Skip to content

Commit 0ad3bc0

Browse files
committed
Update README.md
1 parent bd54f88 commit 0ad3bc0

File tree

1 file changed

+102
-3
lines changed

1 file changed

+102
-3
lines changed

README.md

+102-3
Original file line numberDiff line numberDiff line change
@@ -17,7 +17,7 @@
1717

1818
1. [Problem Statement](#problem-statement)
1919
2. [Data Source](#data-source)
20-
3. [Model Architecture](#model-architecture)
20+
3. [Model Architecture](#system-architecture)
2121
4. [Training and Evaluation](#training-and-evaluation)
2222
5. [Deployment](#deployment)
2323
6. [Contributing](#contributing)
@@ -71,14 +71,113 @@ Accurately estimating the intensity of tropical cyclones is important for weathe
7171

7272
The INSAT-3D satellite provides infrared images of the Indian subcontinent that are used as the input to the VORTEX model. The model is trained on a large dataset of historical tropical cyclone images and corresponding intensity estimates.
7373

74-
# Model Architecture
74+
```bash
75+
├── ./data
76+
│ ├── ./data/labels-date-ref.txt
77+
│ ├── ./data/processed
78+
│ │ ├── ./data/processed/crop_data
79+
│ │ │ ├── ./data/processed/crop_data/EXTREME
80+
│ │ │ ├── ./data/processed/crop_data/NORMAL
81+
│ │ │ ├── ./data/processed/crop_data/SEVERE
82+
│ │ │ ├── ./data/processed/crop_data/SUPER
83+
│ │ │ └── ./data/processed/crop_data/VERY
84+
│ │ ├── ./data/processed/In_Est
85+
│ │ │ ├── ./data/processed/In_Est/EXTREME
86+
│ │ │ ├── ./data/processed/In_Est/NORMAL
87+
│ │ │ ├── ./data/processed/In_Est/SEVERE
88+
│ │ │ ├── ./data/processed/In_Est/SUPER
89+
│ │ │ └── ./data/processed/In_Est/VERY
90+
│ │ ├── ./data/processed/Obj_Det
91+
│ │ │ ├── ./data/processed/Obj_Det/images
92+
│ │ │ ├── ./data/processed/Obj_Det/labels.csv
93+
│ │ │ ├── ./data/processed/Obj_Det/test
94+
│ │ │ ├── ./data/processed/Obj_Det/test_labels.csv
95+
│ │ │ ├── ./data/processed/Obj_Det/test.record
96+
│ │ │ ├── ./data/processed/Obj_Det/train
97+
│ │ │ │ ├── ./data/processed/Obj_Det/train/f1
98+
│ │ │ ├── ./data/processed/Obj_Det/train_labels.csv
99+
│ │ │ └── ./data/processed/Obj_Det/train.record
100+
│ │ └── ./data/processed/threshZero_data
101+
│ │ ├── ./data/processed/threshZero_data/EXTREME
102+
│ │ │ ├── ./data/processed/threshZero_data/EXTREME/f2
103+
│ │ │ └── ./data/processed/threshZero_data/EXTREME/f3
104+
│ │ ├── ./data/processed/threshZero_data/NORMAL
105+
│ │ │ ├── ./data/processed/threshZero_data/NORMAL/f2
106+
│ │ │ └── ./data/processed/threshZero_data/NORMAL/f3
107+
│ │ ├── ./data/processed/threshZero_data/SEVERE
108+
│ │ │ ├── ./data/processed/threshZero_data/SEVERE/Annotations
109+
│ │ │ ├── ./data/processed/threshZero_data/SEVERE/f2
110+
│ │ │ └── ./data/processed/threshZero_data/SEVERE/f3
111+
│ │ ├── ./data/processed/threshZero_data/SUPER
112+
│ │ │ ├── ./data/processed/threshZero_data/SUPER/Annotations
113+
│ │ │ ├── ./data/processed/threshZero_data/SUPER/f2
114+
│ │ │ └── ./data/processed/threshZero_data/SUPER/f3
115+
│ │ └── ./data/processed/threshZero_data/VERY
116+
│ │ ├── ./data/processed/threshZero_data/VERY/Annotations
117+
│ │ ├── ./data/processed/threshZero_data/VERY/f2
118+
│ │ └── ./data/processed/threshZero_data/VERY/f3
119+
│ └── ./data/raw
120+
│ ├── ./data/raw/APRIL_2019 Fani
121+
│ ├── ./data/raw/final
122+
│ ├── ./data/raw/MAY_2020 Amphan
123+
│ ├── ./data/raw/MAY_2021 Yaas Tauktae
124+
│ ├── ./data/raw/NOVEMBER_2020 Nivar
125+
│ ├── ./data/raw/OCTOBER_2019 Kyarr
126+
│ └── ./data/raw/VERY
127+
```
128+
129+
# System Architecture
130+
131+
VORTEX is built using a Multi-Model architecture. The first model takes as input an infrared image of a Semi-Globe containing India and detects all the cyclones from a specific region. Then the detected tropical cyclone is sent to the second model and outputs a prediction of its intensity, specifically, classifies the cyclone as one of the 5 severities. The architecture is designed to use the trained models as a web service where real-time data can be fed to the model and the output can be used by weather forecasters and disaster management agencies to make informed decisions.
75132

