 - mode: FP32 - resolution: (512,512) - Training Memory (GB): 14.2 - Results: - - Task: Semantic Segmentation - Dataset: ADE20K - Metrics: - mIoU: 45.44 - mIoU(ms+flip): 46.28 - Config: configs/resnest/resnest_s101-d8_pspnet_4xb4-160k_ade20k-512x512.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/resnest/pspnet_s101-d8_512x512_160k_ade20k/pspnet_s101-d8_512x512_160k_ade20k_20200807_145416-a6daa92a.pth -- Name: resnest_s101-d8_deeplabv3_4xb4-160k_ade20k-512x512 - In Collection: DeepLabV3 - Metadata: - backbone: S-101-D8 - crop size: (512,512) - lr schd: 160000 - inference time (ms/im): - - value: 107.76 - hardware: V100 - backend: PyTorch - batch size: 1 - mode: FP32 - resolution: (512,512) - Training Memory (GB): 14.6 - Results: - - Task: Semantic Segmentation - Dataset: ADE20K - Metrics: - mIoU: 45.71 - mIoU(ms+flip): 46.59 - Config: configs/resnest/resnest_s101-d8_deeplabv3_4xb4-160k_ade20k-512x512.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/resnest/deeplabv3_s101-d8_512x512_160k_ade20k/deeplabv3_s101-d8_512x512_160k_ade20k_20200807_144503-17ecabe5.pth -- Name: resnest_s101-d8_deeplabv3plus_4xb4-160k_ade20k-512x512 - In Collection: DeepLabV3+ - Metadata: - backbone: S-101-D8 - crop size: (512,512) - lr schd: 160000 - inference time (ms/im): - - value: 83.61 - hardware: V100 - backend: PyTorch - batch size: 1 - mode: FP32 - resolution: (512,512) - Training Memory (GB): 16.2 - Results: - - Task: Semantic Segmentation - Dataset: ADE20K - Metrics: - mIoU: 46.47 - mIoU(ms+flip): 47.27 - Config: configs/resnest/resnest_s101-d8_deeplabv3plus_4xb4-160k_ade20k-512x512.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/resnest/deeplabv3plus_s101-d8_512x512_160k_ade20k/deeplabv3plus_s101-d8_512x512_160k_ade20k_20200807_144503-27b26226.pth diff --git a/configs/segformer/README.md b/configs/segformer/README.md index be64099da3..5dbf1215bc 100644 --- a/configs/segformer/README.md +++ b/configs/segformer/README.md @@ -1,6 +1,6 @@ # SegFormer -[SegFormer: Simple and Efficient Design for Semantic Segmentation with Transformers](https://arxiv.org/abs/2105.15203) +> [SegFormer: Simple and Efficient Design for Semantic Segmentation with Transformers](https://arxiv.org/abs/2105.15203) ## Introduction @@ -22,17 +22,6 @@ We present SegFormer, a simple, efficient yet powerful semantic segmentation fra -## Citation - -```bibtex -@article{xie2021segformer, - title={SegFormer: Simple and Efficient Design for Semantic Segmentation with Transformers}, - author={Xie, Enze and Wang, Wenhai and Yu, Zhiding and Anandkumar, Anima and Alvarez, Jose M and Luo, Ping}, - journal={arXiv preprint arXiv:2105.15203}, - year={2021} -} -``` - ## Usage To use other repositories' pre-trained models, it is necessary to convert keys. @@ -49,15 +38,15 @@ This script convert model from `PRETRAIN_PATH` and store the converted model in ### ADE20K -| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | mIoU | mIoU(ms+flip) | config | download | -| --------- | -------- | --------- | ------: | -------: | -------------- | ----: | ------------- | ---------------------------------------------------------------------------------------------------------------------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ | -| Segformer | MIT-B0 | 512x512 | 160000 | 2.1 | 51.32 | 37.41 | 38.34 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/segformer/segformer_mit-b0_8xb2-160k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/segformer/segformer_mit-b0_512x512_160k_ade20k/segformer_mit-b0_512x512_160k_ade20k_20210726_101530-8ffa8fda.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/segformer/segformer_mit-b0_512x512_160k_ade20k/segformer_mit-b0_512x512_160k_ade20k_20210726_101530.log.json) | -| Segformer | MIT-B1 | 512x512 | 160000 | 2.6 | 47.66 | 40.97 | 42.54 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/segformer/segformer_mit-b1_8xb2-160k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/segformer/segformer_mit-b1_512x512_160k_ade20k/segformer_mit-b1_512x512_160k_ade20k_20210726_112106-d70e859d.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/segformer/segformer_mit-b1_512x512_160k_ade20k/segformer_mit-b1_512x512_160k_ade20k_20210726_112106.log.json) | -| Segformer | MIT-B2 | 512x512 | 160000 | 3.6 | 30.88 | 45.58 | 47.03 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/segformer/segformer_mit-b2_8xb2-160k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/segformer/segformer_mit-b2_512x512_160k_ade20k/segformer_mit-b2_512x512_160k_ade20k_20210726_112103-cbd414ac.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/segformer/segformer_mit-b2_512x512_160k_ade20k/segformer_mit-b2_512x512_160k_ade20k_20210726_112103.log.json) | -| Segformer | MIT-B3 | 512x512 | 160000 | 4.8 | 22.11 | 47.82 | 48.81 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/segformer/segformer_mit-b3_8xb2-160k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/segformer/segformer_mit-b3_512x512_160k_ade20k/segformer_mit-b3_512x512_160k_ade20k_20210726_081410-962b98d2.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/segformer/segformer_mit-b3_512x512_160k_ade20k/segformer_mit-b3_512x512_160k_ade20k_20210726_081410.log.json) | -| Segformer | MIT-B4 | 512x512 | 160000 | 6.1 | 15.45 | 48.46 | 49.76 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/segformer/segformer_mit-b4_8xb2-160k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/segformer/segformer_mit-b4_512x512_160k_ade20k/segformer_mit-b4_512x512_160k_ade20k_20210728_183055-7f509d7d.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/segformer/segformer_mit-b4_512x512_160k_ade20k/segformer_mit-b4_512x512_160k_ade20k_20210728_183055.log.json) | -| Segformer | MIT-B5 | 512x512 | 160000 | 7.2 | 11.89 | 49.13 | 50.22 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/segformer/segformer_mit-b5_8xb2-160k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/segformer/segformer_mit-b5_512x512_160k_ade20k/segformer_mit-b5_512x512_160k_ade20k_20210726_145235-94cedf59.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/segformer/segformer_mit-b5_512x512_160k_ade20k/segformer_mit-b5_512x512_160k_ade20k_20210726_145235.log.json) | -| Segformer | MIT-B5 | 640x640 | 160000 | 11.5 | 11.30 | 49.62 | 50.36 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/segformer/segformer_mit-b5_8xb2-160k_ade20k-640x640.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/segformer/segformer_mit-b5_640x640_160k_ade20k/segformer_mit-b5_640x640_160k_ade20k_20210801_121243-41d2845b.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/segformer/segformer_mit-b5_640x640_160k_ade20k/segformer_mit-b5_640x640_160k_ade20k_20210801_121243.log.json) | +| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | Device | mIoU | mIoU(ms+flip) | config | download | +| --------- | -------- | --------- | ------: | -------: | -------------- | -------- | ----: | ------------- | ---------------------------------------------------------------------------------------------------------------------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ | +| Segformer | MIT-B0 | 512x512 | 160000 | 2.1 | 51.32 | 1080 Ti | 37.41 | 38.34 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/segformer/segformer_mit-b0_8xb2-160k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/segformer/segformer_mit-b0_512x512_160k_ade20k/segformer_mit-b0_512x512_160k_ade20k_20210726_101530-8ffa8fda.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/segformer/segformer_mit-b0_512x512_160k_ade20k/segformer_mit-b0_512x512_160k_ade20k_20210726_101530.log.json) | +| Segformer | MIT-B1 | 512x512 | 160000 | 2.6 | 47.66 | TITAN Xp | 40.97 | 42.54 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/segformer/segformer_mit-b1_8xb2-160k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/segformer/segformer_mit-b1_512x512_160k_ade20k/segformer_mit-b1_512x512_160k_ade20k_20210726_112106-d70e859d.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/segformer/segformer_mit-b1_512x512_160k_ade20k/segformer_mit-b1_512x512_160k_ade20k_20210726_112106.log.json) | +| Segformer | MIT-B2 | 512x512 | 160000 | 3.6 | 30.88 | TITAN Xp | 45.58 | 47.03 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/segformer/segformer_mit-b2_8xb2-160k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/segformer/segformer_mit-b2_512x512_160k_ade20k/segformer_mit-b2_512x512_160k_ade20k_20210726_112103-cbd414ac.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/segformer/segformer_mit-b2_512x512_160k_ade20k/segformer_mit-b2_512x512_160k_ade20k_20210726_112103.log.json) | +| Segformer | MIT-B3 | 512x512 | 160000 | 4.8 | 22.11 | V100 | 47.82 | 48.81 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/segformer/segformer_mit-b3_8xb2-160k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/segformer/segformer_mit-b3_512x512_160k_ade20k/segformer_mit-b3_512x512_160k_ade20k_20210726_081410-962b98d2.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/segformer/segformer_mit-b3_512x512_160k_ade20k/segformer_mit-b3_512x512_160k_ade20k_20210726_081410.log.json) | +| Segformer | MIT-B4 | 512x512 | 160000 | 6.1 | 15.45 | V100 | 48.46 | 49.76 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/segformer/segformer_mit-b4_8xb2-160k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/segformer/segformer_mit-b4_512x512_160k_ade20k/segformer_mit-b4_512x512_160k_ade20k_20210728_183055-7f509d7d.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/segformer/segformer_mit-b4_512x512_160k_ade20k/segformer_mit-b4_512x512_160k_ade20k_20210728_183055.log.json) | +| Segformer | MIT-B5 | 512x512 | 160000 | 7.2 | 11.89 | V100 | 49.13 | 50.22 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/segformer/segformer_mit-b5_8xb2-160k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/segformer/segformer_mit-b5_512x512_160k_ade20k/segformer_mit-b5_512x512_160k_ade20k_20210726_145235-94cedf59.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/segformer/segformer_mit-b5_512x512_160k_ade20k/segformer_mit-b5_512x512_160k_ade20k_20210726_145235.log.json) | +| Segformer | MIT-B5 | 640x640 | 160000 | 11.5 | 11.30 | V100 | 49.62 | 50.36 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/segformer/segformer_mit-b5_8xb2-160k_ade20k-640x640.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/segformer/segformer_mit-b5_640x640_160k_ade20k/segformer_mit-b5_640x640_160k_ade20k_20210801_121243-41d2845b.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/segformer/segformer_mit-b5_640x640_160k_ade20k/segformer_mit-b5_640x640_160k_ade20k_20210801_121243.log.json) | Evaluation with AlignedResize: @@ -91,11 +80,22 @@ test_pipeline = [ The lower fps result is caused by the sliding window inference scheme (window size:1024x1024). -| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | mIoU | mIoU(ms+flip) | config | download | -| --------- | -------- | --------- | ------: | -------: | -------------- | ----: | ------------- | ---------------------------------------------------------------------------------------------------------------------------------------- | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | -| Segformer | MIT-B0 | 1024x1024 | 160000 | 3.64 | 4.74 | 76.54 | 78.22 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/segformer/segformer_mit-b0_8xb1-160k_cityscapes-1024x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/segformer/segformer_mit-b0_8x1_1024x1024_160k_cityscapes/segformer_mit-b0_8x1_1024x1024_160k_cityscapes_20211208_101857-e7f88502.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/segformer/segformer_mit-b0_8x1_1024x1024_160k_cityscapes/segformer_mit-b0_8x1_1024x1024_160k_cityscapes_20211208_101857.log.json) | -| Segformer | MIT-B1 | 1024x1024 | 160000 | 4.49 | 4.3 | 78.56 | 79.73 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/segformer/segformer_mit-b1_8xb1-160k_cityscapes-1024x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/segformer/segformer_mit-b1_8x1_1024x1024_160k_cityscapes/segformer_mit-b1_8x1_1024x1024_160k_cityscapes_20211208_064213-655c7b3f.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/segformer/segformer_mit-b1_8x1_1024x1024_160k_cityscapes/segformer_mit-b1_8x1_1024x1024_160k_cityscapes_20211208_064213.log.json) | -| Segformer | MIT-B2 | 1024x1024 | 160000 | 7.42 | 3.36 | 81.08 | 82.18 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/segformer/segformer_mit-b2_8xb1-160k_cityscapes-1024x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/segformer/segformer_mit-b2_8x1_1024x1024_160k_cityscapes/segformer_mit-b2_8x1_1024x1024_160k_cityscapes_20211207_134205-6096669a.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/segformer/segformer_mit-b2_8x1_1024x1024_160k_cityscapes/segformer_mit-b2_8x1_1024x1024_160k_cityscapes_20211207_134205.log.json) | -| Segformer | MIT-B3 | 1024x1024 | 160000 | 10.86 | 2.53 | 81.94 | 83.14 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/segformer/segformer_mit-b3_8xb1-160k_cityscapes-1024x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/segformer/segformer_mit-b3_8x1_1024x1024_160k_cityscapes/segformer_mit-b3_8x1_1024x1024_160k_cityscapes_20211206_224823-a8f8a177.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/segformer/segformer_mit-b3_8x1_1024x1024_160k_cityscapes/segformer_mit-b3_8x1_1024x1024_160k_cityscapes_20211206_224823.log.json) | -| Segformer | MIT-B4 | 1024x1024 | 160000 | 15.07 | 1.88 | 81.89 | 83.38 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/segformer/segformer_mit-b4_8xb1-160k_cityscapes-1024x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/segformer/segformer_mit-b4_8x1_1024x1024_160k_cityscapes/segformer_mit-b4_8x1_1024x1024_160k_cityscapes_20211207_080709-07f6c333.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/segformer/segformer_mit-b4_8x1_1024x1024_160k_cityscapes/segformer_mit-b4_8x1_1024x1024_160k_cityscapes_20211207_080709.log.json) | -| Segformer | MIT-B5 | 1024x1024 | 160000 | 18.00 | 1.39 | 82.25 | 83.48 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/segformer/segformer_mit-b5_8xb1-160k_cityscapes-1024x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/segformer/segformer_mit-b5_8x1_1024x1024_160k_cityscapes/segformer_mit-b5_8x1_1024x1024_160k_cityscapes_20211206_072934-87a052ec.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/segformer/segformer_mit-b5_8x1_1024x1024_160k_cityscapes/segformer_mit-b5_8x1_1024x1024_160k_cityscapes_20211206_072934.log.json) | +| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | Device | mIoU | mIoU(ms+flip) | config | download | +| --------- | -------- | --------- | ------: | -------: | -------------- | ------ | ----: | ------------- | ---------------------------------------------------------------------------------------------------------------------------------------- | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | +| Segformer | MIT-B0 | 1024x1024 | 160000 | 3.64 | 4.74 | V100 | 76.54 | 78.22 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/segformer/segformer_mit-b0_8xb1-160k_cityscapes-1024x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/segformer/segformer_mit-b0_8x1_1024x1024_160k_cityscapes/segformer_mit-b0_8x1_1024x1024_160k_cityscapes_20211208_101857-e7f88502.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/segformer/segformer_mit-b0_8x1_1024x1024_160k_cityscapes/segformer_mit-b0_8x1_1024x1024_160k_cityscapes_20211208_101857.log.json) | +| Segformer | MIT-B1 | 1024x1024 | 160000 | 4.49 | 4.3 | V100 | 78.56 | 79.73 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/segformer/segformer_mit-b1_8xb1-160k_cityscapes-1024x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/segformer/segformer_mit-b1_8x1_1024x1024_160k_cityscapes/segformer_mit-b1_8x1_1024x1024_160k_cityscapes_20211208_064213-655c7b3f.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/segformer/segformer_mit-b1_8x1_1024x1024_160k_cityscapes/segformer_mit-b1_8x1_1024x1024_160k_cityscapes_20211208_064213.log.json) | +| Segformer | MIT-B2 | 1024x1024 | 160000 | 7.42 | 3.36 | V100 | 81.08 | 82.18 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/segformer/segformer_mit-b2_8xb1-160k_cityscapes-1024x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/segformer/segformer_mit-b2_8x1_1024x1024_160k_cityscapes/segformer_mit-b2_8x1_1024x1024_160k_cityscapes_20211207_134205-6096669a.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/segformer/segformer_mit-b2_8x1_1024x1024_160k_cityscapes/segformer_mit-b2_8x1_1024x1024_160k_cityscapes_20211207_134205.log.json) | +| Segformer | MIT-B3 | 1024x1024 | 160000 | 10.86 | 2.53 | V100 | 81.94 | 83.14 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/segformer/segformer_mit-b3_8xb1-160k_cityscapes-1024x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/segformer/segformer_mit-b3_8x1_1024x1024_160k_cityscapes/segformer_mit-b3_8x1_1024x1024_160k_cityscapes_20211206_224823-a8f8a177.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/segformer/segformer_mit-b3_8x1_1024x1024_160k_cityscapes/segformer_mit-b3_8x1_1024x1024_160k_cityscapes_20211206_224823.log.json) | +| Segformer | MIT-B4 | 1024x1024 | 160000 | 15.07 | 1.88 | V100 | 81.89 | 83.38 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/segformer/segformer_mit-b4_8xb1-160k_cityscapes-1024x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/segformer/segformer_mit-b4_8x1_1024x1024_160k_cityscapes/segformer_mit-b4_8x1_1024x1024_160k_cityscapes_20211207_080709-07f6c333.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/segformer/segformer_mit-b4_8x1_1024x1024_160k_cityscapes/segformer_mit-b4_8x1_1024x1024_160k_cityscapes_20211207_080709.log.json) | +| Segformer | MIT-B5 | 1024x1024 | 160000 | 18.00 | 1.39 | V100 | 82.25 | 83.48 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/segformer/segformer_mit-b5_8xb1-160k_cityscapes-1024x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/segformer/segformer_mit-b5_8x1_1024x1024_160k_cityscapes/segformer_mit-b5_8x1_1024x1024_160k_cityscapes_20211206_072934-87a052ec.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/segformer/segformer_mit-b5_8x1_1024x1024_160k_cityscapes/segformer_mit-b5_8x1_1024x1024_160k_cityscapes_20211206_072934.log.json) | + +## Citation + +```bibtex +@article{xie2021segformer, + title={SegFormer: Simple and Efficient Design for Semantic Segmentation with Transformers}, + author={Xie, Enze and Wang, Wenhai and Yu, Zhiding and Anandkumar, Anima and Alvarez, Jose M and Luo, Ping}, + journal={arXiv preprint arXiv:2105.15203}, + year={2021} +} +``` diff --git a/configs/segformer/metafile.yaml b/configs/segformer/metafile.yaml new file mode 100644 index 0000000000..7fb38d745b --- /dev/null +++ b/configs/segformer/metafile.yaml @@ -0,0 +1,340 @@ +Collections: +- Name: Segformer + License: Apache License 2.0 + Metadata: + Training Data: + - ADE20K + - Cityscapes + Paper: + Title: 'SegFormer: Simple and Efficient Design for Semantic Segmentation with + Transformers' + URL: https://arxiv.org/abs/2105.15203 + README: configs/segformer/README.md + Frameworks: + - PyTorch +Models: +- Name: segformer_mit-b0_8xb2-160k_ade20k-512x512 + In Collection: Segformer + Results: + Task: Semantic Segmentation + Dataset: ADE20K + Metrics: + mIoU: 37.41 + mIoU(ms+flip): 38.34 + Config: configs/segformer/segformer_mit-b0_8xb2-160k_ade20k-512x512.py + Metadata: + Training Data: ADE20K + Batch Size: 16 + Architecture: + - MIT-B0 + - Segformer + Training Resources: 8x 1080 Ti GPUS + Memory (GB): 2.1 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/segformer/segformer_mit-b0_512x512_160k_ade20k/segformer_mit-b0_512x512_160k_ade20k_20210726_101530-8ffa8fda.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/segformer/segformer_mit-b0_512x512_160k_ade20k/segformer_mit-b0_512x512_160k_ade20k_20210726_101530.log.json + Paper: + Title: 'SegFormer: Simple and Efficient Design for Semantic Segmentation with + Transformers' + URL: https://arxiv.org/abs/2105.15203 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/backbones/mit.py#L246 + Framework: PyTorch +- Name: segformer_mit-b1_8xb2-160k_ade20k-512x512 + In Collection: Segformer + Results: + Task: Semantic Segmentation + Dataset: ADE20K + Metrics: + mIoU: 40.97 + mIoU(ms+flip): 42.54 + Config: configs/segformer/segformer_mit-b1_8xb2-160k_ade20k-512x512.py + Metadata: + Training Data: ADE20K + Batch Size: 16 + Architecture: + - MIT-B1 + - Segformer + Training Resources: 8x TITAN Xp GPUS + Memory (GB): 2.6 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/segformer/segformer_mit-b1_512x512_160k_ade20k/segformer_mit-b1_512x512_160k_ade20k_20210726_112106-d70e859d.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/segformer/segformer_mit-b1_512x512_160k_ade20k/segformer_mit-b1_512x512_160k_ade20k_20210726_112106.log.json + Paper: + Title: 'SegFormer: Simple and Efficient Design for Semantic Segmentation with + Transformers' + URL: https://arxiv.org/abs/2105.15203 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/backbones/mit.py#L246 + Framework: PyTorch +- Name: segformer_mit-b2_8xb2-160k_ade20k-512x512 + In Collection: Segformer + Results: + Task: Semantic Segmentation + Dataset: ADE20K + Metrics: + mIoU: 45.58 + mIoU(ms+flip): 47.03 + Config: configs/segformer/segformer_mit-b2_8xb2-160k_ade20k-512x512.py + Metadata: + Training Data: ADE20K + Batch Size: 16 + Architecture: + - MIT-B2 + - Segformer + Training Resources: 8x TITAN Xp GPUS + Memory (GB): 3.6 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/segformer/segformer_mit-b2_512x512_160k_ade20k/segformer_mit-b2_512x512_160k_ade20k_20210726_112103-cbd414ac.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/segformer/segformer_mit-b2_512x512_160k_ade20k/segformer_mit-b2_512x512_160k_ade20k_20210726_112103.log.json + Paper: + Title: 'SegFormer: Simple and Efficient Design for Semantic Segmentation with + Transformers' + URL: https://arxiv.org/abs/2105.15203 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/backbones/mit.py#L246 + Framework: PyTorch +- Name: segformer_mit-b3_8xb2-160k_ade20k-512x512 + In Collection: Segformer + Results: + Task: Semantic Segmentation + Dataset: ADE20K + Metrics: + mIoU: 47.82 + mIoU(ms+flip): 48.81 + Config: configs/segformer/segformer_mit-b3_8xb2-160k_ade20k-512x512.py + Metadata: + Training Data: ADE20K + Batch Size: 16 + Architecture: + - MIT-B3 + - Segformer + Training Resources: 8x V100 GPUS + Memory (GB): 4.8 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/segformer/segformer_mit-b3_512x512_160k_ade20k/segformer_mit-b3_512x512_160k_ade20k_20210726_081410-962b98d2.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/segformer/segformer_mit-b3_512x512_160k_ade20k/segformer_mit-b3_512x512_160k_ade20k_20210726_081410.log.json + Paper: + Title: 'SegFormer: Simple and Efficient Design for Semantic Segmentation with + Transformers' + URL: https://arxiv.org/abs/2105.15203 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/backbones/mit.py#L246 + Framework: PyTorch +- Name: segformer_mit-b4_8xb2-160k_ade20k-512x512 + In Collection: Segformer + Results: + Task: Semantic Segmentation + Dataset: ADE20K + Metrics: + mIoU: 48.46 + mIoU(ms+flip): 49.76 + Config: configs/segformer/segformer_mit-b4_8xb2-160k_ade20k-512x512.py + Metadata: + Training Data: ADE20K + Batch Size: 16 + Architecture: + - MIT-B4 + - Segformer + Training Resources: 8x V100 GPUS + Memory (GB): 6.1 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/segformer/segformer_mit-b4_512x512_160k_ade20k/segformer_mit-b4_512x512_160k_ade20k_20210728_183055-7f509d7d.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/segformer/segformer_mit-b4_512x512_160k_ade20k/segformer_mit-b4_512x512_160k_ade20k_20210728_183055.log.json + Paper: + Title: 'SegFormer: Simple and Efficient Design for Semantic Segmentation with + Transformers' + URL: https://arxiv.org/abs/2105.15203 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/backbones/mit.py#L246 + Framework: PyTorch +- Name: segformer_mit-b5_8xb2-160k_ade20k-512x512 + In Collection: Segformer + Results: + Task: Semantic Segmentation + Dataset: ADE20K + Metrics: + mIoU: 49.13 + mIoU(ms+flip): 50.22 + Config: configs/segformer/segformer_mit-b5_8xb2-160k_ade20k-512x512.py + Metadata: + Training Data: ADE20K + Batch Size: 16 + Architecture: + - MIT-B5 + - Segformer + Training Resources: 8x V100 GPUS + Memory (GB): 7.2 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/segformer/segformer_mit-b5_512x512_160k_ade20k/segformer_mit-b5_512x512_160k_ade20k_20210726_145235-94cedf59.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/segformer/segformer_mit-b5_512x512_160k_ade20k/segformer_mit-b5_512x512_160k_ade20k_20210726_145235.log.json + Paper: + Title: 'SegFormer: Simple and Efficient Design for Semantic Segmentation with + Transformers' + URL: https://arxiv.org/abs/2105.15203 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/backbones/mit.py#L246 + Framework: PyTorch +- Name: segformer_mit-b5_8xb2-160k_ade20k-640x640 + In Collection: Segformer + Results: + Task: Semantic Segmentation + Dataset: ADE20K + Metrics: + mIoU: 49.62 + mIoU(ms+flip): 50.36 + Config: configs/segformer/segformer_mit-b5_8xb2-160k_ade20k-640x640.py + Metadata: + Training Data: ADE20K + Batch Size: 16 + Architecture: + - MIT-B5 + - Segformer + Training Resources: 8x V100 GPUS + Memory (GB): 11.5 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/segformer/segformer_mit-b5_640x640_160k_ade20k/segformer_mit-b5_640x640_160k_ade20k_20210801_121243-41d2845b.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/segformer/segformer_mit-b5_640x640_160k_ade20k/segformer_mit-b5_640x640_160k_ade20k_20210801_121243.log.json + Paper: + Title: 'SegFormer: Simple and Efficient Design for Semantic Segmentation with + Transformers' + URL: https://arxiv.org/abs/2105.15203 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/backbones/mit.py#L246 + Framework: PyTorch +- Name: segformer_mit-b0_8xb1-160k_cityscapes-1024x1024 + In Collection: Segformer + Results: + Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 76.54 + mIoU(ms+flip): 78.22 + Config: configs/segformer/segformer_mit-b0_8xb1-160k_cityscapes-1024x1024.py + Metadata: + Training Data: Cityscapes + Batch Size: 8 + Architecture: + - MIT-B0 + - Segformer + Training Resources: 8x V100 GPUS + Memory (GB): 3.64 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/segformer/segformer_mit-b0_8x1_1024x1024_160k_cityscapes/segformer_mit-b0_8x1_1024x1024_160k_cityscapes_20211208_101857-e7f88502.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/segformer/segformer_mit-b0_8x1_1024x1024_160k_cityscapes/segformer_mit-b0_8x1_1024x1024_160k_cityscapes_20211208_101857.log.json + Paper: + Title: 'SegFormer: Simple and Efficient Design for Semantic Segmentation with + Transformers' + URL: https://arxiv.org/abs/2105.15203 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/backbones/mit.py#L246 + Framework: PyTorch +- Name: segformer_mit-b1_8xb1-160k_cityscapes-1024x1024 + In Collection: Segformer + Results: + Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 78.56 + mIoU(ms+flip): 79.73 + Config: configs/segformer/segformer_mit-b1_8xb1-160k_cityscapes-1024x1024.py + Metadata: + Training Data: Cityscapes + Batch Size: 8 + Architecture: + - MIT-B1 + - Segformer + Training Resources: 8x V100 GPUS + Memory (GB): 4.49 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/segformer/segformer_mit-b1_8x1_1024x1024_160k_cityscapes/segformer_mit-b1_8x1_1024x1024_160k_cityscapes_20211208_064213-655c7b3f.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/segformer/segformer_mit-b1_8x1_1024x1024_160k_cityscapes/segformer_mit-b1_8x1_1024x1024_160k_cityscapes_20211208_064213.log.json + Paper: + Title: 'SegFormer: Simple and Efficient Design for Semantic Segmentation with + Transformers' + URL: https://arxiv.org/abs/2105.15203 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/backbones/mit.py#L246 + Framework: PyTorch +- Name: segformer_mit-b2_8xb1-160k_cityscapes-1024x1024 + In Collection: Segformer + Results: + Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 81.08 + mIoU(ms+flip): 82.18 + Config: configs/segformer/segformer_mit-b2_8xb1-160k_cityscapes-1024x1024.py + Metadata: + Training Data: Cityscapes + Batch Size: 8 + Architecture: + - MIT-B2 + - Segformer + Training Resources: 8x V100 GPUS + Memory (GB): 7.42 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/segformer/segformer_mit-b2_8x1_1024x1024_160k_cityscapes/segformer_mit-b2_8x1_1024x1024_160k_cityscapes_20211207_134205-6096669a.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/segformer/segformer_mit-b2_8x1_1024x1024_160k_cityscapes/segformer_mit-b2_8x1_1024x1024_160k_cityscapes_20211207_134205.log.json + Paper: + Title: 'SegFormer: Simple and Efficient Design for Semantic Segmentation with + Transformers' + URL: https://arxiv.org/abs/2105.15203 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/backbones/mit.py#L246 + Framework: PyTorch +- Name: segformer_mit-b3_8xb1-160k_cityscapes-1024x1024 + In Collection: Segformer + Results: + Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 81.94 + mIoU(ms+flip): 83.14 + Config: configs/segformer/segformer_mit-b3_8xb1-160k_cityscapes-1024x1024.py + Metadata: + Training Data: Cityscapes + Batch Size: 8 + Architecture: + - MIT-B3 + - Segformer + Training Resources: 8x V100 GPUS + Memory (GB): 10.86 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/segformer/segformer_mit-b3_8x1_1024x1024_160k_cityscapes/segformer_mit-b3_8x1_1024x1024_160k_cityscapes_20211206_224823-a8f8a177.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/segformer/segformer_mit-b3_8x1_1024x1024_160k_cityscapes/segformer_mit-b3_8x1_1024x1024_160k_cityscapes_20211206_224823.log.json + Paper: + Title: 'SegFormer: Simple and Efficient Design for Semantic Segmentation with + Transformers' + URL: https://arxiv.org/abs/2105.15203 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/backbones/mit.py#L246 + Framework: PyTorch +- Name: segformer_mit-b4_8xb1-160k_cityscapes-1024x1024 + In Collection: Segformer + Results: + Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 81.89 + mIoU(ms+flip): 83.38 + Config: configs/segformer/segformer_mit-b4_8xb1-160k_cityscapes-1024x1024.py + Metadata: + Training Data: Cityscapes + Batch Size: 8 + Architecture: + - MIT-B4 + - Segformer + Training Resources: 8x V100 GPUS + Memory (GB): 15.07 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/segformer/segformer_mit-b4_8x1_1024x1024_160k_cityscapes/segformer_mit-b4_8x1_1024x1024_160k_cityscapes_20211207_080709-07f6c333.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/segformer/segformer_mit-b4_8x1_1024x1024_160k_cityscapes/segformer_mit-b4_8x1_1024x1024_160k_cityscapes_20211207_080709.log.json + Paper: + Title: 'SegFormer: Simple and Efficient Design for Semantic Segmentation with + Transformers' + URL: https://arxiv.org/abs/2105.15203 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/backbones/mit.py#L246 + Framework: PyTorch +- Name: segformer_mit-b5_8xb1-160k_cityscapes-1024x1024 + In Collection: Segformer + Results: + Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 82.25 + mIoU(ms+flip): 83.48 + Config: configs/segformer/segformer_mit-b5_8xb1-160k_cityscapes-1024x1024.py + Metadata: + Training Data: Cityscapes + Batch Size: 8 + Architecture: + - MIT-B5 + - Segformer + Training Resources: 8x V100 GPUS + Memory (GB): 18.0 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/segformer/segformer_mit-b5_8x1_1024x1024_160k_cityscapes/segformer_mit-b5_8x1_1024x1024_160k_cityscapes_20211206_072934-87a052ec.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/segformer/segformer_mit-b5_8x1_1024x1024_160k_cityscapes/segformer_mit-b5_8x1_1024x1024_160k_cityscapes_20211206_072934.log.json + Paper: + Title: 'SegFormer: Simple and Efficient Design for Semantic Segmentation with + Transformers' + URL: https://arxiv.org/abs/2105.15203 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/backbones/mit.py#L246 + Framework: PyTorch diff --git a/configs/segformer/segformer.yml b/configs/segformer/segformer.yml deleted file mode 100644 index 4a3818e16e..0000000000 --- a/configs/segformer/segformer.yml +++ /dev/null @@ -1,303 +0,0 @@ -Collections: -- Name: Segformer - Metadata: - Training Data: - - ADE20K - - Cityscapes - Paper: - URL: https://arxiv.org/abs/2105.15203 - Title: 'SegFormer: Simple and Efficient Design for Semantic Segmentation with - Transformers' - README: configs/segformer/README.md - Code: - URL: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/backbones/mit.py#L246 - Version: v0.17.0 - Converted From: - Code: https://github.com/NVlabs/SegFormer -Models: -- Name: segformer_mit-b0_8xb2-160k_ade20k-512x512 - In Collection: Segformer - Metadata: - backbone: MIT-B0 - crop size: (512,512) - lr schd: 160000 - inference time (ms/im): - - value: 19.49 - hardware: V100 - backend: PyTorch - batch size: 1 - mode: FP32 - resolution: (512,512) - Training Memory (GB): 2.1 - Results: - - Task: Semantic Segmentation - Dataset: ADE20K - Metrics: - mIoU: 37.41 - mIoU(ms+flip): 38.34 - Config: configs/segformer/segformer_mit-b0_8xb2-160k_ade20k-512x512.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/segformer/segformer_mit-b0_512x512_160k_ade20k/segformer_mit-b0_512x512_160k_ade20k_20210726_101530-8ffa8fda.pth -- Name: segformer_mit-b1_8xb2-160k_ade20k-512x512 - In Collection: Segformer - Metadata: - backbone: MIT-B1 - crop size: (512,512) - lr schd: 160000 - inference time (ms/im): - - value: 20.98 - hardware: V100 - backend: PyTorch - batch size: 1 - mode: FP32 - resolution: (512,512) - Training Memory (GB): 2.6 - Results: - - Task: Semantic Segmentation - Dataset: ADE20K - Metrics: - mIoU: 40.97 - mIoU(ms+flip): 42.54 - Config: configs/segformer/segformer_mit-b1_8xb2-160k_ade20k-512x512.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/segformer/segformer_mit-b1_512x512_160k_ade20k/segformer_mit-b1_512x512_160k_ade20k_20210726_112106-d70e859d.pth -- Name: segformer_mit-b2_8xb2-160k_ade20k-512x512 - In Collection: Segformer - Metadata: - backbone: MIT-B2 - crop size: (512,512) - lr schd: 160000 - inference time (ms/im): - - value: 32.38 - hardware: V100 - backend: PyTorch - batch size: 1 - mode: FP32 - resolution: (512,512) - Training Memory (GB): 3.6 - Results: - - Task: Semantic Segmentation - Dataset: ADE20K - Metrics: - mIoU: 45.58 - mIoU(ms+flip): 47.03 - Config: configs/segformer/segformer_mit-b2_8xb2-160k_ade20k-512x512.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/segformer/segformer_mit-b2_512x512_160k_ade20k/segformer_mit-b2_512x512_160k_ade20k_20210726_112103-cbd414ac.pth -- Name: segformer_mit-b3_8xb2-160k_ade20k-512x512 - In Collection: Segformer - Metadata: - backbone: MIT-B3 - crop size: (512,512) - lr schd: 160000 - inference time (ms/im): - - value: 45.23 - hardware: V100 - backend: PyTorch - batch size: 1 - mode: FP32 - resolution: (512,512) - Training Memory (GB): 4.8 - Results: - - Task: Semantic Segmentation - Dataset: ADE20K - Metrics: - mIoU: 47.82 - mIoU(ms+flip): 48.81 - Config: configs/segformer/segformer_mit-b3_8xb2-160k_ade20k-512x512.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/segformer/segformer_mit-b3_512x512_160k_ade20k/segformer_mit-b3_512x512_160k_ade20k_20210726_081410-962b98d2.pth -- Name: segformer_mit-b4_8xb2-160k_ade20k-512x512 - In Collection: Segformer - Metadata: - backbone: MIT-B4 - crop size: (512,512) - lr schd: 160000 - inference time (ms/im): - - value: 64.72 - hardware: V100 - backend: PyTorch - batch size: 1 - mode: FP32 - resolution: (512,512) - Training Memory (GB): 6.1 - Results: - - Task: Semantic Segmentation - Dataset: ADE20K - Metrics: - mIoU: 48.46 - mIoU(ms+flip): 49.76 - Config: configs/segformer/segformer_mit-b4_8xb2-160k_ade20k-512x512.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/segformer/segformer_mit-b4_512x512_160k_ade20k/segformer_mit-b4_512x512_160k_ade20k_20210728_183055-7f509d7d.pth -- Name: segformer_mit-b5_8xb2-160k_ade20k-512x512 - In Collection: Segformer - Metadata: - backbone: MIT-B5 - crop size: (512,512) - lr schd: 160000 - inference time (ms/im): - - value: 84.1 - hardware: V100 - backend: PyTorch - batch size: 1 - mode: FP32 - resolution: (512,512) - Training Memory (GB): 7.2 - Results: - - Task: Semantic Segmentation - Dataset: ADE20K - Metrics: - mIoU: 49.13 - mIoU(ms+flip): 50.22 - Config: configs/segformer/segformer_mit-b5_8xb2-160k_ade20k-512x512.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/segformer/segformer_mit-b5_512x512_160k_ade20k/segformer_mit-b5_512x512_160k_ade20k_20210726_145235-94cedf59.pth -- Name: segformer_mit-b5_8xb2-160k_ade20k-640x640 - In Collection: Segformer - Metadata: - backbone: MIT-B5 - crop size: (640,640) - lr schd: 160000 - inference time (ms/im): - - value: 88.5 - hardware: V100 - backend: PyTorch - batch size: 1 - mode: FP32 - resolution: (640,640) - Training Memory (GB): 11.5 - Results: - - Task: Semantic Segmentation - Dataset: ADE20K - Metrics: - mIoU: 49.62 - mIoU(ms+flip): 50.36 - Config: configs/segformer/segformer_mit-b5_8xb2-160k_ade20k-640x640.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/segformer/segformer_mit-b5_640x640_160k_ade20k/segformer_mit-b5_640x640_160k_ade20k_20210801_121243-41d2845b.pth -- Name: segformer_mit-b0_8xb1-160k_cityscapes-1024x1024 - In Collection: Segformer - Metadata: - backbone: MIT-B0 - crop size: (1024,1024) - lr schd: 160000 - inference time (ms/im): - - value: 210.97 - hardware: V100 - backend: PyTorch - batch size: 1 - mode: FP32 - resolution: (1024,1024) - Training Memory (GB): 3.64 - Results: - - Task: Semantic Segmentation - Dataset: Cityscapes - Metrics: - mIoU: 76.54 - mIoU(ms+flip): 78.22 - Config: configs/segformer/segformer_mit-b0_8xb1-160k_cityscapes-1024x1024.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/segformer/segformer_mit-b0_8x1_1024x1024_160k_cityscapes/segformer_mit-b0_8x1_1024x1024_160k_cityscapes_20211208_101857-e7f88502.pth -- Name: segformer_mit-b1_8xb1-160k_cityscapes-1024x1024 - In Collection: Segformer - Metadata: - backbone: MIT-B1 - crop size: (1024,1024) - lr schd: 160000 - inference time (ms/im): - - value: 232.56 - hardware: V100 - backend: PyTorch - batch size: 1 - mode: FP32 - resolution: (1024,1024) - Training Memory (GB): 4.49 - Results: - - Task: Semantic Segmentation - Dataset: Cityscapes - Metrics: - mIoU: 78.56 - mIoU(ms+flip): 79.73 - Config: configs/segformer/segformer_mit-b1_8xb1-160k_cityscapes-1024x1024.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/segformer/segformer_mit-b1_8x1_1024x1024_160k_cityscapes/segformer_mit-b1_8x1_1024x1024_160k_cityscapes_20211208_064213-655c7b3f.pth -- Name: segformer_mit-b2_8xb1-160k_cityscapes-1024x1024 - In Collection: Segformer - Metadata: - backbone: MIT-B2 - crop size: (1024,1024) - lr schd: 160000 - inference time (ms/im): - - value: 297.62 - hardware: V100 - backend: PyTorch - batch size: 1 - mode: FP32 - resolution: (1024,1024) - Training Memory (GB): 7.42 - Results: - - Task: Semantic Segmentation - Dataset: Cityscapes - Metrics: - mIoU: 81.08 - mIoU(ms+flip): 82.18 - Config: configs/segformer/segformer_mit-b2_8xb1-160k_cityscapes-1024x1024.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/segformer/segformer_mit-b2_8x1_1024x1024_160k_cityscapes/segformer_mit-b2_8x1_1024x1024_160k_cityscapes_20211207_134205-6096669a.pth -- Name: segformer_mit-b3_8xb1-160k_cityscapes-1024x1024 - In Collection: Segformer - Metadata: - backbone: MIT-B3 - crop size: (1024,1024) - lr schd: 160000 - inference time (ms/im): - - value: 395.26 - hardware: V100 - backend: PyTorch - batch size: 1 - mode: FP32 - resolution: (1024,1024) - Training Memory (GB): 10.86 - Results: - - Task: Semantic Segmentation - Dataset: Cityscapes - Metrics: - mIoU: 81.94 - mIoU(ms+flip): 83.14 - Config: configs/segformer/segformer_mit-b3_8xb1-160k_cityscapes-1024x1024.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/segformer/segformer_mit-b3_8x1_1024x1024_160k_cityscapes/segformer_mit-b3_8x1_1024x1024_160k_cityscapes_20211206_224823-a8f8a177.pth -- Name: segformer_mit-b4_8xb1-160k_cityscapes-1024x1024 - In Collection: Segformer - Metadata: - backbone: MIT-B4 - crop size: (1024,1024) - lr schd: 160000 - inference time (ms/im): - - value: 531.91 - hardware: V100 - backend: PyTorch - batch size: 1 - mode: FP32 - resolution: (1024,1024) - Training Memory (GB): 15.07 - Results: - - Task: Semantic Segmentation - Dataset: Cityscapes - Metrics: - mIoU: 81.89 - mIoU(ms+flip): 83.38 - Config: configs/segformer/segformer_mit-b4_8xb1-160k_cityscapes-1024x1024.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/segformer/segformer_mit-b4_8x1_1024x1024_160k_cityscapes/segformer_mit-b4_8x1_1024x1024_160k_cityscapes_20211207_080709-07f6c333.pth -- Name: segformer_mit-b5_8xb1-160k_cityscapes-1024x1024 - In Collection: Segformer - Metadata: - backbone: MIT-B5 - crop size: (1024,1024) - lr schd: 160000 - inference time (ms/im): - - value: 719.42 - hardware: V100 - backend: PyTorch - batch size: 1 - mode: FP32 - resolution: (1024,1024) - Training Memory (GB): 18.0 - Results: - - Task: Semantic Segmentation - Dataset: Cityscapes - Metrics: - mIoU: 82.25 - mIoU(ms+flip): 83.48 - Config: configs/segformer/segformer_mit-b5_8xb1-160k_cityscapes-1024x1024.