-
Notifications
You must be signed in to change notification settings - Fork 36
/
Copy pathmodels.py
163 lines (133 loc) · 6.97 KB
/
models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
from abc import ABC
from copy import deepcopy
import torch
import torch.nn as nn
from dataclasses import dataclass
from transformers import AutoModel, AutoConfig
from triplet_mask import construct_mask
def build_model(args) -> nn.Module:
return CustomBertModel(args)
@dataclass
class ModelOutput:
logits: torch.tensor
labels: torch.tensor
inv_t: torch.tensor
hr_vector: torch.tensor
tail_vector: torch.tensor
class CustomBertModel(nn.Module, ABC):
def __init__(self, args):
super().__init__()
self.args = args
self.config = AutoConfig.from_pretrained(args.pretrained_model)
self.log_inv_t = torch.nn.Parameter(torch.tensor(1.0 / args.t).log(), requires_grad=args.finetune_t)
self.add_margin = args.additive_margin
self.batch_size = args.batch_size
self.pre_batch = args.pre_batch
num_pre_batch_vectors = max(1, self.pre_batch) * self.batch_size
random_vector = torch.randn(num_pre_batch_vectors, self.config.hidden_size)
self.register_buffer("pre_batch_vectors",
nn.functional.normalize(random_vector, dim=1),
persistent=False)
self.offset = 0
self.pre_batch_exs = [None for _ in range(num_pre_batch_vectors)]
self.hr_bert = AutoModel.from_pretrained(args.pretrained_model)
self.tail_bert = deepcopy(self.hr_bert)
def _encode(self, encoder, token_ids, mask, token_type_ids):
outputs = encoder(input_ids=token_ids,
attention_mask=mask,
token_type_ids=token_type_ids,
return_dict=True)
last_hidden_state = outputs.last_hidden_state
cls_output = last_hidden_state[:, 0, :]
cls_output = _pool_output(self.args.pooling, cls_output, mask, last_hidden_state)
return cls_output
def forward(self, hr_token_ids, hr_mask, hr_token_type_ids,
tail_token_ids, tail_mask, tail_token_type_ids,
head_token_ids, head_mask, head_token_type_ids,
only_ent_embedding=False, **kwargs) -> dict:
if only_ent_embedding:
return self.predict_ent_embedding(tail_token_ids=tail_token_ids,
tail_mask=tail_mask,
tail_token_type_ids=tail_token_type_ids)
hr_vector = self._encode(self.hr_bert,
token_ids=hr_token_ids,
mask=hr_mask,
token_type_ids=hr_token_type_ids)
tail_vector = self._encode(self.tail_bert,
token_ids=tail_token_ids,
mask=tail_mask,
token_type_ids=tail_token_type_ids)
head_vector = self._encode(self.tail_bert,
token_ids=head_token_ids,
mask=head_mask,
token_type_ids=head_token_type_ids)
# DataParallel only support tensor/dict
return {'hr_vector': hr_vector,
'tail_vector': tail_vector,
'head_vector': head_vector}
def compute_logits(self, output_dict: dict, batch_dict: dict) -> dict:
hr_vector, tail_vector = output_dict['hr_vector'], output_dict['tail_vector']
batch_size = hr_vector.size(0)
labels = torch.arange(batch_size).to(hr_vector.device)
logits = hr_vector.mm(tail_vector.t())
if self.training:
logits -= torch.zeros(logits.size()).fill_diagonal_(self.add_margin).to(logits.device)
logits *= self.log_inv_t.exp()
triplet_mask = batch_dict.get('triplet_mask', None)
if triplet_mask is not None:
logits.masked_fill_(~triplet_mask, -1e4)
if self.pre_batch > 0 and self.training:
pre_batch_logits = self._compute_pre_batch_logits(hr_vector, tail_vector, batch_dict)
logits = torch.cat([logits, pre_batch_logits], dim=-1)
if self.args.use_self_negative and self.training:
head_vector = output_dict['head_vector']
self_neg_logits = torch.sum(hr_vector * head_vector, dim=1) * self.log_inv_t.exp()
self_negative_mask = batch_dict['self_negative_mask']
self_neg_logits.masked_fill_(~self_negative_mask, -1e4)
logits = torch.cat([logits, self_neg_logits.unsqueeze(1)], dim=-1)
return {'logits': logits,
'labels': labels,
'inv_t': self.log_inv_t.detach().exp(),
'hr_vector': hr_vector.detach(),
'tail_vector': tail_vector.detach()}
def _compute_pre_batch_logits(self, hr_vector: torch.tensor,
tail_vector: torch.tensor,
batch_dict: dict) -> torch.tensor:
assert tail_vector.size(0) == self.batch_size
batch_exs = batch_dict['batch_data']
# batch_size x num_neg
pre_batch_logits = hr_vector.mm(self.pre_batch_vectors.clone().t())
pre_batch_logits *= self.log_inv_t.exp() * self.args.pre_batch_weight
if self.pre_batch_exs[-1] is not None:
pre_triplet_mask = construct_mask(batch_exs, self.pre_batch_exs).to(hr_vector.device)
pre_batch_logits.masked_fill_(~pre_triplet_mask, -1e4)
self.pre_batch_vectors[self.offset:(self.offset + self.batch_size)] = tail_vector.data.clone()
self.pre_batch_exs[self.offset:(self.offset + self.batch_size)] = batch_exs
self.offset = (self.offset + self.batch_size) % len(self.pre_batch_exs)
return pre_batch_logits
@torch.no_grad()
def predict_ent_embedding(self, tail_token_ids, tail_mask, tail_token_type_ids, **kwargs) -> dict:
ent_vectors = self._encode(self.tail_bert,
token_ids=tail_token_ids,
mask=tail_mask,
token_type_ids=tail_token_type_ids)
return {'ent_vectors': ent_vectors.detach()}
def _pool_output(pooling: str,
cls_output: torch.tensor,
mask: torch.tensor,
last_hidden_state: torch.tensor) -> torch.tensor:
if pooling == 'cls':
output_vector = cls_output
elif pooling == 'max':
input_mask_expanded = mask.unsqueeze(-1).expand(last_hidden_state.size()).long()
last_hidden_state[input_mask_expanded == 0] = -1e4
output_vector = torch.max(last_hidden_state, 1)[0]
elif pooling == 'mean':
input_mask_expanded = mask.unsqueeze(-1).expand(last_hidden_state.size()).float()
sum_embeddings = torch.sum(last_hidden_state * input_mask_expanded, 1)
sum_mask = torch.clamp(input_mask_expanded.sum(1), min=1e-4)
output_vector = sum_embeddings / sum_mask
else:
assert False, 'Unknown pooling mode: {}'.format(pooling)
output_vector = nn.functional.normalize(output_vector, dim=1)
return output_vector