76-
VORTEX is built using a convolutional neural network (CNN) architecture. The model takes as input an infrared image of a tropical cyclone and outputs a prediction of its intensity. The architecture is designed to extract features from the input images and make use of them in the final prediction.
133+
![Architecture](./assets/docs/SIH%20Docs/System%20Architecture%20Diagram.png)
77134

78135
# Training and Evaluation
79136

80137
The model is trained on a large dataset of historical tropical cyclone images and corresponding intensity estimates. The training process involves minimizing the mean squared error between the predicted intensity and the ground truth intensity. The model is evaluated on a hold-out test set to determine its accuracy and precision.
81138

139+
```bash
140+
└── ./vortex
141+
├── ./vortex/artifacts
142+
│ ├── ./vortex/artifacts/border_box
143+
│ │ ├── ./vortex/artifacts/border_box/detector.h5
144+
│ │ ├── ./vortex/artifacts/border_box/plot.png
145+
│ │ ├── ./vortex/artifacts/border_box/test_images.txt
146+
│ │ └── ./vortex/artifacts/border_box/tfjs
147+
│ │ └── ./vortex/artifacts/border_box/tfjs/detector
148+
│ │ └── ./vortex/artifacts/border_box/tfjs/detector/model.json
149+
│ ├── ./vortex/artifacts/in_estimator
150+
│ │ ├── ./vortex/artifacts/in_estimator/in_estimator_2.h5
151+
│ │ └── ./vortex/artifacts/in_estimator/in_estimator.h5
152+
│ ├── ./vortex/artifacts/inference_graph
153+
│ │ ├── ./vortex/artifacts/inference_graph/checkpoint
154+
│ │ ├── ./vortex/artifacts/inference_graph/pipeline.config
155+
│ │ └── ./vortex/artifacts/inference_graph/saved_model
156+
├── ./vortex/hybridPredict.ipynb
157+
├── ./vortex/hybridPred.py
158+
├── ./vortex/notebooks
159+
│ ├── ./vortex/notebooks/border_box
160+
│ │ ├── ./vortex/notebooks/border_box/config.py
161+
│ │ ├── ./vortex/notebooks/border_box/__init__.py
162+
│ │ ├── ./vortex/notebooks/border_box/predict.py
163+
│ ├── ./vortex/notebooks/Border Box Regression.ipynb
164+
│ ├── ./vortex/notebooks/cropping.ipynb
165+
│ ├── ./vortex/notebooks/Cyclone_Detection.ipynb
166+
│ ├── ./vortex/notebooks/in_estimator
167+
│ │ ├── ./vortex/notebooks/in_estimator/__init__.py
168+
│ │ └── ./vortex/notebooks/in_estimator/predict.py
169+
│ ├── ./vortex/notebooks/inferenceutils.py
170+
│ ├── ./vortex/notebooks/__init__.py
171+
│ ├── ./vortex/notebooks/Intensity Classifier .ipynb
172+
├── ./vortex/training
173+
│ ├── ./vortex/training/checkpoint
174+
│ ├── ./vortex/training/eval
175+
└── ./vortex/utils
176+
├── ./vortex/utils/generate_tfrecord.py
177+
├── ./vortex/utils/inferenceutils.py
178+
└── ./vortex/utils/test_train_split.py
179+
```
180+
82181
# Deployment
83182

84183
The trained VORTEX model can be deployed as a web service or as a standalone application. The service/application takes as input an infrared image of a tropical cyclone and returns a prediction of its intensity. This information can be used by weather forecasters and disaster management agencies to make informed decisions.

0 commit comments

Comments
 (0)