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/segformer/segformer_mit-b5_8x1_1024x1024_160k_cityscapes/segformer_mit-b5_8x1_1024x1024_160k_cityscapes_20211206_072934-87a052ec.pth diff --git a/configs/segmenter/README.md b/configs/segmenter/README.md index 984ef9f510..a9a64ae421 100644 --- a/configs/segmenter/README.md +++ b/configs/segmenter/README.md @@ -1,6 +1,6 @@ # Segmenter -[Segmenter: Transformer for Semantic Segmentation](https://arxiv.org/abs/2105.05633) +> [Segmenter: Transformer for Semantic Segmentation](https://arxiv.org/abs/2105.05633) ## Introduction @@ -22,16 +22,6 @@ Image segmentation is often ambiguous at the level of individual image patches a -```bibtex -@inproceedings{strudel2021segmenter, - title={Segmenter: Transformer for semantic segmentation}, - author={Strudel, Robin and Garcia, Ricardo and Laptev, Ivan and Schmid, Cordelia}, - booktitle={Proceedings of the IEEE/CVF International Conference on Computer Vision}, - pages={7262--7272}, - year={2021} -} -``` - ## Usage We have provided pretrained models converted from [ViT-AugReg](https://github.com/rwightman/pytorch-image-models/blob/f55c22bebf9d8afc449d317a723231ef72e0d662/timm/models/vision_transformer.py#L54-L106). @@ -54,21 +44,33 @@ This script convert model from `PRETRAIN_PATH` and store the converted model in In our default setting, pretrained models and their corresponding [ViT-AugReg](https://github.com/rwightman/pytorch-image-models/blob/f55c22bebf9d8afc449d317a723231ef72e0d662/timm/models/vision_transformer.py#L54-L106) models could be defined below: -| pretrained models | original models | -| --------------------- | --------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | -| vit_tiny_p16_384.pth | ['vit_tiny_patch16_384'](https://storage.googleapis.com/vit_models/augreg/Ti_16-i21k-300ep-lr_0.001-aug_none-wd_0.03-do_0.0-sd_0.0--imagenet2012-steps_20k-lr_0.03-res_384.npz) | -| vit_small_p16_384.pth | ['vit_small_patch16_384'](https://storage.googleapis.com/vit_models/augreg/S_16-i21k-300ep-lr_0.001-aug_light1-wd_0.03-do_0.0-sd_0.0--imagenet2012-steps_20k-lr_0.03-res_384.npz) | -| vit_base_p16_384.pth | ['vit_base_patch16_384'](https://storage.googleapis.com/vit_models/augreg/B_16-i21k-300ep-lr_0.001-aug_medium1-wd_0.1-do_0.0-sd_0.0--imagenet2012-steps_20k-lr_0.01-res_384.npz) | -| vit_large_p16_384.pth | ['vit_large_patch16_384'](https://storage.googleapis.com/vit_models/augreg/L_16-i21k-300ep-lr_0.001-aug_medium1-wd_0.1-do_0.1-sd_0.1--imagenet2012-steps_20k-lr_0.01-res_384.npz) | +| pretrained models | original models | +| --------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | +| vit_tiny_p16_384.pth | [vit_tiny_patch16_384](https://storage.googleapis.com/vit_models/augreg/Ti_16-i21k-300ep-lr_0.001-aug_none-wd_0.03-do_0.0-sd_0.0--imagenet2012-steps_20k-lr_0.03-res_384.npz) | +| vit_small_p16_384.pth | [vit_small_patch16_384](https://storage.googleapis.com/vit_models/augreg/S_16-i21k-300ep-lr_0.001-aug_light1-wd_0.03-do_0.0-sd_0.0--imagenet2012-steps_20k-lr_0.03-res_384.npz) | +| vit_base_p16_384.pth | [vit_base_patch16_384](https://storage.googleapis.com/vit_models/augreg/B_16-i21k-300ep-lr_0.001-aug_medium1-wd_0.1-do_0.0-sd_0.0--imagenet2012-steps_20k-lr_0.01-res_384.npz) | +| vit_large_p16_384.pth | [vit_large_patch16_384](https://storage.googleapis.com/vit_models/augreg/L_16-i21k-300ep-lr_0.001-aug_medium1-wd_0.1-do_0.1-sd_0.1--imagenet2012-steps_20k-lr_0.01-res_384.npz) | ## Results and models ### ADE20K -| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | mIoU | mIoU(ms+flip) | config | download | -| ---------------- | -------- | --------- | ------- | -------- | -------------- | ----- | ------------- | -------------------------------------------------------------------------------------------------------------------------------------- | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | -| Segmenter Mask | ViT-T_16 | 512x512 | 160000 | 1.21 | 27.98 | 39.99 | 40.83 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/segmenter/segmenter_vit-t_mask_8xb1-160k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/segmenter/segmenter_vit-t_mask_8x1_512x512_160k_ade20k/segmenter_vit-t_mask_8x1_512x512_160k_ade20k_20220105_151706-ffcf7509.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/segmenter/segmenter_vit-t_mask_8x1_512x512_160k_ade20k/segmenter_vit-t_mask_8x1_512x512_160k_ade20k_20220105_151706.log.json) | -| Segmenter Linear | ViT-S_16 | 512x512 | 160000 | 1.78 | 28.07 | 45.75 | 46.82 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/segmenter/segmenter_vit-s_fcn_8xb1-160k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/segmenter/segmenter_vit-s_linear_8x1_512x512_160k_ade20k/segmenter_vit-s_linear_8x1_512x512_160k_ade20k_20220105_151713-39658c46.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/segmenter/segmenter_vit-s_linear_8x1_512x512_160k_ade20k/segmenter_vit-s_linear_8x1_512x512_160k_ade20k_20220105_151713.log.json) | -| Segmenter Mask | ViT-S_16 | 512x512 | 160000 | 2.03 | 24.80 | 46.19 | 47.85 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/segmenter/segmenter_vit-s_mask_8xb1-160k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/segmenter/segmenter_vit-s_mask_8x1_512x512_160k_ade20k/segmenter_vit-s_mask_8x1_512x512_160k_ade20k_20220105_151706-511bb103.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/segmenter/segmenter_vit-s_mask_8x1_512x512_160k_ade20k/segmenter_vit-s_mask_8x1_512x512_160k_ade20k_20220105_151706.log.json) | -| Segmenter Mask | ViT-B_16 | 512x512 | 160000 | 4.20 | 13.20 | 49.60 | 51.07 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/segmenter/segmenter_vit-b_mask_8xb1-160k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/segmenter/segmenter_vit-b_mask_8x1_512x512_160k_ade20k/segmenter_vit-b_mask_8x1_512x512_160k_ade20k_20220105_151706-bc533b08.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/segmenter/segmenter_vit-b_mask_8x1_512x512_160k_ade20k/segmenter_vit-b_mask_8x1_512x512_160k_ade20k_20220105_151706.log.json) | -| Segmenter Mask | ViT-L_16 | 640x640 | 160000 | 16.56 | 2.62 | 52.16 | 53.65 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/segmenter/segmenter_vit-l_mask_8xb1-160k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/segmenter/segmenter_vit-l_mask_8x1_512x512_160k_ade20k/segmenter_vit-l_mask_8x1_512x512_160k_ade20k_20220105_162750-7ef345be.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/segmenter/segmenter_vit-l_mask_8x1_512x512_160k_ade20k/segmenter_vit-l_mask_8x1_512x512_160k_ade20k_20220105_162750.log.json) | +| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | Device | mIoU | mIoU(ms+flip) | config | download | +| ---------------- | -------- | --------- | ------- | -------- | -------------- | ------ | ----- | ------------- | -------------------------------------------------------------------------------------------------------------------------------------- | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | +| Segmenter Mask | ViT-T_16 | 512x512 | 160000 | 1.21 | 27.98 | V100 | 39.99 | 40.83 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/segmenter/segmenter_vit-t_mask_8xb1-160k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/segmenter/segmenter_vit-t_mask_8x1_512x512_160k_ade20k/segmenter_vit-t_mask_8x1_512x512_160k_ade20k_20220105_151706-ffcf7509.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/segmenter/segmenter_vit-t_mask_8x1_512x512_160k_ade20k/segmenter_vit-t_mask_8x1_512x512_160k_ade20k_20220105_151706.log.json) | +| Segmenter Linear | ViT-S_16 | 512x512 | 160000 | 1.78 | 28.07 | V100 | 45.75 | 46.82 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/segmenter/segmenter_vit-s_fcn_8xb1-160k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/segmenter/segmenter_vit-s_linear_8x1_512x512_160k_ade20k/segmenter_vit-s_linear_8x1_512x512_160k_ade20k_20220105_151713-39658c46.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/segmenter/segmenter_vit-s_linear_8x1_512x512_160k_ade20k/segmenter_vit-s_linear_8x1_512x512_160k_ade20k_20220105_151713.log.json) | +| Segmenter Mask | ViT-S_16 | 512x512 | 160000 | 2.03 | 24.80 | V100 | 46.19 | 47.85 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/segmenter/segmenter_vit-s_mask_8xb1-160k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/segmenter/segmenter_vit-s_mask_8x1_512x512_160k_ade20k/segmenter_vit-s_mask_8x1_512x512_160k_ade20k_20220105_151706-511bb103.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/segmenter/segmenter_vit-s_mask_8x1_512x512_160k_ade20k/segmenter_vit-s_mask_8x1_512x512_160k_ade20k_20220105_151706.log.json) | +| Segmenter Mask | ViT-B_16 | 512x512 | 160000 | 4.20 | 13.20 | V100 | 49.60 | 51.07 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/segmenter/segmenter_vit-b_mask_8xb1-160k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/segmenter/segmenter_vit-b_mask_8x1_512x512_160k_ade20k/segmenter_vit-b_mask_8x1_512x512_160k_ade20k_20220105_151706-bc533b08.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/segmenter/segmenter_vit-b_mask_8x1_512x512_160k_ade20k/segmenter_vit-b_mask_8x1_512x512_160k_ade20k_20220105_151706.log.json) | +| Segmenter Mask | ViT-L_16 | 640x640 | 160000 | 16.56 | 2.62 | V100 | 52.16 | 53.65 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/segmenter/segmenter_vit-l_mask_8xb1-160k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/segmenter/segmenter_vit-l_mask_8x1_512x512_160k_ade20k/segmenter_vit-l_mask_8x1_512x512_160k_ade20k_20220105_162750-7ef345be.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/segmenter/segmenter_vit-l_mask_8x1_512x512_160k_ade20k/segmenter_vit-l_mask_8x1_512x512_160k_ade20k_20220105_162750.log.json) | + +## Citation + +```bibtex +@inproceedings{strudel2021segmenter, + title={Segmenter: Transformer for semantic segmentation}, + author={Strudel, Robin and Garcia, Ricardo and Laptev, Ivan and Schmid, Cordelia}, + booktitle={Proceedings of the IEEE/CVF International Conference on Computer Vision}, + pages={7262--7272}, + year={2021} +} +``` diff --git a/configs/segmenter/metafile.yaml b/configs/segmenter/metafile.yaml new file mode 100644 index 0000000000..ff2aa448bb --- /dev/null +++ b/configs/segmenter/metafile.yaml @@ -0,0 +1,138 @@ +Collections: +- Name: Segmenter + License: Apache License 2.0 + Metadata: + Training Data: + - ADE20K + Paper: + Title: 'Segmenter: Transformer for Semantic Segmentation' + URL: https://arxiv.org/abs/2105.05633 + README: configs/segmenter/README.md + Frameworks: + - PyTorch +Models: +- Name: segmenter_vit-t_mask_8xb1-160k_ade20k-512x512 + In Collection: Segmenter + Results: + Task: Semantic Segmentation + Dataset: ADE20K + Metrics: + mIoU: 39.99 + mIoU(ms+flip): 40.83 + Config: configs/segmenter/segmenter_vit-t_mask_8xb1-160k_ade20k-512x512.py + Metadata: + Training Data: ADE20K + Batch Size: 8 + Architecture: + - ViT-T_16 + - Segmenter + - Mask + Training Resources: 8x V100 GPUS + Memory (GB): 1.21 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/segmenter/segmenter_vit-t_mask_8x1_512x512_160k_ade20k/segmenter_vit-t_mask_8x1_512x512_160k_ade20k_20220105_151706-ffcf7509.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/segmenter/segmenter_vit-t_mask_8x1_512x512_160k_ade20k/segmenter_vit-t_mask_8x1_512x512_160k_ade20k_20220105_151706.log.json + Paper: + Title: 'Segmenter: Transformer for Semantic Segmentation' + URL: https://arxiv.org/abs/2105.05633 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.21.0/mmseg/models/decode_heads/segmenter_mask_head.py#L15 + Framework: PyTorch +- Name: segmenter_vit-s_fcn_8xb1-160k_ade20k-512x512 + In Collection: Segmenter + Results: + Task: Semantic Segmentation + Dataset: ADE20K + Metrics: + mIoU: 45.75 + mIoU(ms+flip): 46.82 + Config: configs/segmenter/segmenter_vit-s_fcn_8xb1-160k_ade20k-512x512.py + Metadata: + Training Data: ADE20K + Batch Size: 8 + Architecture: + - ViT-S_16 + - Segmenter + - Linear + Training Resources: 8x V100 GPUS + Memory (GB): 1.78 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/segmenter/segmenter_vit-s_linear_8x1_512x512_160k_ade20k/segmenter_vit-s_linear_8x1_512x512_160k_ade20k_20220105_151713-39658c46.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/segmenter/segmenter_vit-s_linear_8x1_512x512_160k_ade20k/segmenter_vit-s_linear_8x1_512x512_160k_ade20k_20220105_151713.log.json + Paper: + Title: 'Segmenter: Transformer for Semantic Segmentation' + URL: https://arxiv.org/abs/2105.05633 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.21.0/mmseg/models/decode_heads/segmenter_mask_head.py#L15 + Framework: PyTorch +- Name: segmenter_vit-s_mask_8xb1-160k_ade20k-512x512 + In Collection: Segmenter + Results: + Task: Semantic Segmentation + Dataset: ADE20K + Metrics: + mIoU: 46.19 + mIoU(ms+flip): 47.85 + Config: configs/segmenter/segmenter_vit-s_mask_8xb1-160k_ade20k-512x512.py + Metadata: + Training Data: ADE20K + Batch Size: 8 + Architecture: + - ViT-S_16 + - Segmenter + - Mask + Training Resources: 8x V100 GPUS + Memory (GB): 2.03 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/segmenter/segmenter_vit-s_mask_8x1_512x512_160k_ade20k/segmenter_vit-s_mask_8x1_512x512_160k_ade20k_20220105_151706-511bb103.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/segmenter/segmenter_vit-s_mask_8x1_512x512_160k_ade20k/segmenter_vit-s_mask_8x1_512x512_160k_ade20k_20220105_151706.log.json + Paper: + Title: 'Segmenter: Transformer for Semantic Segmentation' + URL: https://arxiv.org/abs/2105.05633 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.21.0/mmseg/models/decode_heads/segmenter_mask_head.py#L15 + Framework: PyTorch +- Name: segmenter_vit-b_mask_8xb1-160k_ade20k-512x512 + In Collection: Segmenter + Results: + Task: Semantic Segmentation + Dataset: ADE20K + Metrics: + mIoU: 49.6 + mIoU(ms+flip): 51.07 + Config: configs/segmenter/segmenter_vit-b_mask_8xb1-160k_ade20k-512x512.py + Metadata: + Training Data: ADE20K + Batch Size: 8 + Architecture: + - ViT-B_16 + - Segmenter + - Mask + Training Resources: 8x V100 GPUS + Memory (GB): 4.2 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/segmenter/segmenter_vit-b_mask_8x1_512x512_160k_ade20k/segmenter_vit-b_mask_8x1_512x512_160k_ade20k_20220105_151706-bc533b08.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/segmenter/segmenter_vit-b_mask_8x1_512x512_160k_ade20k/segmenter_vit-b_mask_8x1_512x512_160k_ade20k_20220105_151706.log.json + Paper: + Title: 'Segmenter: Transformer for Semantic Segmentation' + URL: https://arxiv.org/abs/2105.05633 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.21.0/mmseg/models/decode_heads/segmenter_mask_head.py#L15 + Framework: PyTorch +- Name: segmenter_vit-l_mask_8xb1-160k_ade20k-512x512 + In Collection: Segmenter + Results: + Task: Semantic Segmentation + Dataset: ADE20K + Metrics: + mIoU: 52.16 + mIoU(ms+flip): 53.65 + Config: configs/segmenter/segmenter_vit-l_mask_8xb1-160k_ade20k-512x512.py + Metadata: + Training Data: ADE20K + Batch Size: 8 + Architecture: + - ViT-L_16 + - Segmenter + - Mask + Training Resources: 8x V100 GPUS + Memory (GB): 16.56 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/segmenter/segmenter_vit-l_mask_8x1_512x512_160k_ade20k/segmenter_vit-l_mask_8x1_512x512_160k_ade20k_20220105_162750-7ef345be.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/segmenter/segmenter_vit-l_mask_8x1_512x512_160k_ade20k/segmenter_vit-l_mask_8x1_512x512_160k_ade20k_20220105_162750.log.json + Paper: + Title: 'Segmenter: Transformer for Semantic Segmentation' + URL: https://arxiv.org/abs/2105.05633 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.21.0/mmseg/models/decode_heads/segmenter_mask_head.py#L15 + Framework: PyTorch diff --git a/configs/segmenter/segmenter.yml b/configs/segmenter/segmenter.yml deleted file mode 100644 index 1069f003b7..0000000000 --- a/configs/segmenter/segmenter.yml +++ /dev/null @@ -1,125 +0,0 @@ -Collections: -- Name: Segmenter - Metadata: - Training Data: - - ADE20K - Paper: - URL: https://arxiv.org/abs/2105.05633 - Title: 'Segmenter: Transformer for Semantic Segmentation' - README: configs/segmenter/README.md - Code: - URL: https://github.com/open-mmlab/mmsegmentation/blob/v0.21.0/mmseg/models/decode_heads/segmenter_mask_head.py#L15 - Version: v0.21.0 - Converted From: - Code: https://github.com/rstrudel/segmenter -Models: -- Name: segmenter_vit-t_mask_8xb1-160k_ade20k-512x512 - In Collection: Segmenter - Metadata: - backbone: ViT-T_16 - crop size: (512,512) - lr schd: 160000 - inference time (ms/im): - - value: 35.74 - hardware: V100 - backend: PyTorch - batch size: 1 - mode: FP32 - resolution: (512,512) - Training Memory (GB): 1.21 - Results: - - Task: Semantic Segmentation - Dataset: ADE20K - Metrics: - mIoU: 39.99 - mIoU(ms+flip): 40.83 - Config: configs/segmenter/segmenter_vit-t_mask_8xb1-160k_ade20k-512x512.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/segmenter/segmenter_vit-t_mask_8x1_512x512_160k_ade20k/segmenter_vit-t_mask_8x1_512x512_160k_ade20k_20220105_151706-ffcf7509.pth -- Name: segmenter_vit-s_fcn_8xb1-160k_ade20k-512x512 - In Collection: Segmenter - Metadata: - backbone: ViT-S_16 - crop size: (512,512) - lr schd: 160000 - inference time (ms/im): - - value: 35.63 - hardware: V100 - backend: PyTorch - batch size: 1 - mode: FP32 - resolution: (512,512) - Training Memory (GB): 1.78 - Results: - - Task: Semantic Segmentation - Dataset: ADE20K - Metrics: - mIoU: 45.75 - mIoU(ms+flip): 46.82 - Config: configs/segmenter/segmenter_vit-s_fcn_8xb1-160k_ade20k-512x512.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/segmenter/segmenter_vit-s_linear_8x1_512x512_160k_ade20k/segmenter_vit-s_linear_8x1_512x512_160k_ade20k_20220105_151713-39658c46.pth -- Name: segmenter_vit-s_mask_8xb1-160k_ade20k-512x512 - In Collection: Segmenter - Metadata: - backbone: ViT-S_16 - crop size: (512,512) - lr schd: 160000 - inference time (ms/im): - - value: 40.32 - hardware: V100 - backend: PyTorch - batch size: 1 - mode: FP32 - resolution: (512,512) - Training Memory (GB): 2.03 - Results: - - Task: Semantic Segmentation - Dataset: ADE20K - Metrics: - mIoU: 46.19 - mIoU(ms+flip): 47.85 - Config: configs/segmenter/segmenter_vit-s_mask_8xb1-160k_ade20k-512x512.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/segmenter/segmenter_vit-s_mask_8x1_512x512_160k_ade20k/segmenter_vit-s_mask_8x1_512x512_160k_ade20k_20220105_151706-511bb103.pth -- Name: segmenter_vit-b_mask_8xb1-160k_ade20k-512x512 - In Collection: Segmenter - Metadata: - backbone: ViT-B_16 - crop size: (512,512) - lr schd: 160000 - inference time (ms/im): - - value: 75.76 - hardware: V100 - backend: PyTorch - batch size: 1 - mode: FP32 - resolution: (512,512) - Training Memory (GB): 4.2 - Results: - - Task: Semantic Segmentation - Dataset: ADE20K - Metrics: - mIoU: 49.6 - mIoU(ms+flip): 51.07 - Config: configs/segmenter/segmenter_vit-b_mask_8xb1-160k_ade20k-512x512.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/segmenter/segmenter_vit-b_mask_8x1_512x512_160k_ade20k/segmenter_vit-b_mask_8x1_512x512_160k_ade20k_20220105_151706-bc533b08.pth -- Name: segmenter_vit-l_mask_8xb1-160k_ade20k-512x512 - In Collection: Segmenter - Metadata: - backbone: ViT-L_16 - crop size: (640,640) - lr schd: 160000 - inference time (ms/im): - - value: 381.68 - hardware: V100 - backend: PyTorch - batch size: 1 - mode: FP32 - resolution: (640,640) - Training Memory (GB): 16.56 - Results: - - Task: Semantic Segmentation - Dataset: ADE20K - Metrics: - mIoU: 52.16 - mIoU(ms+flip): 53.65 - Config: configs/segmenter/segmenter_vit-l_mask_8xb1-160k_ade20k-512x512.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/segmenter/segmenter_vit-l_mask_8x1_512x512_160k_ade20k/segmenter_vit-l_mask_8x1_512x512_160k_ade20k_20220105_162750-7ef345be.pth diff --git a/configs/segnext/README.md b/configs/segnext/README.md index 315f4e23e8..06b63be546 100644 --- a/configs/segnext/README.md +++ b/configs/segnext/README.md @@ -26,12 +26,12 @@ We present SegNeXt, a simple convolutional network architecture for semantic seg ### ADE20K -| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | mIoU | mIoU(ms+flip) | config | download | -| ------- | -------- | --------- | ------- | -------- | -------------- | ----- | ------------- | -------------------------------------------------------------------------------------------------------------------------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ | -| SegNeXt | MSCAN-T | 512x512 | 160000 | 17.88 | 52.38 | 41.50 | 42.59 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/segnext/segnext_mscan-t_1xb16-adamw-160k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/segnext/segnext_mscan-t_1x16_512x512_adamw_160k_ade20k/segnext_mscan-t_1x16_512x512_adamw_160k_ade20k_20230210_140244-05bd8466.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/segnext/segnext_mscan-t_1x16_512x512_adamw_160k_ade20k/segnext_mscan-t_1x16_512x512_adamw_160k_ade20k_20230210_140244.log.json) | -| SegNeXt | MSCAN-S | 512x512 | 160000 | 21.47 | 42.27 | 44.16 | 45.81 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/segnext/segnext_mscan-s_1xb16-adamw-160k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/segnext/segnext_mscan-s_1x16_512x512_adamw_160k_ade20k/segnext_mscan-s_1x16_512x512_adamw_160k_ade20k_20230214_113014-43013668.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/segnext/segnext_mscan-s_1x16_512x512_adamw_160k_ade20k/segnext_mscan-s_1x16_512x512_adamw_160k_ade20k_20230214_113014.log.json) | -| SegNeXt | MSCAN-B | 512x512 | 160000 | 31.03 | 35.15 | 48.03 | 49.68 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/segnext/segnext_mscan-b_1xb16-adamw-160k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/segnext/segnext_mscan-b_1x16_512x512_adamw_160k_ade20k/segnext_mscan-b_1x16_512x512_adamw_160k_ade20k_20230209_172053-b6f6c70c.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/segnext/segnext_mscan-b_1x16_512x512_adamw_160k_ade20k/segnext_mscan-b_1x16_512x512_adamw_160k_ade20k_20230209_172053.log.json) | -| SegNeXt | MSCAN-L | 512x512 | 160000 | 43.32 | 22.91 | 50.99 | 52.10 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/segnext/segnext_mscan-l_1xb16-adamw-160k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/segnext/segnext_mscan-l_1x16_512x512_adamw_160k_ade20k/segnext_mscan-l_1x16_512x512_adamw_160k_ade20k_20230209_172055-19b14b63.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/segnext/segnext_mscan-l_1x16_512x512_adamw_160k_ade20k/segnext_mscan-l_1x16_512x512_adamw_160k_ade20k_20230209_172055.log.json) | +| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | Device | mIoU | mIoU(ms+flip) | config | download | +| ------- | -------- | --------- | ------- | -------- | -------------- | ------ | ----- | ------------- | -------------------------------------------------------------------------------------------------------------------------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ | +| SegNeXt | MSCAN-T | 512x512 | 160000 | 17.88 | 52.38 | A100 | 41.50 | 42.59 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/segnext/segnext_mscan-t_1xb16-adamw-160k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/segnext/segnext_mscan-t_1x16_512x512_adamw_160k_ade20k/segnext_mscan-t_1x16_512x512_adamw_160k_ade20k_20230210_140244-05bd8466.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/segnext/segnext_mscan-t_1x16_512x512_adamw_160k_ade20k/segnext_mscan-t_1x16_512x512_adamw_160k_ade20k_20230210_140244.log.json) | +| SegNeXt | MSCAN-S | 512x512 | 160000 | 21.47 | 42.27 | A100 | 44.16 | 45.81 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/segnext/segnext_mscan-s_1xb16-adamw-160k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/segnext/segnext_mscan-s_1x16_512x512_adamw_160k_ade20k/segnext_mscan-s_1x16_512x512_adamw_160k_ade20k_20230214_113014-43013668.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/segnext/segnext_mscan-s_1x16_512x512_adamw_160k_ade20k/segnext_mscan-s_1x16_512x512_adamw_160k_ade20k_20230214_113014.log.json) | +| SegNeXt | MSCAN-B | 512x512 | 160000 | 31.03 | 35.15 | A100 | 48.03 | 49.68 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/segnext/segnext_mscan-b_1xb16-adamw-160k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/segnext/segnext_mscan-b_1x16_512x512_adamw_160k_ade20k/segnext_mscan-b_1x16_512x512_adamw_160k_ade20k_20230209_172053-b6f6c70c.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/segnext/segnext_mscan-b_1x16_512x512_adamw_160k_ade20k/segnext_mscan-b_1x16_512x512_adamw_160k_ade20k_20230209_172053.log.json) | +| SegNeXt | MSCAN-L | 512x512 | 160000 | 43.32 | 22.91 | A100 | 50.99 | 52.10 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/segnext/segnext_mscan-l_1xb16-adamw-160k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/segnext/segnext_mscan-l_1x16_512x512_adamw_160k_ade20k/segnext_mscan-l_1x16_512x512_adamw_160k_ade20k_20230209_172055-19b14b63.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/segnext/segnext_mscan-l_1x16_512x512_adamw_160k_ade20k/segnext_mscan-l_1x16_512x512_adamw_160k_ade20k_20230209_172055.log.json) | Note: diff --git a/configs/segnext/metafile.yaml b/configs/segnext/metafile.yaml new file mode 100644 index 0000000000..faa11c9784 --- /dev/null +++ b/configs/segnext/metafile.yaml @@ -0,0 +1,109 @@ +Collections: +- Name: SegNeXt + License: Apache License 2.0 + Metadata: + Training Data: + - ADE20K + Paper: + Title: 'SegNeXt: Rethinking Convolutional Attention Design for Semantic Segmentation' + URL: https://arxiv.org/abs/2209.08575 + README: configs/segnext/README.md + Frameworks: + - PyTorch +Models: +- Name: segnext_mscan-t_1xb16-adamw-160k_ade20k-512x512 + In Collection: SegNeXt + Results: + Task: Semantic Segmentation + Dataset: ADE20K + Metrics: + mIoU: 41.5 + mIoU(ms+flip): 42.59 + Config: configs/segnext/segnext_mscan-t_1xb16-adamw-160k_ade20k-512x512.py + Metadata: + Training Data: ADE20K + Batch Size: 16 + Architecture: + - MSCAN-T + - SegNeXt + Training Resources: 1x A100 GPUS + Memory (GB): 17.88 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/segnext/segnext_mscan-t_1x16_512x512_adamw_160k_ade20k/segnext_mscan-t_1x16_512x512_adamw_160k_ade20k_20230210_140244-05bd8466.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/segnext/segnext_mscan-t_1x16_512x512_adamw_160k_ade20k/segnext_mscan-t_1x16_512x512_adamw_160k_ade20k_20230210_140244.log.json + Paper: + Title: 'SegNeXt: Rethinking Convolutional Attention Design for Semantic Segmentation' + URL: https://arxiv.org/abs/2209.08575 + Code: https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/mmseg/models/backbones/mscan.py#L328 + Framework: PyTorch +- Name: segnext_mscan-s_1xb16-adamw-160k_ade20k-512x512 + In Collection: SegNeXt + Results: + Task: Semantic Segmentation + Dataset: ADE20K + Metrics: + mIoU: 44.16 + mIoU(ms+flip): 45.81 + Config: configs/segnext/segnext_mscan-s_1xb16-adamw-160k_ade20k-512x512.py + Metadata: + Training Data: ADE20K + Batch Size: 16 + Architecture: + - MSCAN-S + - SegNeXt + Training Resources: 1x A100 GPUS + Memory (GB): 21.47 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/segnext/segnext_mscan-s_1x16_512x512_adamw_160k_ade20k/segnext_mscan-s_1x16_512x512_adamw_160k_ade20k_20230214_113014-43013668.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/segnext/segnext_mscan-s_1x16_512x512_adamw_160k_ade20k/segnext_mscan-s_1x16_512x512_adamw_160k_ade20k_20230214_113014.log.json + Paper: + Title: 'SegNeXt: Rethinking Convolutional Attention Design for Semantic Segmentation' + URL: https://arxiv.org/abs/2209.08575 + Code: https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/mmseg/models/backbones/mscan.py#L328 + Framework: PyTorch +- Name: segnext_mscan-b_1xb16-adamw-160k_ade20k-512x512 + In Collection: SegNeXt + Results: + Task: Semantic Segmentation + Dataset: ADE20K + Metrics: + mIoU: 48.03 + mIoU(ms+flip): 49.68 + Config: configs/segnext/segnext_mscan-b_1xb16-adamw-160k_ade20k-512x512.py + Metadata: + Training Data: ADE20K + Batch Size: 16 + Architecture: + - MSCAN-B + - SegNeXt + Training Resources: 1x A100 GPUS + Memory (GB): 31.03 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/segnext/segnext_mscan-b_1x16_512x512_adamw_160k_ade20k/segnext_mscan-b_1x16_512x512_adamw_160k_ade20k_20230209_172053-b6f6c70c.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/segnext/segnext_mscan-b_1x16_512x512_adamw_160k_ade20k/segnext_mscan-b_1x16_512x512_adamw_160k_ade20k_20230209_172053.log.json + Paper: + Title: 'SegNeXt: Rethinking Convolutional Attention Design for Semantic Segmentation' + URL: https://arxiv.org/abs/2209.08575 + Code: https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/mmseg/models/backbones/mscan.py#L328 + Framework: PyTorch +- Name: segnext_mscan-l_1xb16-adamw-160k_ade20k-512x512 + In Collection: SegNeXt + Results: + Task: Semantic Segmentation + Dataset: ADE20K + Metrics: + mIoU: 50.99 + mIoU(ms+flip): 52.1 + Config: configs/segnext/segnext_mscan-l_1xb16-adamw-160k_ade20k-512x512.py + Metadata: + Training Data: ADE20K + Batch Size: 16 + Architecture: + - MSCAN-L + - SegNeXt + Training Resources: 1x A100 GPUS + Memory (GB): 43.32 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/segnext/segnext_mscan-l_1x16_512x512_adamw_160k_ade20k/segnext_mscan-l_1x16_512x512_adamw_160k_ade20k_20230209_172055-19b14b63.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/segnext/segnext_mscan-l_1x16_512x512_adamw_160k_ade20k/segnext_mscan-l_1x16_512x512_adamw_160k_ade20k_20230209_172055.log.json + Paper: + Title: 'SegNeXt: Rethinking Convolutional Attention Design for Semantic Segmentation' + URL: https://arxiv.org/abs/2209.08575 + Code: https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/mmseg/models/backbones/mscan.py#L328 + Framework: PyTorch diff --git a/configs/segnext/segnext.yml b/configs/segnext/segnext.yml deleted file mode 100644 index 3bcdea8403..0000000000 --- a/configs/segnext/segnext.yml +++ /dev/null @@ -1,103 +0,0 @@ -Collections: -- Name: SegNeXt - Metadata: - Training Data: - - ADE20K - Paper: - URL: https://arxiv.org/abs/2209.08575 - Title: 'SegNeXt: Rethinking Convolutional Attention Design for Semantic Segmentation' - README: configs/segnext/README.md - Code: - URL: https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/mmseg/models/backbones/mscan.py#L328 - Version: dev-1.x - Converted From: - Code: https://github.com/visual-attention-network/segnext -Models: -- Name: segnext_mscan-t_1xb16-adamw-160k_ade20k-512x512 - In Collection: SegNeXt - Metadata: - backbone: MSCAN-T - crop size: (512,512) - lr schd: 160000 - inference time (ms/im): - - value: 19.09 - hardware: V100 - backend: PyTorch - batch size: 1 - mode: FP32 - resolution: (512,512) - Training Memory (GB): 17.88 - Results: - - Task: Semantic Segmentation - Dataset: ADE20K - Metrics: - mIoU: 41.5 - mIoU(ms+flip): 42.59 - Config: configs/segnext/segnext_mscan-t_1xb16-adamw-160k_ade20k-512x512.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/segnext/segnext_mscan-t_1x16_512x512_adamw_160k_ade20k/segnext_mscan-t_1x16_512x512_adamw_160k_ade20k_20230210_140244-05bd8466.pth -- Name: segnext_mscan-s_1xb16-adamw-160k_ade20k-512x512 - In Collection: SegNeXt - Metadata: - backbone: MSCAN-S - crop size: (512,512) - lr schd: 160000 - inference time (ms/im): - - value: 23.66 - hardware: V100 - backend: PyTorch - batch size: 1 - mode: FP32 - resolution: (512,512) - Training Memory (GB): 21.47 - Results: - - Task: Semantic Segmentation - Dataset: ADE20K - Metrics: - mIoU: 44.16 - mIoU(ms+flip): 45.81 - Config: configs/segnext/segnext_mscan-s_1xb16-adamw-160k_ade20k-512x512.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/segnext/segnext_mscan-s_1x16_512x512_adamw_160k_ade20k/segnext_mscan-s_1x16_512x512_adamw_160k_ade20k_20230214_113014-43013668.pth -- Name: segnext_mscan-b_1xb16-adamw-160k_ade20k-512x512 - In Collection: SegNeXt - Metadata: - backbone: MSCAN-B - crop size: (512,512) - lr schd: 160000 - inference time (ms/im): - - value: 28.45 - hardware: V100 - backend: PyTorch - batch size: 1 - mode: FP32 - resolution: (512,512) - Training Memory (GB): 31.03 - Results: - - Task: Semantic Segmentation - Dataset: ADE20K - Metrics: - mIoU: 48.03 - mIoU(ms+flip): 49.68 - Config: configs/segnext/segnext_mscan-b_1xb16-adamw-160k_ade20k-512x512.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/segnext/segnext_mscan-b_1x16_512x512_adamw_160k_ade20k/segnext_mscan-b_1x16_512x512_adamw_160k_ade20k_20230209_172053-b6f6c70c.pth -- Name: segnext_mscan-l_1xb16-adamw-160k_ade20k-512x512 - In Collection: SegNeXt - Metadata: - backbone: MSCAN-L - crop size: (512,512) - lr schd: 160000 - inference time (ms/im): - - value: 43.65 - hardware: V100 - backend: PyTorch - batch size: 1 - mode: FP32 - resolution: (512,512) - Training Memory (GB): 43.32 - Results: - - Task: Semantic Segmentation - Dataset: ADE20K - Metrics: - mIoU: 50.99 - mIoU(ms+flip): 52.1 - Config: configs/segnext/segnext_mscan-l_1xb16-adamw-160k_ade20k-512x512.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/segnext/segnext_mscan-l_1x16_512x512_adamw_160k_ade20k/segnext_mscan-l_1x16_512x512_adamw_160k_ade20k_20230209_172055-19b14b63.pth diff --git a/configs/sem_fpn/README.md b/configs/sem_fpn/README.md index fcef72d2a5..8bbbd0eee0 100644 --- a/configs/sem_fpn/README.md +++ b/configs/sem_fpn/README.md @@ -1,6 +1,6 @@ # Semantic FPN -[Panoptic Feature Pyramid Networks](https://arxiv.org/abs/1901.02446) +> [Panoptic Feature Pyramid Networks](https://arxiv.org/abs/1901.02446) ## Introduction @@ -22,6 +22,22 @@ The recently introduced panoptic segmentation task has renewed our community's i +## Results and models + +### Cityscapes + +| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | Device | mIoU | mIoU(ms+flip) | config | download | +| ------ | -------- | --------- | ------: | -------: | -------------- | ------ | ----: | ------------- | ---------------------------------------------------------------------------------------------------------------------------- | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | +| FPN | R-50 | 512x1024 | 80000 | 2.8 | 13.54 | V100 | 74.52 | 76.08 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/sem_fpn/fpn_r50_4xb2-80k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/sem_fpn/fpn_r50_512x1024_80k_cityscapes/fpn_r50_512x1024_80k_cityscapes_20200717_021437-94018a0d.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/sem_fpn/fpn_r50_512x1024_80k_cityscapes/fpn_r50_512x1024_80k_cityscapes-20200717_021437.log.json) | +| FPN | R-101 | 512x1024 | 80000 | 3.9 | 10.29 | V100 | 75.80 | 77.40 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/sem_fpn/fpn_r101_4xb2-80k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/sem_fpn/fpn_r101_512x1024_80k_cityscapes/fpn_r101_512x1024_80k_cityscapes_20200717_012416-c5800d4c.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/sem_fpn/fpn_r101_512x1024_80k_cityscapes/fpn_r101_512x1024_80k_cityscapes-20200717_012416.log.json) | + +### ADE20K + +| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | Device | mIoU | mIoU(ms+flip) | config | download | +| ------ | -------- | --------- | ------: | -------: | -------------- | ------ | ----: | ------------- | ------------------------------------------------------------------------------------------------------------------------ | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ | +| FPN | R-50 | 512x512 | 160000 | 4.9 | 55.77 | V100 | 37.49 | 39.09 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/sem_fpn/fpn_r50_4xb4-160k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/sem_fpn/fpn_r50_512x512_160k_ade20k/fpn_r50_512x512_160k_ade20k_20200718_131734-5b5a6ab9.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/sem_fpn/fpn_r50_512x512_160k_ade20k/fpn_r50_512x512_160k_ade20k-20200718_131734.log.json) | +| FPN | R-101 | 512x512 | 160000 | 5.9 | 40.58 | V100 | 39.35 | 40.72 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/sem_fpn/fpn_r101_4xb4-160k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/sem_fpn/fpn_r101_512x512_160k_ade20k/fpn_r101_512x512_160k_ade20k_20200718_131734-306b5004.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/sem_fpn/fpn_r101_512x512_160k_ade20k/fpn_r101_512x512_160k_ade20k-20200718_131734.log.json) | + ## Citation ```bibtex @@ -33,19 +49,3 @@ The recently introduced panoptic segmentation task has renewed our community's i year={2019} } ``` - -## Results and models - -### Cityscapes - -| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | mIoU | mIoU(ms+flip) | config | download | -| ------ | -------- | --------- | ------: | -------: | -------------- | ----: | ------------- | ---------------------------------------------------------------------------------------------------------------------------- | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | -| FPN | R-50 | 512x1024 | 80000 | 2.8 | 13.54 | 74.52 | 76.08 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/sem_fpn/fpn_r50_4xb2-80k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/sem_fpn/fpn_r50_512x1024_80k_cityscapes/fpn_r50_512x1024_80k_cityscapes_20200717_021437-94018a0d.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/sem_fpn/fpn_r50_512x1024_80k_cityscapes/fpn_r50_512x1024_80k_cityscapes-20200717_021437.log.json) | -| FPN | R-101 | 512x1024 | 80000 | 3.9 | 10.29 | 75.80 | 77.40 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/sem_fpn/fpn_r101_4xb2-80k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/sem_fpn/fpn_r101_512x1024_80k_cityscapes/fpn_r101_512x1024_80k_cityscapes_20200717_012416-c5800d4c.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/sem_fpn/fpn_r101_512x1024_80k_cityscapes/fpn_r101_512x1024_80k_cityscapes-20200717_012416.log.json) | - -### ADE20K - -| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | mIoU | mIoU(ms+flip) | config | download | -| ------ | -------- | --------- | ------: | -------: | -------------- | ----: | ------------- | ------------------------------------------------------------------------------------------------------------------------ | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ | -| FPN | R-50 | 512x512 | 160000 | 4.9 | 55.77 | 37.49 | 39.09 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/sem_fpn/fpn_r50_4xb4-160k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/sem_fpn/fpn_r50_512x512_160k_ade20k/fpn_r50_512x512_160k_ade20k_20200718_131734-5b5a6ab9.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/sem_fpn/fpn_r50_512x512_160k_ade20k/fpn_r50_512x512_160k_ade20k-20200718_131734.log.json) | -| FPN | R-101 | 512x512 | 160000 | 5.9 | 40.58 | 39.35 | 40.72 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/sem_fpn/fpn_r101_4xb4-160k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/sem_fpn/fpn_r101_512x512_160k_ade20k/fpn_r101_512x512_160k_ade20k_20200718_131734-306b5004.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/sem_fpn/fpn_r101_512x512_160k_ade20k/fpn_r101_512x512_160k_ade20k-20200718_131734.log.json) | diff --git a/configs/sem_fpn/metafile.yaml b/configs/sem_fpn/metafile.yaml new file mode 100644 index 0000000000..e734897245 --- /dev/null +++ b/configs/sem_fpn/metafile.yaml @@ -0,0 +1,110 @@ +Collections: +- Name: FPN + License: Apache License 2.0 + Metadata: + Training Data: + - Cityscapes + - ADE20K + Paper: + Title: Panoptic Feature Pyramid Networks + URL: https://arxiv.org/abs/1901.02446 + README: configs/sem_fpn/README.md + Frameworks: + - PyTorch +Models: +- Name: fpn_r50_4xb2-80k_cityscapes-512x1024 + In Collection: FPN + Results: + Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 74.52 + mIoU(ms+flip): 76.08 + Config: configs/sem_fpn/fpn_r50_4xb2-80k_cityscapes-512x1024.py + Metadata: + Training Data: Cityscapes + Batch Size: 8 + Architecture: + - R-50 + - FPN + Training Resources: 4x V100 GPUS + Memory (GB): 2.8 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/sem_fpn/fpn_r50_512x1024_80k_cityscapes/fpn_r50_512x1024_80k_cityscapes_20200717_021437-94018a0d.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/sem_fpn/fpn_r50_512x1024_80k_cityscapes/fpn_r50_512x1024_80k_cityscapes-20200717_021437.log.json + Paper: + Title: Panoptic Feature Pyramid Networks + URL: https://arxiv.org/abs/1901.02446 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/fpn_head.py#L12 + Framework: PyTorch +- Name: fpn_r101_4xb2-80k_cityscapes-512x1024 + In Collection: FPN + Results: + Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 75.8 + mIoU(ms+flip): 77.4 + Config: configs/sem_fpn/fpn_r101_4xb2-80k_cityscapes-512x1024.py + Metadata: + Training Data: Cityscapes + Batch Size: 8 + Architecture: + - R-101 + - FPN + Training Resources: 4x V100 GPUS + Memory (GB): 3.9 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/sem_fpn/fpn_r101_512x1024_80k_cityscapes/fpn_r101_512x1024_80k_cityscapes_20200717_012416-c5800d4c.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/sem_fpn/fpn_r101_512x1024_80k_cityscapes/fpn_r101_512x1024_80k_cityscapes-20200717_012416.log.json + Paper: + Title: Panoptic Feature Pyramid Networks + URL: https://arxiv.org/abs/1901.02446 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/fpn_head.py#L12 + Framework: PyTorch +- Name: fpn_r50_4xb4-160k_ade20k-512x512 + In Collection: FPN + Results: + Task: Semantic Segmentation + Dataset: ADE20K + Metrics: + mIoU: 37.49 + mIoU(ms+flip): 39.09 + Config: configs/sem_fpn/fpn_r50_4xb4-160k_ade20k-512x512.py + Metadata: + Training Data: ADE20K + Batch Size: 16 + Architecture: + - R-50 + - FPN + Training Resources: 4x V100 GPUS + Memory (GB): 4.9 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/sem_fpn/fpn_r50_512x512_160k_ade20k/fpn_r50_512x512_160k_ade20k_20200718_131734-5b5a6ab9.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/sem_fpn/fpn_r50_512x512_160k_ade20k/fpn_r50_512x512_160k_ade20k-20200718_131734.log.json + Paper: + Title: Panoptic Feature Pyramid Networks + URL: https://arxiv.org/abs/1901.02446 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/fpn_head.py#L12 + Framework: PyTorch +- Name: fpn_r101_4xb4-160k_ade20k-512x512 + In Collection: FPN + Results: + Task: Semantic Segmentation + Dataset: ADE20K + Metrics: + mIoU: 39.35 + mIoU(ms+flip): 40.72 + Config: configs/sem_fpn/fpn_r101_4xb4-160k_ade20k-512x512.py + Metadata: + Training Data: ADE20K + Batch Size: 16 + Architecture: + - R-101 + - FPN + Training Resources: 4x V100 GPUS + Memory (GB): 5.9 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/sem_fpn/fpn_r101_512x512_160k_ade20k/fpn_r101_512x512_160k_ade20k_20200718_131734-306b5004.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/sem_fpn/fpn_r101_512x512_160k_ade20k/fpn_r101_512x512_160k_ade20k-20200718_131734.log.json + Paper: + Title: Panoptic Feature Pyramid Networks + URL: https://arxiv.org/abs/1901.02446 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/fpn_head.py#L12 + Framework: PyTorch diff --git a/configs/sem_fpn/sem_fpn.yml b/configs/sem_fpn/sem_fpn.yml deleted file mode 100644 index 79ed0b81c4..0000000000 --- a/configs/sem_fpn/sem_fpn.yml +++ /dev/null @@ -1,104 +0,0 @@ -Collections: -- Name: FPN - Metadata: - Training Data: - - Cityscapes - - ADE20K - Paper: - URL: https://arxiv.org/abs/1901.02446 - Title: Panoptic Feature Pyramid Networks - README: configs/sem_fpn/README.md - Code: - URL: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/fpn_head.py#L12 - Version: v0.17.0 - Converted From: - Code: https://github.com/facebookresearch/detectron2 -Models: -- Name: fpn_r50_4xb2-80k_cityscapes-512x1024 - In Collection: FPN - Metadata: - backbone: R-50 - crop size: (512,1024) - lr schd: 80000 - inference time (ms/im): - - value: 73.86 - hardware: V100 - backend: PyTorch - batch size: 1 - mode: FP32 - resolution: (512,1024) - Training Memory (GB): 2.8 - Results: - - Task: Semantic Segmentation - Dataset: Cityscapes - Metrics: - mIoU: 74.52 - mIoU(ms+flip): 76.08 - Config: configs/sem_fpn/fpn_r50_4xb2-80k_cityscapes-512x1024.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/sem_fpn/fpn_r50_512x1024_80k_cityscapes/fpn_r50_512x1024_80k_cityscapes_20200717_021437-94018a0d.pth -- Name: fpn_r101_4xb2-80k_cityscapes-512x1024 - In Collection: FPN - Metadata: - backbone: R-101 - crop size: (512,1024) - lr schd: 80000 - inference time (ms/im): - - value: 97.18 - hardware: V100 - backend: PyTorch - batch size: 1 - mode: FP32 - resolution: (512,1024) - Training Memory (GB): 3.9 - Results: - - Task: Semantic Segmentation - Dataset: Cityscapes - Metrics: - mIoU: 75.8 - mIoU(ms+flip): 77.4 - Config: configs/sem_fpn/fpn_r101_4xb2-80k_cityscapes-512x1024.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/sem_fpn/fpn_r101_512x1024_80k_cityscapes/fpn_r101_512x1024_80k_cityscapes_20200717_012416-c5800d4c.pth -- Name: fpn_r50_4xb4-160k_ade20k-512x512 - In Collection: FPN - Metadata: - backbone: R-50 - crop size: (512,512) - lr schd: 160000 - inference time (ms/im): - - value: 17.93 - hardware: V100 - backend: PyTorch - batch size: 1 - mode: FP32 - resolution: (512,512) - Training Memory (GB): 4.9 - Results: - - Task: Semantic Segmentation - Dataset: ADE20K - Metrics: - mIoU: 37.49 - mIoU(ms+flip): 39.09 - Config: configs/sem_fpn/fpn_r50_4xb4-160k_ade20k-512x512.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/sem_fpn/fpn_r50_512x512_160k_ade20k/fpn_r50_512x512_160k_ade20k_20200718_131734-5b5a6ab9.pth -- Name: fpn_r101_4xb4-160k_ade20k-512x512 - In Collection: FPN - Metadata: - backbone: R-101 - crop size: (512,512) - lr schd: 160000 - inference time (ms/im): - - value: 24.64 - hardware: V100 - backend: PyTorch - batch size: 1 - mode: FP32 - resolution: (512,512) - Training Memory (GB): 5.9 - Results: - - Task: Semantic Segmentation - Dataset: ADE20K - Metrics: - mIoU: 39.35 - mIoU(ms+flip): 40.72 - Config: configs/sem_fpn/fpn_r101_4xb4-160k_ade20k-512x512.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/sem_fpn/fpn_r101_512x512_160k_ade20k/fpn_r101_512x512_160k_ade20k_20200718_131734-306b5004.pth diff --git a/configs/setr/README.md b/configs/setr/README.md index 1aa3f245a7..556c625f41 100644 --- a/configs/setr/README.md +++ b/configs/setr/README.md @@ -1,6 +1,6 @@ # SETR -[Rethinking Semantic Segmentation from a Sequence-to-Sequence Perspective with Transformers](https://arxiv.org/abs/2012.15840) +> [Rethinking Semantic Segmentation from a Sequence-to-Sequence Perspective with Transformers](https://arxiv.org/abs/2012.15840) ## Introduction @@ -26,17 +26,6 @@ Most recent semantic segmentation methods adopt a fully-convolutional network (F This head has two version head. ``` -## Citation - -```bibtex -@article{zheng2020rethinking, - title={Rethinking Semantic Segmentation from a Sequence-to-Sequence Perspective with Transformers}, - author={Zheng, Sixiao and Lu, Jiachen and Zhao, Hengshuang and Zhu, Xiatian and Luo, Zekun and Wang, Yabiao and Fu, Yanwei and Feng, Jianfeng and Xiang, Tao and Torr, Philip HS and others}, - journal={arXiv preprint arXiv:2012.15840}, - year={2020} -} -``` - ## Usage You can download the pretrain from [here](https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-vitjx/jx_vit_large_p16_384-b3be5167.pth). Then you can convert its keys with the script `vit2mmseg.py` in the tools directory. @@ -58,17 +47,28 @@ This script convert the model from `PRETRAIN_PATH` and store the converted model ### ADE20K -| Method | Backbone | Crop Size | Batch Size | Lr schd | Mem (GB) | Inf time (fps) | mIoU | mIoU(ms+flip) | config | download | -| ---------- | -------- | --------- | ---------- | ------- | -------- | -------------- | ----- | ------------: | ----------------------------------------------------------------------------------------------------------------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ | -| SETR Naive | ViT-L | 512x512 | 16 | 160000 | 18.40 | 4.72 | 48.28 | 49.56 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/setr/setr_vit-l_naive_8xb2-160k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/setr/setr_naive_512x512_160k_b16_ade20k/setr_naive_512x512_160k_b16_ade20k_20210619_191258-061f24f5.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/setr/setr_naive_512x512_160k_b16_ade20k/setr_naive_512x512_160k_b16_ade20k_20210619_191258.log.json) | -| SETR PUP | ViT-L | 512x512 | 16 | 160000 | 19.54 | 4.50 | 48.24 | 49.99 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/setr/setr_vit-l_pup_8xb2-160k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/setr/setr_pup_512x512_160k_b16_ade20k/setr_pup_512x512_160k_b16_ade20k_20210619_191343-7e0ce826.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/setr/setr_pup_512x512_160k_b16_ade20k/setr_pup_512x512_160k_b16_ade20k_20210619_191343.log.json) | -| SETR MLA | ViT-L | 512x512 | 8 | 160000 | 10.96 | - | 47.34 | 49.05 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/setr/setr_vit-l-mla_8xb1-160k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/setr/setr_mla_512x512_160k_b8_ade20k/setr_mla_512x512_160k_b8_ade20k_20210619_191118-c6d21df0.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/setr/setr_mla_512x512_160k_b8_ade20k/setr_mla_512x512_160k_b8_ade20k_20210619_191118.log.json) | -| SETR MLA | ViT-L | 512x512 | 16 | 160000 | 17.30 | 5.25 | 47.39 | 49.37 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/setr/setr_vit-l_mla_8xb2-160k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/setr/setr_mla_512x512_160k_b16_ade20k/setr_mla_512x512_160k_b16_ade20k_20210619_191057-f9741de7.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/setr/setr_mla_512x512_160k_b16_ade20k/setr_mla_512x512_160k_b16_ade20k_20210619_191057.log.json) | +| Method | Backbone | Crop Size | Batch Size | Lr schd | Mem (GB) | Inf time (fps) | Device | mIoU | mIoU(ms+flip) | config | download | +| ---------- | -------- | --------- | ---------- | ------- | -------- | -------------- | ------ | ----- | ------------: | ----------------------------------------------------------------------------------------------------------------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ | +| SETR Naive | ViT-L | 512x512 | 16 | 160000 | 18.40 | 4.72 | V100 | 48.28 | 49.56 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/setr/setr_vit-l_naive_8xb2-160k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/setr/setr_naive_512x512_160k_b16_ade20k/setr_naive_512x512_160k_b16_ade20k_20210619_191258-061f24f5.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/setr/setr_naive_512x512_160k_b16_ade20k/setr_naive_512x512_160k_b16_ade20k_20210619_191258.log.json) | +| SETR PUP | ViT-L | 512x512 | 16 | 160000 | 19.54 | 4.50 | V100 | 48.24 | 49.99 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/setr/setr_vit-l_pup_8xb2-160k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/setr/setr_pup_512x512_160k_b16_ade20k/setr_pup_512x512_160k_b16_ade20k_20210619_191343-7e0ce826.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/setr/setr_pup_512x512_160k_b16_ade20k/setr_pup_512x512_160k_b16_ade20k_20210619_191343.log.json) | +| SETR MLA | ViT-L | 512x512 | 8 | 160000 | 10.96 | - | V100 | 47.34 | 49.05 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/setr/setr_vit-l-mla_8xb1-160k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/setr/setr_mla_512x512_160k_b8_ade20k/setr_mla_512x512_160k_b8_ade20k_20210619_191118-c6d21df0.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/setr/setr_mla_512x512_160k_b8_ade20k/setr_mla_512x512_160k_b8_ade20k_20210619_191118.log.json) | +| SETR MLA | ViT-L | 512x512 | 16 | 160000 | 17.30 | 5.25 | V100 | 47.39 | 49.37 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/setr/setr_vit-l_mla_8xb2-160k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/setr/setr_mla_512x512_160k_b16_ade20k/setr_mla_512x512_160k_b16_ade20k_20210619_191057-f9741de7.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/setr/setr_mla_512x512_160k_b16_ade20k/setr_mla_512x512_160k_b16_ade20k_20210619_191057.log.json) | ### Cityscapes -| Method | Backbone | Crop Size | Batch Size | Lr schd | Mem (GB) | Inf time (fps) | mIoU | mIoU(ms+flip) | config | download | -| ---------- | -------- | --------- | ---------- | ------- | -------- | -------------- | ----- | ------------: | -------------------------------------------------------------------------------------------------------------------------------- | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | -| SETR Naive | ViT-L | 768x768 | 8 | 80000 | 24.06 | 0.39 | 78.10 | 80.22 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/setr/setr_vit-l_naive_8xb1-80k_cityscapes-768x768.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/setr/setr_naive_vit-large_8x1_768x768_80k_cityscapes/setr_naive_vit-large_8x1_768x768_80k_cityscapes_20211123_000505-20728e80.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/setr/setr_naive_vit-large_8x1_768x768_80k_cityscapes/setr_naive_vit-large_8x1_768x768_80k_cityscapes_20211123_000505.log.json) | -| SETR PUP | ViT-L | 768x768 | 8 | 80000 | 27.96 | 0.37 | 79.21 | 81.02 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/setr/setr_vit-l_pup_8xb1-80k_cityscapes-768x768.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/setr/setr_pup_vit-large_8x1_768x768_80k_cityscapes/setr_pup_vit-large_8x1_768x768_80k_cityscapes_20211122_155115-f6f37b8f.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/setr/setr_pup_vit-large_8x1_768x768_80k_cityscapes/setr_pup_vit-large_8x1_768x768_80k_cityscapes_20211122_155115.log.json) | -| SETR MLA | ViT-L | 768x768 | 8 | 80000 | 24.10 | 0.41 | 77.00 | 79.59 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/setr/setr_vit-l_mla_8xb1-80k_cityscapes-768x768.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/setr/setr_mla_vit-large_8x1_768x768_80k_cityscapes/setr_mla_vit-large_8x1_768x768_80k_cityscapes_20211119_101003-7f8dccbe.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/setr/setr_mla_vit-large_8x1_768x768_80k_cityscapes/setr_mla_vit-large_8x1_768x768_80k_cityscapes_20211119_101003.log.json) | +| Method | Backbone | Crop Size | Batch Size | Lr schd | Mem (GB) | Inf time (fps) | Device | mIoU | mIoU(ms+flip) | config | download | +| ---------- | -------- | --------- | ---------- | ------- | -------- | -------------- | ------ | ----- | ------------: | -------------------------------------------------------------------------------------------------------------------------------- | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | +| SETR Naive | ViT-L | 768x768 | 8 | 80000 | 24.06 | 0.39 | V100 | 78.10 | 80.22 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/setr/setr_vit-l_naive_8xb1-80k_cityscapes-768x768.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/setr/setr_naive_vit-large_8x1_768x768_80k_cityscapes/setr_naive_vit-large_8x1_768x768_80k_cityscapes_20211123_000505-20728e80.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/setr/setr_naive_vit-large_8x1_768x768_80k_cityscapes/setr_naive_vit-large_8x1_768x768_80k_cityscapes_20211123_000505.log.json) | +| SETR PUP | ViT-L | 768x768 | 8 | 80000 | 27.96 | 0.37 | V100 | 79.21 | 81.02 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/setr/setr_vit-l_pup_8xb1-80k_cityscapes-768x768.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/setr/setr_pup_vit-large_8x1_768x768_80k_cityscapes/setr_pup_vit-large_8x1_768x768_80k_cityscapes_20211122_155115-f6f37b8f.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/setr/setr_pup_vit-large_8x1_768x768_80k_cityscapes/setr_pup_vit-large_8x1_768x768_80k_cityscapes_20211122_155115.log.json) | +| SETR MLA | ViT-L | 768x768 | 8 | 80000 | 24.10 | 0.41 | V100 | 77.00 | 79.59 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/setr/setr_vit-l_mla_8xb1-80k_cityscapes-768x768.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/setr/setr_mla_vit-large_8x1_768x768_80k_cityscapes/setr_mla_vit-large_8x1_768x768_80k_cityscapes_20211119_101003-7f8dccbe.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/setr/setr_mla_vit-large_8x1_768x768_80k_cityscapes/setr_mla_vit-large_8x1_768x768_80k_cityscapes_20211119_101003.log.json) | + +## Citation + +```bibtex +@article{zheng2020rethinking, + title={Rethinking Semantic Segmentation from a Sequence-to-Sequence Perspective with Transformers}, + author={Zheng, Sixiao and Lu, Jiachen and Zhao, Hengshuang and Zhu, Xiatian and Luo, Zekun and Wang, Yabiao and Fu, Yanwei and Feng, Jianfeng and Xiang, Tao and Torr, Philip HS and others}, + journal={arXiv preprint arXiv:2012.15840}, + year={2020} +} +``` diff --git a/configs/setr/metafile.yaml b/configs/setr/metafile.yaml new file mode 100644 index 0000000000..8e6bc087dd --- /dev/null +++ b/configs/setr/metafile.yaml @@ -0,0 +1,197 @@ +Collections: +- Name: SETR + License: Apache License 2.0 + Metadata: + Training Data: + - ADE20K + - Cityscapes + Paper: + Title: Rethinking Semantic Segmentation from a Sequence-to-Sequence Perspective + with Transformers + URL: https://arxiv.org/abs/2012.15840 + README: configs/setr/README.md + Frameworks: + - PyTorch +Models: +- Name: setr_vit-l_naive_8xb2-160k_ade20k-512x512 + In Collection: SETR + Results: + Task: Semantic Segmentation + Dataset: ADE20K + Metrics: + mIoU: 48.28 + mIoU(ms+flip): 49.56 + Config: configs/setr/setr_vit-l_naive_8xb2-160k_ade20k-512x512.py + Metadata: + Training Data: ADE20K + Batch Size: 16 + Architecture: + - ViT-L + - SETR + - Naive + Training Resources: 8x V100 GPUS + Memory (GB): 18.4 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/setr/setr_naive_512x512_160k_b16_ade20k/setr_naive_512x512_160k_b16_ade20k_20210619_191258-061f24f5.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/setr/setr_naive_512x512_160k_b16_ade20k/setr_naive_512x512_160k_b16_ade20k_20210619_191258.log.json + Paper: + Title: Rethinking Semantic Segmentation from a Sequence-to-Sequence Perspective + with Transformers + URL: https://arxiv.org/abs/2012.15840 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/setr_up_head.py#L11 + Framework: PyTorch +- Name: setr_vit-l_pup_8xb2-160k_ade20k-512x512 + In Collection: SETR + Results: + Task: Semantic Segmentation + Dataset: ADE20K + Metrics: + mIoU: 48.24 + mIoU(ms+flip): 49.99 + Config: configs/setr/setr_vit-l_pup_8xb2-160k_ade20k-512x512.py + Metadata: + Training Data: ADE20K + Batch Size: 16 + Architecture: + - ViT-L + - SETR + - PUP + Training Resources: 8x V100 GPUS + Memory (GB): 19.54 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/setr/setr_pup_512x512_160k_b16_ade20k/setr_pup_512x512_160k_b16_ade20k_20210619_191343-7e0ce826.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/setr/setr_pup_512x512_160k_b16_ade20k/setr_pup_512x512_160k_b16_ade20k_20210619_191343.log.json + Paper: + Title: Rethinking Semantic Segmentation from a Sequence-to-Sequence Perspective + with Transformers + URL: https://arxiv.org/abs/2012.15840 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/setr_up_head.py#L11 + Framework: PyTorch +- Name: setr_vit-l-mla_8xb1-160k_ade20k-512x512 + In Collection: SETR + Results: + Task: Semantic Segmentation + Dataset: ADE20K + Metrics: + mIoU: 47.34 + mIoU(ms+flip): 49.05 + Config: configs/setr/setr_vit-l-mla_8xb1-160k_ade20k-512x512.py + Metadata: + Training Data: ADE20K + Batch Size: 8 + Architecture: + - ViT-L + - SETR + - MLA + Training Resources: 8x V100 GPUS + Memory (GB): 10.96 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/setr/setr_mla_512x512_160k_b8_ade20k/setr_mla_512x512_160k_b8_ade20k_20210619_191118-c6d21df0.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/setr/setr_mla_512x512_160k_b8_ade20k/setr_mla_512x512_160k_b8_ade20k_20210619_191118.log.json + Paper: + Title: Rethinking Semantic Segmentation from a Sequence-to-Sequence Perspective + with Transformers + URL: https://arxiv.org/abs/2012.15840 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/setr_up_head.py#L11 + Framework: PyTorch +- Name: setr_vit-l_mla_8xb2-160k_ade20k-512x512 + In Collection: SETR + Results: + Task: Semantic Segmentation + Dataset: ADE20K + Metrics: + mIoU: 47.39 + mIoU(ms+flip): 49.37 + Config: configs/setr/setr_vit-l_mla_8xb2-160k_ade20k-512x512.py + Metadata: + Training Data: ADE20K + Batch Size: 16 + Architecture: + - ViT-L + - SETR + - MLA + Training Resources: 8x V100 GPUS + Memory (GB): 17.3 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/setr/setr_mla_512x512_160k_b16_ade20k/setr_mla_512x512_160k_b16_ade20k_20210619_191057-f9741de7.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/setr/setr_mla_512x512_160k_b16_ade20k/setr_mla_512x512_160k_b16_ade20k_20210619_191057.log.json + Paper: + Title: Rethinking Semantic Segmentation from a Sequence-to-Sequence Perspective + with Transformers + URL: https://arxiv.org/abs/2012.15840 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/setr_up_head.py#L11 + Framework: PyTorch +- Name: setr_vit-l_naive_8xb1-80k_cityscapes-768x768 + In Collection: SETR + Results: + Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 78.1 + mIoU(ms+flip): 80.22 + Config: configs/setr/setr_vit-l_naive_8xb1-80k_cityscapes-768x768.py + Metadata: + Training Data: Cityscapes + Batch Size: 8 + Architecture: + - ViT-L + - SETR + - Naive + Training Resources: 8x V100 GPUS + Memory (GB): 24.06 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/setr/setr_naive_vit-large_8x1_768x768_80k_cityscapes/setr_naive_vit-large_8x1_768x768_80k_cityscapes_20211123_000505-20728e80.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/setr/setr_naive_vit-large_8x1_768x768_80k_cityscapes/setr_naive_vit-large_8x1_768x768_80k_cityscapes_20211123_000505.log.json + Paper: + Title: Rethinking Semantic Segmentation from a Sequence-to-Sequence Perspective + with Transformers + URL: https://arxiv.org/abs/2012.15840 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/setr_up_head.py#L11 + Framework: PyTorch +- Name: setr_vit-l_pup_8xb1-80k_cityscapes-768x768 + In Collection: SETR + Results: + Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 79.21 + mIoU(ms+flip): 81.02 + Config: configs/setr/setr_vit-l_pup_8xb1-80k_cityscapes-768x768.py + Metadata: + Training Data: Cityscapes + Batch Size: 8 + Architecture: + - ViT-L + - SETR + - PUP + Training Resources: 8x V100 GPUS + Memory (GB): 27.96 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/setr/setr_pup_vit-large_8x1_768x768_80k_cityscapes/setr_pup_vit-large_8x1_768x768_80k_cityscapes_20211122_155115-f6f37b8f.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/setr/setr_pup_vit-large_8x1_768x768_80k_cityscapes/setr_pup_vit-large_8x1_768x768_80k_cityscapes_20211122_155115.log.json + Paper: + Title: Rethinking Semantic Segmentation from a Sequence-to-Sequence Perspective + with Transformers + URL: https://arxiv.org/abs/2012.15840 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/setr_up_head.py#L11 + Framework: PyTorch +- Name: setr_vit-l_mla_8xb1-80k_cityscapes-768x768 + In Collection: SETR + Results: + Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 77.0 + mIoU(ms+flip): 79.59 + Config: configs/setr/setr_vit-l_mla_8xb1-80k_cityscapes-768x768.py + Metadata: + Training Data: Cityscapes + Batch Size: 8 + Architecture: + - ViT-L + - SETR + - MLA + Training Resources: 8x V100 GPUS + Memory (GB): 24.1 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/setr/setr_mla_vit-large_8x1_768x768_80k_cityscapes/setr_mla_vit-large_8x1_768x768_80k_cityscapes_20211119_101003-7f8dccbe.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/setr/setr_mla_vit-large_8x1_768x768_80k_cityscapes/setr_mla_vit-large_8x1_768x768_80k_cityscapes_20211119_101003.log.json + Paper: + Title: Rethinking Semantic Segmentation from a Sequence-to-Sequence Perspective + with Transformers + URL: https://arxiv.org/abs/2012.15840 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/setr_up_head.py#L11 + Framework: PyTorch diff --git a/configs/setr/setr.yml b/configs/setr/setr.yml deleted file mode 100644 index 6a9987089d..0000000000 --- a/configs/setr/setr.yml +++ /dev/null @@ -1,164 +0,0 @@ -Collections: -- Name: SETR - Metadata: - Training Data: - - ADE20K - - Cityscapes - Paper: - URL: https://arxiv.org/abs/2012.15840 - Title: Rethinking Semantic Segmentation from a Sequence-to-Sequence Perspective - with Transformers - README: configs/setr/README.md - Code: - URL: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/setr_up_head.py#L11 - Version: v0.17.0 - Converted From: - Code: https://github.com/fudan-zvg/SETR -Models: -- Name: setr_vit-l_naive_8xb2-160k_ade20k-512x512 - In Collection: SETR - Metadata: - backbone: ViT-L - crop size: (512,512) - lr schd: 160000 - inference time (ms/im): - - value: 211.86 - hardware: V100 - backend: PyTorch - batch size: 1 - mode: FP32 - resolution: (512,512) - Training Memory (GB): 18.4 - Results: - - Task: Semantic Segmentation - Dataset: ADE20K - Metrics: - mIoU: 48.28 - mIoU(ms+flip): 49.56 - Config: configs/setr/setr_vit-l_naive_8xb2-160k_ade20k-512x512.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/setr/setr_naive_512x512_160k_b16_ade20k/setr_naive_512x512_160k_b16_ade20k_20210619_191258-061f24f5.pth -- Name: setr_vit-l_pup_8xb2-160k_ade20k-512x512 - In Collection: SETR - Metadata: - backbone: ViT-L - crop size: (512,512) - lr schd: 160000 - inference time (ms/im): - - value: 222.22 - hardware: V100 - backend: PyTorch - batch size: 1 - mode: FP32 - resolution: (512,512) - Training Memory (GB): 19.54 - Results: - - Task: Semantic Segmentation - Dataset: ADE20K - Metrics: - mIoU: 48.24 - mIoU(ms+flip): 49.99 - Config: configs/setr/setr_vit-l_pup_8xb2-160k_ade20k-512x512.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/setr/setr_pup_512x512_160k_b16_ade20k/setr_pup_512x512_160k_b16_ade20k_20210619_191343-7e0ce826.pth -- Name: setr_vit-l-mla_8xb1-160k_ade20k-512x512 - In Collection: SETR - Metadata: - backbone: ViT-L - crop size: (512,512) - lr schd: 160000 - Training Memory (GB): 10.96 - Results: - - Task: Semantic Segmentation - Dataset: ADE20K - Metrics: - mIoU: 47.34 - mIoU(ms+flip): 49.05 - Config: configs/setr/setr_vit-l-mla_8xb1-160k_ade20k-512x512.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/setr/setr_mla_512x512_160k_b8_ade20k/setr_mla_512x512_160k_b8_ade20k_20210619_191118-c6d21df0.pth -- Name: setr_vit-l_mla_8xb2-160k_ade20k-512x512 - In Collection: SETR - Metadata: - backbone: ViT-L - crop size: (512,512) - lr schd: 160000 - inference time (ms/im): - - value: 190.48 - hardware: V100 - backend: PyTorch - batch size: 1 - mode: FP32 - resolution: (512,512) - Training Memory (GB): 17.3 - Results: - - Task: Semantic Segmentation - Dataset: ADE20K - Metrics: - mIoU: 47.39 - mIoU(ms+flip): 49.37 - Config: configs/setr/setr_vit-l_mla_8xb2-160k_ade20k-512x512.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/setr/setr_mla_512x512_160k_b16_ade20k/setr_mla_512x512_160k_b16_ade20k_20210619_191057-f9741de7.pth -- Name: setr_vit-l_naive_8xb1-80k_cityscapes-768x768 - In Collection: SETR - Metadata: - backbone: ViT-L - crop size: (768,768) - lr schd: 80000 - inference time (ms/im): - - value: 2564.1 - hardware: V100 - backend: PyTorch - batch size: 1 - mode: FP32 - resolution: (768,768) - Training Memory (GB): 24.06 - Results: - - Task: Semantic Segmentation - Dataset: Cityscapes - Metrics: - mIoU: 78.1 - mIoU(ms+flip): 80.22 - Config: configs/setr/setr_vit-l_naive_8xb1-80k_cityscapes-768x768.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/setr/setr_naive_vit-large_8x1_768x768_80k_cityscapes/setr_naive_vit-large_8x1_768x768_80k_cityscapes_20211123_000505-20728e80.pth -- Name: setr_vit-l_pup_8xb1-80k_cityscapes-768x768 - In Collection: SETR - Metadata: - backbone: ViT-L - crop size: (768,768) - lr schd: 80000 - inference time (ms/im): - - value: 2702.7 - hardware: V100 - backend: PyTorch - batch size: 1 - mode: FP32 - resolution: (768,768) - Training Memory (GB): 27.96 - Results: - - Task: Semantic Segmentation - Dataset: Cityscapes - Metrics: - mIoU: 79.21 - mIoU(ms+flip): 81.02 - Config: configs/setr/setr_vit-l_pup_8xb1-80k_cityscapes-768x768.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/setr/setr_pup_vit-large_8x1_768x768_80k_cityscapes/setr_pup_vit-large_8x1_768x768_80k_cityscapes_20211122_155115-f6f37b8f.pth -- Name: setr_vit-l_mla_8xb1-80k_cityscapes-768x768 - In Collection: SETR - Metadata: - backbone: ViT-L - crop size: (768,768) - lr schd: 80000 - inference time (ms/im): - - value: 2439.02 - hardware: V100 - backend: PyTorch - batch size: 1 - mode: FP32 - resolution: (768,768) - Training Memory (GB): 24.1 - Results: - - Task: Semantic Segmentation - Dataset: Cityscapes - Metrics: - mIoU: 77.0 - mIoU(ms+flip): 79.59 - Config: configs/setr/setr_vit-l_mla_8xb1-80k_cityscapes-768x768.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/setr/setr_mla_vit-large_8x1_768x768_80k_cityscapes/setr_mla_vit-large_8x1_768x768_80k_cityscapes_20211119_101003-7f8dccbe.pth diff --git a/configs/stdc/README.md b/configs/stdc/README.md index 639e6b6986..1efd65482f 100644 --- a/configs/stdc/README.md +++ b/configs/stdc/README.md @@ -1,6 +1,6 @@ # STDC -[Rethinking BiSeNet For Real-time Semantic Segmentation](https://arxiv.org/abs/2104.13188) +> [Rethinking BiSeNet For Real-time Semantic Segmentation](https://arxiv.org/abs/2104.13188) ## Introduction @@ -22,18 +22,6 @@ BiSeNet has been proved to be a popular two-stream network for real-time segment -## Citation - -```bibtex -@inproceedings{fan2021rethinking, - title={Rethinking BiSeNet For Real-time Semantic Segmentation}, - author={Fan, Mingyuan and Lai, Shenqi and Huang, Junshi and Wei, Xiaoming and Chai, Zhenhua and Luo, Junfeng and Wei, Xiaolin}, - booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition}, - pages={9716--9725}, - year={2021} -} -``` - ## Usage We have provided [ImageNet Pretrained STDCNet Weights](https://drive.google.com/drive/folders/1wROFwRt8qWHD4jSo8Zu1gp1d6oYJ3ns1) models converted from [official repo](https://github.com/MichaelFan01/STDC-Seg). @@ -58,12 +46,12 @@ This script convert model from `PRETRAIN_PATH` and store the converted model in ### Cityscapes -| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | mIoU | mIoU(ms+flip) | config | download | -| -------------------- | -------- | --------- | ------: | -------- | -------------- | ----: | ------------- | -------------------------------------------------------------------------------------------------------------------------------- | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | -| STDC 1 (No Pretrain) | STDC1 | 512x1024 | 80000 | 7.15 | 23.06 | 71.82 | 73.89 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/stdc/stdc1_4xb12-80k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/stdc/stdc1_512x1024_80k_cityscapes/stdc1_512x1024_80k_cityscapes_20220224_073048-74e6920a.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/stdc/stdc1_512x1024_80k_cityscapes/stdc1_512x1024_80k_cityscapes_20220224_073048.log.json) | -| STDC 1 | STDC1 | 512x1024 | 80000 | - | - | 74.94 | 76.97 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/stdc/stdc1_in1k-pre_4xb12-80k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/stdc/stdc1_in1k-pre_512x1024_80k_cityscapes/stdc1_in1k-pre_512x1024_80k_cityscapes_20220224_141648-3d4c2981.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/stdc/stdc1_in1k-pre_512x1024_80k_cityscapes/stdc1_in1k-pre_512x1024_80k_cityscapes_20220224_141648.log.json) | -| STDC 2 (No Pretrain) | STDC2 | 512x1024 | 80000 | 8.27 | 23.71 | 73.15 | 76.13 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/stdc/stdc2_4xb12-80k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/stdc/stdc2_512x1024_80k_cityscapes/stdc2_512x1024_80k_cityscapes_20220222_132015-fb1e3a1a.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/stdc/stdc2_512x1024_80k_cityscapes/stdc2_512x1024_80k_cityscapes_20220222_132015.log.json) | -| STDC 2 | STDC2 | 512x1024 | 80000 | - | - | 76.67 | 78.67 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/stdc/stdc2_in1k-pre_4xb12-80k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/stdc/stdc2_in1k-pre_512x1024_80k_cityscapes/stdc2_in1k-pre_512x1024_80k_cityscapes_20220224_073048-1f8f0f6c.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/stdc/stdc2_in1k-pre_512x1024_80k_cityscapes/stdc2_in1k-pre_512x1024_80k_cityscapes_20220224_073048.log.json) | +| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | Device | mIoU | mIoU(ms+flip) | config | download | +| ------ | -------------------- | --------- | ------: | -------- | -------------- | ------ | ----: | ------------- | -------------------------------------------------------------------------------------------------------------------------------- | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | +| STDC | STDC1 (No Pretrain) | 512x1024 | 80000 | 7.15 | 23.06 | V100 | 71.82 | 73.89 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/stdc/stdc1_4xb12-80k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/stdc/stdc1_512x1024_80k_cityscapes/stdc1_512x1024_80k_cityscapes_20220224_073048-74e6920a.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/stdc/stdc1_512x1024_80k_cityscapes/stdc1_512x1024_80k_cityscapes_20220224_073048.log.json) | +| STDC | STDC1 | 512x1024 | 80000 | - | - | V100 | 74.94 | 76.97 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/stdc/stdc1_in1k-pre_4xb12-80k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/stdc/stdc1_in1k-pre_512x1024_80k_cityscapes/stdc1_in1k-pre_512x1024_80k_cityscapes_20220224_141648-3d4c2981.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/stdc/stdc1_in1k-pre_512x1024_80k_cityscapes/stdc1_in1k-pre_512x1024_80k_cityscapes_20220224_141648.log.json) | +| STDC | STDC2 (No Pretrain) | 512x1024 | 80000 | 8.27 | 23.71 | V100 | 73.15 | 76.13 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/stdc/stdc2_4xb12-80k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/stdc/stdc2_512x1024_80k_cityscapes/stdc2_512x1024_80k_cityscapes_20220222_132015-fb1e3a1a.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/stdc/stdc2_512x1024_80k_cityscapes/stdc2_512x1024_80k_cityscapes_20220222_132015.log.json) | +| STDC | STDC2 | 512x1024 | 80000 | - | - | V100 | 76.67 | 78.67 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/stdc/stdc2_in1k-pre_4xb12-80k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/stdc/stdc2_in1k-pre_512x1024_80k_cityscapes/stdc2_in1k-pre_512x1024_80k_cityscapes_20220224_073048-1f8f0f6c.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/stdc/stdc2_in1k-pre_512x1024_80k_cityscapes/stdc2_in1k-pre_512x1024_80k_cityscapes_20220224_073048.log.json) | Note: @@ -71,3 +59,15 @@ Note: - `No Pretrain` means the model is trained from scratch. - The FPS is for reference only. The environment is also different from paper setting, whose input size is `512x1024` and `768x1536`, i.e., 50% and 75% of our input size, respectively and using TensorRT. - The parameter `fusion_kernel` in `STDCHead` is not learnable. In official repo, `find_unused_parameters=True` is set [here](https://github.com/MichaelFan01/STDC-Seg/blob/59ff37fbd693b99972c76fcefe97caa14aeb619f/train.py#L220). You may check it by printing model parameters of original repo on your own. + +## Citation + +```bibtex +@inproceedings{fan2021rethinking, + title={Rethinking BiSeNet For Real-time Semantic Segmentation}, + author={Fan, Mingyuan and Lai, Shenqi and Huang, Junshi and Wei, Xiaoming and Chai, Zhenhua and Luo, Junfeng and Wei, Xiaolin}, + booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition}, + pages={9716--9725}, + year={2021} +} +``` diff --git a/configs/stdc/metafile.yaml b/configs/stdc/metafile.yaml new file mode 100644 index 0000000000..93cb14f50b --- /dev/null +++ b/configs/stdc/metafile.yaml @@ -0,0 +1,107 @@ +Collections: +- Name: STDC + License: Apache License 2.0 + Metadata: + Training Data: + - Cityscapes + Paper: + Title: Rethinking BiSeNet For Real-time Semantic Segmentation + URL: https://arxiv.org/abs/2104.13188 + README: configs/stdc/README.md + Frameworks: + - PyTorch +Models: +- Name: stdc1_4xb12-80k_cityscapes-512x1024 + In Collection: STDC + Results: + Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 71.82 + mIoU(ms+flip): 73.89 + Config: configs/stdc/stdc1_4xb12-80k_cityscapes-512x1024.py + Metadata: + Training Data: Cityscapes + Batch Size: 48 + Architecture: + - STDC1 + - STDC + Training Resources: 4x V100 GPUS + Memory (GB): 7.15 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/stdc/stdc1_512x1024_80k_cityscapes/stdc1_512x1024_80k_cityscapes_20220224_073048-74e6920a.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/stdc/stdc1_512x1024_80k_cityscapes/stdc1_512x1024_80k_cityscapes_20220224_073048.log.json + Paper: + Title: Rethinking BiSeNet For Real-time Semantic Segmentation + URL: https://arxiv.org/abs/2104.13188 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.20.0/mmseg/models/backbones/stdc.py#L394 + Framework: PyTorch +- Name: stdc1_in1k-pre_4xb12-80k_cityscapes-512x1024 + In Collection: STDC + Results: + Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 74.94 + mIoU(ms+flip): 76.97 + Config: configs/stdc/stdc1_in1k-pre_4xb12-80k_cityscapes-512x1024.py + Metadata: + Training Data: Cityscapes + Batch Size: 48 + Architecture: + - STDC1 + - STDC + Training Resources: 4x V100 GPUS + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/stdc/stdc1_in1k-pre_512x1024_80k_cityscapes/stdc1_in1k-pre_512x1024_80k_cityscapes_20220224_141648-3d4c2981.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/stdc/stdc1_in1k-pre_512x1024_80k_cityscapes/stdc1_in1k-pre_512x1024_80k_cityscapes_20220224_141648.log.json + Paper: + Title: Rethinking BiSeNet For Real-time Semantic Segmentation + URL: https://arxiv.org/abs/2104.13188 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.20.0/mmseg/models/backbones/stdc.py#L394 + Framework: PyTorch +- Name: stdc2_4xb12-80k_cityscapes-512x1024 + In Collection: STDC + Results: + Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 73.15 + mIoU(ms+flip): 76.13 + Config: configs/stdc/stdc2_4xb12-80k_cityscapes-512x1024.py + Metadata: + Training Data: Cityscapes + Batch Size: 48 + Architecture: + - STDC2 + - STDC + Training Resources: 4x V100 GPUS + Memory (GB): 8.27 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/stdc/stdc2_512x1024_80k_cityscapes/stdc2_512x1024_80k_cityscapes_20220222_132015-fb1e3a1a.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/stdc/stdc2_512x1024_80k_cityscapes/stdc2_512x1024_80k_cityscapes_20220222_132015.log.json + Paper: + Title: Rethinking BiSeNet For Real-time Semantic Segmentation + URL: https://arxiv.org/abs/2104.13188 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.20.0/mmseg/models/backbones/stdc.py#L394 + Framework: PyTorch +- Name: stdc2_in1k-pre_4xb12-80k_cityscapes-512x1024 + In Collection: STDC + Results: + Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 76.67 + mIoU(ms+flip): 78.67 + Config: configs/stdc/stdc2_in1k-pre_4xb12-80k_cityscapes-512x1024.py + Metadata: + Training Data: Cityscapes + Batch Size: 48 + Architecture: + - STDC2 + - STDC + Training Resources: 4x V100 GPUS + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/stdc/stdc2_in1k-pre_512x1024_80k_cityscapes/stdc2_in1k-pre_512x1024_80k_cityscapes_20220224_073048-1f8f0f6c.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/stdc/stdc2_in1k-pre_512x1024_80k_cityscapes/stdc2_in1k-pre_512x1024_80k_cityscapes_20220224_073048.log.json + Paper: + Title: Rethinking BiSeNet For Real-time Semantic Segmentation + URL: https://arxiv.org/abs/2104.13188 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.20.0/mmseg/models/backbones/stdc.py#L394 + Framework: PyTorch diff --git a/configs/stdc/stdc.yml b/configs/stdc/stdc.yml deleted file mode 100644 index 22fb37eeba..0000000000 --- a/configs/stdc/stdc.yml +++ /dev/null @@ -1,87 +0,0 @@ -Collections: -- Name: STDC - Metadata: - Training Data: - - Cityscapes - Paper: - URL: https://arxiv.org/abs/2104.13188 - Title: Rethinking BiSeNet For Real-time Semantic Segmentation - README: configs/stdc/README.md - Code: - URL: https://github.com/open-mmlab/mmsegmentation/blob/v0.20.0/mmseg/models/backbones/stdc.py#L394 - Version: v0.20.0 - Converted From: - Code: https://github.com/MichaelFan01/STDC-Seg -Models: -- Name: stdc1_4xb12-80k_cityscapes-512x1024 - In Collection: STDC - Metadata: - backbone: STDC1 - crop size: (512,1024) - lr schd: 80000 - inference time (ms/im): - - value: 43.37 - hardware: V100 - backend: PyTorch - batch size: 1 - mode: FP32 - resolution: (512,1024) - Training Memory (GB): 7.15 - Results: - - Task: Semantic Segmentation - Dataset: Cityscapes - Metrics: - mIoU: 71.82 - mIoU(ms+flip): 73.89 - Config: configs/stdc/stdc1_4xb12-80k_cityscapes-512x1024.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/stdc/stdc1_512x1024_80k_cityscapes/stdc1_512x1024_80k_cityscapes_20220224_073048-74e6920a.pth -- Name: stdc1_in1k-pre_4xb12-80k_cityscapes-512x1024 - In Collection: STDC - Metadata: - backbone: STDC1 - crop size: (512,1024) - lr schd: 80000 - Results: - - Task: Semantic Segmentation - Dataset: Cityscapes - Metrics: - mIoU: 74.94 - mIoU(ms+flip): 76.97 - Config: configs/stdc/stdc1_in1k-pre_4xb12-80k_cityscapes-512x1024.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/stdc/stdc1_in1k-pre_512x1024_80k_cityscapes/stdc1_in1k-pre_512x1024_80k_cityscapes_20220224_141648-3d4c2981.pth -- Name: stdc2_4xb12-80k_cityscapes-512x1024 - In Collection: STDC - Metadata: - backbone: STDC2 - crop size: (512,1024) - lr schd: 80000 - inference time (ms/im): - - value: 42.18 - hardware: V100 - backend: PyTorch - batch size: 1 - mode: FP32 - resolution: (512,1024) - Training Memory (GB): 8.27 - Results: - - Task: Semantic Segmentation - Dataset: Cityscapes - Metrics: - mIoU: 73.15 - mIoU(ms+flip): 76.13 - Config: configs/stdc/stdc2_4xb12-80k_cityscapes-512x1024.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/stdc/stdc2_512x1024_80k_cityscapes/stdc2_512x1024_80k_cityscapes_20220222_132015-fb1e3a1a.pth -- Name: stdc2_in1k-pre_4xb12-80k_cityscapes-512x1024 - In Collection: STDC - Metadata: - backbone: STDC2 - crop size: (512,1024) - lr schd: 80000 - Results: - - Task: Semantic Segmentation - Dataset: Cityscapes - Metrics: - mIoU: 76.67 - mIoU(ms+flip): 78.67 - Config: configs/stdc/stdc2_in1k-pre_4xb12-80k_cityscapes-512x1024.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/stdc/stdc2_in1k-pre_512x1024_80k_cityscapes/stdc2_in1k-pre_512x1024_80k_cityscapes_20220224_073048-1f8f0f6c.pth diff --git a/configs/swin/README.md b/configs/swin/README.md index 4ab20e80b8..18fcbae8bc 100644 --- a/configs/swin/README.md +++ b/configs/swin/README.md @@ -1,6 +1,6 @@ # Swin Transformer -[Swin Transformer: Hierarchical Vision Transformer using Shifted Windows](https://arxiv.org/abs/2103.14030) +> [Swin Transformer: Hierarchical Vision Transformer using Shifted Windows](https://arxiv.org/abs/2103.14030) ## Introduction @@ -22,17 +22,6 @@ This paper presents a new vision Transformer, called Swin Transformer, that capa -## Citation - -```bibtex -@article{liu2021Swin, - title={Swin Transformer: Hierarchical Vision Transformer using Shifted Windows}, - author={Liu, Ze and Lin, Yutong and Cao, Yue and Hu, Han and Wei, Yixuan and Zhang, Zheng and Lin, Stephen and Guo, Baining}, - journal={arXiv preprint arXiv:2103.14030}, - year={2021} -} -``` - ## Usage We have provided pretrained models converted from [official repo](https://github.com/microsoft/Swin-Transformer). @@ -66,11 +55,22 @@ In our default setting, pretrained models and their corresponding [original mode ### ADE20K -| Method | Backbone | Crop Size | pretrain | pretrain img size | Batch Size | Lr schd | Mem (GB) | Inf time (fps) | mIoU | mIoU(ms+flip) | config | download | -| ------- | -------- | --------- | ------------ | ----------------- | ---------- | ------- | -------- | -------------- | ----- | ------------: | --------------------------------------------------------------------------------------------------------------------------------------------------------------- | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | -| UPerNet | Swin-T | 512x512 | ImageNet-1K | 224x224 | 16 | 160000 | 5.02 | 21.06 | 44.41 | 45.79 | [config](https://github.com/open-mmlab/mmsegmentation/blob/master/configs/swin/swin-tiny-patch4-window7-in1k-pre_upernet_8xb2-160k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_tiny_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K/upernet_swin_tiny_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K_20210531_112542-e380ad3e.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_tiny_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K/upernet_swin_tiny_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K_20210531_112542.log.json) | -| UPerNet | Swin-S | 512x512 | ImageNet-1K | 224x224 | 16 | 160000 | 6.17 | 14.72 | 47.72 | 49.24 | [config](https://github.com/open-mmlab/mmsegmentation/blob/master/configs/swin/swin-small-patch4-window7-in1k-pre_upernet_8xb2-160k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_small_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K/upernet_swin_small_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K_20210526_192015-ee2fff1c.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_small_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K/upernet_swin_small_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K_20210526_192015.log.json) | -| UPerNet | Swin-B | 512x512 | ImageNet-1K | 224x224 | 16 | 160000 | 7.61 | 12.65 | 47.99 | 49.57 | [config](https://github.com/open-mmlab/mmsegmentation/blob/master/configs/swin/swin-base-patch4-window7-in1k-pre_upernet_8xb2-160k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_base_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K/upernet_swin_base_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K_20210526_192340-593b0e13.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_base_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K/upernet_swin_base_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K_20210526_192340.log.json) | -| UPerNet | Swin-B | 512x512 | ImageNet-22K | 224x224 | 16 | 160000 | - | - | 50.13 | 51.9 | [config](https://github.com/open-mmlab/mmsegmentation/blob/master/configs/swin/swin-base-patch4-window7-in22k-pre_upernet_8xb2-160k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_base_patch4_window7_512x512_160k_ade20k_pretrain_224x224_22K/upernet_swin_base_patch4_window7_512x512_160k_ade20k_pretrain_224x224_22K_20210526_211650-762e2178.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_base_patch4_window7_512x512_160k_ade20k_pretrain_224x224_22K/upernet_swin_base_patch4_window7_512x512_160k_ade20k_pretrain_224x224_22K_20210526_211650.log.json) | -| UPerNet | Swin-B | 512x512 | ImageNet-1K | 384x384 | 16 | 160000 | 8.52 | 12.10 | 48.35 | 49.65 | [config](https://github.com/open-mmlab/mmsegmentation/blob/master/configs/swin/swin-base-patch4-window12-in1k-384x384-pre_upernet_8xb2-160k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_base_patch4_window12_512x512_160k_ade20k_pretrain_384x384_1K/upernet_swin_base_patch4_window12_512x512_160k_ade20k_pretrain_384x384_1K_20210531_132020-05b22ea4.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_base_patch4_window12_512x512_160k_ade20k_pretrain_384x384_1K/upernet_swin_base_patch4_window12_512x512_160k_ade20k_pretrain_384x384_1K_20210531_132020.log.json) | -| UPerNet | Swin-B | 512x512 | ImageNet-22K | 384x384 | 16 | 160000 | - | - | 50.76 | 52.4 | [config](https://github.com/open-mmlab/mmsegmentation/blob/master/configs/swin/swin-base-patch4-window12-in22k-384x384-pre_upernet_8xb2-160k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_base_patch4_window12_512x512_160k_ade20k_pretrain_384x384_22K/upernet_swin_base_patch4_window12_512x512_160k_ade20k_pretrain_384x384_22K_20210531_125459-429057bf.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_base_patch4_window12_512x512_160k_ade20k_pretrain_384x384_22K/upernet_swin_base_patch4_window12_512x512_160k_ade20k_pretrain_384x384_22K_20210531_125459.log.json) | +| Method | Backbone | Crop Size | pretrain | pretrain img size | Batch Size | Lr schd | Mem (GB) | Inf time (fps) | Device | mIoU | mIoU(ms+flip) | config | download | +| ------- | -------- | --------- | ------------ | ----------------- | ---------- | ------- | -------- | -------------- | ------ | ----- | ------------: | --------------------------------------------------------------------------------------------------------------------------------------------------------------- | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | +| UPerNet | Swin-T | 512x512 | ImageNet-1K | 224x224 | 16 | 160000 | 5.02 | 21.06 | V100 | 44.41 | 45.79 | [config](https://github.com/open-mmlab/mmsegmentation/blob/master/configs/swin/swin-tiny-patch4-window7-in1k-pre_upernet_8xb2-160k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_tiny_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K/upernet_swin_tiny_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K_20210531_112542-e380ad3e.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_tiny_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K/upernet_swin_tiny_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K_20210531_112542.log.json) | +| UPerNet | Swin-S | 512x512 | ImageNet-1K | 224x224 | 16 | 160000 | 6.17 | 14.72 | V100 | 47.72 | 49.24 | [config](https://github.com/open-mmlab/mmsegmentation/blob/master/configs/swin/swin-small-patch4-window7-in1k-pre_upernet_8xb2-160k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_small_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K/upernet_swin_small_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K_20210526_192015-ee2fff1c.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_small_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K/upernet_swin_small_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K_20210526_192015.log.json) | +| UPerNet | Swin-B | 512x512 | ImageNet-1K | 224x224 | 16 | 160000 | 7.61 | 12.65 | V100 | 47.99 | 49.57 | [config](https://github.com/open-mmlab/mmsegmentation/blob/master/configs/swin/swin-base-patch4-window7-in1k-pre_upernet_8xb2-160k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_base_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K/upernet_swin_base_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K_20210526_192340-593b0e13.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_base_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K/upernet_swin_base_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K_20210526_192340.log.json) | +| UPerNet | Swin-B | 512x512 | ImageNet-22K | 224x224 | 16 | 160000 | - | - | V100 | 50.13 | 51.9 | [config](https://github.com/open-mmlab/mmsegmentation/blob/master/configs/swin/swin-base-patch4-window7-in22k-pre_upernet_8xb2-160k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_base_patch4_window7_512x512_160k_ade20k_pretrain_224x224_22K/upernet_swin_base_patch4_window7_512x512_160k_ade20k_pretrain_224x224_22K_20210526_211650-762e2178.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_base_patch4_window7_512x512_160k_ade20k_pretrain_224x224_22K/upernet_swin_base_patch4_window7_512x512_160k_ade20k_pretrain_224x224_22K_20210526_211650.log.json) | +| UPerNet | Swin-B | 512x512 | ImageNet-1K | 384x384 | 16 | 160000 | 8.52 | 12.10 | V100 | 48.35 | 49.65 | [config](https://github.com/open-mmlab/mmsegmentation/blob/master/configs/swin/swin-base-patch4-window12-in1k-384x384-pre_upernet_8xb2-160k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_base_patch4_window12_512x512_160k_ade20k_pretrain_384x384_1K/upernet_swin_base_patch4_window12_512x512_160k_ade20k_pretrain_384x384_1K_20210531_132020-05b22ea4.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_base_patch4_window12_512x512_160k_ade20k_pretrain_384x384_1K/upernet_swin_base_patch4_window12_512x512_160k_ade20k_pretrain_384x384_1K_20210531_132020.log.json) | +| UPerNet | Swin-B | 512x512 | ImageNet-22K | 384x384 | 16 | 160000 | - | - | V100 | 50.76 | 52.4 | [config](https://github.com/open-mmlab/mmsegmentation/blob/master/configs/swin/swin-base-patch4-window12-in22k-384x384-pre_upernet_8xb2-160k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_base_patch4_window12_512x512_160k_ade20k_pretrain_384x384_22K/upernet_swin_base_patch4_window12_512x512_160k_ade20k_pretrain_384x384_22K_20210531_125459-429057bf.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_base_patch4_window12_512x512_160k_ade20k_pretrain_384x384_22K/upernet_swin_base_patch4_window12_512x512_160k_ade20k_pretrain_384x384_22K_20210531_125459.log.json) | + +## Citation + +```bibtex +@article{liu2021Swin, + title={Swin Transformer: Hierarchical Vision Transformer using Shifted Windows}, + author={Liu, Ze and Lin, Yutong and Cao, Yue and Hu, Han and Wei, Yixuan and Zhang, Zheng and Lin, Stephen and Guo, Baining}, + journal={arXiv preprint arXiv:2103.14030}, + year={2021} +} +``` diff --git a/configs/swin/metafile.yaml b/configs/swin/metafile.yaml new file mode 100644 index 0000000000..67a4e07551 --- /dev/null +++ b/configs/swin/metafile.yaml @@ -0,0 +1,143 @@ +Models: +- Name: swin-tiny-patch4-window7-in1k-pre_upernet_8xb2-160k_ade20k-512x512 + In Collection: UPerNet + Results: + Task: Semantic Segmentation + Dataset: ADE20K + Metrics: + mIoU: 44.41 + mIoU(ms+flip): 45.79 + Config: configs/swin/swin-tiny-patch4-window7-in1k-pre_upernet_8xb2-160k_ade20k-512x512.py + Metadata: + Training Data: ADE20K + Batch Size: 16 + Architecture: + - Swin-T + - UPerNet + Training Resources: 8x V100 GPUS + Memory (GB): 5.02 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_tiny_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K/upernet_swin_tiny_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K_20210531_112542-e380ad3e.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_tiny_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K/upernet_swin_tiny_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K_20210531_112542.log.json + Paper: + Title: 'Swin Transformer: Hierarchical Vision Transformer using Shifted Windows' + URL: https://arxiv.org/abs/2103.14030 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/backbones/swin.py#L524 + Framework: PyTorch +- Name: swin-small-patch4-window7-in1k-pre_upernet_8xb2-160k_ade20k-512x512 + In Collection: UPerNet + Results: + Task: Semantic Segmentation + Dataset: ADE20K + Metrics: + mIoU: 47.72 + mIoU(ms+flip): 49.24 + Config: configs/swin/swin-small-patch4-window7-in1k-pre_upernet_8xb2-160k_ade20k-512x512.py + Metadata: + Training Data: ADE20K + Batch Size: 16 + Architecture: + - Swin-S + - UPerNet + Training Resources: 8x V100 GPUS + Memory (GB): 6.17 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_small_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K/upernet_swin_small_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K_20210526_192015-ee2fff1c.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_small_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K/upernet_swin_small_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K_20210526_192015.log.json + Paper: + Title: 'Swin Transformer: Hierarchical Vision Transformer using Shifted Windows' + URL: https://arxiv.org/abs/2103.14030 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/backbones/swin.py#L524 + Framework: PyTorch +- Name: swin-base-patch4-window7-in1k-pre_upernet_8xb2-160k_ade20k-512x512 + In Collection: UPerNet + Results: + Task: Semantic Segmentation + Dataset: ADE20K + Metrics: + mIoU: 47.99 + mIoU(ms+flip): 49.57 + Config: configs/swin/swin-base-patch4-window7-in1k-pre_upernet_8xb2-160k_ade20k-512x512.py + Metadata: + Training Data: ADE20K + Batch Size: 16 + Architecture: + - Swin-B + - UPerNet + Training Resources: 8x V100 GPUS + Memory (GB): 7.61 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_base_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K/upernet_swin_base_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K_20210526_192340-593b0e13.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_base_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K/upernet_swin_base_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K_20210526_192340.log.json + Paper: + Title: 'Swin Transformer: Hierarchical Vision Transformer using Shifted Windows' + URL: https://arxiv.org/abs/2103.14030 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/backbones/swin.py#L524 + Framework: PyTorch +- Name: swin-base-patch4-window7-in22k-pre_upernet_8xb2-160k_ade20k-512x512 + In Collection: UPerNet + Results: + Task: Semantic Segmentation + Dataset: ADE20K + Metrics: + mIoU: 50.13 + mIoU(ms+flip): 51.9 + Config: configs/swin/swin-base-patch4-window7-in22k-pre_upernet_8xb2-160k_ade20k-512x512.py + Metadata: + Training Data: ADE20K + Batch Size: 16 + Architecture: + - Swin-B + - UPerNet + Training Resources: 8x V100 GPUS + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_base_patch4_window7_512x512_160k_ade20k_pretrain_224x224_22K/upernet_swin_base_patch4_window7_512x512_160k_ade20k_pretrain_224x224_22K_20210526_211650-762e2178.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_base_patch4_window7_512x512_160k_ade20k_pretrain_224x224_22K/upernet_swin_base_patch4_window7_512x512_160k_ade20k_pretrain_224x224_22K_20210526_211650.log.json + Paper: + Title: 'Swin Transformer: Hierarchical Vision Transformer using Shifted Windows' + URL: https://arxiv.org/abs/2103.14030 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/backbones/swin.py#L524 + Framework: PyTorch +- Name: swin-base-patch4-window12-in1k-384x384-pre_upernet_8xb2-160k_ade20k-512x512 + In Collection: UPerNet + Results: + Task: Semantic Segmentation + Dataset: ADE20K + Metrics: + mIoU: 48.35 + mIoU(ms+flip): 49.65 + Config: configs/swin/swin-base-patch4-window12-in1k-384x384-pre_upernet_8xb2-160k_ade20k-512x512.py + Metadata: + Training Data: ADE20K + Batch Size: 16 + Architecture: + - Swin-B + - UPerNet + Training Resources: 8x V100 GPUS + Memory (GB): 8.52 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_base_patch4_window12_512x512_160k_ade20k_pretrain_384x384_1K/upernet_swin_base_patch4_window12_512x512_160k_ade20k_pretrain_384x384_1K_20210531_132020-05b22ea4.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_base_patch4_window12_512x512_160k_ade20k_pretrain_384x384_1K/upernet_swin_base_patch4_window12_512x512_160k_ade20k_pretrain_384x384_1K_20210531_132020.log.json + Paper: + Title: 'Swin Transformer: Hierarchical Vision Transformer using Shifted Windows' + URL: https://arxiv.org/abs/2103.14030 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/backbones/swin.py#L524 + Framework: PyTorch +- Name: swin-base-patch4-window12-in22k-384x384-pre_upernet_8xb2-160k_ade20k-512x512 + In Collection: UPerNet + Results: + Task: Semantic Segmentation + Dataset: ADE20K + Metrics: + mIoU: 50.76 + mIoU(ms+flip): 52.4 + Config: configs/swin/swin-base-patch4-window12-in22k-384x384-pre_upernet_8xb2-160k_ade20k-512x512.py + Metadata: + Training Data: ADE20K + Batch Size: 16 + Architecture: + - Swin-B + - UPerNet + Training Resources: 8x V100 GPUS + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_base_patch4_window12_512x512_160k_ade20k_pretrain_384x384_22K/upernet_swin_base_patch4_window12_512x512_160k_ade20k_pretrain_384x384_22K_20210531_125459-429057bf.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_base_patch4_window12_512x512_160k_ade20k_pretrain_384x384_22K/upernet_swin_base_patch4_window12_512x512_160k_ade20k_pretrain_384x384_22K_20210531_125459.log.json + Paper: + Title: 'Swin Transformer: Hierarchical Vision Transformer using Shifted Windows' + URL: https://arxiv.org/abs/2103.14030 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/backbones/swin.py#L524 + Framework: PyTorch diff --git a/configs/swin/swin.yml b/configs/swin/swin.yml deleted file mode 100644 index 783d839c8d..0000000000 --- a/configs/swin/swin.yml +++ /dev/null @@ -1,117 +0,0 @@ -Models: -- Name: swin-tiny-patch4-window7-in1k-pre_upernet_8xb2-160k_ade20k-512x512 - In Collection: UPerNet - Metadata: - backbone: Swin-T - crop size: (512,512) - lr schd: 160000 - inference time (ms/im): - - value: 47.48 - hardware: V100 - backend: PyTorch - batch size: 1 - mode: FP32 - resolution: (512,512) - Training Memory (GB): 5.02 - Results: - - Task: Semantic Segmentation - Dataset: ADE20K - Metrics: - mIoU: 44.41 - mIoU(ms+flip): 45.79 - Config: configs/swin/swin-tiny-patch4-window7-in1k-pre_upernet_8xb2-160k_ade20k-512x512.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_tiny_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K/upernet_swin_tiny_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K_20210531_112542-e380ad3e.pth -- Name: swin-small-patch4-window7-in1k-pre_upernet_8xb2-160k_ade20k-512x512 - In Collection: UPerNet - Metadata: - backbone: Swin-S - crop size: (512,512) - lr schd: 160000 - inference time (ms/im): - - value: 67.93 - hardware: V100 - backend: PyTorch - batch size: 1 - mode: FP32 - resolution: (512,512) - Training Memory (GB): 6.17 - Results: - - Task: Semantic Segmentation - Dataset: ADE20K - Metrics: - mIoU: 47.72 - mIoU(ms+flip): 49.24 - Config: configs/swin/swin-small-patch4-window7-in1k-pre_upernet_8xb2-160k_ade20k-512x512.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_small_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K/upernet_swin_small_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K_20210526_192015-ee2fff1c.pth -- Name: swin-base-patch4-window7-in1k-pre_upernet_8xb2-160k_ade20k-512x512 - In Collection: UPerNet - Metadata: - backbone: Swin-B - crop size: (512,512) - lr schd: 160000 - inference time (ms/im): - - value: 79.05 - hardware: V100 - backend: PyTorch - batch size: 1 - mode: FP32 - resolution: (512,512) - Training Memory (GB): 7.61 - Results: - - Task: Semantic Segmentation - Dataset: ADE20K - Metrics: - mIoU: 47.99 - mIoU(ms+flip): 49.57 - Config: configs/swin/swin-base-patch4-window7-in1k-pre_upernet_8xb2-160k_ade20k-512x512.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_base_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K/upernet_swin_base_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K_20210526_192340-593b0e13.pth -- Name: swin-base-patch4-window7-in22k-pre_upernet_8xb2-160k_ade20k-512x512 - In Collection: UPerNet - Metadata: - backbone: Swin-B - crop size: (512,512) - lr schd: 160000 - Results: - - Task: Semantic Segmentation - Dataset: ADE20K - Metrics: - mIoU: 50.13 - mIoU(ms+flip): 51.9 - Config: configs/swin/swin-base-patch4-window7-in22k-pre_upernet_8xb2-160k_ade20k-512x512.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_base_patch4_window7_512x512_160k_ade20k_pretrain_224x224_22K/upernet_swin_base_patch4_window7_512x512_160k_ade20k_pretrain_224x224_22K_20210526_211650-762e2178.pth -- Name: swin-base-patch4-window12-in1k-384x384-pre_upernet_8xb2-160k_ade20k-512x512 - In Collection: UPerNet - Metadata: - backbone: Swin-B - crop size: (512,512) - lr schd: 160000 - inference time (ms/im): - - value: 82.64 - hardware: V100 - backend: PyTorch - batch size: 1 - mode: FP32 - resolution: (512,512) - Training Memory (GB): 8.52 - Results: - - Task: Semantic Segmentation - Dataset: ADE20K - Metrics: - mIoU: 48.35 - mIoU(ms+flip): 49.65 - Config: configs/swin/swin-base-patch4-window12-in1k-384x384-pre_upernet_8xb2-160k_ade20k-512x512.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_base_patch4_window12_512x512_160k_ade20k_pretrain_384x384_1K/upernet_swin_base_patch4_window12_512x512_160k_ade20k_pretrain_384x384_1K_20210531_132020-05b22ea4.pth -- Name: swin-base-patch4-window12-in22k-384x384-pre_upernet_8xb2-160k_ade20k-512x512 - In Collection: UPerNet - Metadata: - backbone: Swin-B - crop size: (512,512) - lr schd: 160000 - Results: - - Task: Semantic Segmentation - Dataset: ADE20K - Metrics: - mIoU: 50.76 - mIoU(ms+flip): 52.4 - Config: configs/swin/swin-base-patch4-window12-in22k-384x384-pre_upernet_8xb2-160k_ade20k-512x512.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_base_patch4_window12_512x512_160k_ade20k_pretrain_384x384_22K/upernet_swin_base_patch4_window12_512x512_160k_ade20k_pretrain_384x384_22K_20210531_125459-429057bf.pth diff --git a/configs/twins/README.md b/configs/twins/README.md index 3e741802e6..306b65fac8 100644 --- a/configs/twins/README.md +++ b/configs/twins/README.md @@ -1,6 +1,6 @@ # Twins -[Twins: Revisiting the Design of Spatial Attention in Vision Transformers](https://arxiv.org/pdf/2104.13840.pdf) +> [Twins: Revisiting the Design of Spatial Attention in Vision Transformers](https://arxiv.org/pdf/2104.13840.pdf) ## Introduction @@ -22,17 +22,6 @@ Very recently, a variety of vision transformer architectures for dense predictio -## Citation - -```bibtex -@article{chu2021twins, - title={Twins: Revisiting spatial attention design in vision transformers}, - author={Chu, Xiangxiang and Tian, Zhi and Wang, Yuqing and Zhang, Bo and Ren, Haibing and Wei, Xiaolin and Xia, Huaxia and Shen, Chunhua}, - journal={arXiv preprint arXiv:2104.13840}, - year={2021}altgvt -} -``` - ## Usage We have provided pretrained models converted from [official repo](https://github.com/Meituan-AutoML/Twins). @@ -55,22 +44,33 @@ python tools/model_converters/twins2mmseg.py ./alt_gvt_base.pth ./pretrained/alt ### ADE20K -| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | mIoU | mIoU(ms+flip) | config | download | -| ------------------- | -------- | --------- | ------- | -------- | -------------- | ----- | ------------- | -------------------------------------------------------------------------------------------------------------------------------------- | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | -| Twins-FPN | PCPVT-S | 512x512 | 80000 | 6.60 | 27.15 | 43.26 | 44.11 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/twins/twins_pcpvt-s_fpn_fpnhead_8xb4-80k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/twins/twins_pcpvt-s_fpn_fpnhead_8x4_512x512_80k_ade20k/twins_pcpvt-s_fpn_fpnhead_8x4_512x512_80k_ade20k_20211201_204132-41acd132.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/twins/twins_pcpvt-s_fpn_fpnhead_8x4_512x512_80k_ade20k/twins_pcpvt-s_fpn_fpnhead_8x4_512x512_80k_ade20k_20211201_204132.log.json) | -| Twins-UPerNet | PCPVT-S | 512x512 | 160000 | 9.67 | 14.24 | 46.04 | 46.92 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/twins/twins_pcpvt-s_uperhead_8xb4-160k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/twins/twins_pcpvt-s_uperhead_8x4_512x512_160k_ade20k/twins_pcpvt-s_uperhead_8x4_512x512_160k_ade20k_20211201_233537-8e99c07a.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/twins/twins_pcpvt-s_uperhead_8x4_512x512_160k_ade20k/twins_pcpvt-s_uperhead_8x4_512x512_160k_ade20k_20211201_233537.log.json) | -| Twins-FPN | PCPVT-B | 512x512 | 80000 | 8.41 | 19.67 | 45.66 | 46.48 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/twins/twins_pcpvt-b_fpn_fpnhead_8xb4-80k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/twins/twins_pcpvt-b_fpn_fpnhead_8x4_512x512_80k_ade20k/twins_pcpvt-b_fpn_fpnhead_8x4_512x512_80k_ade20k_20211130_141019-d396db72.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/twins/twins_pcpvt-b_fpn_fpnhead_8x4_512x512_80k_ade20k/twins_pcpvt-b_fpn_fpnhead_8x4_512x512_80k_ade20k_20211130_141019.log.json) | -| Twins-UPerNet (8x2) | PCPVT-B | 512x512 | 160000 | 6.46 | 12.04 | 47.91 | 48.64 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/twins/twins_pcpvt-b_uperhead_8xb2-160k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/twins/twins_pcpvt-b_uperhead_8x2_512x512_160k_ade20k/twins_pcpvt-b_uperhead_8x2_512x512_160k_ade20k_20211130_141020-02094ea5.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/twins/twins_pcpvt-b_uperhead_8x2_512x512_160k_ade20k/twins_pcpvt-b_uperhead_8x2_512x512_160k_ade20k_20211130_141020.log.json) | -| Twins-FPN | PCPVT-L | 512x512 | 80000 | 10.78 | 14.32 | 45.94 | 46.70 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/twins/twins_pcpvt-l_fpn_fpnhead_8xb4-80k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/twins/twins_pcpvt-l_fpn_fpnhead_8x4_512x512_80k_ade20k/twins_pcpvt-l_fpn_fpnhead_8x4_512x512_80k_ade20k_20211201_105226-bc6d61dc.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/twins/twins_pcpvt-l_fpn_fpnhead_8x4_512x512_80k_ade20k/twins_pcpvt-l_fpn_fpnhead_8x4_512x512_80k_ade20k_20211201_105226.log.json) | -| Twins-UPerNet (8x2) | PCPVT-L | 512x512 | 160000 | 7.82 | 10.70 | 49.35 | 50.08 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/twins/twins_pcpvt-l_uperhead_8xb2-160k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/twins/twins_pcpvt-l_uperhead_8x2_512x512_160k_ade20k/twins_pcpvt-l_uperhead_8x2_512x512_160k_ade20k_20211201_075053-c6095c07.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/twins/twins_pcpvt-l_uperhead_8x2_512x512_160k_ade20k/twins_pcpvt-l_uperhead_8x2_512x512_160k_ade20k_20211201_075053.log.json) | -| Twins-FPN | SVT-S | 512x512 | 80000 | 5.80 | 29.79 | 44.47 | 45.42 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/twins/twins_svt-s_fpn_fpnhead_8xb4-80k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/twins/twins_svt-s_fpn_fpnhead_8x4_512x512_80k_ade20k/twins_svt-s_fpn_fpnhead_8x4_512x512_80k_ade20k_20211130_141006-0a0d3317.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/twins/twins_svt-s_fpn_fpnhead_8x4_512x512_80k_ade20k/twins_svt-s_fpn_fpnhead_8x4_512x512_80k_ade20k_20211130_141006.log.json) | -| Twins-UPerNet (8x2) | SVT-S | 512x512 | 160000 | 4.93 | 15.09 | 46.08 | 46.96 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/twins/twins_svt-s_uperhead_8xb2-160k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/twins/twins_svt-s_uperhead_8x2_512x512_160k_ade20k/twins_svt-s_uperhead_8x2_512x512_160k_ade20k_20211130_141005-e48a2d94.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/twins/twins_svt-s_uperhead_8x2_512x512_160k_ade20k/twins_svt-s_uperhead_8x2_512x512_160k_ade20k_20211130_141005.log.json) | -| Twins-FPN | SVT-B | 512x512 | 80000 | 8.75 | 21.10 | 46.77 | 47.47 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/twins/twins_svt-b_fpn_fpnhead_8xb4-80k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/twins/twins_svt-b_fpn_fpnhead_8x4_512x512_80k_ade20k/twins_svt-b_fpn_fpnhead_8x4_512x512_80k_ade20k_20211201_113849-88b2907c.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/twins/twins_svt-b_fpn_fpnhead_8x4_512x512_80k_ade20k/twins_svt-b_fpn_fpnhead_8x4_512x512_80k_ade20k_20211201_113849.log.json) | -| Twins-UPerNet (8x2) | SVT-B | 512x512 | 160000 | 6.77 | 12.66 | 48.04 | 48.87 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/twins/twins_svt-b_uperhead_8xb2-160k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/twins/twins_svt-b_uperhead_8x2_512x512_160k_ade20k/twins_svt-b_uperhead_8x2_512x512_160k_ade20k_20211202_040826-0943a1f1.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/twins/twins_svt-b_uperhead_8x2_512x512_160k_ade20k/twins_svt-b_uperhead_8x2_512x512_160k_ade20k_20211202_040826.log.json) | -| Twins-FPN | SVT-L | 512x512 | 80000 | 11.20 | 17.80 | 46.55 | 47.74 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/twins/twins_svt-l_fpn_fpnhead_8xb4-80k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/twins/twins_svt-l_fpn_fpnhead_8x4_512x512_80k_ade20k/twins_svt-l_fpn_fpnhead_8x4_512x512_80k_ade20k_20211130_141005-1d59bee2.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/twins/twins_svt-l_fpn_fpnhead_8x4_512x512_80k_ade20k/twins_svt-l_fpn_fpnhead_8x4_512x512_80k_ade20k_20211130_141005.log.json) | -| Twins-UPerNet (8x2) | SVT-L | 512x512 | 160000 | 8.41 | 10.73 | 49.65 | 50.63 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/twins/twins_pcpvt-l_uperhead_8xb2-160k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/twins/twins_svt-l_uperhead_8x2_512x512_160k_ade20k/twins_svt-l_uperhead_8x2_512x512_160k_ade20k_20211130_141005-3e2cae61.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/twins/twins_svt-l_uperhead_8x2_512x512_160k_ade20k/twins_svt-l_uperhead_8x2_512x512_160k_ade20k_20211130_141005.log.json) | +| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | Device | mIoU | mIoU(ms+flip) | config | download | +| ------- | ------------------- | --------- | ------- | -------- | -------------- | ------ | ----- | ------------- | -------------------------------------------------------------------------------------------------------------------------------------- | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | +| FPN | Twins-PCPVT-S | 512x512 | 80000 | 6.60 | 27.15 | V100 | 43.26 | 44.11 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/twins/twins_pcpvt-s_fpn_fpnhead_8xb4-80k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/twins/twins_pcpvt-s_fpn_fpnhead_8x4_512x512_80k_ade20k/twins_pcpvt-s_fpn_fpnhead_8x4_512x512_80k_ade20k_20211201_204132-41acd132.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/twins/twins_pcpvt-s_fpn_fpnhead_8x4_512x512_80k_ade20k/twins_pcpvt-s_fpn_fpnhead_8x4_512x512_80k_ade20k_20211201_204132.log.json) | +| UPerNet | Twins-PCPVT-S | 512x512 | 160000 | 9.67 | 14.24 | V100 | 46.04 | 46.92 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/twins/twins_pcpvt-s_uperhead_8xb4-160k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/twins/twins_pcpvt-s_uperhead_8x4_512x512_160k_ade20k/twins_pcpvt-s_uperhead_8x4_512x512_160k_ade20k_20211201_233537-8e99c07a.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/twins/twins_pcpvt-s_uperhead_8x4_512x512_160k_ade20k/twins_pcpvt-s_uperhead_8x4_512x512_160k_ade20k_20211201_233537.log.json) | +| FPN | Twins-PCPVT-B | 512x512 | 80000 | 8.41 | 19.67 | V100 | 45.66 | 46.48 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/twins/twins_pcpvt-b_fpn_fpnhead_8xb4-80k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/twins/twins_pcpvt-b_fpn_fpnhead_8x4_512x512_80k_ade20k/twins_pcpvt-b_fpn_fpnhead_8x4_512x512_80k_ade20k_20211130_141019-d396db72.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/twins/twins_pcpvt-b_fpn_fpnhead_8x4_512x512_80k_ade20k/twins_pcpvt-b_fpn_fpnhead_8x4_512x512_80k_ade20k_20211130_141019.log.json) | +| UPerNet | Twins-PCPVT-B (8x2) | 512x512 | 160000 | 6.46 | 12.04 | V100 | 47.91 | 48.64 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/twins/twins_pcpvt-b_uperhead_8xb2-160k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/twins/twins_pcpvt-b_uperhead_8x2_512x512_160k_ade20k/twins_pcpvt-b_uperhead_8x2_512x512_160k_ade20k_20211130_141020-02094ea5.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/twins/twins_pcpvt-b_uperhead_8x2_512x512_160k_ade20k/twins_pcpvt-b_uperhead_8x2_512x512_160k_ade20k_20211130_141020.log.json) | +| FPN | Twins-PCPVT-L | 512x512 | 80000 | 10.78 | 14.32 | V100 | 45.94 | 46.70 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/twins/twins_pcpvt-l_fpn_fpnhead_8xb4-80k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/twins/twins_pcpvt-l_fpn_fpnhead_8x4_512x512_80k_ade20k/twins_pcpvt-l_fpn_fpnhead_8x4_512x512_80k_ade20k_20211201_105226-bc6d61dc.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/twins/twins_pcpvt-l_fpn_fpnhead_8x4_512x512_80k_ade20k/twins_pcpvt-l_fpn_fpnhead_8x4_512x512_80k_ade20k_20211201_105226.log.json) | +| UPerNet | Twins-PCPVT-L (8x2) | 512x512 | 160000 | 7.82 | 10.70 | V100 | 49.35 | 50.08 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/twins/twins_pcpvt-l_uperhead_8xb2-160k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/twins/twins_pcpvt-l_uperhead_8x2_512x512_160k_ade20k/twins_pcpvt-l_uperhead_8x2_512x512_160k_ade20k_20211201_075053-c6095c07.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/twins/twins_pcpvt-l_uperhead_8x2_512x512_160k_ade20k/twins_pcpvt-l_uperhead_8x2_512x512_160k_ade20k_20211201_075053.log.json) | +| FPN | Twins-SVT-S | 512x512 | 80000 | 5.80 | 29.79 | V100 | 44.47 | 45.42 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/twins/twins_svt-s_fpn_fpnhead_8xb4-80k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/twins/twins_svt-s_fpn_fpnhead_8x4_512x512_80k_ade20k/twins_svt-s_fpn_fpnhead_8x4_512x512_80k_ade20k_20211130_141006-0a0d3317.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/twins/twins_svt-s_fpn_fpnhead_8x4_512x512_80k_ade20k/twins_svt-s_fpn_fpnhead_8x4_512x512_80k_ade20k_20211130_141006.log.json) | +| UPerNet | SVT-S (8x2) | 512x512 | 160000 | 4.93 | 15.09 | V100 | 46.08 | 46.96 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/twins/twins_svt-s_uperhead_8xb2-160k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/twins/twins_svt-s_uperhead_8x2_512x512_160k_ade20k/twins_svt-s_uperhead_8x2_512x512_160k_ade20k_20211130_141005-e48a2d94.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/twins/twins_svt-s_uperhead_8x2_512x512_160k_ade20k/twins_svt-s_uperhead_8x2_512x512_160k_ade20k_20211130_141005.log.json) | +| FPN | Twins-SVT-B | 512x512 | 80000 | 8.75 | 21.10 | V100 | 46.77 | 47.47 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/twins/twins_svt-b_fpn_fpnhead_8xb4-80k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/twins/twins_svt-b_fpn_fpnhead_8x4_512x512_80k_ade20k/twins_svt-b_fpn_fpnhead_8x4_512x512_80k_ade20k_20211201_113849-88b2907c.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/twins/twins_svt-b_fpn_fpnhead_8x4_512x512_80k_ade20k/twins_svt-b_fpn_fpnhead_8x4_512x512_80k_ade20k_20211201_113849.log.json) | +| UPerNet | Twins-SVT-B (8x2) | 512x512 | 160000 | 6.77 | 12.66 | V100 | 48.04 | 48.87 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/twins/twins_svt-b_uperhead_8xb2-160k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/twins/twins_svt-b_uperhead_8x2_512x512_160k_ade20k/twins_svt-b_uperhead_8x2_512x512_160k_ade20k_20211202_040826-0943a1f1.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/twins/twins_svt-b_uperhead_8x2_512x512_160k_ade20k/twins_svt-b_uperhead_8x2_512x512_160k_ade20k_20211202_040826.log.json) | +| FPN | Twins-SVT-L | 512x512 | 80000 | 11.20 | 17.80 | V100 | 46.55 | 47.74 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/twins/twins_svt-l_fpn_fpnhead_8xb4-80k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/twins/twins_svt-l_fpn_fpnhead_8x4_512x512_80k_ade20k/twins_svt-l_fpn_fpnhead_8x4_512x512_80k_ade20k_20211130_141005-1d59bee2.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/twins/twins_svt-l_fpn_fpnhead_8x4_512x512_80k_ade20k/twins_svt-l_fpn_fpnhead_8x4_512x512_80k_ade20k_20211130_141005.log.json) | +| UPerNet | Twins-SVT-L (8x2) | 512x512 | 160000 | 8.41 | 10.73 | V100 | 49.65 | 50.63 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/twins/twins_pcpvt-l_uperhead_8xb2-160k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/twins/twins_svt-l_uperhead_8x2_512x512_160k_ade20k/twins_svt-l_uperhead_8x2_512x512_160k_ade20k_20211130_141005-3e2cae61.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/twins/twins_svt-l_uperhead_8x2_512x512_160k_ade20k/twins_svt-l_uperhead_8x2_512x512_160k_ade20k_20211130_141005.log.json) | Note: - `8x2` means 8 GPUs with 2 samples per GPU in training. Default setting of Twins on ADE20K is 8 GPUs with 4 samples per GPU in training. - `UPerNet` and `FPN` are decoder heads utilized in corresponding Twins model, which is `UPerHead` and `FPNHead`, respectively. Specifically, models in [official repo](https://github.com/Meituan-AutoML/Twins) all use `UPerHead`. + +## Citation + +```bibtex +@article{chu2021twins, + title={Twins: Revisiting spatial attention design in vision transformers}, + author={Chu, Xiangxiang and Tian, Zhi and Wang, Yuqing and Zhang, Bo and Ren, Haibing and Wei, Xiaolin and Xia, Huaxia and Shen, Chunhua}, + journal={arXiv preprint arXiv:2104.13840}, + year={2021}altgvt +} +``` diff --git a/configs/twins/metafile.yaml b/configs/twins/metafile.yaml new file mode 100644 index 0000000000..0de78d9d2e --- /dev/null +++ b/configs/twins/metafile.yaml @@ -0,0 +1,289 @@ +Models: +- Name: twins_pcpvt-s_fpn_fpnhead_8xb4-80k_ade20k-512x512 + In Collection: FPN + Results: + Task: Semantic Segmentation + Dataset: ADE20K + Metrics: + mIoU: 43.26 + mIoU(ms+flip): 44.11 + Config: configs/twins/twins_pcpvt-s_fpn_fpnhead_8xb4-80k_ade20k-512x512.py + Metadata: + Training Data: ADE20K + Batch Size: 32 + Architecture: + - Twins-PCPVT-S + - FPN + Training Resources: 8x V100 GPUS + Memory (GB): 6.6 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/twins/twins_pcpvt-s_fpn_fpnhead_8x4_512x512_80k_ade20k/twins_pcpvt-s_fpn_fpnhead_8x4_512x512_80k_ade20k_20211201_204132-41acd132.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/twins/twins_pcpvt-s_fpn_fpnhead_8x4_512x512_80k_ade20k/twins_pcpvt-s_fpn_fpnhead_8x4_512x512_80k_ade20k_20211201_204132.log.json + Paper: + Title: 'Twins: Revisiting the Design of Spatial Attention in Vision Transformers' + URL: https://arxiv.org/pdf/2104.13840.pdf + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.20.0/mmseg/models/backbones/twins.py#L352 + Framework: PyTorch +- Name: twins_pcpvt-s_uperhead_8xb4-160k_ade20k-512x512 + In Collection: UPerNet + Results: + Task: Semantic Segmentation + Dataset: ADE20K + Metrics: + mIoU: 46.04 + mIoU(ms+flip): 46.92 + Config: configs/twins/twins_pcpvt-s_uperhead_8xb4-160k_ade20k-512x512.py + Metadata: + Training Data: ADE20K + Batch Size: 32 + Architecture: + - Twins-PCPVT-S + - UPerNet + Training Resources: 8x V100 GPUS + Memory (GB): 9.67 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/twins/twins_pcpvt-s_uperhead_8x4_512x512_160k_ade20k/twins_pcpvt-s_uperhead_8x4_512x512_160k_ade20k_20211201_233537-8e99c07a.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/twins/twins_pcpvt-s_uperhead_8x4_512x512_160k_ade20k/twins_pcpvt-s_uperhead_8x4_512x512_160k_ade20k_20211201_233537.log.json + Paper: + Title: 'Twins: Revisiting the Design of Spatial Attention in Vision Transformers' + URL: https://arxiv.org/pdf/2104.13840.pdf + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.20.0/mmseg/models/backbones/twins.py#L352 + Framework: PyTorch +- Name: twins_pcpvt-b_fpn_fpnhead_8xb4-80k_ade20k-512x512 + In Collection: FPN + Results: + Task: Semantic Segmentation + Dataset: ADE20K + Metrics: + mIoU: 45.66 + mIoU(ms+flip): 46.48 + Config: configs/twins/twins_pcpvt-b_fpn_fpnhead_8xb4-80k_ade20k-512x512.py + Metadata: + Training Data: ADE20K + Batch Size: 32 + Architecture: + - Twins-PCPVT-B + - FPN + Training Resources: 8x V100 GPUS + Memory (GB): 8.41 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/twins/twins_pcpvt-b_fpn_fpnhead_8x4_512x512_80k_ade20k/twins_pcpvt-b_fpn_fpnhead_8x4_512x512_80k_ade20k_20211130_141019-d396db72.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/twins/twins_pcpvt-b_fpn_fpnhead_8x4_512x512_80k_ade20k/twins_pcpvt-b_fpn_fpnhead_8x4_512x512_80k_ade20k_20211130_141019.log.json + Paper: + Title: 'Twins: Revisiting the Design of Spatial Attention in Vision Transformers' + URL: https://arxiv.org/pdf/2104.13840.pdf + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.20.0/mmseg/models/backbones/twins.py#L352 + Framework: PyTorch +- Name: twins_pcpvt-b_uperhead_8xb2-160k_ade20k-512x512 + In Collection: UPerNet + Results: + Task: Semantic Segmentation + Dataset: ADE20K + Metrics: + mIoU: 47.91 + mIoU(ms+flip): 48.64 + Config: configs/twins/twins_pcpvt-b_uperhead_8xb2-160k_ade20k-512x512.py + Metadata: + Training Data: ADE20K + Batch Size: 16 + Architecture: + - Twins-PCPVT-B + - UPerNet + Training Resources: 8x V100 GPUS + Memory (GB): 6.46 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/twins/twins_pcpvt-b_uperhead_8x2_512x512_160k_ade20k/twins_pcpvt-b_uperhead_8x2_512x512_160k_ade20k_20211130_141020-02094ea5.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/twins/twins_pcpvt-b_uperhead_8x2_512x512_160k_ade20k/twins_pcpvt-b_uperhead_8x2_512x512_160k_ade20k_20211130_141020.log.json + Paper: + Title: 'Twins: Revisiting the Design of Spatial Attention in Vision Transformers' + URL: https://arxiv.org/pdf/2104.13840.pdf + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.20.0/mmseg/models/backbones/twins.py#L352 + Framework: PyTorch +- Name: twins_pcpvt-l_fpn_fpnhead_8xb4-80k_ade20k-512x512 + In Collection: FPN + Results: + Task: Semantic Segmentation + Dataset: ADE20K + Metrics: + mIoU: 45.94 + mIoU(ms+flip): 46.7 + Config: configs/twins/twins_pcpvt-l_fpn_fpnhead_8xb4-80k_ade20k-512x512.py + Metadata: + Training Data: ADE20K + Batch Size: 32 + Architecture: + - Twins-PCPVT-L + - FPN + Training Resources: 8x V100 GPUS + Memory (GB): 10.78 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/twins/twins_pcpvt-l_fpn_fpnhead_8x4_512x512_80k_ade20k/twins_pcpvt-l_fpn_fpnhead_8x4_512x512_80k_ade20k_20211201_105226-bc6d61dc.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/twins/twins_pcpvt-l_fpn_fpnhead_8x4_512x512_80k_ade20k/twins_pcpvt-l_fpn_fpnhead_8x4_512x512_80k_ade20k_20211201_105226.log.json + Paper: + Title: 'Twins: Revisiting the Design of Spatial Attention in Vision Transformers' + URL: https://arxiv.org/pdf/2104.13840.pdf + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.20.0/mmseg/models/backbones/twins.py#L352 + Framework: PyTorch +- Name: twins_pcpvt-l_uperhead_8xb2-160k_ade20k-512x512 + In Collection: UPerNet + Results: + Task: Semantic Segmentation + Dataset: ADE20K + Metrics: + mIoU: 49.35 + mIoU(ms+flip): 50.08 + Config: configs/twins/twins_pcpvt-l_uperhead_8xb2-160k_ade20k-512x512.py + Metadata: + Training Data: ADE20K + Batch Size: 16 + Architecture: + - Twins-PCPVT-L + - UPerNet + Training Resources: 8x V100 GPUS + Memory (GB): 7.82 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/twins/twins_pcpvt-l_uperhead_8x2_512x512_160k_ade20k/twins_pcpvt-l_uperhead_8x2_512x512_160k_ade20k_20211201_075053-c6095c07.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/twins/twins_pcpvt-l_uperhead_8x2_512x512_160k_ade20k/twins_pcpvt-l_uperhead_8x2_512x512_160k_ade20k_20211201_075053.log.json + Paper: + Title: 'Twins: Revisiting the Design of Spatial Attention in Vision Transformers' + URL: https://arxiv.org/pdf/2104.13840.pdf + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.20.0/mmseg/models/backbones/twins.py#L352 + Framework: PyTorch +- Name: twins_svt-s_fpn_fpnhead_8xb4-80k_ade20k-512x512 + In Collection: FPN + Results: + Task: Semantic Segmentation + Dataset: ADE20K + Metrics: + mIoU: 44.47 + mIoU(ms+flip): 45.42 + Config: configs/twins/twins_svt-s_fpn_fpnhead_8xb4-80k_ade20k-512x512.py + Metadata: + Training Data: ADE20K + Batch Size: 32 + Architecture: + - Twins-SVT-S + - FPN + Training Resources: 8x V100 GPUS + Memory (GB): 5.8 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/twins/twins_svt-s_fpn_fpnhead_8x4_512x512_80k_ade20k/twins_svt-s_fpn_fpnhead_8x4_512x512_80k_ade20k_20211130_141006-0a0d3317.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/twins/twins_svt-s_fpn_fpnhead_8x4_512x512_80k_ade20k/twins_svt-s_fpn_fpnhead_8x4_512x512_80k_ade20k_20211130_141006.log.json + Paper: + Title: 'Twins: Revisiting the Design of Spatial Attention in Vision Transformers' + URL: https://arxiv.org/pdf/2104.13840.pdf + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.20.0/mmseg/models/backbones/twins.py#L352 + Framework: PyTorch +- Name: twins_svt-s_uperhead_8xb2-160k_ade20k-512x512 + In Collection: UPerNet + Results: + Task: Semantic Segmentation + Dataset: ADE20K + Metrics: + mIoU: 46.08 + mIoU(ms+flip): 46.96 + Config: configs/twins/twins_svt-s_uperhead_8xb2-160k_ade20k-512x512.py + Metadata: + Training Data: ADE20K + Batch Size: 16 + Architecture: + - SVT-S + - UPerNet + Training Resources: 8x V100 GPUS + Memory (GB): 4.93 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/twins/twins_svt-s_uperhead_8x2_512x512_160k_ade20k/twins_svt-s_uperhead_8x2_512x512_160k_ade20k_20211130_141005-e48a2d94.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/twins/twins_svt-s_uperhead_8x2_512x512_160k_ade20k/twins_svt-s_uperhead_8x2_512x512_160k_ade20k_20211130_141005.log.json + Paper: + Title: 'Twins: Revisiting the Design of Spatial Attention in Vision Transformers' + URL: https://arxiv.org/pdf/2104.13840.pdf + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.20.0/mmseg/models/backbones/twins.py#L352 + Framework: PyTorch +- Name: twins_svt-b_fpn_fpnhead_8xb4-80k_ade20k-512x512 + In Collection: FPN + Results: + Task: Semantic Segmentation + Dataset: ADE20K + Metrics: + mIoU: 46.77 + mIoU(ms+flip): 47.47 + Config: configs/twins/twins_svt-b_fpn_fpnhead_8xb4-80k_ade20k-512x512.py + Metadata: + Training Data: ADE20K + Batch Size: 32 + Architecture: + - Twins-SVT-B + - FPN + Training Resources: 8x V100 GPUS + Memory (GB): 8.75 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/twins/twins_svt-b_fpn_fpnhead_8x4_512x512_80k_ade20k/twins_svt-b_fpn_fpnhead_8x4_512x512_80k_ade20k_20211201_113849-88b2907c.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/twins/twins_svt-b_fpn_fpnhead_8x4_512x512_80k_ade20k/twins_svt-b_fpn_fpnhead_8x4_512x512_80k_ade20k_20211201_113849.log.json + Paper: + Title: 'Twins: Revisiting the Design of Spatial Attention in Vision Transformers' + URL: https://arxiv.org/pdf/2104.13840.pdf + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.20.0/mmseg/models/backbones/twins.py#L352 + Framework: PyTorch +- Name: twins_svt-b_uperhead_8xb2-160k_ade20k-512x512 + In Collection: UPerNet + Results: + Task: Semantic Segmentation + Dataset: ADE20K + Metrics: + mIoU: 48.04 + mIoU(ms+flip): 48.87 + Config: configs/twins/twins_svt-b_uperhead_8xb2-160k_ade20k-512x512.py + Metadata: + Training Data: ADE20K + Batch Size: 16 + Architecture: + - Twins-SVT-B + - UPerNet + Training Resources: 8x V100 GPUS + Memory (GB): 6.77 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/twins/twins_svt-b_uperhead_8x2_512x512_160k_ade20k/twins_svt-b_uperhead_8x2_512x512_160k_ade20k_20211202_040826-0943a1f1.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/twins/twins_svt-b_uperhead_8x2_512x512_160k_ade20k/twins_svt-b_uperhead_8x2_512x512_160k_ade20k_20211202_040826.log.json + Paper: + Title: 'Twins: Revisiting the Design of Spatial Attention in Vision Transformers' + URL: https://arxiv.org/pdf/2104.13840.pdf + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.20.0/mmseg/models/backbones/twins.py#L352 + Framework: PyTorch +- Name: twins_svt-l_fpn_fpnhead_8xb4-80k_ade20k-512x512 + In Collection: FPN + Results: + Task: Semantic Segmentation + Dataset: ADE20K + Metrics: + mIoU: 46.55 + mIoU(ms+flip): 47.74 + Config: configs/twins/twins_svt-l_fpn_fpnhead_8xb4-80k_ade20k-512x512.py + Metadata: + Training Data: ADE20K + Batch Size: 32 + Architecture: + - Twins-SVT-L + - FPN + Training Resources: 8x V100 GPUS + Memory (GB): 11.2 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/twins/twins_svt-l_fpn_fpnhead_8x4_512x512_80k_ade20k/twins_svt-l_fpn_fpnhead_8x4_512x512_80k_ade20k_20211130_141005-1d59bee2.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/twins/twins_svt-l_fpn_fpnhead_8x4_512x512_80k_ade20k/twins_svt-l_fpn_fpnhead_8x4_512x512_80k_ade20k_20211130_141005.log.json + Paper: + Title: 'Twins: Revisiting the Design of Spatial Attention in Vision Transformers' + URL: https://arxiv.org/pdf/2104.13840.pdf + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.20.0/mmseg/models/backbones/twins.py#L352 + Framework: PyTorch +- Name: twins_pcpvt-l_uperhead_8xb2-160k_ade20k-512x512 + In Collection: UPerNet + Results: + Task: Semantic Segmentation + Dataset: ADE20K + Metrics: + mIoU: 49.65 + mIoU(ms+flip): 50.63 + Config: configs/twins/twins_pcpvt-l_uperhead_8xb2-160k_ade20k-512x512.py + Metadata: + Training Data: ADE20K + Batch Size: 16 + Architecture: + - Twins-SVT-L + - UPerNet + Training Resources: 8x V100 GPUS + Memory (GB): 8.41 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/twins/twins_svt-l_uperhead_8x2_512x512_160k_ade20k/twins_svt-l_uperhead_8x2_512x512_160k_ade20k_20211130_141005-3e2cae61.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/twins/twins_svt-l_uperhead_8x2_512x512_160k_ade20k/twins_svt-l_uperhead_8x2_512x512_160k_ade20k_20211130_141005.log.json + Paper: + Title: 'Twins: Revisiting the Design of Spatial Attention in Vision Transformers' + URL: https://arxiv.org/pdf/2104.13840.pdf + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.20.0/mmseg/models/backbones/twins.py#L352 + Framework: PyTorch diff --git a/configs/twins/twins.yml b/configs/twins/twins.yml deleted file mode 100644 index 48d25c682f..0000000000 --- a/configs/twins/twins.yml +++ /dev/null @@ -1,265 +0,0 @@ -Models: -- Name: twins_pcpvt-s_fpn_fpnhead_8xb4-80k_ade20k-512x512 - In Collection: FPN - Metadata: - backbone: PCPVT-S - crop size: (512,512) - lr schd: 80000 - inference time (ms/im): - - value: 36.83 - hardware: V100 - backend: PyTorch - batch size: 1 - mode: FP32 - resolution: (512,512) - Training Memory (GB): 6.6 - Results: - - Task: Semantic Segmentation - Dataset: ADE20K - Metrics: - mIoU: 43.26 - mIoU(ms+flip): 44.11 - Config: configs/twins/twins_pcpvt-s_fpn_fpnhead_8xb4-80k_ade20k-512x512.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/twins/twins_pcpvt-s_fpn_fpnhead_8x4_512x512_80k_ade20k/twins_pcpvt-s_fpn_fpnhead_8x4_512x512_80k_ade20k_20211201_204132-41acd132.pth -- Name: twins_pcpvt-s_uperhead_8xb4-160k_ade20k-512x512 - In Collection: UPerNet - Metadata: - backbone: PCPVT-S - crop size: (512,512) - lr schd: 160000 - inference time (ms/im): - - value: 70.22 - hardware: V100 - backend: PyTorch - batch size: 1 - mode: FP32 - resolution: (512,512) - Training Memory (GB): 9.67 - Results: - - Task: Semantic Segmentation - Dataset: ADE20K - Metrics: - mIoU: 46.04 - mIoU(ms+flip): 46.92 - Config: configs/twins/twins_pcpvt-s_uperhead_8xb4-160k_ade20k-512x512.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/twins/twins_pcpvt-s_uperhead_8x4_512x512_160k_ade20k/twins_pcpvt-s_uperhead_8x4_512x512_160k_ade20k_20211201_233537-8e99c07a.pth -- Name: twins_pcpvt-b_fpn_fpnhead_8xb4-80k_ade20k-512x512 - In Collection: FPN - Metadata: - backbone: PCPVT-B - crop size: (512,512) - lr schd: 80000 - inference time (ms/im): - - value: 50.84 - hardware: V100 - backend: PyTorch - batch size: 1 - mode: FP32 - resolution: (512,512) - Training Memory (GB): 8.41 - Results: - - Task: Semantic Segmentation - Dataset: ADE20K - Metrics: - mIoU: 45.66 - mIoU(ms+flip): 46.48 - Config: configs/twins/twins_pcpvt-b_fpn_fpnhead_8xb4-80k_ade20k-512x512.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/twins/twins_pcpvt-b_fpn_fpnhead_8x4_512x512_80k_ade20k/twins_pcpvt-b_fpn_fpnhead_8x4_512x512_80k_ade20k_20211130_141019-d396db72.pth -- Name: twins_pcpvt-b_uperhead_8xb2-160k_ade20k-512x512 - In Collection: UPerNet - Metadata: - backbone: PCPVT-B - crop size: (512,512) - lr schd: 160000 - inference time (ms/im): - - value: 83.06 - hardware: V100 - backend: PyTorch - batch size: 1 - mode: FP32 - resolution: (512,512) - Training Memory (GB): 6.46 - Results: - - Task: Semantic Segmentation - Dataset: ADE20K - Metrics: - mIoU: 47.91 - mIoU(ms+flip): 48.64 - Config: configs/twins/twins_pcpvt-b_uperhead_8xb2-160k_ade20k-512x512.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/twins/twins_pcpvt-b_uperhead_8x2_512x512_160k_ade20k/twins_pcpvt-b_uperhead_8x2_512x512_160k_ade20k_20211130_141020-02094ea5.pth -- Name: twins_pcpvt-l_fpn_fpnhead_8xb4-80k_ade20k-512x512 - In Collection: FPN - Metadata: - backbone: PCPVT-L - crop size: (512,512) - lr schd: 80000 - inference time (ms/im): - - value: 69.83 - hardware: V100 - backend: PyTorch - batch size: 1 - mode: FP32 - resolution: (512,512) - Training Memory (GB): 10.78 - Results: - - Task: Semantic Segmentation - Dataset: ADE20K - Metrics: - mIoU: 45.94 - mIoU(ms+flip): 46.7 - Config: configs/twins/twins_pcpvt-l_fpn_fpnhead_8xb4-80k_ade20k-512x512.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/twins/twins_pcpvt-l_fpn_fpnhead_8x4_512x512_80k_ade20k/twins_pcpvt-l_fpn_fpnhead_8x4_512x512_80k_ade20k_20211201_105226-bc6d61dc.pth -- Name: twins_pcpvt-l_uperhead_8xb2-160k_ade20k-512x512 - In Collection: UPerNet - Metadata: - backbone: PCPVT-L - crop size: (512,512) - lr schd: 160000 - inference time (ms/im): - - value: 93.46 - hardware: V100 - backend: PyTorch - batch size: 1 - mode: FP32 - resolution: (512,512) - Training Memory (GB): 7.82 - Results: - - Task: Semantic Segmentation - Dataset: ADE20K - Metrics: - mIoU: 49.35 - mIoU(ms+flip): 50.08 - Config: configs/twins/twins_pcpvt-l_uperhead_8xb2-160k_ade20k-512x512.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/twins/twins_pcpvt-l_uperhead_8x2_512x512_160k_ade20k/twins_pcpvt-l_uperhead_8x2_512x512_160k_ade20k_20211201_075053-c6095c07.pth -- Name: twins_svt-s_fpn_fpnhead_8xb4-80k_ade20k-512x512 - In Collection: FPN - Metadata: - backbone: SVT-S - crop size: (512,512) - lr schd: 80000 - inference time (ms/im): - - value: 33.57 - hardware: V100 - backend: PyTorch - batch size: 1 - mode: FP32 - resolution: (512,512) - Training Memory (GB): 5.8 - Results: - - Task: Semantic Segmentation - Dataset: ADE20K - Metrics: - mIoU: 44.47 - mIoU(ms+flip): 45.42 - Config: configs/twins/twins_svt-s_fpn_fpnhead_8xb4-80k_ade20k-512x512.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/twins/twins_svt-s_fpn_fpnhead_8x4_512x512_80k_ade20k/twins_svt-s_fpn_fpnhead_8x4_512x512_80k_ade20k_20211130_141006-0a0d3317.pth -- Name: twins_svt-s_uperhead_8xb2-160k_ade20k-512x512 - In Collection: UPerNet - Metadata: - backbone: SVT-S - crop size: (512,512) - lr schd: 160000 - inference time (ms/im): - - value: 66.27 - hardware: V100 - backend: PyTorch - batch size: 1 - mode: FP32 - resolution: (512,512) - Training Memory (GB): 4.93 - Results: - - Task: Semantic Segmentation - Dataset: ADE20K - Metrics: - mIoU: 46.08 - mIoU(ms+flip): 46.96 - Config: configs/twins/twins_svt-s_uperhead_8xb2-160k_ade20k-512x512.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/twins/twins_svt-s_uperhead_8x2_512x512_160k_ade20k/twins_svt-s_uperhead_8x2_512x512_160k_ade20k_20211130_141005-e48a2d94.pth -- Name: twins_svt-b_fpn_fpnhead_8xb4-80k_ade20k-512x512 - In Collection: FPN - Metadata: - backbone: SVT-B - crop size: (512,512) - lr schd: 80000 - inference time (ms/im): - - value: 47.39 - hardware: V100 - backend: PyTorch - batch size: 1 - mode: FP32 - resolution: (512,512) - Training Memory (GB): 8.75 - Results: - - Task: Semantic Segmentation - Dataset: ADE20K - Metrics: - mIoU: 46.77 - mIoU(ms+flip): 47.47 - Config: configs/twins/twins_svt-b_fpn_fpnhead_8xb4-80k_ade20k-512x512.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/twins/twins_svt-b_fpn_fpnhead_8x4_512x512_80k_ade20k/twins_svt-b_fpn_fpnhead_8x4_512x512_80k_ade20k_20211201_113849-88b2907c.pth -- Name: twins_svt-b_uperhead_8xb2-160k_ade20k-512x512 - In Collection: UPerNet - Metadata: - backbone: SVT-B - crop size: (512,512) - lr schd: 160000 - inference time (ms/im): - - value: 78.99 - hardware: V100 - backend: PyTorch - batch size: 1 - mode: FP32 - resolution: (512,512) - Training Memory (GB): 6.77 - Results: - - Task: Semantic Segmentation - Dataset: ADE20K - Metrics: - mIoU: 48.04 - mIoU(ms+flip): 48.87 - Config: configs/twins/twins_svt-b_uperhead_8xb2-160k_ade20k-512x512.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/twins/twins_svt-b_uperhead_8x2_512x512_160k_ade20k/twins_svt-b_uperhead_8x2_512x512_160k_ade20k_20211202_040826-0943a1f1.pth -- Name: twins_svt-l_fpn_fpnhead_8xb4-80k_ade20k-512x512 - In Collection: FPN - Metadata: - backbone: SVT-L - crop size: (512,512) - lr schd: 80000 - inference time (ms/im): - - value: 56.18 - hardware: V100 - backend: PyTorch - batch size: 1 - mode: FP32 - resolution: (512,512) - Training Memory (GB): 11.2 - Results: - - Task: Semantic Segmentation - Dataset: ADE20K - Metrics: - mIoU: 46.55 - mIoU(ms+flip): 47.74 - Config: configs/twins/twins_svt-l_fpn_fpnhead_8xb4-80k_ade20k-512x512.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/twins/twins_svt-l_fpn_fpnhead_8x4_512x512_80k_ade20k/twins_svt-l_fpn_fpnhead_8x4_512x512_80k_ade20k_20211130_141005-1d59bee2.pth -- Name: twins_pcpvt-l_uperhead_8xb2-160k_ade20k-512x512 - In Collection: UPerNet - Metadata: - backbone: SVT-L - crop size: (512,512) - lr schd: 160000 - inference time (ms/im): - - value: 93.2 - hardware: V100 - backend: PyTorch - batch size: 1 - mode: FP32 - resolution: (512,512) - Training Memory (GB): 8.41 - Results: - - Task: Semantic Segmentation - Dataset: ADE20K - Metrics: - mIoU: 49.65 - mIoU(ms+flip): 50.63 - Config: configs/twins/twins_pcpvt-l_uperhead_8xb2-160k_ade20k-512x512.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/twins/twins_svt-l_uperhead_8x2_512x512_160k_ade20k/twins_svt-l_uperhead_8x2_512x512_160k_ade20k_20211130_141005-3e2cae61.pth diff --git a/configs/unet/README.md b/configs/unet/README.md index f3dc261c22..e42cd0f91e 100644 --- a/configs/unet/README.md +++ b/configs/unet/README.md @@ -1,6 +1,6 @@ # UNet -[U-Net: Convolutional Networks for Biomedical Image Segmentation](https://arxiv.org/abs/1505.04597) +> [U-Net: Convolutional Networks for Biomedical Image Segmentation](https://arxiv.org/abs/1505.04597) ## Introduction @@ -22,71 +22,71 @@ There is large consent that successful training of deep networks requires many t -## Citation - -```bibtex -@inproceedings{ronneberger2015u, - title={U-net: Convolutional networks for biomedical image segmentation}, - author={Ronneberger, Olaf and Fischer, Philipp and Brox, Thomas}, - booktitle={International Conference on Medical image computing and computer-assisted intervention}, - pages={234--241}, - year={2015}, - organization={Springer} -} -``` - ## Results and models ### Cityscapes -| Method | Backbone | Loss | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | mIoU | mIoU(ms+flip) | config | download | -| ---------- | ----------- | ------------- | --------- | ------: | -------- | -------------- | ----: | ------------: | --------------------------------------------------------------------------------------------------------------------------------- | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | -| UNet + FCN | UNet-S5-D16 | Cross Entropy | 512x1024 | 160000 | 17.91 | 3.05 | 69.10 | 71.05 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/unet/unet-s5-d16_fcn_4xb4-160k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/unet/fcn_unet_s5-d16_4x4_512x1024_160k_cityscapes/fcn_unet_s5-d16_4x4_512x1024_160k_cityscapes_20211210_145204-6860854e.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/unet/fcn_unet_s5-d16_4x4_512x1024_160k_cityscapes/fcn_unet_s5-d16_4x4_512x1024_160k_cityscapes_20211210_145204.log.json) | +| Method | Backbone | Loss | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | Device | mIoU | mIoU(ms+flip) | config | download | +| ---------- | ----------- | ------------- | --------- | ------: | -------- | -------------- | ------ | ----: | ------------: | --------------------------------------------------------------------------------------------------------------------------------- | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | +| UNet + FCN | UNet-S5-D16 | Cross Entropy | 512x1024 | 160000 | 17.91 | 3.05 | V100 | 69.10 | 71.05 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/unet/unet-s5-d16_fcn_4xb4-160k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/unet/fcn_unet_s5-d16_4x4_512x1024_160k_cityscapes/fcn_unet_s5-d16_4x4_512x1024_160k_cityscapes_20211210_145204-6860854e.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/unet/fcn_unet_s5-d16_4x4_512x1024_160k_cityscapes/fcn_unet_s5-d16_4x4_512x1024_160k_cityscapes_20211210_145204.log.json) | ### DRIVE -| Method | Backbone | Loss | Image Size | Crop Size | Stride | Lr schd | Mem (GB) | Inf time (fps) | mDice | Dice | config | download | -| ---------------- | ----------- | -------------------- | ---------- | --------- | -----: | ------- | -------- | -------------: | ----: | ----: | ---------------------------------------------------------------------------------------------------------------------------------------------- | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | -| UNet + FCN | UNet-S5-D16 | Cross Entropy | 584x565 | 64x64 | 42x42 | 40000 | 0.680 | - | 88.38 | 78.67 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/unet/unet-s5-d16_fcn_4xb4-40k_drive-64x64.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/unet/fcn_unet_s5-d16_64x64_40k_drive/fcn_unet_s5-d16_64x64_40k_drive_20201223_191051-5daf6d3b.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/unet/unet_s5-d16_64x64_40k_drive/unet_s5-d16_64x64_40k_drive-20201223_191051.log.json) | -| UNet + FCN | UNet-S5-D16 | Cross Entropy + Dice | 584x565 | 64x64 | 42x42 | 40000 | 0.582 | - | 88.71 | 79.32 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/unet/unet-s5-d16_fcn_4xb4-ce-1.0-dice-3.0-40k_drive-64x64.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/unet/fcn_unet_s5-d16_ce-1.0-dice-3.0_64x64_40k_drive/fcn_unet_s5-d16_ce-1.0-dice-3.0_64x64_40k_drive_20211210_201820-785de5c2.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/unet/fcn_unet_s5-d16_ce-1.0-dice-3.0_64x64_40k_drive/fcn_unet_s5-d16_ce-1.0-dice-3.0_64x64_40k_drive_20211210_201820.log.json) | -| UNet + PSPNet | UNet-S5-D16 | Cross Entropy | 584x565 | 64x64 | 42x42 | 40000 | 0.599 | - | 88.35 | 78.62 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/unet/unet-s5-d16_pspnet_4xb4-40k_drive-64x64.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/unet/pspnet_unet_s5-d16_64x64_40k_drive/pspnet_unet_s5-d16_64x64_40k_drive_20201227_181818-aac73387.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/unet/pspnet_unet_s5-d16_64x64_40k_drive/pspnet_unet_s5-d16_64x64_40k_drive-20201227_181818.log.json) | -| UNet + PSPNet | UNet-S5-D16 | Cross Entropy + Dice | 584x565 | 64x64 | 42x42 | 40000 | 0.585 | - | 88.76 | 79.42 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/unet/unet-s5-d16_pspnet_4xb4-ce-1.0-dice-3.0-40k_drive-64x64.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/unet/pspnet_unet_s5-d16_ce-1.0-dice-3.0_64x64_40k_drive/pspnet_unet_s5-d16_ce-1.0-dice-3.0_64x64_40k_drive_20211210_201821-22b3e3ba.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/unet/pspnet_unet_s5-d16_ce-1.0-dice-3.0_64x64_40k_drive/pspnet_unet_s5-d16_ce-1.0-dice-3.0_64x64_40k_drive_20211210_201821.log.json) | -| UNet + DeepLabV3 | UNet-S5-D16 | Cross Entropy | 584x565 | 64x64 | 42x42 | 40000 | 0.596 | - | 88.38 | 78.69 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/unet/unet-s5-d16_deeplabv3_4xb4-40k_drive-64x64.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/unet/deeplabv3_unet_s5-d16_64x64_40k_drive/deeplabv3_unet_s5-d16_64x64_40k_drive_20201226_094047-0671ff20.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/unet/deeplabv3_unet_s5-d16_64x64_40k_drive/deeplabv3_unet_s5-d16_64x64_40k_drive-20201226_094047.log.json) | -| UNet + DeepLabV3 | UNet-S5-D16 | Cross Entropy + Dice | 584x565 | 64x64 | 42x42 | 40000 | 0.582 | - | 88.84 | 79.56 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/unet/unet-s5-d16_deeplabv3_4xb4-ce-1.0-dice-3.0-40k_drive-64x64.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/unet/deeplabv3_unet_s5-d16_ce-1.0-dice-3.0_64x64_40k_drive/deeplabv3_unet_s5-d16_ce-1.0-dice-3.0_64x64_40k_drive_20211210_201825-6bf0efd7.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/unet/deeplabv3_unet_s5-d16_ce-1.0-dice-3.0_64x64_40k_drive/deeplabv3_unet_s5-d16_ce-1.0-dice-3.0_64x64_40k_drive_20211210_201825.log.json) | +| Method | Backbone | Loss | Image Size | Crop Size | Stride | Lr schd | Mem (GB) | Inf time (fps) | Device | mDice | Dice | config | download | +| ---------------- | ----------- | -------------------- | ---------- | --------- | -----: | ------- | -------- | -------------: | ------ | ----: | ----: | ---------------------------------------------------------------------------------------------------------------------------------------------- | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | +| UNet + FCN | UNet-S5-D16 | Cross Entropy | 584x565 | 64x64 | 42x42 | 40000 | 0.680 | - | V100 | 88.38 | 78.67 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/unet/unet-s5-d16_fcn_4xb4-40k_drive-64x64.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/unet/fcn_unet_s5-d16_64x64_40k_drive/fcn_unet_s5-d16_64x64_40k_drive_20201223_191051-5daf6d3b.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/unet/unet_s5-d16_64x64_40k_drive/unet_s5-d16_64x64_40k_drive-20201223_191051.log.json) | +| UNet + FCN | UNet-S5-D16 | Cross Entropy + Dice | 584x565 | 64x64 | 42x42 | 40000 | 0.582 | - | V100 | 88.71 | 79.32 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/unet/unet-s5-d16_fcn_4xb4-ce-1.0-dice-3.0-40k_drive-64x64.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/unet/fcn_unet_s5-d16_ce-1.0-dice-3.0_64x64_40k_drive/fcn_unet_s5-d16_ce-1.0-dice-3.0_64x64_40k_drive_20211210_201820-785de5c2.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/unet/fcn_unet_s5-d16_ce-1.0-dice-3.0_64x64_40k_drive/fcn_unet_s5-d16_ce-1.0-dice-3.0_64x64_40k_drive_20211210_201820.log.json) | +| UNet + PSPNet | UNet-S5-D16 | Cross Entropy | 584x565 | 64x64 | 42x42 | 40000 | 0.599 | - | V100 | 88.35 | 78.62 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/unet/unet-s5-d16_pspnet_4xb4-40k_drive-64x64.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/unet/pspnet_unet_s5-d16_64x64_40k_drive/pspnet_unet_s5-d16_64x64_40k_drive_20201227_181818-aac73387.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/unet/pspnet_unet_s5-d16_64x64_40k_drive/pspnet_unet_s5-d16_64x64_40k_drive-20201227_181818.log.json) | +| UNet + PSPNet | UNet-S5-D16 | Cross Entropy + Dice | 584x565 | 64x64 | 42x42 | 40000 | 0.585 | - | V100 | 88.76 | 79.42 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/unet/unet-s5-d16_pspnet_4xb4-ce-1.0-dice-3.0-40k_drive-64x64.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/unet/pspnet_unet_s5-d16_ce-1.0-dice-3.0_64x64_40k_drive/pspnet_unet_s5-d16_ce-1.0-dice-3.0_64x64_40k_drive_20211210_201821-22b3e3ba.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/unet/pspnet_unet_s5-d16_ce-1.0-dice-3.0_64x64_40k_drive/pspnet_unet_s5-d16_ce-1.0-dice-3.0_64x64_40k_drive_20211210_201821.log.json) | +| UNet + DeepLabV3 | UNet-S5-D16 | Cross Entropy | 584x565 | 64x64 | 42x42 | 40000 | 0.596 | - | V100 | 88.38 | 78.69 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/unet/unet-s5-d16_deeplabv3_4xb4-40k_drive-64x64.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/unet/deeplabv3_unet_s5-d16_64x64_40k_drive/deeplabv3_unet_s5-d16_64x64_40k_drive_20201226_094047-0671ff20.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/unet/deeplabv3_unet_s5-d16_64x64_40k_drive/deeplabv3_unet_s5-d16_64x64_40k_drive-20201226_094047.log.json) | +| UNet + DeepLabV3 | UNet-S5-D16 | Cross Entropy + Dice | 584x565 | 64x64 | 42x42 | 40000 | 0.582 | - | V100 | 88.84 | 79.56 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/unet/unet-s5-d16_deeplabv3_4xb4-ce-1.0-dice-3.0-40k_drive-64x64.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/unet/deeplabv3_unet_s5-d16_ce-1.0-dice-3.0_64x64_40k_drive/deeplabv3_unet_s5-d16_ce-1.0-dice-3.0_64x64_40k_drive_20211210_201825-6bf0efd7.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/unet/deeplabv3_unet_s5-d16_ce-1.0-dice-3.0_64x64_40k_drive/deeplabv3_unet_s5-d16_ce-1.0-dice-3.0_64x64_40k_drive_20211210_201825.log.json) | ### STARE -| Method | Backbone | Loss | Image Size | Crop Size | Stride | Lr schd | Mem (GB) | Inf time (fps) | mDice | Dice | config | download | -| ---------------- | ----------- | -------------------- | ---------- | --------- | -----: | ------- | -------- | -------------: | ----: | ----: | ------------------------------------------------------------------------------------------------------------------------------------------------ | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ | -| UNet + FCN | UNet-S5-D16 | Cross Entropy | 605x700 | 128x128 | 85x85 | 40000 | 0.968 | - | 89.78 | 81.02 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/unet/unet-s5-d16_fcn_4xb4-40k_stare-128x128.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/unet/fcn_unet_s5-d16_128x128_40k_stare/fcn_unet_s5-d16_128x128_40k_stare_20201223_191051-7d77e78b.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/unet/unet_s5-d16_128x128_40k_stare/unet_s5-d16_128x128_40k_stare-20201223_191051.log.json) | -| UNet + FCN | UNet-S5-D16 | Cross Entropy + Dice | 605x700 | 128x128 | 85x85 | 40000 | 0.986 | - | 90.65 | 82.70 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/unet/unet-s5-d16_fcn_4xb4-ce-1.0-dice-3.0-40k_stare-128x128.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/unet/fcn_unet_s5-d16_ce-1.0-dice-3.0_128x128_40k_stare/fcn_unet_s5-d16_ce-1.0-dice-3.0_128x128_40k_stare_20211210_201821-f75705a9.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/unet/fcn_unet_s5-d16_ce-1.0-dice-3.0_128x128_40k_stare/fcn_unet_s5-d16_ce-1.0-dice-3.0_128x128_40k_stare_20211210_201821.log.json) | -| UNet + PSPNet | UNet-S5-D16 | Cross Entropy | 605x700 | 128x128 | 85x85 | 40000 | 0.982 | - | 89.89 | 81.22 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/unet/unet-s5-d16_pspnet_4xb4-40k_stare-128x128.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/unet/pspnet_unet_s5-d16_128x128_40k_stare/pspnet_unet_s5-d16_128x128_40k_stare_20201227_181818-3c2923c4.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/unet/pspnet_unet_s5-d16_128x128_40k_stare/pspnet_unet_s5-d16_128x128_40k_stare-20201227_181818.log.json) | -| UNet + PSPNet | UNet-S5-D16 | Cross Entropy + Dice | 605x700 | 128x128 | 85x85 | 40000 | 1.028 | - | 90.72 | 82.84 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/unet/unet-s5-d16_pspnet_4xb4-ce-1.0-dice-3.0-40k_stare-128x128.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/unet/pspnet_unet_s5-d16_ce-1.0-dice-3.0_128x128_40k_stare/pspnet_unet_s5-d16_ce-1.0-dice-3.0_128x128_40k_stare_20211210_201823-f1063ef7.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/unet/pspnet_unet_s5-d16_ce-1.0-dice-3.0_128x128_40k_stare/pspnet_unet_s5-d16_ce-1.0-dice-3.0_128x128_40k_stare_20211210_201823.log.json) | -| UNet + DeepLabV3 | UNet-S5-D16 | Cross Entropy | 605x700 | 128x128 | 85x85 | 40000 | 0.999 | - | 89.73 | 80.93 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/unet/unet-s5-d16_deeplabv3_4xb4-40k_stare-128x128.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/unet/deeplabv3_unet_s5-d16_128x128_40k_stare/deeplabv3_unet_s5-d16_128x128_40k_stare_20201226_094047-93dcb93c.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/unet/deeplabv3_unet_s5-d16_128x128_40k_stare/deeplabv3_unet_s5-d16_128x128_40k_stare-20201226_094047.log.json) | -| UNet + DeepLabV3 | UNet-S5-D16 | Cross Entropy + Dice | 605x700 | 128x128 | 85x85 | 40000 | 1.010 | - | 90.65 | 82.71 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/unet/unet-s5-d16_deeplabv3_4xb4-ce-1.0-dice-3.0-40k_stare-128x128.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/unet/deeplabv3_unet_s5-d16_ce-1.0-dice-3.0_128x128_40k_stare/deeplabv3_unet_s5-d16_ce-1.0-dice-3.0_128x128_40k_stare_20211210_201825-21db614c.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/unet/deeplabv3_unet_s5-d16_ce-1.0-dice-3.0_128x128_40k_stare/deeplabv3_unet_s5-d16_ce-1.0-dice-3.0_128x128_40k_stare_20211210_201825.log.json) | +| Method | Backbone | Loss | Image Size | Crop Size | Stride | Lr schd | Mem (GB) | Inf time (fps) | Device | mDice | Dice | config | download | +| ---------------- | ----------- | -------------------- | ---------- | --------- | -----: | ------- | -------- | -------------: | ------ | ----: | ----: | ------------------------------------------------------------------------------------------------------------------------------------------------ | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ | +| UNet + FCN | UNet-S5-D16 | Cross Entropy | 605x700 | 128x128 | 85x85 | 40000 | 0.968 | - | V100 | 89.78 | 81.02 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/unet/unet-s5-d16_fcn_4xb4-40k_stare-128x128.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/unet/fcn_unet_s5-d16_128x128_40k_stare/fcn_unet_s5-d16_128x128_40k_stare_20201223_191051-7d77e78b.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/unet/unet_s5-d16_128x128_40k_stare/unet_s5-d16_128x128_40k_stare-20201223_191051.log.json) | +| UNet + FCN | UNet-S5-D16 | Cross Entropy + Dice | 605x700 | 128x128 | 85x85 | 40000 | 0.986 | - | V100 | 90.65 | 82.70 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/unet/unet-s5-d16_fcn_4xb4-ce-1.0-dice-3.0-40k_stare-128x128.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/unet/fcn_unet_s5-d16_ce-1.0-dice-3.0_128x128_40k_stare/fcn_unet_s5-d16_ce-1.0-dice-3.0_128x128_40k_stare_20211210_201821-f75705a9.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/unet/fcn_unet_s5-d16_ce-1.0-dice-3.0_128x128_40k_stare/fcn_unet_s5-d16_ce-1.0-dice-3.0_128x128_40k_stare_20211210_201821.log.json) | +| UNet + PSPNet | UNet-S5-D16 | Cross Entropy | 605x700 | 128x128 | 85x85 | 40000 | 0.982 | - | V100 | 89.89 | 81.22 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/unet/unet-s5-d16_pspnet_4xb4-40k_stare-128x128.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/unet/pspnet_unet_s5-d16_128x128_40k_stare/pspnet_unet_s5-d16_128x128_40k_stare_20201227_181818-3c2923c4.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/unet/pspnet_unet_s5-d16_128x128_40k_stare/pspnet_unet_s5-d16_128x128_40k_stare-20201227_181818.log.json) | +| UNet + PSPNet | UNet-S5-D16 | Cross Entropy + Dice | 605x700 | 128x128 | 85x85 | 40000 | 1.028 | - | V100 | 90.72 | 82.84 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/unet/unet-s5-d16_pspnet_4xb4-ce-1.0-dice-3.0-40k_stare-128x128.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/unet/pspnet_unet_s5-d16_ce-1.0-dice-3.0_128x128_40k_stare/pspnet_unet_s5-d16_ce-1.0-dice-3.0_128x128_40k_stare_20211210_201823-f1063ef7.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/unet/pspnet_unet_s5-d16_ce-1.0-dice-3.0_128x128_40k_stare/pspnet_unet_s5-d16_ce-1.0-dice-3.0_128x128_40k_stare_20211210_201823.log.json) | +| UNet + DeepLabV3 | UNet-S5-D16 | Cross Entropy | 605x700 | 128x128 | 85x85 | 40000 | 0.999 | - | V100 | 89.73 | 80.93 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/unet/unet-s5-d16_deeplabv3_4xb4-40k_stare-128x128.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/unet/deeplabv3_unet_s5-d16_128x128_40k_stare/deeplabv3_unet_s5-d16_128x128_40k_stare_20201226_094047-93dcb93c.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/unet/deeplabv3_unet_s5-d16_128x128_40k_stare/deeplabv3_unet_s5-d16_128x128_40k_stare-20201226_094047.log.json) | +| UNet + DeepLabV3 | UNet-S5-D16 | Cross Entropy + Dice | 605x700 | 128x128 | 85x85 | 40000 | 1.010 | - | V100 | 90.65 | 82.71 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/unet/unet-s5-d16_deeplabv3_4xb4-ce-1.0-dice-3.0-40k_stare-128x128.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/unet/deeplabv3_unet_s5-d16_ce-1.0-dice-3.0_128x128_40k_stare/deeplabv3_unet_s5-d16_ce-1.0-dice-3.0_128x128_40k_stare_20211210_201825-21db614c.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/unet/deeplabv3_unet_s5-d16_ce-1.0-dice-3.0_128x128_40k_stare/deeplabv3_unet_s5-d16_ce-1.0-dice-3.0_128x128_40k_stare_20211210_201825.log.json) | ### CHASE_DB1 -| Method | Backbone | Loss | Image Size | Crop Size | Stride | Lr schd | Mem (GB) | Inf time (fps) | mDice | Dice | config | download | -| ---------------- | ----------- | -------------------- | ---------- | --------- | -----: | ------- | -------- | -------------: | ----: | ----: | ---------------------------------------------------------------------------------------------------------------------------------------------------- | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | -| UNet + FCN | UNet-S5-D16 | Cross Entropy | 960x999 | 128x128 | 85x85 | 40000 | 0.968 | - | 89.46 | 80.24 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/unet/unet-s5-d16_fcn_4xb4-40k_chase-db1-128x128.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/unet/fcn_unet_s5-d16_128x128_40k_chase_db1/fcn_unet_s5-d16_128x128_40k_chase_db1_20201223_191051-11543527.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/unet/unet_s5-d16_128x128_40k_chase_db1/unet_s5-d16_128x128_40k_chase_db1-20201223_191051.log.json) | -| UNet + FCN | UNet-S5-D16 | Cross Entropy + Dice | 960x999 | 128x128 | 85x85 | 40000 | 0.986 | - | 89.52 | 80.40 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/unet/unet-s5-d16_fcn_4xb4-ce-1.0-dice-3.0-40k_chase-db1-128x128.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/unet/fcn_unet_s5-d16_ce-1.0-dice-3.0_128x128_40k_chase-db1/fcn_unet_s5-d16_ce-1.0-dice-3.0_128x128_40k_chase-db1_20211210_201821-1c4eb7cf.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/unet/fcn_unet_s5-d16_ce-1.0-dice-3.0_128x128_40k_chase-db1/fcn_unet_s5-d16_ce-1.0-dice-3.0_128x128_40k_chase-db1_20211210_201821.log.json) | -| UNet + PSPNet | UNet-S5-D16 | Cross Entropy | 960x999 | 128x128 | 85x85 | 40000 | 0.982 | - | 89.52 | 80.36 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/unet/unet-s5-d16_pspnet_4xb4-40k_chase-db1-128x128.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/unet/pspnet_unet_s5-d16_128x128_40k_chase_db1/pspnet_unet_s5-d16_128x128_40k_chase_db1_20201227_181818-68d4e609.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/unet/pspnet_unet_s5-d16_128x128_40k_chase_db1/pspnet_unet_s5-d16_128x128_40k_chase_db1-20201227_181818.log.json) | -| UNet + PSPNet | UNet-S5-D16 | Cross Entropy + Dice | 960x999 | 128x128 | 85x85 | 40000 | 1.028 | - | 89.45 | 80.28 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/unet/unet-s5-d16_pspnet_4xb4-ce-1.0-dice-3.0-40k_chase-db1-128x128.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/unet/pspnet_unet_s5-d16_ce-1.0-dice-3.0_128x128_40k_chase-db1/pspnet_unet_s5-d16_ce-1.0-dice-3.0_128x128_40k_chase-db1_20211210_201823-c0802c4d.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/unet/pspnet_unet_s5-d16_ce-1.0-dice-3.0_128x128_40k_chase-db1/pspnet_unet_s5-d16_ce-1.0-dice-3.0_128x128_40k_chase-db1_20211210_201823.log.json) | -| UNet + DeepLabV3 | UNet-S5-D16 | Cross Entropy | 960x999 | 128x128 | 85x85 | 40000 | 0.999 | - | 89.57 | 80.47 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/unet/unet_s5-d16_deeplabv3_4xb4-40k_chase-db1-128x128.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/unet/deeplabv3_unet_s5-d16_128x128_40k_chase_db1/deeplabv3_unet_s5-d16_128x128_40k_chase_db1_20201226_094047-4c5aefa3.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/unet/deeplabv3_unet_s5-d16_128x128_40k_chase_db1/deeplabv3_unet_s5-d16_128x128_40k_chase_db1-20201226_094047.log.json) | -| UNet + DeepLabV3 | UNet-S5-D16 | Cross Entropy + Dice | 960x999 | 128x128 | 85x85 | 40000 | 1.010 | - | 89.49 | 80.37 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/unet/unet-s5-d16_deeplabv3_4xb4-ce-1.0-dice-3.0-40k_chase-db1-128x128.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/unet/deeplabv3_unet_s5-d16_ce-1.0-dice-3.0_128x128_40k_chase-db1/deeplabv3_unet_s5-d16_ce-1.0-dice-3.0_128x128_40k_chase-db1_20211210_201825-4ef29df5.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/unet/deeplabv3_unet_s5-d16_ce-1.0-dice-3.0_128x128_40k_chase-db1/deeplabv3_unet_s5-d16_ce-1.0-dice-3.0_128x128_40k_chase-db1_20211210_201825.log.json) | +| Method | Backbone | Loss | Image Size | Crop Size | Stride | Lr schd | Mem (GB) | Inf time (fps) | Device | mDice | Dice | config | download | +| ---------------- | ----------- | -------------------- | ---------- | --------- | -----: | ------- | -------- | -------------: | ------ | ----: | ----: | ---------------------------------------------------------------------------------------------------------------------------------------------------- | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | +| UNet + FCN | UNet-S5-D16 | Cross Entropy | 960x999 | 128x128 | 85x85 | 40000 | 0.968 | - | V100 | 89.46 | 80.24 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/unet/unet-s5-d16_fcn_4xb4-40k_chase-db1-128x128.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/unet/fcn_unet_s5-d16_128x128_40k_chase_db1/fcn_unet_s5-d16_128x128_40k_chase_db1_20201223_191051-11543527.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/unet/unet_s5-d16_128x128_40k_chase_db1/unet_s5-d16_128x128_40k_chase_db1-20201223_191051.log.json) | +| UNet + FCN | UNet-S5-D16 | Cross Entropy + Dice | 960x999 | 128x128 | 85x85 | 40000 | 0.986 | - | V100 | 89.52 | 80.40 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/unet/unet-s5-d16_fcn_4xb4-ce-1.0-dice-3.0-40k_chase-db1-128x128.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/unet/fcn_unet_s5-d16_ce-1.0-dice-3.0_128x128_40k_chase-db1/fcn_unet_s5-d16_ce-1.0-dice-3.0_128x128_40k_chase-db1_20211210_201821-1c4eb7cf.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/unet/fcn_unet_s5-d16_ce-1.0-dice-3.0_128x128_40k_chase-db1/fcn_unet_s5-d16_ce-1.0-dice-3.0_128x128_40k_chase-db1_20211210_201821.log.json) | +| UNet + PSPNet | UNet-S5-D16 | Cross Entropy | 960x999 | 128x128 | 85x85 | 40000 | 0.982 | - | V100 | 89.52 | 80.36 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/unet/unet-s5-d16_pspnet_4xb4-40k_chase-db1-128x128.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/unet/pspnet_unet_s5-d16_128x128_40k_chase_db1/pspnet_unet_s5-d16_128x128_40k_chase_db1_20201227_181818-68d4e609.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/unet/pspnet_unet_s5-d16_128x128_40k_chase_db1/pspnet_unet_s5-d16_128x128_40k_chase_db1-20201227_181818.log.json) | +| UNet + PSPNet | UNet-S5-D16 | Cross Entropy + Dice | 960x999 | 128x128 | 85x85 | 40000 | 1.028 | - | V100 | 89.45 | 80.28 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/unet/unet-s5-d16_pspnet_4xb4-ce-1.0-dice-3.0-40k_chase-db1-128x128.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/unet/pspnet_unet_s5-d16_ce-1.0-dice-3.0_128x128_40k_chase-db1/pspnet_unet_s5-d16_ce-1.0-dice-3.0_128x128_40k_chase-db1_20211210_201823-c0802c4d.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/unet/pspnet_unet_s5-d16_ce-1.0-dice-3.0_128x128_40k_chase-db1/pspnet_unet_s5-d16_ce-1.0-dice-3.0_128x128_40k_chase-db1_20211210_201823.log.json) | +| UNet + DeepLabV3 | UNet-S5-D16 | Cross Entropy | 960x999 | 128x128 | 85x85 | 40000 | 0.999 | - | V100 | 89.57 | 80.47 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/unet/unet_s5-d16_deeplabv3_4xb4-40k_chase-db1-128x128.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/unet/deeplabv3_unet_s5-d16_128x128_40k_chase_db1/deeplabv3_unet_s5-d16_128x128_40k_chase_db1_20201226_094047-4c5aefa3.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/unet/deeplabv3_unet_s5-d16_128x128_40k_chase_db1/deeplabv3_unet_s5-d16_128x128_40k_chase_db1-20201226_094047.log.json) | +| UNet + DeepLabV3 | UNet-S5-D16 | Cross Entropy + Dice | 960x999 | 128x128 | 85x85 | 40000 | 1.010 | - | V100 | 89.49 | 80.37 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/unet/unet-s5-d16_deeplabv3_4xb4-ce-1.0-dice-3.0-40k_chase-db1-128x128.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/unet/deeplabv3_unet_s5-d16_ce-1.0-dice-3.0_128x128_40k_chase-db1/deeplabv3_unet_s5-d16_ce-1.0-dice-3.0_128x128_40k_chase-db1_20211210_201825-4ef29df5.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/unet/deeplabv3_unet_s5-d16_ce-1.0-dice-3.0_128x128_40k_chase-db1/deeplabv3_unet_s5-d16_ce-1.0-dice-3.0_128x128_40k_chase-db1_20211210_201825.log.json) | ### HRF -| Method | Backbone | Loss | Image Size | Crop Size | Stride | Lr schd | Mem (GB) | Inf time (fps) | mDice | Dice | config | download | -| ---------------- | ----------- | -------------------- | ---------- | --------- | ------: | ------- | -------- | -------------: | ----: | ----: | ---------------------------------------------------------------------------------------------------------------------------------------------- | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | -| UNet + FCN | UNet-S5-D16 | Cross Entropy | 2336x3504 | 256x256 | 170x170 | 40000 | 2.525 | - | 88.92 | 79.45 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/unet/unet-s5-d16_fcn_4xb4-40k_hrf-256x256.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/unet/fcn_unet_s5-d16_256x256_40k_hrf/fcn_unet_s5-d16_256x256_40k_hrf_20201223_173724-d89cf1ed.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/unet/unet_s5-d16_256x256_40k_hrf/unet_s5-d16_256x256_40k_hrf-20201223_173724.log.json) | -| UNet + FCN | UNet-S5-D16 | Cross Entropy + Dice | 2336x3504 | 256x256 | 170x170 | 40000 | 2.623 | - | 89.64 | 80.87 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/unet/unet-s5-d16_fcn_4xb4-ce-1.0-dice-3.0-40k_hrf-256x256.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/unet/fcn_unet_s5-d16_ce-1.0-dice-3.0_256x256_40k_hrf/fcn_unet_s5-d16_ce-1.0-dice-3.0_256x256_40k_hrf_20211210_201821-c314da8a.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/unet/fcn_unet_s5-d16_ce-1.0-dice-3.0_256x256_40k_hrf/fcn_unet_s5-d16_ce-1.0-dice-3.0_256x256_40k_hrf_20211210_201821.log.json) | -| UNet + PSPNet | UNet-S5-D16 | Cross Entropy | 2336x3504 | 256x256 | 170x170 | 40000 | 2.588 | - | 89.24 | 80.07 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/unet/unet-s5-d16_pspnet_4xb4-40k_hrf-256x256.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/unet/pspnet_unet_s5-d16_256x256_40k_hrf/pspnet_unet_s5-d16_256x256_40k_hrf_20201227_181818-fdb7e29b.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/unet/pspnet_unet_s5-d16_256x256_40k_hrf/pspnet_unet_s5-d16_256x256_40k_hrf-20201227_181818.log.json) | -| UNet + PSPNet | UNet-S5-D16 | Cross Entropy + Dice | 2336x3504 | 256x256 | 170x170 | 40000 | 2.798 | - | 89.69 | 80.96 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/unet/unet-s5-d16_pspnet_4xb4-ce-1.0-dice-3.0-40k_hrf-256x256.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/unet/pspnet_unet_s5-d16_ce-1.0-dice-3.0_256x256_40k_hrf/pspnet_unet_s5-d16_ce-1.0-dice-3.0_256x256_40k_hrf_20211210_201823-53d492fa.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/unet/pspnet_unet_s5-d16_ce-1.0-dice-3.0_256x256_40k_hrf/pspnet_unet_s5-d16_ce-1.0-dice-3.0_256x256_40k_hrf_20211210_201823.log.json) | -| UNet + DeepLabV3 | UNet-S5-D16 | Cross Entropy | 2336x3504 | 256x256 | 170x170 | 40000 | 2.604 | - | 89.32 | 80.21 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/unet/unet-s5-d16_deeplabv3_4xb4-40k_hrf-256x256.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/unet/deeplabv3_unet_s5-d16_256x256_40k_hrf/deeplabv3_unet_s5-d16_256x256_40k_hrf_20201226_094047-3a1fdf85.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/unet/deeplabv3_unet_s5-d16_256x256_40k_hrf/deeplabv3_unet_s5-d16_256x256_40k_hrf-20201226_094047.log.json) | -| UNet + DeepLabV3 | UNet-S5-D16 | Cross Entropy + Dice | 2336x3504 | 256x256 | 170x170 | 40000 | 2.607 | - | 89.56 | 80.71 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/unet/unet-s5-d16_deeplabv3_4xb4-ce-1.0-dice-3.0-40k_hrf-256x256.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/unet/deeplabv3_unet_s5-d16_ce-1.0-dice-3.0_256x256_40k_hrf/deeplabv3_unet_s5-d16_ce-1.0-dice-3.0_256x256_40k_hrf_20211210_202032-59daf7a4.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/unet/deeplabv3_unet_s5-d16_ce-1.0-dice-3.0_256x256_40k_hrf/deeplabv3_unet_s5-d16_ce-1.0-dice-3.0_256x256_40k_hrf_20211210_202032.log.json) | +| Method | Backbone | Loss | Image Size | Crop Size | Stride | Lr schd | Mem (GB) | Inf time (fps) | Device | mDice | Dice | config | download | +| ---------------- | ----------- | -------------------- | ---------- | --------- | ------: | ------- | -------- | -------------: | ------ | ----: | ----: | ---------------------------------------------------------------------------------------------------------------------------------------------- | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | +| UNet + FCN | UNet-S5-D16 | Cross Entropy | 2336x3504 | 256x256 | 170x170 | 40000 | 2.525 | - | V100 | 88.92 | 79.45 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/unet/unet-s5-d16_fcn_4xb4-40k_hrf-256x256.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/unet/fcn_unet_s5-d16_256x256_40k_hrf/fcn_unet_s5-d16_256x256_40k_hrf_20201223_173724-d89cf1ed.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/unet/unet_s5-d16_256x256_40k_hrf/unet_s5-d16_256x256_40k_hrf-20201223_173724.log.json) | +| UNet + FCN | UNet-S5-D16 | Cross Entropy + Dice | 2336x3504 | 256x256 | 170x170 | 40000 | 2.623 | - | V100 | 89.64 | 80.87 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/unet/unet-s5-d16_fcn_4xb4-ce-1.0-dice-3.0-40k_hrf-256x256.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/unet/fcn_unet_s5-d16_ce-1.0-dice-3.0_256x256_40k_hrf/fcn_unet_s5-d16_ce-1.0-dice-3.0_256x256_40k_hrf_20211210_201821-c314da8a.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/unet/fcn_unet_s5-d16_ce-1.0-dice-3.0_256x256_40k_hrf/fcn_unet_s5-d16_ce-1.0-dice-3.0_256x256_40k_hrf_20211210_201821.log.json) | +| UNet + PSPNet | UNet-S5-D16 | Cross Entropy | 2336x3504 | 256x256 | 170x170 | 40000 | 2.588 | - | V100 | 89.24 | 80.07 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/unet/unet-s5-d16_pspnet_4xb4-40k_hrf-256x256.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/unet/pspnet_unet_s5-d16_256x256_40k_hrf/pspnet_unet_s5-d16_256x256_40k_hrf_20201227_181818-fdb7e29b.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/unet/pspnet_unet_s5-d16_256x256_40k_hrf/pspnet_unet_s5-d16_256x256_40k_hrf-20201227_181818.log.json) | +| UNet + PSPNet | UNet-S5-D16 | Cross Entropy + Dice | 2336x3504 | 256x256 | 170x170 | 40000 | 2.798 | - | V100 | 89.69 | 80.96 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/unet/unet-s5-d16_pspnet_4xb4-ce-1.0-dice-3.0-40k_hrf-256x256.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/unet/pspnet_unet_s5-d16_ce-1.0-dice-3.0_256x256_40k_hrf/pspnet_unet_s5-d16_ce-1.0-dice-3.0_256x256_40k_hrf_20211210_201823-53d492fa.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/unet/pspnet_unet_s5-d16_ce-1.0-dice-3.0_256x256_40k_hrf/pspnet_unet_s5-d16_ce-1.0-dice-3.0_256x256_40k_hrf_20211210_201823.log.json) | +| UNet + DeepLabV3 | UNet-S5-D16 | Cross Entropy | 2336x3504 | 256x256 | 170x170 | 40000 | 2.604 | - | V100 | 89.32 | 80.21 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/unet/unet-s5-d16_deeplabv3_4xb4-40k_hrf-256x256.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/unet/deeplabv3_unet_s5-d16_256x256_40k_hrf/deeplabv3_unet_s5-d16_256x256_40k_hrf_20201226_094047-3a1fdf85.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/unet/deeplabv3_unet_s5-d16_256x256_40k_hrf/deeplabv3_unet_s5-d16_256x256_40k_hrf-20201226_094047.log.json) | +| UNet + DeepLabV3 | UNet-S5-D16 | Cross Entropy + Dice | 2336x3504 | 256x256 | 170x170 | 40000 | 2.607 | - | V100 | 89.56 | 80.71 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/unet/unet-s5-d16_deeplabv3_4xb4-ce-1.0-dice-3.0-40k_hrf-256x256.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/unet/deeplabv3_unet_s5-d16_ce-1.0-dice-3.0_256x256_40k_hrf/deeplabv3_unet_s5-d16_ce-1.0-dice-3.0_256x256_40k_hrf_20211210_202032-59daf7a4.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/unet/deeplabv3_unet_s5-d16_ce-1.0-dice-3.0_256x256_40k_hrf/deeplabv3_unet_s5-d16_ce-1.0-dice-3.0_256x256_40k_hrf_20211210_202032.log.json) | Note: - In `DRIVE`, `STARE`, `CHASE_DB1`, and `HRF` dataset, `mDice` is mean dice of background and vessel, while `Dice` is dice metric of vessel(foreground) only. + +## Citation + +```bibtex +@inproceedings{ronneberger2015u, + title={U-net: Convolutional networks for biomedical image segmentation}, + author={Ronneberger, Olaf and Fischer, Philipp and Brox, Thomas}, + booktitle={International Conference on Medical image computing and computer-assisted intervention}, + pages={234--241}, + year={2015}, + organization={Springer} +} +``` diff --git a/configs/unet/metafile.yaml b/configs/unet/metafile.yaml new file mode 100644 index 0000000000..1eafbc6d08 --- /dev/null +++ b/configs/unet/metafile.yaml @@ -0,0 +1,642 @@ +Collections: +- Name: UNet + License: Apache License 2.0 + Metadata: + Training Data: + - Cityscapes + - DRIVE + - STARE + - CHASE_DB1 + - HRF + Paper: + Title: 'U-Net: Convolutional Networks for Biomedical Image Segmentation' + URL: https://arxiv.org/abs/1505.04597 + README: configs/unet/README.md + Frameworks: + - PyTorch +Models: +- Name: unet-s5-d16_fcn_4xb4-160k_cityscapes-512x1024 + In Collection: UNet + Results: + Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 69.1 + mIoU(ms+flip): 71.05 + Config: configs/unet/unet-s5-d16_fcn_4xb4-160k_cityscapes-512x1024.py + Metadata: + Training Data: Cityscapes + Batch Size: 16 + Architecture: + - UNet-S5-D16 + - UNet + - FCN + Training Resources: 4x V100 GPUS + Memory (GB): 17.91 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/unet/fcn_unet_s5-d16_4x4_512x1024_160k_cityscapes/fcn_unet_s5-d16_4x4_512x1024_160k_cityscapes_20211210_145204-6860854e.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/unet/fcn_unet_s5-d16_4x4_512x1024_160k_cityscapes/fcn_unet_s5-d16_4x4_512x1024_160k_cityscapes_20211210_145204.log.json + Paper: + Title: 'U-Net: Convolutional Networks for Biomedical Image Segmentation' + URL: https://arxiv.org/abs/1505.04597 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/backbones/unet.py#L225 + Framework: PyTorch +- Name: unet-s5-d16_fcn_4xb4-40k_drive-64x64 + In Collection: UNet + Results: + Task: Semantic Segmentation + Dataset: DRIVE + Metrics: + mDice: 88.38 + Dice: 78.67 + Config: configs/unet/unet-s5-d16_fcn_4xb4-40k_drive-64x64.py + Metadata: + Training Data: DRIVE + Batch Size: 16 + Architecture: + - UNet-S5-D16 + - UNet + - FCN + Training Resources: 4x V100 GPUS + Memory (GB): 0.68 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/unet/fcn_unet_s5-d16_64x64_40k_drive/fcn_unet_s5-d16_64x64_40k_drive_20201223_191051-5daf6d3b.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/unet/unet_s5-d16_64x64_40k_drive/unet_s5-d16_64x64_40k_drive-20201223_191051.log.json + Paper: + Title: 'U-Net: Convolutional Networks for Biomedical Image Segmentation' + URL: https://arxiv.org/abs/1505.04597 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/backbones/unet.py#L225 + Framework: PyTorch +- Name: unet-s5-d16_fcn_4xb4-ce-1.0-dice-3.0-40k_drive-64x64 + In Collection: UNet + Results: + Task: Semantic Segmentation + Dataset: DRIVE + Metrics: + mDice: 88.71 + Dice: 79.32 + Config: configs/unet/unet-s5-d16_fcn_4xb4-ce-1.0-dice-3.0-40k_drive-64x64.py + Metadata: + Training Data: DRIVE + Batch Size: 16 + Architecture: + - UNet-S5-D16 + - UNet + - FCN + Training Resources: 4x V100 GPUS + Memory (GB): 0.582 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/unet/fcn_unet_s5-d16_ce-1.0-dice-3.0_64x64_40k_drive/fcn_unet_s5-d16_ce-1.0-dice-3.0_64x64_40k_drive_20211210_201820-785de5c2.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/unet/fcn_unet_s5-d16_ce-1.0-dice-3.0_64x64_40k_drive/fcn_unet_s5-d16_ce-1.0-dice-3.0_64x64_40k_drive_20211210_201820.log.json + Paper: + Title: 'U-Net: Convolutional Networks for Biomedical Image Segmentation' + URL: https://arxiv.org/abs/1505.04597 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/backbones/unet.py#L225 + Framework: PyTorch +- Name: unet-s5-d16_pspnet_4xb4-40k_drive-64x64 + In Collection: UNet + Results: + Task: Semantic Segmentation + Dataset: DRIVE + Metrics: + mDice: 88.35 + Dice: 78.62 + Config: configs/unet/unet-s5-d16_pspnet_4xb4-40k_drive-64x64.py + Metadata: + Training Data: DRIVE + Batch Size: 16 + Architecture: + - UNet-S5-D16 + - UNet + - PSPNet + Training Resources: 4x V100 GPUS + Memory (GB): 0.599 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/unet/pspnet_unet_s5-d16_64x64_40k_drive/pspnet_unet_s5-d16_64x64_40k_drive_20201227_181818-aac73387.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/unet/pspnet_unet_s5-d16_64x64_40k_drive/pspnet_unet_s5-d16_64x64_40k_drive-20201227_181818.log.json + Paper: + Title: 'U-Net: Convolutional Networks for Biomedical Image Segmentation' + URL: https://arxiv.org/abs/1505.04597 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/backbones/unet.py#L225 + Framework: PyTorch +- Name: unet-s5-d16_pspnet_4xb4-ce-1.0-dice-3.0-40k_drive-64x64 + In Collection: UNet + Results: + Task: Semantic Segmentation + Dataset: DRIVE + Metrics: + mDice: 88.76 + Dice: 79.42 + Config: configs/unet/unet-s5-d16_pspnet_4xb4-ce-1.0-dice-3.0-40k_drive-64x64.py + Metadata: + Training Data: DRIVE + Batch Size: 16 + Architecture: + - UNet-S5-D16 + - UNet + - PSPNet + Training Resources: 4x V100 GPUS + Memory (GB): 0.585 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/unet/pspnet_unet_s5-d16_ce-1.0-dice-3.0_64x64_40k_drive/pspnet_unet_s5-d16_ce-1.0-dice-3.0_64x64_40k_drive_20211210_201821-22b3e3ba.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/unet/pspnet_unet_s5-d16_ce-1.0-dice-3.0_64x64_40k_drive/pspnet_unet_s5-d16_ce-1.0-dice-3.0_64x64_40k_drive_20211210_201821.log.json + Paper: + Title: 'U-Net: Convolutional Networks for Biomedical Image Segmentation' + URL: https://arxiv.org/abs/1505.04597 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/backbones/unet.py#L225 + Framework: PyTorch +- Name: unet-s5-d16_deeplabv3_4xb4-40k_drive-64x64 + In Collection: UNet + Results: + Task: Semantic Segmentation + Dataset: DRIVE + Metrics: + mDice: 88.38 + Dice: 78.69 + Config: configs/unet/unet-s5-d16_deeplabv3_4xb4-40k_drive-64x64.py + Metadata: + Training Data: DRIVE + Batch Size: 16 + Architecture: + - UNet-S5-D16 + - UNet + - DeepLabV3 + Training Resources: 4x V100 GPUS + Memory (GB): 0.596 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/unet/deeplabv3_unet_s5-d16_64x64_40k_drive/deeplabv3_unet_s5-d16_64x64_40k_drive_20201226_094047-0671ff20.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/unet/deeplabv3_unet_s5-d16_64x64_40k_drive/deeplabv3_unet_s5-d16_64x64_40k_drive-20201226_094047.log.json + Paper: + Title: 'U-Net: Convolutional Networks for Biomedical Image Segmentation' + URL: https://arxiv.org/abs/1505.04597 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/backbones/unet.py#L225 + Framework: PyTorch +- Name: unet-s5-d16_deeplabv3_4xb4-ce-1.0-dice-3.0-40k_drive-64x64 + In Collection: UNet + Results: + Task: Semantic Segmentation + Dataset: DRIVE + Metrics: + mDice: 88.84 + Dice: 79.56 + Config: configs/unet/unet-s5-d16_deeplabv3_4xb4-ce-1.0-dice-3.0-40k_drive-64x64.py + Metadata: + Training Data: DRIVE + Batch Size: 16 + Architecture: + - UNet-S5-D16 + - UNet + - DeepLabV3 + Training Resources: 4x V100 GPUS + Memory (GB): 0.582 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/unet/deeplabv3_unet_s5-d16_ce-1.0-dice-3.0_64x64_40k_drive/deeplabv3_unet_s5-d16_ce-1.0-dice-3.0_64x64_40k_drive_20211210_201825-6bf0efd7.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/unet/deeplabv3_unet_s5-d16_ce-1.0-dice-3.0_64x64_40k_drive/deeplabv3_unet_s5-d16_ce-1.0-dice-3.0_64x64_40k_drive_20211210_201825.log.json + Paper: + Title: 'U-Net: Convolutional Networks for Biomedical Image Segmentation' + URL: https://arxiv.org/abs/1505.04597 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/backbones/unet.py#L225 + Framework: PyTorch +- Name: unet-s5-d16_fcn_4xb4-40k_stare-128x128 + In Collection: UNet + Results: + Task: Semantic Segmentation + Dataset: STARE + Metrics: + mDice: 89.78 + Dice: 81.02 + Config: configs/unet/unet-s5-d16_fcn_4xb4-40k_stare-128x128.py + Metadata: + Training Data: STARE + Batch Size: 16 + Architecture: + - UNet-S5-D16 + - UNet + - FCN + Training Resources: 4x V100 GPUS + Memory (GB): 0.968 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/unet/fcn_unet_s5-d16_128x128_40k_stare/fcn_unet_s5-d16_128x128_40k_stare_20201223_191051-7d77e78b.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/unet/unet_s5-d16_128x128_40k_stare/unet_s5-d16_128x128_40k_stare-20201223_191051.log.json + Paper: + Title: 'U-Net: Convolutional Networks for Biomedical Image Segmentation' + URL: https://arxiv.org/abs/1505.04597 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/backbones/unet.py#L225 + Framework: PyTorch +- Name: unet-s5-d16_fcn_4xb4-ce-1.0-dice-3.0-40k_stare-128x128 + In Collection: UNet + Results: + Task: Semantic Segmentation + Dataset: STARE + Metrics: + mDice: 90.65 + Dice: 82.7 + Config: configs/unet/unet-s5-d16_fcn_4xb4-ce-1.0-dice-3.0-40k_stare-128x128.py + Metadata: + Training Data: STARE + Batch Size: 16 + Architecture: + - UNet-S5-D16 + - UNet + - FCN + Training Resources: 4x V100 GPUS + Memory (GB): 0.986 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/unet/fcn_unet_s5-d16_ce-1.0-dice-3.0_128x128_40k_stare/fcn_unet_s5-d16_ce-1.0-dice-3.0_128x128_40k_stare_20211210_201821-f75705a9.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/unet/fcn_unet_s5-d16_ce-1.0-dice-3.0_128x128_40k_stare/fcn_unet_s5-d16_ce-1.0-dice-3.0_128x128_40k_stare_20211210_201821.log.json + Paper: + Title: 'U-Net: Convolutional Networks for Biomedical Image Segmentation' + URL: https://arxiv.org/abs/1505.04597 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/backbones/unet.py#L225 + Framework: PyTorch +- Name: unet-s5-d16_pspnet_4xb4-40k_stare-128x128 + In Collection: UNet + Results: + Task: Semantic Segmentation + Dataset: STARE + Metrics: + mDice: 89.89 + Dice: 81.22 + Config: configs/unet/unet-s5-d16_pspnet_4xb4-40k_stare-128x128.py + Metadata: + Training Data: STARE + Batch Size: 16 + Architecture: + - UNet-S5-D16 + - UNet + - PSPNet + Training Resources: 4x V100 GPUS + Memory (GB): 0.982 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/unet/pspnet_unet_s5-d16_128x128_40k_stare/pspnet_unet_s5-d16_128x128_40k_stare_20201227_181818-3c2923c4.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/unet/pspnet_unet_s5-d16_128x128_40k_stare/pspnet_unet_s5-d16_128x128_40k_stare-20201227_181818.log.json + Paper: + Title: 'U-Net: Convolutional Networks for Biomedical Image Segmentation' + URL: https://arxiv.org/abs/1505.04597 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/backbones/unet.py#L225 + Framework: PyTorch +- Name: unet-s5-d16_pspnet_4xb4-ce-1.0-dice-3.0-40k_stare-128x128 + In Collection: UNet + Results: + Task: Semantic Segmentation + Dataset: STARE + Metrics: + mDice: 90.72 + Dice: 82.84 + Config: configs/unet/unet-s5-d16_pspnet_4xb4-ce-1.0-dice-3.0-40k_stare-128x128.py + Metadata: + Training Data: STARE + Batch Size: 16 + Architecture: + - UNet-S5-D16 + - UNet + - PSPNet + Training Resources: 4x V100 GPUS + Memory (GB): 1.028 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/unet/pspnet_unet_s5-d16_ce-1.0-dice-3.0_128x128_40k_stare/pspnet_unet_s5-d16_ce-1.0-dice-3.0_128x128_40k_stare_20211210_201823-f1063ef7.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/unet/pspnet_unet_s5-d16_ce-1.0-dice-3.0_128x128_40k_stare/pspnet_unet_s5-d16_ce-1.0-dice-3.0_128x128_40k_stare_20211210_201823.log.json + Paper: + Title: 'U-Net: Convolutional Networks for Biomedical Image Segmentation' + URL: https://arxiv.org/abs/1505.04597 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/backbones/unet.py#L225 + Framework: PyTorch +- Name: unet-s5-d16_deeplabv3_4xb4-40k_stare-128x128 + In Collection: UNet + Results: + Task: Semantic Segmentation + Dataset: STARE + Metrics: + mDice: 89.73 + Dice: 80.93 + Config: configs/unet/unet-s5-d16_deeplabv3_4xb4-40k_stare-128x128.py + Metadata: + Training Data: STARE + Batch Size: 16 + Architecture: + - UNet-S5-D16 + - UNet + - DeepLabV3 + Training Resources: 4x V100 GPUS + Memory (GB): 0.999 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/unet/deeplabv3_unet_s5-d16_128x128_40k_stare/deeplabv3_unet_s5-d16_128x128_40k_stare_20201226_094047-93dcb93c.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/unet/deeplabv3_unet_s5-d16_128x128_40k_stare/deeplabv3_unet_s5-d16_128x128_40k_stare-20201226_094047.log.json + Paper: + Title: 'U-Net: Convolutional Networks for Biomedical Image Segmentation' + URL: https://arxiv.org/abs/1505.04597 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/backbones/unet.py#L225 + Framework: PyTorch +- Name: unet-s5-d16_deeplabv3_4xb4-ce-1.0-dice-3.0-40k_stare-128x128 + In Collection: UNet + Results: + Task: Semantic Segmentation + Dataset: STARE + Metrics: + mDice: 90.65 + Dice: 82.71 + Config: configs/unet/unet-s5-d16_deeplabv3_4xb4-ce-1.0-dice-3.0-40k_stare-128x128.py + Metadata: + Training Data: STARE + Batch Size: 16 + Architecture: + - UNet-S5-D16 + - UNet + - DeepLabV3 + Training Resources: 4x V100 GPUS + Memory (GB): 1.01 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/unet/deeplabv3_unet_s5-d16_ce-1.0-dice-3.0_128x128_40k_stare/deeplabv3_unet_s5-d16_ce-1.0-dice-3.0_128x128_40k_stare_20211210_201825-21db614c.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/unet/deeplabv3_unet_s5-d16_ce-1.0-dice-3.0_128x128_40k_stare/deeplabv3_unet_s5-d16_ce-1.0-dice-3.0_128x128_40k_stare_20211210_201825.log.json + Paper: + Title: 'U-Net: Convolutional Networks for Biomedical Image Segmentation' + URL: https://arxiv.org/abs/1505.04597 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/backbones/unet.py#L225 + Framework: PyTorch +- Name: unet-s5-d16_fcn_4xb4-40k_chase-db1-128x128 + In Collection: UNet + Results: + Task: Semantic Segmentation + Dataset: CHASE_DB1 + Metrics: + mDice: 89.46 + Dice: 80.24 + Config: configs/unet/unet-s5-d16_fcn_4xb4-40k_chase-db1-128x128.py + Metadata: + Training Data: CHASE_DB1 + Batch Size: 16 + Architecture: + - UNet-S5-D16 + - UNet + - FCN + Training Resources: 4x V100 GPUS + Memory (GB): 0.968 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/unet/fcn_unet_s5-d16_128x128_40k_chase_db1/fcn_unet_s5-d16_128x128_40k_chase_db1_20201223_191051-11543527.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/unet/unet_s5-d16_128x128_40k_chase_db1/unet_s5-d16_128x128_40k_chase_db1-20201223_191051.log.json + Paper: + Title: 'U-Net: Convolutional Networks for Biomedical Image Segmentation' + URL: https://arxiv.org/abs/1505.04597 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/backbones/unet.py#L225 + Framework: PyTorch +- Name: unet-s5-d16_fcn_4xb4-ce-1.0-dice-3.0-40k_chase-db1-128x128 + In Collection: UNet + Results: + Task: Semantic Segmentation + Dataset: CHASE_DB1 + Metrics: + mDice: 89.52 + Dice: 80.4 + Config: configs/unet/unet-s5-d16_fcn_4xb4-ce-1.0-dice-3.0-40k_chase-db1-128x128.py + Metadata: + Training Data: CHASE_DB1 + Batch Size: 16 + Architecture: + - UNet-S5-D16 + - UNet + - FCN + Training Resources: 4x V100 GPUS + Memory (GB): 0.986 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/unet/fcn_unet_s5-d16_ce-1.0-dice-3.0_128x128_40k_chase-db1/fcn_unet_s5-d16_ce-1.0-dice-3.0_128x128_40k_chase-db1_20211210_201821-1c4eb7cf.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/unet/fcn_unet_s5-d16_ce-1.0-dice-3.0_128x128_40k_chase-db1/fcn_unet_s5-d16_ce-1.0-dice-3.0_128x128_40k_chase-db1_20211210_201821.log.json + Paper: + Title: 'U-Net: Convolutional Networks for Biomedical Image Segmentation' + URL: https://arxiv.org/abs/1505.04597 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/backbones/unet.py#L225 + Framework: PyTorch +- Name: unet-s5-d16_pspnet_4xb4-40k_chase-db1-128x128 + In Collection: UNet + Results: + Task: Semantic Segmentation + Dataset: CHASE_DB1 + Metrics: + mDice: 89.52 + Dice: 80.36 + Config: configs/unet/unet-s5-d16_pspnet_4xb4-40k_chase-db1-128x128.py + Metadata: + Training Data: CHASE_DB1 + Batch Size: 16 + Architecture: + - UNet-S5-D16 + - UNet + - PSPNet + Training Resources: 4x V100 GPUS + Memory (GB): 0.982 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/unet/pspnet_unet_s5-d16_128x128_40k_chase_db1/pspnet_unet_s5-d16_128x128_40k_chase_db1_20201227_181818-68d4e609.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/unet/pspnet_unet_s5-d16_128x128_40k_chase_db1/pspnet_unet_s5-d16_128x128_40k_chase_db1-20201227_181818.log.json + Paper: + Title: 'U-Net: Convolutional Networks for Biomedical Image Segmentation' + URL: https://arxiv.org/abs/1505.04597 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/backbones/unet.py#L225 + Framework: PyTorch +- Name: unet-s5-d16_pspnet_4xb4-ce-1.0-dice-3.0-40k_chase-db1-128x128 + In Collection: UNet + Results: + Task: Semantic Segmentation + Dataset: CHASE_DB1 + Metrics: + mDice: 89.45 + Dice: 80.28 + Config: configs/unet/unet-s5-d16_pspnet_4xb4-ce-1.0-dice-3.0-40k_chase-db1-128x128.py + Metadata: + Training Data: CHASE_DB1 + Batch Size: 16 + Architecture: + - UNet-S5-D16 + - UNet + - PSPNet + Training Resources: 4x V100 GPUS + Memory (GB): 1.028 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/unet/pspnet_unet_s5-d16_ce-1.0-dice-3.0_128x128_40k_chase-db1/pspnet_unet_s5-d16_ce-1.0-dice-3.0_128x128_40k_chase-db1_20211210_201823-c0802c4d.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/unet/pspnet_unet_s5-d16_ce-1.0-dice-3.0_128x128_40k_chase-db1/pspnet_unet_s5-d16_ce-1.0-dice-3.0_128x128_40k_chase-db1_20211210_201823.log.json + Paper: + Title: 'U-Net: Convolutional Networks for Biomedical Image Segmentation' + URL: https://arxiv.org/abs/1505.04597 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/backbones/unet.py#L225 + Framework: PyTorch +- Name: unet_s5-d16_deeplabv3_4xb4-40k_chase-db1-128x128 + In Collection: UNet + Results: + Task: Semantic Segmentation + Dataset: CHASE_DB1 + Metrics: + mDice: 89.57 + Dice: 80.47 + Config: configs/unet/unet_s5-d16_deeplabv3_4xb4-40k_chase-db1-128x128.py + Metadata: + Training Data: CHASE_DB1 + Batch Size: 16 + Architecture: + - UNet-S5-D16 + - UNet + - DeepLabV3 + Training Resources: 4x V100 GPUS + Memory (GB): 0.999 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/unet/deeplabv3_unet_s5-d16_128x128_40k_chase_db1/deeplabv3_unet_s5-d16_128x128_40k_chase_db1_20201226_094047-4c5aefa3.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/unet/deeplabv3_unet_s5-d16_128x128_40k_chase_db1/deeplabv3_unet_s5-d16_128x128_40k_chase_db1-20201226_094047.log.json + Paper: + Title: 'U-Net: Convolutional Networks for Biomedical Image Segmentation' + URL: https://arxiv.org/abs/1505.04597 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/backbones/unet.py#L225 + Framework: PyTorch +- Name: unet-s5-d16_deeplabv3_4xb4-ce-1.0-dice-3.0-40k_chase-db1-128x128 + In Collection: UNet + Results: + Task: Semantic Segmentation + Dataset: CHASE_DB1 + Metrics: + mDice: 89.49 + Dice: 80.37 + Config: configs/unet/unet-s5-d16_deeplabv3_4xb4-ce-1.0-dice-3.0-40k_chase-db1-128x128.py + Metadata: + Training Data: CHASE_DB1 + Batch Size: 16 + Architecture: + - UNet-S5-D16 + - UNet + - DeepLabV3 + Training Resources: 4x V100 GPUS + Memory (GB): 1.01 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/unet/deeplabv3_unet_s5-d16_ce-1.0-dice-3.0_128x128_40k_chase-db1/deeplabv3_unet_s5-d16_ce-1.0-dice-3.0_128x128_40k_chase-db1_20211210_201825-4ef29df5.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/unet/deeplabv3_unet_s5-d16_ce-1.0-dice-3.0_128x128_40k_chase-db1/deeplabv3_unet_s5-d16_ce-1.0-dice-3.0_128x128_40k_chase-db1_20211210_201825.log.json + Paper: + Title: 'U-Net: Convolutional Networks for Biomedical Image Segmentation' + URL: https://arxiv.org/abs/1505.04597 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/backbones/unet.py#L225 + Framework: PyTorch +- Name: unet-s5-d16_fcn_4xb4-40k_hrf-256x256 + In Collection: UNet + Results: + Task: Semantic Segmentation + Dataset: HRF + Metrics: + mDice: 88.92 + Dice: 79.45 + Config: configs/unet/unet-s5-d16_fcn_4xb4-40k_hrf-256x256.py + Metadata: + Training Data: HRF + Batch Size: 16 + Architecture: + - UNet-S5-D16 + - UNet + - FCN + Training Resources: 4x V100 GPUS + Memory (GB): 2.525 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/unet/fcn_unet_s5-d16_256x256_40k_hrf/fcn_unet_s5-d16_256x256_40k_hrf_20201223_173724-d89cf1ed.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/unet/unet_s5-d16_256x256_40k_hrf/unet_s5-d16_256x256_40k_hrf-20201223_173724.log.json + Paper: + Title: 'U-Net: Convolutional Networks for Biomedical Image Segmentation' + URL: https://arxiv.org/abs/1505.04597 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/backbones/unet.py#L225 + Framework: PyTorch +- Name: unet-s5-d16_fcn_4xb4-ce-1.0-dice-3.0-40k_hrf-256x256 + In Collection: UNet + Results: + Task: Semantic Segmentation + Dataset: HRF + Metrics: + mDice: 89.64 + Dice: 80.87 + Config: configs/unet/unet-s5-d16_fcn_4xb4-ce-1.0-dice-3.0-40k_hrf-256x256.py + Metadata: + Training Data: HRF + Batch Size: 16 + Architecture: + - UNet-S5-D16 + - UNet + - FCN + Training Resources: 4x V100 GPUS + Memory (GB): 2.623 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/unet/fcn_unet_s5-d16_ce-1.0-dice-3.0_256x256_40k_hrf/fcn_unet_s5-d16_ce-1.0-dice-3.0_256x256_40k_hrf_20211210_201821-c314da8a.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/unet/fcn_unet_s5-d16_ce-1.0-dice-3.0_256x256_40k_hrf/fcn_unet_s5-d16_ce-1.0-dice-3.0_256x256_40k_hrf_20211210_201821.log.json + Paper: + Title: 'U-Net: Convolutional Networks for Biomedical Image Segmentation' + URL: https://arxiv.org/abs/1505.04597 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/backbones/unet.py#L225 + Framework: PyTorch +- Name: unet-s5-d16_pspnet_4xb4-40k_hrf-256x256 + In Collection: UNet + Results: + Task: Semantic Segmentation + Dataset: HRF + Metrics: + mDice: 89.24 + Dice: 80.07 + Config: configs/unet/unet-s5-d16_pspnet_4xb4-40k_hrf-256x256.py + Metadata: + Training Data: HRF + Batch Size: 16 + Architecture: + - UNet-S5-D16 + - UNet + - PSPNet + Training Resources: 4x V100 GPUS + Memory (GB): 2.588 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/unet/pspnet_unet_s5-d16_256x256_40k_hrf/pspnet_unet_s5-d16_256x256_40k_hrf_20201227_181818-fdb7e29b.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/unet/pspnet_unet_s5-d16_256x256_40k_hrf/pspnet_unet_s5-d16_256x256_40k_hrf-20201227_181818.log.json + Paper: + Title: 'U-Net: Convolutional Networks for Biomedical Image Segmentation' + URL: https://arxiv.org/abs/1505.04597 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/backbones/unet.py#L225 + Framework: PyTorch +- Name: unet-s5-d16_pspnet_4xb4-ce-1.0-dice-3.0-40k_hrf-256x256 + In Collection: UNet + Results: + Task: Semantic Segmentation + Dataset: HRF + Metrics: + mDice: 89.69 + Dice: 80.96 + Config: configs/unet/unet-s5-d16_pspnet_4xb4-ce-1.0-dice-3.0-40k_hrf-256x256.py + Metadata: + Training Data: HRF + Batch Size: 16 + Architecture: + - UNet-S5-D16 + - UNet + - PSPNet + Training Resources: 4x V100 GPUS + Memory (GB): 2.798 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/unet/pspnet_unet_s5-d16_ce-1.0-dice-3.0_256x256_40k_hrf/pspnet_unet_s5-d16_ce-1.0-dice-3.0_256x256_40k_hrf_20211210_201823-53d492fa.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/unet/pspnet_unet_s5-d16_ce-1.0-dice-3.0_256x256_40k_hrf/pspnet_unet_s5-d16_ce-1.0-dice-3.0_256x256_40k_hrf_20211210_201823.log.json + Paper: + Title: 'U-Net: Convolutional Networks for Biomedical Image Segmentation' + URL: https://arxiv.org/abs/1505.04597 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/backbones/unet.py#L225 + Framework: PyTorch +- Name: unet-s5-d16_deeplabv3_4xb4-40k_hrf-256x256 + In Collection: UNet + Results: + Task: Semantic Segmentation + Dataset: HRF + Metrics: + mDice: 89.32 + Dice: 80.21 + Config: configs/unet/unet-s5-d16_deeplabv3_4xb4-40k_hrf-256x256.py + Metadata: + Training Data: HRF + Batch Size: 16 + Architecture: + - UNet-S5-D16 + - UNet + - DeepLabV3 + Training Resources: 4x V100 GPUS + Memory (GB): 2.604 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/unet/deeplabv3_unet_s5-d16_256x256_40k_hrf/deeplabv3_unet_s5-d16_256x256_40k_hrf_20201226_094047-3a1fdf85.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/unet/deeplabv3_unet_s5-d16_256x256_40k_hrf/deeplabv3_unet_s5-d16_256x256_40k_hrf-20201226_094047.log.json + Paper: + Title: 'U-Net: Convolutional Networks for Biomedical Image Segmentation' + URL: https://arxiv.org/abs/1505.04597 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/backbones/unet.py#L225 + Framework: PyTorch +- Name: unet-s5-d16_deeplabv3_4xb4-ce-1.0-dice-3.0-40k_hrf-256x256 + In Collection: UNet + Results: + Task: Semantic Segmentation + Dataset: HRF + Metrics: + mDice: 89.56 + Dice: 80.71 + Config: configs/unet/unet-s5-d16_deeplabv3_4xb4-ce-1.0-dice-3.0-40k_hrf-256x256.py + Metadata: + Training Data: HRF + Batch Size: 16 + Architecture: + - UNet-S5-D16 + - UNet + - DeepLabV3 + Training Resources: 4x V100 GPUS + Memory (GB): 2.607 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/unet/deeplabv3_unet_s5-d16_ce-1.0-dice-3.0_256x256_40k_hrf/deeplabv3_unet_s5-d16_ce-1.0-dice-3.0_256x256_40k_hrf_20211210_202032-59daf7a4.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/unet/deeplabv3_unet_s5-d16_ce-1.0-dice-3.0_256x256_40k_hrf/deeplabv3_unet_s5-d16_ce-1.0-dice-3.0_256x256_40k_hrf_20211210_202032.log.json + Paper: + Title: 'U-Net: Convolutional Networks for Biomedical Image Segmentation' + URL: https://arxiv.org/abs/1505.04597 + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/backbones/unet.py#L225 + Framework: PyTorch diff --git a/configs/unet/unet.yml b/configs/unet/unet.yml deleted file mode 100644 index 4a01ce33e2..0000000000 --- a/configs/unet/unet.yml +++ /dev/null @@ -1,377 +0,0 @@ -Collections: -- Name: UNet - Metadata: - Training Data: - - Cityscapes - - DRIVE - - STARE - - CHASE_DB1 - - HRF - Paper: - URL: https://arxiv.org/abs/1505.04597 - Title: 'U-Net: Convolutional Networks for Biomedical Image Segmentation' - README: configs/unet/README.md - Code: - URL: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/backbones/unet.py#L225 - Version: v0.17.0 - Converted From: - Code: http://lmb.informatik.uni-freiburg.de/people/ronneber/u-net -Models: -- Name: unet-s5-d16_fcn_4xb4-160k_cityscapes-512x1024 - In Collection: UNet - Metadata: - backbone: UNet-S5-D16 - crop size: (512,1024) - lr schd: 160000 - inference time (ms/im): - - value: 327.87 - hardware: V100 - backend: PyTorch - batch size: 1 - mode: FP32 - resolution: (512,1024) - Training Memory (GB): 17.91 - Results: - - Task: Semantic Segmentation - Dataset: Cityscapes - Metrics: - mIoU: 69.1 - mIoU(ms+flip): 71.05 - Config: configs/unet/unet-s5-d16_fcn_4xb4-160k_cityscapes-512x1024.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/unet/fcn_unet_s5-d16_4x4_512x1024_160k_cityscapes/fcn_unet_s5-d16_4x4_512x1024_160k_cityscapes_20211210_145204-6860854e.pth -- Name: unet-s5-d16_fcn_4xb4-40k_drive-64x64 - In Collection: UNet - Metadata: - backbone: UNet-S5-D16 - crop size: (64,64) - lr schd: 40000 - Training Memory (GB): 0.68 - Results: - - Task: Semantic Segmentation - Dataset: DRIVE - Metrics: - Dice: 78.67 - Config: configs/unet/unet-s5-d16_fcn_4xb4-40k_drive-64x64.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/unet/fcn_unet_s5-d16_64x64_40k_drive/fcn_unet_s5-d16_64x64_40k_drive_20201223_191051-5daf6d3b.pth -- Name: unet-s5-d16_fcn_4xb4-ce-1.0-dice-3.0-40k_drive-64x64 - In Collection: UNet - Metadata: - backbone: UNet-S5-D16 - crop size: (64,64) - lr schd: 40000 - Training Memory (GB): 0.582 - Results: - - Task: Semantic Segmentation - Dataset: DRIVE - Metrics: - Dice: 79.32 - Config: configs/unet/unet-s5-d16_fcn_4xb4-ce-1.0-dice-3.0-40k_drive-64x64.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/unet/fcn_unet_s5-d16_ce-1.0-dice-3.0_64x64_40k_drive/fcn_unet_s5-d16_ce-1.0-dice-3.0_64x64_40k_drive_20211210_201820-785de5c2.pth -- Name: unet-s5-d16_pspnet_4xb4-40k_drive-64x64 - In Collection: UNet - Metadata: - backbone: UNet-S5-D16 - crop size: (64,64) - lr schd: 40000 - Training Memory (GB): 0.599 - Results: - - Task: Semantic Segmentation - Dataset: DRIVE - Metrics: - Dice: 78.62 - Config: configs/unet/unet-s5-d16_pspnet_4xb4-40k_drive-64x64.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/unet/pspnet_unet_s5-d16_64x64_40k_drive/pspnet_unet_s5-d16_64x64_40k_drive_20201227_181818-aac73387.pth -- Name: unet-s5-d16_pspnet_4xb4-ce-1.0-dice-3.0-40k_drive-64x64 - In Collection: UNet - Metadata: - backbone: UNet-S5-D16 - crop size: (64,64) - lr schd: 40000 - Training Memory (GB): 0.585 - Results: - - Task: Semantic Segmentation - Dataset: DRIVE - Metrics: - Dice: 79.42 - Config: configs/unet/unet-s5-d16_pspnet_4xb4-ce-1.0-dice-3.0-40k_drive-64x64.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/unet/pspnet_unet_s5-d16_ce-1.0-dice-3.0_64x64_40k_drive/pspnet_unet_s5-d16_ce-1.0-dice-3.0_64x64_40k_drive_20211210_201821-22b3e3ba.pth -- Name: unet-s5-d16_deeplabv3_4xb4-40k_drive-64x64 - In Collection: UNet - Metadata: - backbone: UNet-S5-D16 - crop size: (64,64) - lr schd: 40000 - Training Memory (GB): 0.596 - Results: - - Task: Semantic Segmentation - Dataset: DRIVE - Metrics: - Dice: 78.69 - Config: configs/unet/unet-s5-d16_deeplabv3_4xb4-40k_drive-64x64.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/unet/deeplabv3_unet_s5-d16_64x64_40k_drive/deeplabv3_unet_s5-d16_64x64_40k_drive_20201226_094047-0671ff20.pth -- Name: unet-s5-d16_deeplabv3_4xb4-ce-1.0-dice-3.0-40k_drive-64x64 - In Collection: UNet - Metadata: - backbone: UNet-S5-D16 - crop size: (64,64) - lr schd: 40000 - Training Memory (GB): 0.582 - Results: - - Task: Semantic Segmentation - Dataset: DRIVE - Metrics: - Dice: 79.56 - Config: configs/unet/unet-s5-d16_deeplabv3_4xb4-ce-1.0-dice-3.0-40k_drive-64x64.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/unet/deeplabv3_unet_s5-d16_ce-1.0-dice-3.0_64x64_40k_drive/deeplabv3_unet_s5-d16_ce-1.0-dice-3.0_64x64_40k_drive_20211210_201825-6bf0efd7.pth -- Name: unet-s5-d16_fcn_4xb4-40k_stare-128x128 - In Collection: UNet - Metadata: - backbone: UNet-S5-D16 - crop size: (128,128) - lr schd: 40000 - Training Memory (GB): 0.968 - Results: - - Task: Semantic Segmentation - Dataset: STARE - Metrics: - Dice: 81.02 - Config: configs/unet/unet-s5-d16_fcn_4xb4-40k_stare-128x128.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/unet/fcn_unet_s5-d16_128x128_40k_stare/fcn_unet_s5-d16_128x128_40k_stare_20201223_191051-7d77e78b.pth -- Name: unet-s5-d16_fcn_4xb4-ce-1.0-dice-3.0-40k_stare-128x128 - In Collection: UNet - Metadata: - backbone: UNet-S5-D16 - crop size: (128,128) - lr schd: 40000 - Training Memory (GB): 0.986 - Results: - - Task: Semantic Segmentation - Dataset: STARE - Metrics: - Dice: 82.7 - Config: configs/unet/unet-s5-d16_fcn_4xb4-ce-1.0-dice-3.0-40k_stare-128x128.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/unet/fcn_unet_s5-d16_ce-1.0-dice-3.0_128x128_40k_stare/fcn_unet_s5-d16_ce-1.0-dice-3.0_128x128_40k_stare_20211210_201821-f75705a9.pth -- Name: unet-s5-d16_pspnet_4xb4-40k_stare-128x128 - In Collection: UNet - Metadata: - backbone: UNet-S5-D16 - crop size: (128,128) - lr schd: 40000 - Training Memory (GB): 0.982 - Results: - - Task: Semantic Segmentation - Dataset: STARE - Metrics: - Dice: 81.22 - Config: configs/unet/unet-s5-d16_pspnet_4xb4-40k_stare-128x128.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/unet/pspnet_unet_s5-d16_128x128_40k_stare/pspnet_unet_s5-d16_128x128_40k_stare_20201227_181818-3c2923c4.pth -- Name: unet-s5-d16_pspnet_4xb4-ce-1.0-dice-3.0-40k_stare-128x128 - In Collection: UNet - Metadata: - backbone: UNet-S5-D16 - crop size: (128,128) - lr schd: 40000 - Training Memory (GB): 1.028 - Results: - - Task: Semantic Segmentation - Dataset: STARE - Metrics: - Dice: 82.84 - Config: configs/unet/unet-s5-d16_pspnet_4xb4-ce-1.0-dice-3.0-40k_stare-128x128.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/unet/pspnet_unet_s5-d16_ce-1.0-dice-3.0_128x128_40k_stare/pspnet_unet_s5-d16_ce-1.0-dice-3.0_128x128_40k_stare_20211210_201823-f1063ef7.pth -- Name: unet-s5-d16_deeplabv3_4xb4-40k_stare-128x128 - In Collection: UNet - Metadata: - backbone: UNet-S5-D16 - crop size: (128,128) - lr schd: 40000 - Training Memory (GB): 0.999 - Results: - - Task: Semantic Segmentation - Dataset: STARE - Metrics: - Dice: 80.93 - Config: configs/unet/unet-s5-d16_deeplabv3_4xb4-40k_stare-128x128.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/unet/deeplabv3_unet_s5-d16_128x128_40k_stare/deeplabv3_unet_s5-d16_128x128_40k_stare_20201226_094047-93dcb93c.pth -- Name: unet-s5-d16_deeplabv3_4xb4-ce-1.0-dice-3.0-40k_stare-128x128 - In Collection: UNet - Metadata: - backbone: UNet-S5-D16 - crop size: (128,128) - lr schd: 40000 - Training Memory (GB): 1.01 - Results: - - Task: Semantic Segmentation - Dataset: STARE - Metrics: - Dice: 82.71 - Config: configs/unet/unet-s5-d16_deeplabv3_4xb4-ce-1.0-dice-3.0-40k_stare-128x128.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/unet/deeplabv3_unet_s5-d16_ce-1.0-dice-3.0_128x128_40k_stare/deeplabv3_unet_s5-d16_ce-1.0-dice-3.0_128x128_40k_stare_20211210_201825-21db614c.pth -- Name: unet-s5-d16_fcn_4xb4-40k_chase-db1-128x128 - In Collection: UNet - Metadata: - backbone: UNet-S5-D16 - crop size: (128,128) - lr schd: 40000 - Training Memory (GB): 0.968 - Results: - - Task: Semantic Segmentation - Dataset: CHASE_DB1 - Metrics: - Dice: 80.24 - Config: configs/unet/unet-s5-d16_fcn_4xb4-40k_chase-db1-128x128.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/unet/fcn_unet_s5-d16_128x128_40k_chase_db1/fcn_unet_s5-d16_128x128_40k_chase_db1_20201223_191051-11543527.pth -- Name: unet-s5-d16_fcn_4xb4-ce-1.0-dice-3.0-40k_chase-db1-128x128 - In Collection: UNet - Metadata: - backbone: UNet-S5-D16 - crop size: (128,128) - lr schd: 40000 - Training Memory (GB): 0.986 - Results: - - Task: Semantic Segmentation - Dataset: CHASE_DB1 - Metrics: - Dice: 80.4 - Config: configs/unet/unet-s5-d16_fcn_4xb4-ce-1.0-dice-3.0-40k_chase-db1-128x128.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/unet/fcn_unet_s5-d16_ce-1.0-dice-3.0_128x128_40k_chase-db1/fcn_unet_s5-d16_ce-1.0-dice-3.0_128x128_40k_chase-db1_20211210_201821-1c4eb7cf.pth -- Name: unet-s5-d16_pspnet_4xb4-40k_chase-db1-128x128 - In Collection: UNet - Metadata: - backbone: UNet-S5-D16 - crop size: (128,128) - lr schd: 40000 - Training Memory (GB): 0.982 - Results: - - Task: Semantic Segmentation - Dataset: CHASE_DB1 - Metrics: - Dice: 80.36 - Config: configs/unet/unet-s5-d16_pspnet_4xb4-40k_chase-db1-128x128.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/unet/pspnet_unet_s5-d16_128x128_40k_chase_db1/pspnet_unet_s5-d16_128x128_40k_chase_db1_20201227_181818-68d4e609.pth -- Name: unet-s5-d16_pspnet_4xb4-ce-1.0-dice-3.0-40k_chase-db1-128x128 - In Collection: UNet - Metadata: - backbone: UNet-S5-D16 - crop size: (128,128) - lr schd: 40000 - Training Memory (GB): 1.028 - Results: - - Task: Semantic Segmentation - Dataset: CHASE_DB1 - Metrics: - Dice: 80.28 - Config: configs/unet/unet-s5-d16_pspnet_4xb4-ce-1.0-dice-3.0-40k_chase-db1-128x128.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/unet/pspnet_unet_s5-d16_ce-1.0-dice-3.0_128x128_40k_chase-db1/pspnet_unet_s5-d16_ce-1.0-dice-3.0_128x128_40k_chase-db1_20211210_201823-c0802c4d.pth -- Name: unet_s5-d16_deeplabv3_4xb4-40k_chase-db1-128x128 - In Collection: UNet - Metadata: - backbone: UNet-S5-D16 - crop size: (128,128) - lr schd: 40000 - Training Memory (GB): 0.999 - Results: - - Task: Semantic Segmentation - Dataset: CHASE_DB1 - Metrics: - Dice: 80.47 - Config: configs/unet/unet_s5-d16_deeplabv3_4xb4-40k_chase-db1-128x128.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/unet/deeplabv3_unet_s5-d16_128x128_40k_chase_db1/deeplabv3_unet_s5-d16_128x128_40k_chase_db1_20201226_094047-4c5aefa3.pth -- Name: unet-s5-d16_deeplabv3_4xb4-ce-1.0-dice-3.0-40k_chase-db1-128x128 - In Collection: UNet - Metadata: - backbone: UNet-S5-D16 - crop size: (128,128) - lr schd: 40000 - Training Memory (GB): 1.01 - Results: - - Task: Semantic Segmentation - Dataset: CHASE_DB1 - Metrics: - Dice: 80.37 - Config: configs/unet/unet-s5-d16_deeplabv3_4xb4-ce-1.0-dice-3.0-40k_chase-db1-128x128.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/unet/deeplabv3_unet_s5-d16_ce-1.0-dice-3.0_128x128_40k_chase-db1/deeplabv3_unet_s5-d16_ce-1.0-dice-3.0_128x128_40k_chase-db1_20211210_201825-4ef29df5.pth -- Name: unet-s5-d16_fcn_4xb4-40k_hrf-256x256 - In Collection: UNet - Metadata: - backbone: UNet-S5-D16 - crop size: (256,256) - lr schd: 40000 - Training Memory (GB): 2.525 - Results: - - Task: Semantic Segmentation - Dataset: HRF - Metrics: - Dice: 79.45 - Config: configs/unet/unet-s5-d16_fcn_4xb4-40k_hrf-256x256.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/unet/fcn_unet_s5-d16_256x256_40k_hrf/fcn_unet_s5-d16_256x256_40k_hrf_20201223_173724-d89cf1ed.pth -- Name: unet-s5-d16_fcn_4xb4-ce-1.0-dice-3.0-40k_hrf-256x256 - In Collection: UNet - Metadata: - backbone: UNet-S5-D16 - crop size: (256,256) - lr schd: 40000 - Training Memory (GB): 2.623 - Results: - - Task: Semantic Segmentation - Dataset: HRF - Metrics: - Dice: 80.87 - Config: configs/unet/unet-s5-d16_fcn_4xb4-ce-1.0-dice-3.0-40k_hrf-256x256.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/unet/fcn_unet_s5-d16_ce-1.0-dice-3.0_256x256_40k_hrf/fcn_unet_s5-d16_ce-1.0-dice-3.0_256x256_40k_hrf_20211210_201821-c314da8a.pth -- Name: unet-s5-d16_pspnet_4xb4-40k_hrf-256x256 - In Collection: UNet - Metadata: - backbone: UNet-S5-D16 - crop size: (256,256) - lr schd: 40000 - Training Memory (GB): 2.588 - Results: - - Task: Semantic Segmentation - Dataset: HRF - Metrics: - Dice: 80.07 - Config: configs/unet/unet-s5-d16_pspnet_4xb4-40k_hrf-256x256.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/unet/pspnet_unet_s5-d16_256x256_40k_hrf/pspnet_unet_s5-d16_256x256_40k_hrf_20201227_181818-fdb7e29b.pth -- Name: unet-s5-d16_pspnet_4xb4-ce-1.0-dice-3.0-40k_hrf-256x256 - In Collection: UNet - Metadata: - backbone: UNet-S5-D16 - crop size: (256,256) - lr schd: 40000 - Training Memory (GB): 2.798 - Results: - - Task: Semantic Segmentation - Dataset: HRF - Metrics: - Dice: 80.96 - Config: configs/unet/unet-s5-d16_pspnet_4xb4-ce-1.0-dice-3.0-40k_hrf-256x256.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/unet/pspnet_unet_s5-d16_ce-1.0-dice-3.0_256x256_40k_hrf/pspnet_unet_s5-d16_ce-1.0-dice-3.0_256x256_40k_hrf_20211210_201823-53d492fa.pth -- Name: unet-s5-d16_deeplabv3_4xb4-40k_hrf-256x256 - In Collection: UNet - Metadata: - backbone: UNet-S5-D16 - crop size: (256,256) - lr schd: 40000 - Training Memory (GB): 2.604 - Results: - - Task: Semantic Segmentation - Dataset: HRF - Metrics: - Dice: 80.21 - Config: configs/unet/unet-s5-d16_deeplabv3_4xb4-40k_hrf-256x256.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/unet/deeplabv3_unet_s5-d16_256x256_40k_hrf/deeplabv3_unet_s5-d16_256x256_40k_hrf_20201226_094047-3a1fdf85.pth -- Name: unet-s5-d16_deeplabv3_4xb4-ce-1.0-dice-3.0-40k_hrf-256x256 - In Collection: UNet - Metadata: - backbone: UNet-S5-D16 - crop size: (256,256) - lr schd: 40000 - Training Memory (GB): 2.607 - Results: - - Task: Semantic Segmentation - Dataset: HRF - Metrics: - Dice: 80.71 - Config: configs/unet/unet-s5-d16_deeplabv3_4xb4-ce-1.0-dice-3.0-40k_hrf-256x256.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/unet/deeplabv3_unet_s5-d16_ce-1.0-dice-3.0_256x256_40k_hrf/deeplabv3_unet_s5-d16_ce-1.0-dice-3.0_256x256_40k_hrf_20211210_202032-59daf7a4.pth diff --git a/configs/upernet/README.md b/configs/upernet/README.md index e4a5ee4381..7d128090bf 100644 --- a/configs/upernet/README.md +++ b/configs/upernet/README.md @@ -1,6 +1,6 @@ # UPerNet -[Unified Perceptual Parsing for Scene Understanding](https://arxiv.org/pdf/1807.10221.pdf) +> [Unified Perceptual Parsing for Scene Understanding](https://arxiv.org/pdf/1807.10221.pdf) ## Introduction @@ -22,6 +22,39 @@ Humans recognize the visual world at multiple levels: we effortlessly categorize +## Results and models + +### Cityscapes + +| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | Device | mIoU | mIoU(ms+flip) | config | download | +| ------- | -------- | --------- | ------: | -------- | -------------- | ------ | ----: | ------------: | -------------------------------------------------------------------------------------------------------------------------------- | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | +| UPerNet | R-50 | 512x1024 | 40000 | 6.4 | 4.25 | V100 | 77.10 | 78.37 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/upernet/upernet_r50_4xb2-40k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/upernet/upernet_r50_512x1024_40k_cityscapes/upernet_r50_512x1024_40k_cityscapes_20200605_094827-aa54cb54.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/upernet/upernet_r50_512x1024_40k_cityscapes/upernet_r50_512x1024_40k_cityscapes_20200605_094827.log.json) | +| UPerNet | R-101 | 512x1024 | 40000 | 7.4 | 3.79 | V100 | 78.69 | 80.11 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/upernet/upernet_r101_4xb2-40k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/upernet/upernet_r101_512x1024_40k_cityscapes/upernet_r101_512x1024_40k_cityscapes_20200605_094933-ebce3b10.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/upernet/upernet_r101_512x1024_40k_cityscapes/upernet_r101_512x1024_40k_cityscapes_20200605_094933.log.json) | +| UPerNet | R-50 | 769x769 | 40000 | 7.2 | 1.76 | V100 | 77.98 | 79.70 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/upernet/upernet_r50_4xb2-40k_cityscapes-769x769.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/upernet/upernet_r50_769x769_40k_cityscapes/upernet_r50_769x769_40k_cityscapes_20200530_033048-92d21539.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/upernet/upernet_r50_769x769_40k_cityscapes/upernet_r50_769x769_40k_cityscapes_20200530_033048.log.json) | +| UPerNet | R-101 | 769x769 | 40000 | 8.4 | 1.56 | V100 | 79.03 | 80.77 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/upernet/upernet_r101_4xb2-40k_cityscapes-769x769.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/upernet/upernet_r101_769x769_40k_cityscapes/upernet_r101_769x769_40k_cityscapes_20200530_040819-83c95d01.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/upernet/upernet_r101_769x769_40k_cityscapes/upernet_r101_769x769_40k_cityscapes_20200530_040819.log.json) | +| UPerNet | R-50 | 512x1024 | 80000 | - | - | V100 | 78.19 | 79.19 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/upernet/upernet_r50_4xb2-80k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/upernet/upernet_r50_512x1024_80k_cityscapes/upernet_r50_512x1024_80k_cityscapes_20200607_052207-848beca8.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/upernet/upernet_r50_512x1024_80k_cityscapes/upernet_r50_512x1024_80k_cityscapes_20200607_052207.log.json) | +| UPerNet | R-101 | 512x1024 | 80000 | - | - | V100 | 79.40 | 80.46 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/upernet/upernet_r101_4xb2-80k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/upernet/upernet_r101_512x1024_80k_cityscapes/upernet_r101_512x1024_80k_cityscapes_20200607_002403-f05f2345.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/upernet/upernet_r101_512x1024_80k_cityscapes/upernet_r101_512x1024_80k_cityscapes_20200607_002403.log.json) | +| UPerNet | R-50 | 769x769 | 80000 | - | - | V100 | 79.39 | 80.92 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/upernet/upernet_r50_4xb2-80k_cityscapes-769x769.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/upernet/upernet_r50_769x769_80k_cityscapes/upernet_r50_769x769_80k_cityscapes_20200607_005107-82ae7d15.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/upernet/upernet_r50_769x769_80k_cityscapes/upernet_r50_769x769_80k_cityscapes_20200607_005107.log.json) | +| UPerNet | R-101 | 769x769 | 80000 | - | - | V100 | 80.10 | 81.49 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/upernet/upernet_r101_4xb2-80k_cityscapes-769x769.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/upernet/upernet_r101_769x769_80k_cityscapes/upernet_r101_769x769_80k_cityscapes_20200607_001014-082fc334.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/upernet/upernet_r101_769x769_80k_cityscapes/upernet_r101_769x769_80k_cityscapes_20200607_001014.log.json) | + +### ADE20K + +| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | Device | mIoU | mIoU(ms+flip) | config | download | +| ------- | -------- | --------- | ------: | -------- | -------------- | ------ | ----: | ------------: | ---------------------------------------------------------------------------------------------------------------------------- | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | +| UPerNet | R-50 | 512x512 | 80000 | 8.1 | 23.40 | V100 | 40.70 | 41.81 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/upernet/upernet_r50_4xb4-80k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/upernet/upernet_r50_512x512_80k_ade20k/upernet_r50_512x512_80k_ade20k_20200614_144127-ecc8377b.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/upernet/upernet_r50_512x512_80k_ade20k/upernet_r50_512x512_80k_ade20k_20200614_144127.log.json) | +| UPerNet | R-101 | 512x512 | 80000 | 9.1 | 20.34 | V100 | 42.91 | 43.96 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/upernet/upernet_r101_4xb4-80k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/upernet/upernet_r101_512x512_80k_ade20k/upernet_r101_512x512_80k_ade20k_20200614_185117-32e4db94.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/upernet/upernet_r101_512x512_80k_ade20k/upernet_r101_512x512_80k_ade20k_20200614_185117.log.json) | +| UPerNet | R-50 | 512x512 | 160000 | - | - | V100 | 42.05 | 42.78 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/upernet/upernet_r50_4xb4-160k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/upernet/upernet_r50_512x512_160k_ade20k/upernet_r50_512x512_160k_ade20k_20200615_184328-8534de8d.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/upernet/upernet_r50_512x512_160k_ade20k/upernet_r50_512x512_160k_ade20k_20200615_184328.log.json) | +| UPerNet | R-101 | 512x512 | 160000 | - | - | V100 | 43.82 | 44.85 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/upernet/upernet_r101_4xb4-160k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/upernet/upernet_r101_512x512_160k_ade20k/upernet_r101_512x512_160k_ade20k_20200615_161951-91b32684.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/upernet/upernet_r101_512x512_160k_ade20k/upernet_r101_512x512_160k_ade20k_20200615_161951.log.json) | + +### Pascal VOC 2012 + Aug + +| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | Device | mIoU | mIoU(ms+flip) | config | download | +| ------- | -------- | --------- | ------: | -------- | -------------- | ------ | ----: | ------------: | ----------------------------------------------------------------------------------------------------------------------------- | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | +| UPerNet | R-50 | 512x512 | 20000 | 6.4 | 23.17 | V100 | 74.82 | 76.35 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/upernet/upernet_r50_4xb4-20k_voc12aug-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/upernet/upernet_r50_512x512_20k_voc12aug/upernet_r50_512x512_20k_voc12aug_20200617_165330-5b5890a7.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/upernet/upernet_r50_512x512_20k_voc12aug/upernet_r50_512x512_20k_voc12aug_20200617_165330.log.json) | +| UPerNet | R-101 | 512x512 | 20000 | 7.5 | 19.98 | V100 | 77.10 | 78.29 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/upernet/upernet_r101_4xb4-20k_voc12aug-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/upernet/upernet_r101_512x512_20k_voc12aug/upernet_r101_512x512_20k_voc12aug_20200617_165629-f14e7f27.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/upernet/upernet_r101_512x512_20k_voc12aug/upernet_r101_512x512_20k_voc12aug_20200617_165629.log.json) | +| UPerNet | R-50 | 512x512 | 40000 | - | - | V100 | 75.92 | 77.44 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/upernet/upernet_r50_4xb4-40k_voc12aug-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/upernet/upernet_r50_512x512_40k_voc12aug/upernet_r50_512x512_40k_voc12aug_20200613_162257-ca9bcc6b.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/upernet/upernet_r50_512x512_40k_voc12aug/upernet_r50_512x512_40k_voc12aug_20200613_162257.log.json) | +| UPerNet | R-101 | 512x512 | 40000 | - | - | V100 | 77.43 | 78.56 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/upernet/upernet_r101_4xb4-40k_voc12aug-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/upernet/upernet_r101_512x512_40k_voc12aug/upernet_r101_512x512_40k_voc12aug_20200613_163549-e26476ac.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/upernet/upernet_r101_512x512_40k_voc12aug/upernet_r101_512x512_40k_voc12aug_20200613_163549.log.json) | + ## Citation ```bibtex @@ -33,36 +66,3 @@ Humans recognize the visual world at multiple levels: we effortlessly categorize year={2018} } ``` - -## Results and models - -### Cityscapes - -| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | mIoU | mIoU(ms+flip) | config | download | -| ------- | -------- | --------- | ------: | -------- | -------------- | ----: | ------------: | -------------------------------------------------------------------------------------------------------------------------------- | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | -| UPerNet | R-50 | 512x1024 | 40000 | 6.4 | 4.25 | 77.10 | 78.37 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/upernet/upernet_r50_4xb2-40k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/upernet/upernet_r50_512x1024_40k_cityscapes/upernet_r50_512x1024_40k_cityscapes_20200605_094827-aa54cb54.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/upernet/upernet_r50_512x1024_40k_cityscapes/upernet_r50_512x1024_40k_cityscapes_20200605_094827.log.json) | -| UPerNet | R-101 | 512x1024 | 40000 | 7.4 | 3.79 | 78.69 | 80.11 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/upernet/upernet_r101_4xb2-40k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/upernet/upernet_r101_512x1024_40k_cityscapes/upernet_r101_512x1024_40k_cityscapes_20200605_094933-ebce3b10.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/upernet/upernet_r101_512x1024_40k_cityscapes/upernet_r101_512x1024_40k_cityscapes_20200605_094933.log.json) | -| UPerNet | R-50 | 769x769 | 40000 | 7.2 | 1.76 | 77.98 | 79.70 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/upernet/upernet_r50_4xb2-40k_cityscapes-769x769.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/upernet/upernet_r50_769x769_40k_cityscapes/upernet_r50_769x769_40k_cityscapes_20200530_033048-92d21539.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/upernet/upernet_r50_769x769_40k_cityscapes/upernet_r50_769x769_40k_cityscapes_20200530_033048.log.json) | -| UPerNet | R-101 | 769x769 | 40000 | 8.4 | 1.56 | 79.03 | 80.77 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/upernet/upernet_r101_4xb2-40k_cityscapes-769x769.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/upernet/upernet_r101_769x769_40k_cityscapes/upernet_r101_769x769_40k_cityscapes_20200530_040819-83c95d01.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/upernet/upernet_r101_769x769_40k_cityscapes/upernet_r101_769x769_40k_cityscapes_20200530_040819.log.json) | -| UPerNet | R-50 | 512x1024 | 80000 | - | - | 78.19 | 79.19 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/upernet/upernet_r50_4xb2-80k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/upernet/upernet_r50_512x1024_80k_cityscapes/upernet_r50_512x1024_80k_cityscapes_20200607_052207-848beca8.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/upernet/upernet_r50_512x1024_80k_cityscapes/upernet_r50_512x1024_80k_cityscapes_20200607_052207.log.json) | -| UPerNet | R-101 | 512x1024 | 80000 | - | - | 79.40 | 80.46 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/upernet/upernet_r101_4xb2-80k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/upernet/upernet_r101_512x1024_80k_cityscapes/upernet_r101_512x1024_80k_cityscapes_20200607_002403-f05f2345.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/upernet/upernet_r101_512x1024_80k_cityscapes/upernet_r101_512x1024_80k_cityscapes_20200607_002403.log.json) | -| UPerNet | R-50 | 769x769 | 80000 | - | - | 79.39 | 80.92 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/upernet/upernet_r50_4xb2-80k_cityscapes-769x769.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/upernet/upernet_r50_769x769_80k_cityscapes/upernet_r50_769x769_80k_cityscapes_20200607_005107-82ae7d15.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/upernet/upernet_r50_769x769_80k_cityscapes/upernet_r50_769x769_80k_cityscapes_20200607_005107.log.json) | -| UPerNet | R-101 | 769x769 | 80000 | - | - | 80.10 | 81.49 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/upernet/upernet_r101_4xb2-80k_cityscapes-769x769.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/upernet/upernet_r101_769x769_80k_cityscapes/upernet_r101_769x769_80k_cityscapes_20200607_001014-082fc334.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/upernet/upernet_r101_769x769_80k_cityscapes/upernet_r101_769x769_80k_cityscapes_20200607_001014.log.json) | - -### ADE20K - -| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | mIoU | mIoU(ms+flip) | config | download | -| ------- | -------- | --------- | ------: | -------- | -------------- | ----: | ------------: | ---------------------------------------------------------------------------------------------------------------------------- | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | -| UPerNet | R-50 | 512x512 | 80000 | 8.1 | 23.40 | 40.70 | 41.81 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/upernet/upernet_r50_4xb4-80k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/upernet/upernet_r50_512x512_80k_ade20k/upernet_r50_512x512_80k_ade20k_20200614_144127-ecc8377b.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/upernet/upernet_r50_512x512_80k_ade20k/upernet_r50_512x512_80k_ade20k_20200614_144127.log.json) | -| UPerNet | R-101 | 512x512 | 80000 | 9.1 | 20.34 | 42.91 | 43.96 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/upernet/upernet_r101_4xb4-80k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/upernet/upernet_r101_512x512_80k_ade20k/upernet_r101_512x512_80k_ade20k_20200614_185117-32e4db94.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/upernet/upernet_r101_512x512_80k_ade20k/upernet_r101_512x512_80k_ade20k_20200614_185117.log.json) | -| UPerNet | R-50 | 512x512 | 160000 | - | - | 42.05 | 42.78 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/upernet/upernet_r50_4xb4-160k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/upernet/upernet_r50_512x512_160k_ade20k/upernet_r50_512x512_160k_ade20k_20200615_184328-8534de8d.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/upernet/upernet_r50_512x512_160k_ade20k/upernet_r50_512x512_160k_ade20k_20200615_184328.log.json) | -| UPerNet | R-101 | 512x512 | 160000 | - | - | 43.82 | 44.85 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/upernet/upernet_r101_4xb4-160k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/upernet/upernet_r101_512x512_160k_ade20k/upernet_r101_512x512_160k_ade20k_20200615_161951-91b32684.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/upernet/upernet_r101_512x512_160k_ade20k/upernet_r101_512x512_160k_ade20k_20200615_161951.log.json) | - -### Pascal VOC 2012 + Aug - -| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | mIoU | mIoU(ms+flip) | config | download | -| ------- | -------- | --------- | ------: | -------- | -------------- | ----: | ------------: | ----------------------------------------------------------------------------------------------------------------------------- | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | -| UPerNet | R-50 | 512x512 | 20000 | 6.4 | 23.17 | 74.82 | 76.35 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/upernet/upernet_r50_4xb4-20k_voc12aug-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/upernet/upernet_r50_512x512_20k_voc12aug/upernet_r50_512x512_20k_voc12aug_20200617_165330-5b5890a7.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/upernet/upernet_r50_512x512_20k_voc12aug/upernet_r50_512x512_20k_voc12aug_20200617_165330.log.json) | -| UPerNet | R-101 | 512x512 | 20000 | 7.5 | 19.98 | 77.10 | 78.29 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/upernet/upernet_r101_4xb4-20k_voc12aug-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/upernet/upernet_r101_512x512_20k_voc12aug/upernet_r101_512x512_20k_voc12aug_20200617_165629-f14e7f27.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/upernet/upernet_r101_512x512_20k_voc12aug/upernet_r101_512x512_20k_voc12aug_20200617_165629.log.json) | -| UPerNet | R-50 | 512x512 | 40000 | - | - | 75.92 | 77.44 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/upernet/upernet_r50_4xb4-40k_voc12aug-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/upernet/upernet_r50_512x512_40k_voc12aug/upernet_r50_512x512_40k_voc12aug_20200613_162257-ca9bcc6b.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/upernet/upernet_r50_512x512_40k_voc12aug/upernet_r50_512x512_40k_voc12aug_20200613_162257.log.json) | -| UPerNet | R-101 | 512x512 | 40000 | - | - | 77.43 | 78.56 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/upernet/upernet_r101_4xb4-40k_voc12aug-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/upernet/upernet_r101_512x512_40k_voc12aug/upernet_r101_512x512_40k_voc12aug_20200613_163549-e26476ac.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/upernet/upernet_r101_512x512_40k_voc12aug/upernet_r101_512x512_40k_voc12aug_20200613_163549.log.json) | diff --git a/configs/upernet/metafile.yaml b/configs/upernet/metafile.yaml new file mode 100644 index 0000000000..f6ad8187f2 --- /dev/null +++ b/configs/upernet/metafile.yaml @@ -0,0 +1,391 @@ +Collections: +- Name: UPerNet + License: Apache License 2.0 + Metadata: + Training Data: + - Cityscapes + - ADE20K + - Pascal VOC 2012 + Aug + Paper: + Title: Unified Perceptual Parsing for Scene Understanding + URL: https://arxiv.org/pdf/1807.10221.pdf + README: configs/upernet/README.md + Frameworks: + - PyTorch +Models: +- Name: upernet_r50_4xb2-40k_cityscapes-512x1024 + In Collection: UPerNet + Results: + Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 77.1 + mIoU(ms+flip): 78.37 + Config: configs/upernet/upernet_r50_4xb2-40k_cityscapes-512x1024.py + Metadata: + Training Data: Cityscapes + Batch Size: 8 + Architecture: + - R-50 + - UPerNet + Training Resources: 4x V100 GPUS + Memory (GB): 6.4 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/upernet/upernet_r50_512x1024_40k_cityscapes/upernet_r50_512x1024_40k_cityscapes_20200605_094827-aa54cb54.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/upernet/upernet_r50_512x1024_40k_cityscapes/upernet_r50_512x1024_40k_cityscapes_20200605_094827.log.json + Paper: + Title: Unified Perceptual Parsing for Scene Understanding + URL: https://arxiv.org/pdf/1807.10221.pdf + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/uper_head.py#L13 + Framework: PyTorch +- Name: upernet_r101_4xb2-40k_cityscapes-512x1024 + In Collection: UPerNet + Results: + Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 78.69 + mIoU(ms+flip): 80.11 + Config: configs/upernet/upernet_r101_4xb2-40k_cityscapes-512x1024.py + Metadata: + Training Data: Cityscapes + Batch Size: 8 + Architecture: + - R-101 + - UPerNet + Training Resources: 4x V100 GPUS + Memory (GB): 7.4 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/upernet/upernet_r101_512x1024_40k_cityscapes/upernet_r101_512x1024_40k_cityscapes_20200605_094933-ebce3b10.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/upernet/upernet_r101_512x1024_40k_cityscapes/upernet_r101_512x1024_40k_cityscapes_20200605_094933.log.json + Paper: + Title: Unified Perceptual Parsing for Scene Understanding + URL: https://arxiv.org/pdf/1807.10221.pdf + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/uper_head.py#L13 + Framework: PyTorch +- Name: upernet_r50_4xb2-40k_cityscapes-769x769 + In Collection: UPerNet + Results: + Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 77.98 + mIoU(ms+flip): 79.7 + Config: configs/upernet/upernet_r50_4xb2-40k_cityscapes-769x769.py + Metadata: + Training Data: Cityscapes + Batch Size: 8 + Architecture: + - R-50 + - UPerNet + Training Resources: 4x V100 GPUS + Memory (GB): 7.2 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/upernet/upernet_r50_769x769_40k_cityscapes/upernet_r50_769x769_40k_cityscapes_20200530_033048-92d21539.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/upernet/upernet_r50_769x769_40k_cityscapes/upernet_r50_769x769_40k_cityscapes_20200530_033048.log.json + Paper: + Title: Unified Perceptual Parsing for Scene Understanding + URL: https://arxiv.org/pdf/1807.10221.pdf + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/uper_head.py#L13 + Framework: PyTorch +- Name: upernet_r101_4xb2-40k_cityscapes-769x769 + In Collection: UPerNet + Results: + Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 79.03 + mIoU(ms+flip): 80.77 + Config: configs/upernet/upernet_r101_4xb2-40k_cityscapes-769x769.py + Metadata: + Training Data: Cityscapes + Batch Size: 8 + Architecture: + - R-101 + - UPerNet + Training Resources: 4x V100 GPUS + Memory (GB): 8.4 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/upernet/upernet_r101_769x769_40k_cityscapes/upernet_r101_769x769_40k_cityscapes_20200530_040819-83c95d01.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/upernet/upernet_r101_769x769_40k_cityscapes/upernet_r101_769x769_40k_cityscapes_20200530_040819.log.json + Paper: + Title: Unified Perceptual Parsing for Scene Understanding + URL: https://arxiv.org/pdf/1807.10221.pdf + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/uper_head.py#L13 + Framework: PyTorch +- Name: upernet_r50_4xb2-80k_cityscapes-512x1024 + In Collection: UPerNet + Results: + Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 78.19 + mIoU(ms+flip): 79.19 + Config: configs/upernet/upernet_r50_4xb2-80k_cityscapes-512x1024.py + Metadata: + Training Data: Cityscapes + Batch Size: 8 + Architecture: + - R-50 + - UPerNet + Training Resources: 4x V100 GPUS + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/upernet/upernet_r50_512x1024_80k_cityscapes/upernet_r50_512x1024_80k_cityscapes_20200607_052207-848beca8.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/upernet/upernet_r50_512x1024_80k_cityscapes/upernet_r50_512x1024_80k_cityscapes_20200607_052207.log.json + Paper: + Title: Unified Perceptual Parsing for Scene Understanding + URL: https://arxiv.org/pdf/1807.10221.pdf + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/uper_head.py#L13 + Framework: PyTorch +- Name: upernet_r101_4xb2-80k_cityscapes-512x1024 + In Collection: UPerNet + Results: + Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 79.4 + mIoU(ms+flip): 80.46 + Config: configs/upernet/upernet_r101_4xb2-80k_cityscapes-512x1024.py + Metadata: + Training Data: Cityscapes + Batch Size: 8 + Architecture: + - R-101 + - UPerNet + Training Resources: 4x V100 GPUS + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/upernet/upernet_r101_512x1024_80k_cityscapes/upernet_r101_512x1024_80k_cityscapes_20200607_002403-f05f2345.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/upernet/upernet_r101_512x1024_80k_cityscapes/upernet_r101_512x1024_80k_cityscapes_20200607_002403.log.json + Paper: + Title: Unified Perceptual Parsing for Scene Understanding + URL: https://arxiv.org/pdf/1807.10221.pdf + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/uper_head.py#L13 + Framework: PyTorch +- Name: upernet_r50_4xb2-80k_cityscapes-769x769 + In Collection: UPerNet + Results: + Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 79.39 + mIoU(ms+flip): 80.92 + Config: configs/upernet/upernet_r50_4xb2-80k_cityscapes-769x769.py + Metadata: + Training Data: Cityscapes + Batch Size: 8 + Architecture: + - R-50 + - UPerNet + Training Resources: 4x V100 GPUS + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/upernet/upernet_r50_769x769_80k_cityscapes/upernet_r50_769x769_80k_cityscapes_20200607_005107-82ae7d15.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/upernet/upernet_r50_769x769_80k_cityscapes/upernet_r50_769x769_80k_cityscapes_20200607_005107.log.json + Paper: + Title: Unified Perceptual Parsing for Scene Understanding + URL: https://arxiv.org/pdf/1807.10221.pdf + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/uper_head.py#L13 + Framework: PyTorch +- Name: upernet_r101_4xb2-80k_cityscapes-769x769 + In Collection: UPerNet + Results: + Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 80.1 + mIoU(ms+flip): 81.49 + Config: configs/upernet/upernet_r101_4xb2-80k_cityscapes-769x769.py + Metadata: + Training Data: Cityscapes + Batch Size: 8 + Architecture: + - R-101 + - UPerNet + Training Resources: 4x V100 GPUS + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/upernet/upernet_r101_769x769_80k_cityscapes/upernet_r101_769x769_80k_cityscapes_20200607_001014-082fc334.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/upernet/upernet_r101_769x769_80k_cityscapes/upernet_r101_769x769_80k_cityscapes_20200607_001014.log.json + Paper: + Title: Unified Perceptual Parsing for Scene Understanding + URL: https://arxiv.org/pdf/1807.10221.pdf + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/uper_head.py#L13 + Framework: PyTorch +- Name: upernet_r50_4xb4-80k_ade20k-512x512 + In Collection: UPerNet + Results: + Task: Semantic Segmentation + Dataset: ADE20K + Metrics: + mIoU: 40.7 + mIoU(ms+flip): 41.81 + Config: configs/upernet/upernet_r50_4xb4-80k_ade20k-512x512.py + Metadata: + Training Data: ADE20K + Batch Size: 16 + Architecture: + - R-50 + - UPerNet + Training Resources: 4x V100 GPUS + Memory (GB): 8.1 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/upernet/upernet_r50_512x512_80k_ade20k/upernet_r50_512x512_80k_ade20k_20200614_144127-ecc8377b.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/upernet/upernet_r50_512x512_80k_ade20k/upernet_r50_512x512_80k_ade20k_20200614_144127.log.json + Paper: + Title: Unified Perceptual Parsing for Scene Understanding + URL: https://arxiv.org/pdf/1807.10221.pdf + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/uper_head.py#L13 + Framework: PyTorch +- Name: upernet_r101_4xb4-80k_ade20k-512x512 + In Collection: UPerNet + Results: + Task: Semantic Segmentation + Dataset: ADE20K + Metrics: + mIoU: 42.91 + mIoU(ms+flip): 43.96 + Config: configs/upernet/upernet_r101_4xb4-80k_ade20k-512x512.py + Metadata: + Training Data: ADE20K + Batch Size: 16 + Architecture: + - R-101 + - UPerNet + Training Resources: 4x V100 GPUS + Memory (GB): 9.1 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/upernet/upernet_r101_512x512_80k_ade20k/upernet_r101_512x512_80k_ade20k_20200614_185117-32e4db94.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/upernet/upernet_r101_512x512_80k_ade20k/upernet_r101_512x512_80k_ade20k_20200614_185117.log.json + Paper: + Title: Unified Perceptual Parsing for Scene Understanding + URL: https://arxiv.org/pdf/1807.10221.pdf + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/uper_head.py#L13 + Framework: PyTorch +- Name: upernet_r50_4xb4-160k_ade20k-512x512 + In Collection: UPerNet + Results: + Task: Semantic Segmentation + Dataset: ADE20K + Metrics: + mIoU: 42.05 + mIoU(ms+flip): 42.78 + Config: configs/upernet/upernet_r50_4xb4-160k_ade20k-512x512.py + Metadata: + Training Data: ADE20K + Batch Size: 16 + Architecture: + - R-50 + - UPerNet + Training Resources: 4x V100 GPUS + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/upernet/upernet_r50_512x512_160k_ade20k/upernet_r50_512x512_160k_ade20k_20200615_184328-8534de8d.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/upernet/upernet_r50_512x512_160k_ade20k/upernet_r50_512x512_160k_ade20k_20200615_184328.log.json + Paper: + Title: Unified Perceptual Parsing for Scene Understanding + URL: https://arxiv.org/pdf/1807.10221.pdf + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/uper_head.py#L13 + Framework: PyTorch +- Name: upernet_r101_4xb4-160k_ade20k-512x512 + In Collection: UPerNet + Results: + Task: Semantic Segmentation + Dataset: ADE20K + Metrics: + mIoU: 43.82 + mIoU(ms+flip): 44.85 + Config: configs/upernet/upernet_r101_4xb4-160k_ade20k-512x512.py + Metadata: + Training Data: ADE20K + Batch Size: 16 + Architecture: + - R-101 + - UPerNet + Training Resources: 4x V100 GPUS + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/upernet/upernet_r101_512x512_160k_ade20k/upernet_r101_512x512_160k_ade20k_20200615_161951-91b32684.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/upernet/upernet_r101_512x512_160k_ade20k/upernet_r101_512x512_160k_ade20k_20200615_161951.log.json + Paper: + Title: Unified Perceptual Parsing for Scene Understanding + URL: https://arxiv.org/pdf/1807.10221.pdf + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/uper_head.py#L13 + Framework: PyTorch +- Name: upernet_r50_4xb4-20k_voc12aug-512x512 + In Collection: UPerNet + Results: + Task: Semantic Segmentation + Dataset: Pascal VOC 2012 + Aug + Metrics: + mIoU: 74.82 + mIoU(ms+flip): 76.35 + Config: configs/upernet/upernet_r50_4xb4-20k_voc12aug-512x512.py + Metadata: + Training Data: Pascal VOC 2012 + Aug + Batch Size: 16 + Architecture: + - R-50 + - UPerNet + Training Resources: 4x V100 GPUS + Memory (GB): 6.4 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/upernet/upernet_r50_512x512_20k_voc12aug/upernet_r50_512x512_20k_voc12aug_20200617_165330-5b5890a7.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/upernet/upernet_r50_512x512_20k_voc12aug/upernet_r50_512x512_20k_voc12aug_20200617_165330.log.json + Paper: + Title: Unified Perceptual Parsing for Scene Understanding + URL: https://arxiv.org/pdf/1807.10221.pdf + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/uper_head.py#L13 + Framework: PyTorch +- Name: upernet_r101_4xb4-20k_voc12aug-512x512 + In Collection: UPerNet + Results: + Task: Semantic Segmentation + Dataset: Pascal VOC 2012 + Aug + Metrics: + mIoU: 77.1 + mIoU(ms+flip): 78.29 + Config: configs/upernet/upernet_r101_4xb4-20k_voc12aug-512x512.py + Metadata: + Training Data: Pascal VOC 2012 + Aug + Batch Size: 16 + Architecture: + - R-101 + - UPerNet + Training Resources: 4x V100 GPUS + Memory (GB): 7.5 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/upernet/upernet_r101_512x512_20k_voc12aug/upernet_r101_512x512_20k_voc12aug_20200617_165629-f14e7f27.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/upernet/upernet_r101_512x512_20k_voc12aug/upernet_r101_512x512_20k_voc12aug_20200617_165629.log.json + Paper: + Title: Unified Perceptual Parsing for Scene Understanding + URL: https://arxiv.org/pdf/1807.10221.pdf + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/uper_head.py#L13 + Framework: PyTorch +- Name: upernet_r50_4xb4-40k_voc12aug-512x512 + In Collection: UPerNet + Results: + Task: Semantic Segmentation + Dataset: Pascal VOC 2012 + Aug + Metrics: + mIoU: 75.92 + mIoU(ms+flip): 77.44 + Config: configs/upernet/upernet_r50_4xb4-40k_voc12aug-512x512.py + Metadata: + Training Data: Pascal VOC 2012 + Aug + Batch Size: 16 + Architecture: + - R-50 + - UPerNet + Training Resources: 4x V100 GPUS + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/upernet/upernet_r50_512x512_40k_voc12aug/upernet_r50_512x512_40k_voc12aug_20200613_162257-ca9bcc6b.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/upernet/upernet_r50_512x512_40k_voc12aug/upernet_r50_512x512_40k_voc12aug_20200613_162257.log.json + Paper: + Title: Unified Perceptual Parsing for Scene Understanding + URL: https://arxiv.org/pdf/1807.10221.pdf + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/uper_head.py#L13 + Framework: PyTorch +- Name: upernet_r101_4xb4-40k_voc12aug-512x512 + In Collection: UPerNet + Results: + Task: Semantic Segmentation + Dataset: Pascal VOC 2012 + Aug + Metrics: + mIoU: 77.43 + mIoU(ms+flip): 78.56 + Config: configs/upernet/upernet_r101_4xb4-40k_voc12aug-512x512.py + Metadata: + Training Data: Pascal VOC 2012 + Aug + Batch Size: 16 + Architecture: + - R-101 + - UPerNet + Training Resources: 4x V100 GPUS + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/upernet/upernet_r101_512x512_40k_voc12aug/upernet_r101_512x512_40k_voc12aug_20200613_163549-e26476ac.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/upernet/upernet_r101_512x512_40k_voc12aug/upernet_r101_512x512_40k_voc12aug_20200613_163549.log.json + Paper: + Title: Unified Perceptual Parsing for Scene Understanding + URL: https://arxiv.org/pdf/1807.10221.pdf + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/uper_head.py#L13 + Framework: PyTorch diff --git a/configs/upernet/upernet.yml b/configs/upernet/upernet.yml deleted file mode 100644 index 6892fcf06a..0000000000 --- a/configs/upernet/upernet.yml +++ /dev/null @@ -1,305 +0,0 @@ -Collections: -- Name: UPerNet - Metadata: - Training Data: - - Cityscapes - - ADE20K - - Pascal VOC 2012 + Aug - Paper: - URL: https://arxiv.org/pdf/1807.10221.pdf - Title: Unified Perceptual Parsing for Scene Understanding - README: configs/upernet/README.md - Code: - URL: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/uper_head.py#L13 - Version: v0.17.0 - Converted From: - Code: https://github.com/CSAILVision/unifiedparsing -Models: -- Name: upernet_r50_4xb2-40k_cityscapes-512x1024 - In Collection: UPerNet - Metadata: - backbone: R-50 - crop size: (512,1024) - lr schd: 40000 - inference time (ms/im): - - value: 235.29 - hardware: V100 - backend: PyTorch - batch size: 1 - mode: FP32 - resolution: (512,1024) - Training Memory (GB): 6.4 - Results: - - Task: Semantic Segmentation - Dataset: Cityscapes - Metrics: - mIoU: 77.1 - mIoU(ms+flip): 78.37 - Config: configs/upernet/upernet_r50_4xb2-40k_cityscapes-512x1024.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/upernet/upernet_r50_512x1024_40k_cityscapes/upernet_r50_512x1024_40k_cityscapes_20200605_094827-aa54cb54.pth -- Name: upernet_r101_4xb2-40k_cityscapes-512x1024 - In Collection: UPerNet - Metadata: - backbone: R-101 - crop size: (512,1024) - lr schd: 40000 - inference time (ms/im): - - value: 263.85 - hardware: V100 - backend: PyTorch - batch size: 1 - mode: FP32 - resolution: (512,1024) - Training Memory (GB): 7.4 - Results: - - Task: Semantic Segmentation - Dataset: Cityscapes - Metrics: - mIoU: 78.69 - mIoU(ms+flip): 80.11 - Config: configs/upernet/upernet_r101_4xb2-40k_cityscapes-512x1024.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/upernet/upernet_r101_512x1024_40k_cityscapes/upernet_r101_512x1024_40k_cityscapes_20200605_094933-ebce3b10.pth -- Name: upernet_r50_4xb2-40k_cityscapes-769x769 - In Collection: UPerNet - Metadata: - backbone: R-50 - crop size: (769,769) - lr schd: 40000 - inference time (ms/im): - - value: 568.18 - hardware: V100 - backend: PyTorch - batch size: 1 - mode: FP32 - resolution: (769,769) - Training Memory (GB): 7.2 - Results: - - Task: Semantic Segmentation - Dataset: Cityscapes - Metrics: - mIoU: 77.98 - mIoU(ms+flip): 79.7 - Config: configs/upernet/upernet_r50_4xb2-40k_cityscapes-769x769.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/upernet/upernet_r50_769x769_40k_cityscapes/upernet_r50_769x769_40k_cityscapes_20200530_033048-92d21539.pth -- Name: upernet_r101_4xb2-40k_cityscapes-769x769 - In Collection: UPerNet - Metadata: - backbone: R-101 - crop size: (769,769) - lr schd: 40000 - inference time (ms/im): - - value: 641.03 - hardware: V100 - backend: PyTorch - batch size: 1 - mode: FP32 - resolution: (769,769) - Training Memory (GB): 8.4 - Results: - - Task: Semantic Segmentation - Dataset: Cityscapes - Metrics: - mIoU: 79.03 - mIoU(ms+flip): 80.77 - Config: configs/upernet/upernet_r101_4xb2-40k_cityscapes-769x769.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/upernet/upernet_r101_769x769_40k_cityscapes/upernet_r101_769x769_40k_cityscapes_20200530_040819-83c95d01.pth -- Name: upernet_r50_4xb2-80k_cityscapes-512x1024 - In Collection: UPerNet - Metadata: - backbone: R-50 - crop size: (512,1024) - lr schd: 80000 - Results: - - Task: Semantic Segmentation - Dataset: Cityscapes - Metrics: - mIoU: 78.19 - mIoU(ms+flip): 79.19 - Config: configs/upernet/upernet_r50_4xb2-80k_cityscapes-512x1024.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/upernet/upernet_r50_512x1024_80k_cityscapes/upernet_r50_512x1024_80k_cityscapes_20200607_052207-848beca8.pth -- Name: upernet_r101_4xb2-80k_cityscapes-512x1024 - In Collection: UPerNet - Metadata: - backbone: R-101 - crop size: (512,1024) - lr schd: 80000 - Results: - - Task: Semantic Segmentation - Dataset: Cityscapes - Metrics: - mIoU: 79.4 - mIoU(ms+flip): 80.46 - Config: configs/upernet/upernet_r101_4xb2-80k_cityscapes-512x1024.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/upernet/upernet_r101_512x1024_80k_cityscapes/upernet_r101_512x1024_80k_cityscapes_20200607_002403-f05f2345.pth -- Name: upernet_r50_4xb2-80k_cityscapes-769x769 - In Collection: UPerNet - Metadata: - backbone: R-50 - crop size: (769,769) - lr schd: 80000 - Results: - - Task: Semantic Segmentation - Dataset: Cityscapes - Metrics: - mIoU: 79.39 - mIoU(ms+flip): 80.92 - Config: configs/upernet/upernet_r50_4xb2-80k_cityscapes-769x769.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/upernet/upernet_r50_769x769_80k_cityscapes/upernet_r50_769x769_80k_cityscapes_20200607_005107-82ae7d15.pth -- Name: upernet_r101_4xb2-80k_cityscapes-769x769 - In Collection: UPerNet - Metadata: - backbone: R-101 - crop size: (769,769) - lr schd: 80000 - Results: - - Task: Semantic Segmentation - Dataset: Cityscapes - Metrics: - mIoU: 80.1 - mIoU(ms+flip): 81.49 - Config: configs/upernet/upernet_r101_4xb2-80k_cityscapes-769x769.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/upernet/upernet_r101_769x769_80k_cityscapes/upernet_r101_769x769_80k_cityscapes_20200607_001014-082fc334.pth -- Name: upernet_r50_4xb4-80k_ade20k-512x512 - In Collection: UPerNet - Metadata: - backbone: R-50 - crop size: (512,512) - lr schd: 80000 - inference time (ms/im): - - value: 42.74 - hardware: V100 - backend: PyTorch - batch size: 1 - mode: FP32 - resolution: (512,512) - Training Memory (GB): 8.1 - Results: - - Task: Semantic Segmentation - Dataset: ADE20K - Metrics: - mIoU: 40.7 - mIoU(ms+flip): 41.81 - Config: configs/upernet/upernet_r50_4xb4-80k_ade20k-512x512.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/upernet/upernet_r50_512x512_80k_ade20k/upernet_r50_512x512_80k_ade20k_20200614_144127-ecc8377b.pth -- Name: upernet_r101_4xb4-80k_ade20k-512x512 - In Collection: UPerNet - Metadata: - backbone: R-101 - crop size: (512,512) - lr schd: 80000 - inference time (ms/im): - - value: 49.16 - hardware: V100 - backend: PyTorch - batch size: 1 - mode: FP32 - resolution: (512,512) - Training Memory (GB): 9.1 - Results: - - Task: Semantic Segmentation - Dataset: ADE20K - Metrics: - mIoU: 42.91 - mIoU(ms+flip): 43.96 - Config: configs/upernet/upernet_r101_4xb4-80k_ade20k-512x512.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/upernet/upernet_r101_512x512_80k_ade20k/upernet_r101_512x512_80k_ade20k_20200614_185117-32e4db94.pth -- Name: upernet_r50_4xb4-160k_ade20k-512x512 - In Collection: UPerNet - Metadata: - backbone: R-50 - crop size: (512,512) - lr schd: 160000 - Results: - - Task: Semantic Segmentation - Dataset: ADE20K - Metrics: - mIoU: 42.05 - mIoU(ms+flip): 42.78 - Config: configs/upernet/upernet_r50_4xb4-160k_ade20k-512x512.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/upernet/upernet_r50_512x512_160k_ade20k/upernet_r50_512x512_160k_ade20k_20200615_184328-8534de8d.pth -- Name: upernet_r101_4xb4-160k_ade20k-512x512 - In Collection: UPerNet - Metadata: - backbone: R-101 - crop size: (512,512) - lr schd: 160000 - Results: - - Task: Semantic Segmentation - Dataset: ADE20K - Metrics: - mIoU: 43.82 - mIoU(ms+flip): 44.85 - Config: configs/upernet/upernet_r101_4xb4-160k_ade20k-512x512.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/upernet/upernet_r101_512x512_160k_ade20k/upernet_r101_512x512_160k_ade20k_20200615_161951-91b32684.pth -- Name: upernet_r50_4xb4-20k_voc12aug-512x512 - In Collection: UPerNet - Metadata: - backbone: R-50 - crop size: (512,512) - lr schd: 20000 - inference time (ms/im): - - value: 43.16 - hardware: V100 - backend: PyTorch - batch size: 1 - mode: FP32 - resolution: (512,512) - Training Memory (GB): 6.4 - Results: - - Task: Semantic Segmentation - Dataset: Pascal VOC 2012 + Aug - Metrics: - mIoU: 74.82 - mIoU(ms+flip): 76.35 - Config: configs/upernet/upernet_r50_4xb4-20k_voc12aug-512x512.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/upernet/upernet_r50_512x512_20k_voc12aug/upernet_r50_512x512_20k_voc12aug_20200617_165330-5b5890a7.pth -- Name: upernet_r101_4xb4-20k_voc12aug-512x512 - In Collection: UPerNet - Metadata: - backbone: R-101 - crop size: (512,512) - lr schd: 20000 - inference time (ms/im): - - value: 50.05 - hardware: V100 - backend: PyTorch - batch size: 1 - mode: FP32 - resolution: (512,512) - Training Memory (GB): 7.5 - Results: - - Task: Semantic Segmentation - Dataset: Pascal VOC 2012 + Aug - Metrics: - mIoU: 77.1 - mIoU(ms+flip): 78.29 - Config: configs/upernet/upernet_r101_4xb4-20k_voc12aug-512x512.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/upernet/upernet_r101_512x512_20k_voc12aug/upernet_r101_512x512_20k_voc12aug_20200617_165629-f14e7f27.pth -- Name: upernet_r50_4xb4-40k_voc12aug-512x512 - In Collection: UPerNet - Metadata: - backbone: R-50 - crop size: (512,512) - lr schd: 40000 - Results: - - Task: Semantic Segmentation - Dataset: Pascal VOC 2012 + Aug - Metrics: - mIoU: 75.92 - mIoU(ms+flip): 77.44 - Config: configs/upernet/upernet_r50_4xb4-40k_voc12aug-512x512.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/upernet/upernet_r50_512x512_40k_voc12aug/upernet_r50_512x512_40k_voc12aug_20200613_162257-ca9bcc6b.pth -- Name: upernet_r101_4xb4-40k_voc12aug-512x512 - In Collection: UPerNet - Metadata: - backbone: R-101 - crop size: (512,512) - lr schd: 40000 - Results: - - Task: Semantic Segmentation - Dataset: Pascal VOC 2012 + Aug - Metrics: - mIoU: 77.43 - mIoU(ms+flip): 78.56 - Config: configs/upernet/upernet_r101_4xb4-40k_voc12aug-512x512.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/upernet/upernet_r101_512x512_40k_voc12aug/upernet_r101_512x512_40k_voc12aug_20200613_163549-e26476ac.pth diff --git a/configs/vit/README.md b/configs/vit/README.md index b7f242549d..26601d498f 100644 --- a/configs/vit/README.md +++ b/configs/vit/README.md @@ -1,6 +1,6 @@ # Vision Transformer -[An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale](https://arxiv.org/pdf/2010.11929.pdf) +> [An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale](https://arxiv.org/pdf/2010.11929.pdf) ## Introduction @@ -22,17 +22,6 @@ While the Transformer architecture has become the de-facto standard for natural -## Citation - -```bibtex -@article{dosoViTskiy2020, - title={An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale}, - author={DosoViTskiy, Alexey and Beyer, Lucas and Kolesnikov, Alexander and Weissenborn, Dirk and Zhai, Xiaohua and Unterthiner, Thomas and Dehghani, Mostafa and Minderer, Matthias and Heigold, Georg and Gelly, Sylvain and Uszkoreit, Jakob and Houlsby, Neil}, - journal={arXiv preprint arXiv:2010.11929}, - year={2020} -} -``` - ## Usage To use other repositories' pre-trained models, it is necessary to convert keys. @@ -55,16 +44,27 @@ This script convert model from `PRETRAIN_PATH` and store the converted model in ### ADE20K -| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | mIoU | mIoU(ms+flip) | config | download | -| ------- | ----------------- | --------- | ------: | -------- | -------------- | ----: | ------------: | ------------------------------------------------------------------------------------------------------------------------------------------ | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | -| UPerNet | ViT-B + MLN | 512x512 | 80000 | 9.20 | 6.94 | 47.71 | 49.51 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/vit/vit_vit-b16_mln_upernet_8xb2-80k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/vit/upernet_vit-b16_mln_512x512_80k_ade20k/upernet_vit-b16_mln_512x512_80k_ade20k_20210624_130547-0403cee1.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/vit/upernet_vit-b16_mln_512x512_80k_ade20k/20210624_130547.log.json) | -| UPerNet | ViT-B + MLN | 512x512 | 160000 | 9.20 | 7.58 | 46.75 | 48.46 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/vit/vit_vit-b16_mln_upernet_8xb2-160k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/vit/upernet_vit-b16_mln_512x512_160k_ade20k/upernet_vit-b16_mln_512x512_160k_ade20k_20210624_130547-852fa768.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/vit/upernet_vit-b16_mln_512x512_160k_ade20k/20210623_192432.log.json) | -| UPerNet | ViT-B + LN + MLN | 512x512 | 160000 | 9.21 | 6.82 | 47.73 | 49.95 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/vit/vit_vit-b16-ln_mln_upernet_8xb2-160k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/vit/upernet_vit-b16_ln_mln_512x512_160k_ade20k/upernet_vit-b16_ln_mln_512x512_160k_ade20k_20210621_172828-f444c077.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/vit/upernet_vit-b16_ln_mln_512x512_160k_ade20k/20210621_172828.log.json) | -| UPerNet | DeiT-S | 512x512 | 80000 | 4.68 | 29.85 | 42.96 | 43.79 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/vit/vit_deit-s16_upernet_8xb2-80k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/vit/upernet_deit-s16_512x512_80k_ade20k/upernet_deit-s16_512x512_80k_ade20k_20210624_095228-afc93ec2.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/vit/upernet_deit-s16_512x512_80k_ade20k/20210624_095228.log.json) | -| UPerNet | DeiT-S | 512x512 | 160000 | 4.68 | 29.19 | 42.87 | 43.79 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/vit/vit_deit-s16_upernet_8xb2-160k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/vit/upernet_deit-s16_512x512_160k_ade20k/upernet_deit-s16_512x512_160k_ade20k_20210621_160903-5110d916.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/vit/upernet_deit-s16_512x512_160k_ade20k/20210621_160903.log.json) | -| UPerNet | DeiT-S + MLN | 512x512 | 160000 | 5.69 | 11.18 | 43.82 | 45.07 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/vit/vit_deit-s16_mln_upernet_8xb2-160k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/vit/upernet_deit-s16_mln_512x512_160k_ade20k/upernet_deit-s16_mln_512x512_160k_ade20k_20210621_161021-fb9a5dfb.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/vit/upernet_deit-s16_mln_512x512_160k_ade20k/20210621_161021.log.json) | -| UPerNet | DeiT-S + LN + MLN | 512x512 | 160000 | 5.69 | 12.39 | 43.52 | 45.01 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/vit/vit_deit-s16-ln_mln_upernet_512x512_160k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/vit/upernet_deit-s16_ln_mln_512x512_160k_ade20k/upernet_deit-s16_ln_mln_512x512_160k_ade20k_20210621_161021-c0cd652f.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/vit/upernet_deit-s16_ln_mln_512x512_160k_ade20k/20210621_161021.log.json) | -| UPerNet | DeiT-B | 512x512 | 80000 | 7.75 | 9.69 | 45.24 | 46.73 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/vit/vit_deit-b16_upernet_8xb2-80k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/vit/upernet_deit-b16_512x512_80k_ade20k/upernet_deit-b16_512x512_80k_ade20k_20210624_130529-1e090789.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/vit/upernet_deit-b16_512x512_80k_ade20k/20210624_130529.log.json) | -| UPerNet | DeiT-B | 512x512 | 160000 | 7.75 | 10.39 | 45.36 | 47.16 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/vit/vit_deit-b16_upernet_8xb2-160k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/vit/upernet_deit-b16_512x512_160k_ade20k/upernet_deit-b16_512x512_160k_ade20k_20210621_180100-828705d7.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/vit/upernet_deit-b16_512x512_160k_ade20k/20210621_180100.log.json) | -| UPerNet | DeiT-B + MLN | 512x512 | 160000 | 9.21 | 7.78 | 45.46 | 47.16 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/vit/vit_deit-b16_mln_upernet_8xb2-160k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/vit/upernet_deit-b16_mln_512x512_160k_ade20k/upernet_deit-b16_mln_512x512_160k_ade20k_20210621_191949-4e1450f3.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/vit/upernet_deit-b16_mln_512x512_160k_ade20k/20210621_191949.log.json) | -| UPerNet | DeiT-B + LN + MLN | 512x512 | 160000 | 9.21 | 7.75 | 45.37 | 47.23 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/vit/vit_deit-b16-ln_mln_upernet_8xb2-160k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/vit/upernet_deit-b16_ln_mln_512x512_160k_ade20k/upernet_deit-b16_ln_mln_512x512_160k_ade20k_20210623_153535-8a959c14.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/vit/upernet_deit-b16_ln_mln_512x512_160k_ade20k/20210623_153535.log.json) | +| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | Device | mIoU | mIoU(ms+flip) | config | download | +| ------- | ----------------- | --------- | ------: | -------- | -------------- | ------ | ----: | ------------: | --------------------------------------------------------------------------------------------------------------------------------------- | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | +| UPerNet | ViT-B + MLN | 512x512 | 80000 | 9.20 | 6.94 | V100 | 47.71 | 49.51 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/vit/vit_vit-b16_mln_upernet_8xb2-80k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/vit/upernet_vit-b16_mln_512x512_80k_ade20k/upernet_vit-b16_mln_512x512_80k_ade20k_20210624_130547-0403cee1.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/vit/upernet_vit-b16_mln_512x512_80k_ade20k/20210624_130547.log.json) | +| UPerNet | ViT-B + MLN | 512x512 | 160000 | 9.20 | 7.58 | V100 | 46.75 | 48.46 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/vit/vit_vit-b16_mln_upernet_8xb2-160k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/vit/upernet_vit-b16_mln_512x512_160k_ade20k/upernet_vit-b16_mln_512x512_160k_ade20k_20210624_130547-852fa768.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/vit/upernet_vit-b16_mln_512x512_160k_ade20k/20210623_192432.log.json) | +| UPerNet | ViT-B + LN + MLN | 512x512 | 160000 | 9.21 | 6.82 | V100 | 47.73 | 49.95 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/vit/vit_vit-b16-ln_mln_upernet_8xb2-160k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/vit/upernet_vit-b16_ln_mln_512x512_160k_ade20k/upernet_vit-b16_ln_mln_512x512_160k_ade20k_20210621_172828-f444c077.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/vit/upernet_vit-b16_ln_mln_512x512_160k_ade20k/20210621_172828.log.json) | +| UPerNet | DeiT-S | 512x512 | 80000 | 4.68 | 29.85 | V100 | 42.96 | 43.79 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/vit/vit_deit-s16_upernet_8xb2-80k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/vit/upernet_deit-s16_512x512_80k_ade20k/upernet_deit-s16_512x512_80k_ade20k_20210624_095228-afc93ec2.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/vit/upernet_deit-s16_512x512_80k_ade20k/20210624_095228.log.json) | +| UPerNet | DeiT-S | 512x512 | 160000 | 4.68 | 29.19 | V100 | 42.87 | 43.79 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/vit/vit_deit-s16_upernet_8xb2-160k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/vit/upernet_deit-s16_512x512_160k_ade20k/upernet_deit-s16_512x512_160k_ade20k_20210621_160903-5110d916.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/vit/upernet_deit-s16_512x512_160k_ade20k/20210621_160903.log.json) | +| UPerNet | DeiT-S + MLN | 512x512 | 160000 | 5.69 | 11.18 | V100 | 43.82 | 45.07 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/vit/vit_deit-s16_mln_upernet_8xb2-160k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/vit/upernet_deit-s16_mln_512x512_160k_ade20k/upernet_deit-s16_mln_512x512_160k_ade20k_20210621_161021-fb9a5dfb.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/vit/upernet_deit-s16_mln_512x512_160k_ade20k/20210621_161021.log.json) | +| UPerNet | DeiT-S + LN + MLN | 512x512 | 160000 | 5.69 | 12.39 | V100 | 43.52 | 45.01 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/vit/vit_deit-s16-ln_mln_upernet_8xb2-160k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/vit/upernet_deit-s16_ln_mln_512x512_160k_ade20k/upernet_deit-s16_ln_mln_512x512_160k_ade20k_20210621_161021-c0cd652f.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/vit/upernet_deit-s16_ln_mln_512x512_160k_ade20k/20210621_161021.log.json) | +| UPerNet | DeiT-B | 512x512 | 80000 | 7.75 | 9.69 | V100 | 45.24 | 46.73 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/vit/vit_deit-b16_upernet_8xb2-80k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/vit/upernet_deit-b16_512x512_80k_ade20k/upernet_deit-b16_512x512_80k_ade20k_20210624_130529-1e090789.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/vit/upernet_deit-b16_512x512_80k_ade20k/20210624_130529.log.json) | +| UPerNet | DeiT-B | 512x512 | 160000 | 7.75 | 10.39 | V100 | 45.36 | 47.16 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/vit/vit_deit-b16_upernet_8xb2-160k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/vit/upernet_deit-b16_512x512_160k_ade20k/upernet_deit-b16_512x512_160k_ade20k_20210621_180100-828705d7.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/vit/upernet_deit-b16_512x512_160k_ade20k/20210621_180100.log.json) | +| UPerNet | DeiT-B + MLN | 512x512 | 160000 | 9.21 | 7.78 | V100 | 45.46 | 47.16 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/vit/vit_deit-b16_mln_upernet_8xb2-160k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/vit/upernet_deit-b16_mln_512x512_160k_ade20k/upernet_deit-b16_mln_512x512_160k_ade20k_20210621_191949-4e1450f3.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/vit/upernet_deit-b16_mln_512x512_160k_ade20k/20210621_191949.log.json) | +| UPerNet | DeiT-B + LN + MLN | 512x512 | 160000 | 9.21 | 7.75 | V100 | 45.37 | 47.23 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/vit/vit_deit-b16-ln_mln_upernet_8xb2-160k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/vit/upernet_deit-b16_ln_mln_512x512_160k_ade20k/upernet_deit-b16_ln_mln_512x512_160k_ade20k_20210623_153535-8a959c14.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/vit/upernet_deit-b16_ln_mln_512x512_160k_ade20k/20210623_153535.log.json) | + +## Citation + +```bibtex +@article{dosoViTskiy2020, + title={An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale}, + author={DosoViTskiy, Alexey and Beyer, Lucas and Kolesnikov, Alexander and Weissenborn, Dirk and Zhai, Xiaohua and Unterthiner, Thomas and Dehghani, Mostafa and Minderer, Matthias and Heigold, Georg and Gelly, Sylvain and Uszkoreit, Jakob and Houlsby, Neil}, + journal={arXiv preprint arXiv:2010.11929}, + year={2020} +} +``` diff --git a/configs/vit/metafile.yaml b/configs/vit/metafile.yaml new file mode 100644 index 0000000000..68e254a5f9 --- /dev/null +++ b/configs/vit/metafile.yaml @@ -0,0 +1,265 @@ +Models: +- Name: vit_vit-b16_mln_upernet_8xb2-80k_ade20k-512x512 + In Collection: UPerNet + Results: + Task: Semantic Segmentation + Dataset: ADE20K + Metrics: + mIoU: 47.71 + mIoU(ms+flip): 49.51 + Config: configs/vit/vit_vit-b16_mln_upernet_8xb2-80k_ade20k-512x512.py + Metadata: + Training Data: ADE20K + Batch Size: 16 + Architecture: + - ViT-B + - UPerNet + Training Resources: 8x V100 GPUS + Memory (GB): 9.2 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/vit/upernet_vit-b16_mln_512x512_80k_ade20k/upernet_vit-b16_mln_512x512_80k_ade20k_20210624_130547-0403cee1.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/vit/upernet_vit-b16_mln_512x512_80k_ade20k/20210624_130547.log.json + Paper: + Title: 'An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale' + URL: https://arxiv.org/pdf/2010.11929.pdf + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/backbones/vit.py#L98 + Framework: PyTorch +- Name: vit_vit-b16_mln_upernet_8xb2-160k_ade20k-512x512 + In Collection: UPerNet + Results: + Task: Semantic Segmentation + Dataset: ADE20K + Metrics: + mIoU: 46.75 + mIoU(ms+flip): 48.46 + Config: configs/vit/vit_vit-b16_mln_upernet_8xb2-160k_ade20k-512x512.py + Metadata: + Training Data: ADE20K + Batch Size: 16 + Architecture: + - ViT-B + - UPerNet + Training Resources: 8x V100 GPUS + Memory (GB): 9.2 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/vit/upernet_vit-b16_mln_512x512_160k_ade20k/upernet_vit-b16_mln_512x512_160k_ade20k_20210624_130547-852fa768.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/vit/upernet_vit-b16_mln_512x512_160k_ade20k/20210623_192432.log.json + Paper: + Title: 'An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale' + URL: https://arxiv.org/pdf/2010.11929.pdf + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/backbones/vit.py#L98 + Framework: PyTorch +- Name: vit_vit-b16-ln_mln_upernet_8xb2-160k_ade20k-512x512 + In Collection: UPerNet + Results: + Task: Semantic Segmentation + Dataset: ADE20K + Metrics: + mIoU: 47.73 + mIoU(ms+flip): 49.95 + Config: configs/vit/vit_vit-b16-ln_mln_upernet_8xb2-160k_ade20k-512x512.py + Metadata: + Training Data: ADE20K + Batch Size: 16 + Architecture: + - ViT-B + - UPerNet + Training Resources: 8x V100 GPUS + Memory (GB): 9.21 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/vit/upernet_vit-b16_ln_mln_512x512_160k_ade20k/upernet_vit-b16_ln_mln_512x512_160k_ade20k_20210621_172828-f444c077.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/vit/upernet_vit-b16_ln_mln_512x512_160k_ade20k/20210621_172828.log.json + Paper: + Title: 'An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale' + URL: https://arxiv.org/pdf/2010.11929.pdf + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/backbones/vit.py#L98 + Framework: PyTorch +- Name: vit_deit-s16_upernet_8xb2-80k_ade20k-512x512 + In Collection: UPerNet + Results: + Task: Semantic Segmentation + Dataset: ADE20K + Metrics: + mIoU: 42.96 + mIoU(ms+flip): 43.79 + Config: configs/vit/vit_deit-s16_upernet_8xb2-80k_ade20k-512x512.py + Metadata: + Training Data: ADE20K + Batch Size: 16 + Architecture: + - DeiT-S + - UPerNet + Training Resources: 8x V100 GPUS + Memory (GB): 4.68 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/vit/upernet_deit-s16_512x512_80k_ade20k/upernet_deit-s16_512x512_80k_ade20k_20210624_095228-afc93ec2.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/vit/upernet_deit-s16_512x512_80k_ade20k/20210624_095228.log.json + Paper: + Title: 'An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale' + URL: https://arxiv.org/pdf/2010.11929.pdf + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/backbones/vit.py#L98 + Framework: PyTorch +- Name: vit_deit-s16_upernet_8xb2-160k_ade20k-512x512 + In Collection: UPerNet + Results: + Task: Semantic Segmentation + Dataset: ADE20K + Metrics: + mIoU: 42.87 + mIoU(ms+flip): 43.79 + Config: configs/vit/vit_deit-s16_upernet_8xb2-160k_ade20k-512x512.py + Metadata: + Training Data: ADE20K + Batch Size: 16 + Architecture: + - DeiT-S + - UPerNet + Training Resources: 8x V100 GPUS + Memory (GB): 4.68 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/vit/upernet_deit-s16_512x512_160k_ade20k/upernet_deit-s16_512x512_160k_ade20k_20210621_160903-5110d916.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/vit/upernet_deit-s16_512x512_160k_ade20k/20210621_160903.log.json + Paper: + Title: 'An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale' + URL: https://arxiv.org/pdf/2010.11929.pdf + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/backbones/vit.py#L98 + Framework: PyTorch +- Name: vit_deit-s16_mln_upernet_8xb2-160k_ade20k-512x512 + In Collection: UPerNet + Results: + Task: Semantic Segmentation + Dataset: ADE20K + Metrics: + mIoU: 43.82 + mIoU(ms+flip): 45.07 + Config: configs/vit/vit_deit-s16_mln_upernet_8xb2-160k_ade20k-512x512.py + Metadata: + Training Data: ADE20K + Batch Size: 16 + Architecture: + - DeiT-S + - UPerNet + Training Resources: 8x V100 GPUS + Memory (GB): 5.69 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/vit/upernet_deit-s16_mln_512x512_160k_ade20k/upernet_deit-s16_mln_512x512_160k_ade20k_20210621_161021-fb9a5dfb.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/vit/upernet_deit-s16_mln_512x512_160k_ade20k/20210621_161021.log.json + Paper: + Title: 'An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale' + URL: https://arxiv.org/pdf/2010.11929.pdf + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/backbones/vit.py#L98 + Framework: PyTorch +- Name: vit_deit-s16-ln_mln_upernet_8xb2-160k_ade20k-512x512 + In Collection: UPerNet + Results: + Task: Semantic Segmentation + Dataset: ADE20K + Metrics: + mIoU: 43.52 + mIoU(ms+flip): 45.01 + Config: configs/vit/vit_deit-s16-ln_mln_upernet_8xb2-160k_ade20k-512x512.py + Metadata: + Training Data: ADE20K + Batch Size: 16 + Architecture: + - DeiT-S + - UPerNet + Training Resources: 8x V100 GPUS + Memory (GB): 5.69 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/vit/upernet_deit-s16_ln_mln_512x512_160k_ade20k/upernet_deit-s16_ln_mln_512x512_160k_ade20k_20210621_161021-c0cd652f.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/vit/upernet_deit-s16_ln_mln_512x512_160k_ade20k/20210621_161021.log.json + Paper: + Title: 'An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale' + URL: https://arxiv.org/pdf/2010.11929.pdf + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/backbones/vit.py#L98 + Framework: PyTorch +- Name: vit_deit-b16_upernet_8xb2-80k_ade20k-512x512 + In Collection: UPerNet + Results: + Task: Semantic Segmentation + Dataset: ADE20K + Metrics: + mIoU: 45.24 + mIoU(ms+flip): 46.73 + Config: configs/vit/vit_deit-b16_upernet_8xb2-80k_ade20k-512x512.py + Metadata: + Training Data: ADE20K + Batch Size: 16 + Architecture: + - DeiT-B + - UPerNet + Training Resources: 8x V100 GPUS + Memory (GB): 7.75 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/vit/upernet_deit-b16_512x512_80k_ade20k/upernet_deit-b16_512x512_80k_ade20k_20210624_130529-1e090789.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/vit/upernet_deit-b16_512x512_80k_ade20k/20210624_130529.log.json + Paper: + Title: 'An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale' + URL: https://arxiv.org/pdf/2010.11929.pdf + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/backbones/vit.py#L98 + Framework: PyTorch +- Name: vit_deit-b16_upernet_8xb2-160k_ade20k-512x512 + In Collection: UPerNet + Results: + Task: Semantic Segmentation + Dataset: ADE20K + Metrics: + mIoU: 45.36 + mIoU(ms+flip): 47.16 + Config: configs/vit/vit_deit-b16_upernet_8xb2-160k_ade20k-512x512.py + Metadata: + Training Data: ADE20K + Batch Size: 16 + Architecture: + - DeiT-B + - UPerNet + Training Resources: 8x V100 GPUS + Memory (GB): 7.75 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/vit/upernet_deit-b16_512x512_160k_ade20k/upernet_deit-b16_512x512_160k_ade20k_20210621_180100-828705d7.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/vit/upernet_deit-b16_512x512_160k_ade20k/20210621_180100.log.json + Paper: + Title: 'An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale' + URL: https://arxiv.org/pdf/2010.11929.pdf + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/backbones/vit.py#L98 + Framework: PyTorch +- Name: vit_deit-b16_mln_upernet_8xb2-160k_ade20k-512x512 + In Collection: UPerNet + Results: + Task: Semantic Segmentation + Dataset: ADE20K + Metrics: + mIoU: 45.46 + mIoU(ms+flip): 47.16 + Config: configs/vit/vit_deit-b16_mln_upernet_8xb2-160k_ade20k-512x512.py + Metadata: + Training Data: ADE20K + Batch Size: 16 + Architecture: + - DeiT-B + - UPerNet + Training Resources: 8x V100 GPUS + Memory (GB): 9.21 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/vit/upernet_deit-b16_mln_512x512_160k_ade20k/upernet_deit-b16_mln_512x512_160k_ade20k_20210621_191949-4e1450f3.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/vit/upernet_deit-b16_mln_512x512_160k_ade20k/20210621_191949.log.json + Paper: + Title: 'An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale' + URL: https://arxiv.org/pdf/2010.11929.pdf + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/backbones/vit.py#L98 + Framework: PyTorch +- Name: vit_deit-b16-ln_mln_upernet_8xb2-160k_ade20k-512x512 + In Collection: UPerNet + Results: + Task: Semantic Segmentation + Dataset: ADE20K + Metrics: + mIoU: 45.37 + mIoU(ms+flip): 47.23 + Config: configs/vit/vit_deit-b16-ln_mln_upernet_8xb2-160k_ade20k-512x512.py + Metadata: + Training Data: ADE20K + Batch Size: 16 + Architecture: + - DeiT-B + - UPerNet + Training Resources: 8x V100 GPUS + Memory (GB): 9.21 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/vit/upernet_deit-b16_ln_mln_512x512_160k_ade20k/upernet_deit-b16_ln_mln_512x512_160k_ade20k_20210623_153535-8a959c14.pth + Training log: https://download.openmmlab.com/mmsegmentation/v0.5/vit/upernet_deit-b16_ln_mln_512x512_160k_ade20k/20210623_153535.log.json + Paper: + Title: 'An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale' + URL: https://arxiv.org/pdf/2010.11929.pdf + Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/backbones/vit.py#L98 + Framework: PyTorch diff --git a/configs/vit/vit.yml b/configs/vit/vit.yml deleted file mode 100644 index 613d866ac4..0000000000 --- a/configs/vit/vit.yml +++ /dev/null @@ -1,243 +0,0 @@ -Models: -- Name: vit_vit-b16_mln_upernet_8xb2-80k_ade20k-512x512 - In Collection: UPerNet - Metadata: - backbone: ViT-B + MLN - crop size: (512,512) - lr schd: 80000 - inference time (ms/im): - - value: 144.09 - hardware: V100 - backend: PyTorch - batch size: 1 - mode: FP32 - resolution: (512,512) - Training Memory (GB): 9.2 - Results: - - Task: Semantic Segmentation - Dataset: ADE20K - Metrics: - mIoU: 47.71 - mIoU(ms+flip): 49.51 - Config: configs/vit/vit_vit-b16_mln_upernet_8xb2-80k_ade20k-512x512.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/vit/upernet_vit-b16_mln_512x512_80k_ade20k/upernet_vit-b16_mln_512x512_80k_ade20k_20210624_130547-0403cee1.pth -- Name: vit_vit-b16_mln_upernet_8xb2-160k_ade20k-512x512 - In Collection: UPerNet - Metadata: - backbone: ViT-B + MLN - crop size: (512,512) - lr schd: 160000 - inference time (ms/im): - - value: 131.93 - hardware: V100 - backend: PyTorch - batch size: 1 - mode: FP32 - resolution: (512,512) - Training Memory (GB): 9.2 - Results: - - Task: Semantic Segmentation - Dataset: ADE20K - Metrics: - mIoU: 46.75 - mIoU(ms+flip): 48.46 - Config: configs/vit/vit_vit-b16_mln_upernet_8xb2-160k_ade20k-512x512.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/vit/upernet_vit-b16_mln_512x512_160k_ade20k/upernet_vit-b16_mln_512x512_160k_ade20k_20210624_130547-852fa768.pth -- Name: vit_vit-b16-ln_mln_upernet_8xb2-160k_ade20k-512x512 - In Collection: UPerNet - Metadata: - backbone: ViT-B + LN + MLN - crop size: (512,512) - lr schd: 160000 - inference time (ms/im): - - value: 146.63 - hardware: V100 - backend: PyTorch - batch size: 1 - mode: FP32 - resolution: (512,512) - Training Memory (GB): 9.21 - Results: - - Task: Semantic Segmentation - Dataset: ADE20K - Metrics: - mIoU: 47.73 - mIoU(ms+flip): 49.95 - Config: configs/vit/vit_vit-b16-ln_mln_upernet_8xb2-160k_ade20k-512x512.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/vit/upernet_vit-b16_ln_mln_512x512_160k_ade20k/upernet_vit-b16_ln_mln_512x512_160k_ade20k_20210621_172828-f444c077.pth -- Name: vit_deit-s16_upernet_8xb2-80k_ade20k-512x512 - In Collection: UPerNet - Metadata: - backbone: DeiT-S - crop size: (512,512) - lr schd: 80000 - inference time (ms/im): - - value: 33.5 - hardware: V100 - backend: PyTorch - batch size: 1 - mode: FP32 - resolution: (512,512) - Training Memory (GB): 4.68 - Results: - - Task: Semantic Segmentation - Dataset: ADE20K - Metrics: - mIoU: 42.96 - mIoU(ms+flip): 43.79 - Config: configs/vit/vit_deit-s16_upernet_8xb2-80k_ade20k-512x512.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/vit/upernet_deit-s16_512x512_80k_ade20k/upernet_deit-s16_512x512_80k_ade20k_20210624_095228-afc93ec2.pth -- Name: vit_deit-s16_upernet_8xb2-160k_ade20k-512x512 - In Collection: UPerNet - Metadata: - backbone: DeiT-S - crop size: (512,512) - lr schd: 160000 - inference time (ms/im): - - value: 34.26 - hardware: V100 - backend: PyTorch - batch size: 1 - mode: FP32 - resolution: (512,512) - Training Memory (GB): 4.68 - Results: - - Task: Semantic Segmentation - Dataset: ADE20K - Metrics: - mIoU: 42.87 - mIoU(ms+flip): 43.79 - Config: configs/vit/vit_deit-s16_upernet_8xb2-160k_ade20k-512x512.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/vit/upernet_deit-s16_512x512_160k_ade20k/upernet_deit-s16_512x512_160k_ade20k_20210621_160903-5110d916.pth -- Name: vit_deit-s16_mln_upernet_8xb2-160k_ade20k-512x512 - In Collection: UPerNet - Metadata: - backbone: DeiT-S + MLN - crop size: (512,512) - lr schd: 160000 - inference time (ms/im): - - value: 89.45 - hardware: V100 - backend: PyTorch - batch size: 1 - mode: FP32 - resolution: (512,512) - Training Memory (GB): 5.69 - Results: - - Task: Semantic Segmentation - Dataset: ADE20K - Metrics: - mIoU: 43.82 - mIoU(ms+flip): 45.07 - Config: configs/vit/vit_deit-s16_mln_upernet_8xb2-160k_ade20k-512x512.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/vit/upernet_deit-s16_mln_512x512_160k_ade20k/upernet_deit-s16_mln_512x512_160k_ade20k_20210621_161021-fb9a5dfb.pth -- Name: vit_deit-s16-ln_mln_upernet_512x512_160k_ade20k-512x512 - In Collection: UPerNet - Metadata: - backbone: DeiT-S + LN + MLN - crop size: (512,512) - lr schd: 160000 - inference time (ms/im): - - value: 80.71 - hardware: V100 - backend: PyTorch - batch size: 1 - mode: FP32 - resolution: (512,512) - Training Memory (GB): 5.69 - Results: - - Task: Semantic Segmentation - Dataset: ADE20K - Metrics: - mIoU: 43.52 - mIoU(ms+flip): 45.01 - Config: configs/vit/vit_deit-s16-ln_mln_upernet_512x512_160k_ade20k-512x512.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/vit/upernet_deit-s16_ln_mln_512x512_160k_ade20k/upernet_deit-s16_ln_mln_512x512_160k_ade20k_20210621_161021-c0cd652f.pth -- Name: vit_deit-b16_upernet_8xb2-80k_ade20k-512x512 - In Collection: UPerNet - Metadata: - backbone: DeiT-B - crop size: (512,512) - lr schd: 80000 - inference time (ms/im): - - value: 103.2 - hardware: V100 - backend: PyTorch - batch size: 1 - mode: FP32 - resolution: (512,512) - Training Memory (GB): 7.75 - Results: - - Task: Semantic Segmentation - Dataset: ADE20K - Metrics: - mIoU: 45.24 - mIoU(ms+flip): 46.73 - Config: configs/vit/vit_deit-b16_upernet_8xb2-80k_ade20k-512x512.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/vit/upernet_deit-b16_512x512_80k_ade20k/upernet_deit-b16_512x512_80k_ade20k_20210624_130529-1e090789.pth -- Name: vit_deit-b16_upernet_8xb2-160k_ade20k-512x512 - In Collection: UPerNet - Metadata: - backbone: DeiT-B - crop size: (512,512) - lr schd: 160000 - inference time (ms/im): - - value: 96.25 - hardware: V100 - backend: PyTorch - batch size: 1 - mode: FP32 - resolution: (512,512) - Training Memory (GB): 7.75 - Results: - - Task: Semantic Segmentation - Dataset: ADE20K - Metrics: - mIoU: 45.36 - mIoU(ms+flip): 47.16 - Config: configs/vit/vit_deit-b16_upernet_8xb2-160k_ade20k-512x512.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/vit/upernet_deit-b16_512x512_160k_ade20k/upernet_deit-b16_512x512_160k_ade20k_20210621_180100-828705d7.pth -- Name: vit_deit-b16_mln_upernet_8xb2-160k_ade20k-512x512 - In Collection: UPerNet - Metadata: - backbone: DeiT-B + MLN - crop size: (512,512) - lr schd: 160000 - inference time (ms/im): - - value: 128.53 - hardware: V100 - backend: PyTorch - batch size: 1 - mode: FP32 - resolution: (512,512) - Training Memory (GB): 9.21 - Results: - - Task: Semantic Segmentation - Dataset: ADE20K - Metrics: - mIoU: 45.46 - mIoU(ms+flip): 47.16 - Config: configs/vit/vit_deit-b16_mln_upernet_8xb2-160k_ade20k-512x512.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/vit/upernet_deit-b16_mln_512x512_160k_ade20k/upernet_deit-b16_mln_512x512_160k_ade20k_20210621_191949-4e1450f3.pth -- Name: vit_deit-b16-ln_mln_upernet_8xb2-160k_ade20k-512x512 - In Collection: UPerNet - Metadata: - backbone: DeiT-B + LN + MLN - crop size: (512,512) - lr schd: 160000 - inference time (ms/im): - - value: 129.03 - hardware: V100 - backend: PyTorch - batch size: 1 - mode: FP32 - resolution: (512,512) - Training Memory (GB): 9.21 - Results: - - Task: Semantic Segmentation - Dataset: ADE20K - Metrics: - mIoU: 45.37 - mIoU(ms+flip): 47.23 - Config: configs/vit/vit_deit-b16-ln_mln_upernet_8xb2-160k_ade20k-512x512.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/vit/upernet_deit-b16_ln_mln_512x512_160k_ade20k/upernet_deit-b16_ln_mln_512x512_160k_ade20k_20210623_153535-8a959c14.pth diff --git a/configs/vit/vit_deit-s16-ln_mln_upernet_512x512_160k_ade20k-512x512.py b/configs/vit/vit_deit-s16-ln_mln_upernet_8xb2-160k_ade20k-512x512.py similarity index 100% rename from configs/vit/vit_deit-s16-ln_mln_upernet_512x512_160k_ade20k-512x512.py rename to configs/vit/vit_deit-s16-ln_mln_upernet_8xb2-160k_ade20k-512x512.py diff --git a/model-index.yml b/model-index.yml index 130031a303..5e87c386dd 100644 --- a/model-index.yml +++ b/model-index.yml @@ -1,50 +1,50 @@ Import: -- configs/ann/ann.yml -- configs/apcnet/apcnet.yml -- configs/beit/beit.yml -- configs/bisenetv1/bisenetv1.yml -- configs/bisenetv2/bisenetv2.yml -- configs/ccnet/ccnet.yml -- configs/cgnet/cgnet.yml -- configs/convnext/convnext.yml -- configs/danet/danet.yml -- configs/deeplabv3/deeplabv3.yml -- configs/deeplabv3plus/deeplabv3plus.yml -- configs/dmnet/dmnet.yml -- configs/dnlnet/dnlnet.yml -- configs/dpt/dpt.yml -- configs/emanet/emanet.yml -- configs/encnet/encnet.yml -- configs/erfnet/erfnet.yml -- configs/fastfcn/fastfcn.yml -- configs/fastscnn/fastscnn.yml -- configs/fcn/fcn.yml -- configs/gcnet/gcnet.yml -- configs/hrnet/hrnet.yml -- configs/icnet/icnet.yml -- configs/isanet/isanet.yml -- configs/knet/knet.yml -- configs/mae/mae.yml -- configs/mask2former/mask2former.yml -- configs/maskformer/maskformer.yml -- configs/mobilenet_v2/mobilenet_v2.yml -- configs/mobilenet_v3/mobilenet_v3.yml -- configs/nonlocal_net/nonlocal_net.yml -- configs/ocrnet/ocrnet.yml -- configs/pidnet/pidnet.yml -- configs/point_rend/point_rend.yml -- configs/poolformer/poolformer.yml -- configs/psanet/psanet.yml -- configs/pspnet/pspnet.yml -- configs/resnest/resnest.yml -- configs/segformer/segformer.yml -- configs/segmenter/segmenter.yml -- configs/segnext/segnext.yml -- configs/sem_fpn/sem_fpn.yml -- configs/setr/setr.yml -- configs/stdc/stdc.yml -- configs/swin/swin.yml -- configs/twins/twins.yml -- configs/unet/unet.yml -- configs/upernet/upernet.yml -- configs/vit/vit.yml +- configs/ann/metafile.yaml +- configs/apcnet/metafile.yaml +- configs/beit/metafile.yaml +- configs/bisenetv1/metafile.yaml +- configs/bisenetv2/metafile.yaml +- configs/ccnet/metafile.yaml +- configs/cgnet/metafile.yaml +- configs/convnext/metafile.yaml +- configs/danet/metafile.yaml +- configs/deeplabv3/metafile.yaml +- configs/deeplabv3plus/metafile.yaml +- configs/dmnet/metafile.yaml +- configs/dnlnet/metafile.yaml +- configs/dpt/metafile.yaml +- configs/emanet/metafile.yaml +- configs/encnet/metafile.yaml +- configs/erfnet/metafile.yaml +- configs/fastfcn/metafile.yaml +- configs/fastscnn/metafile.yaml +- configs/fcn/metafile.yaml +- configs/gcnet/metafile.yaml +- configs/hrnet/metafile.yaml +- configs/icnet/metafile.yaml +- configs/isanet/metafile.yaml +- configs/knet/metafile.yaml +- configs/mae/metafile.yaml +- configs/mask2former/metafile.yaml +- configs/maskformer/metafile.yaml +- configs/mobilenet_v2/metafile.yaml +- configs/mobilenet_v3/metafile.yaml +- configs/nonlocal_net/metafile.yaml +- configs/ocrnet/metafile.yaml +- configs/pidnet/metafile.yaml +- configs/point_rend/metafile.yaml +- configs/poolformer/metafile.yaml +- configs/psanet/metafile.yaml +- configs/pspnet/metafile.yaml +- configs/resnest/metafile.yaml +- configs/segformer/metafile.yaml +- configs/segmenter/metafile.yaml +- configs/segnext/metafile.yaml +- configs/sem_fpn/metafile.yaml +- configs/setr/metafile.yaml +- configs/stdc/metafile.yaml +- configs/swin/metafile.yaml +- configs/twins/metafile.yaml +- configs/unet/metafile.yaml +- configs/upernet/metafile.yaml +- configs/vit/metafile.yaml