forked from facebookresearch/vissl
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtest_state_checkpoint_conversion.py
187 lines (169 loc) · 7.49 KB
/
test_state_checkpoint_conversion.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
# Copyright (c) Facebook, Inc. and its affiliates.
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import os
import unittest
import torch
import torch.distributed as dist
import torch.multiprocessing as mp
import torch.nn as nn
import torch.optim as optim
from hydra.experimental import compose, initialize_config_module
from vissl.models import build_model
from vissl.utils.checkpoint import (
CheckpointFormatConverter,
CheckpointLoader,
CheckpointWriter,
)
from vissl.utils.fsdp_utils import fsdp_wrapper
from vissl.utils.hydra_config import convert_to_attrdict
from vissl.utils.test_utils import (
gpu_test,
in_temporary_directory,
init_distributed_on_file,
with_temp_files,
)
class TestCheckpointConversion(unittest.TestCase):
@staticmethod
def _create_fsdp_model_config(with_fsdp: bool):
with initialize_config_module(config_module="vissl.config"):
cfg = compose(
"defaults",
overrides=[
"config=test/integration_test/quick_swav",
"+config/pretrain/swav/models=regnet16Gf",
"config.SEED_VALUE=0",
"config.MODEL.SYNC_BN_CONFIG.CONVERT_BN_TO_SYNC_BN=True",
"config.MODEL.SYNC_BN_CONFIG.SYNC_BN_TYPE=pytorch",
"config.LOSS.swav_loss.epsilon=0.03",
"config.MODEL.FSDP_CONFIG.flatten_parameters=True",
"config.MODEL.FSDP_CONFIG.mixed_precision=False",
"config.MODEL.FSDP_CONFIG.fp32_reduce_scatter=False",
"config.MODEL.FSDP_CONFIG.compute_dtype=float32",
"config.OPTIMIZER.construct_single_param_group_only=True",
],
)
args, config = convert_to_attrdict(cfg)
if with_fsdp:
config["MODEL"]["TRUNK"]["NAME"] = "regnet_fsdp"
config["MODEL"]["HEAD"]["PARAMS"][0][0] = "swav_head_fsdp"
config.TRAINER.TASK_NAME = "self_supervision_fsdp_task"
else:
config["MODEL"]["TRUNK"]["NAME"] = "regnet_v2"
config["MODEL"]["HEAD"]["PARAMS"][0][0] = "swav_head"
return config
@staticmethod
def _worker(gpu_id: int, sync_file: str, world_size: int):
torch.manual_seed(0)
os.environ["RANK"] = str(gpu_id)
init_distributed_on_file(
world_size=world_size, gpu_id=gpu_id, sync_file=sync_file
)
torch.backends.cudnn.deterministic = True
config = TestCheckpointConversion._create_fsdp_model_config(with_fsdp=True)
model = build_model(config.MODEL, config.OPTIMIZER).cuda(gpu_id)
model = fsdp_wrapper(model, **config.MODEL.FSDP_CONFIG)
optimizer = optim.SGD(model.parameters(), lr=1e-4)
# Fake inputs
num_iterations = 5
batch_size = 3
torch.manual_seed(gpu_id)
fake_inputs = torch.randn(size=(num_iterations, batch_size, 3, 96, 96))
fake_targets = torch.randn(size=(num_iterations, batch_size))
# Fake training loop
criterion = nn.MSELoss()
for iteration in range(num_iterations):
fake_input = fake_inputs[iteration].cuda(gpu_id)
fake_target = fake_targets[iteration].cuda(gpu_id)
output1, output2 = model(fake_input)[0]
loss = criterion(output1.sum(axis=-1), fake_target) + criterion(
output2.sum(axis=-1), fake_target
)
if gpu_id == 0:
print(loss.item())
optimizer.zero_grad()
loss.backward()
optimizer.step()
# Save a bunch of checkpoint, one by shard
checkpoint_writer = CheckpointWriter(
checkpoint_folder=".",
is_final_train_phase=True,
mode="iteration",
mode_num=0,
backend="disk",
)
content = {
"classy_state_dict": {
"base_model": {
"model": {"trunk": model.trunk.local_state_dict()},
"meta": {"trunk": model.trunk.local_metadata_dict()},
}
}
}
checkpoint_writer.save_sharded_checkpoint(
content, shard_rank=gpu_id, world_size=world_size
)
dist.barrier()
print(os.listdir("."))
# Convert the checkpoint to consolidated and sliced checkpoints
if gpu_id == 0:
CheckpointFormatConverter.sharded_to_consolidated_checkpoint(
"checkpoint.torch", "checkpoint_conso.torch"
)
CheckpointFormatConverter.sharded_to_sliced_checkpoint(
"checkpoint.torch", "checkpoint_sliced.torch"
)
dist.barrier()
print(os.listdir("."))
# Now create models initialized from the previous checkpoint and compare them
fake_test_input = torch.randn(size=(1, 3, 96, 96)).cuda(gpu_id)
shard_cp = CheckpointLoader.load_and_broadcast_init_weights(
"checkpoint.torch", device=torch.device("cpu")
)
shard_model = build_model(config.MODEL, config.OPTIMIZER).cuda(gpu_id)
shard_model = fsdp_wrapper(shard_model, **config.MODEL.FSDP_CONFIG)
shard_model.init_model_from_weights_params_file(config, shard_cp)
conso_cp = CheckpointLoader.load_and_broadcast_init_weights(
"checkpoint_conso.torch", device=torch.device("cpu")
)
conso_model = build_model(config.MODEL, config.OPTIMIZER).cuda(gpu_id)
conso_model = fsdp_wrapper(conso_model, **config.MODEL.FSDP_CONFIG)
conso_model.init_model_from_weights_params_file(config, conso_cp)
slice_cp = CheckpointLoader.load_and_broadcast_init_weights(
"checkpoint_sliced.torch", device=torch.device("cpu")
)
slice_model = build_model(config.MODEL, config.OPTIMIZER).cuda(gpu_id)
slice_model = fsdp_wrapper(slice_model, **config.MODEL.FSDP_CONFIG)
slice_model.init_model_from_weights_params_file(config, slice_cp)
# Verifying that the models are equivalent
if gpu_id == 0:
slice_state_dict = slice_model.local_state_dict()
conso_state_dict = conso_model.local_state_dict()
assert set(slice_state_dict.keys()) == set(conso_state_dict.keys())
for k in slice_state_dict.keys():
slice_val = slice_state_dict[k]
conso_val = conso_state_dict[k]
assert torch.allclose(
slice_val, conso_val
), f"Difference for key {k}: {slice_val} VS {conso_val}"
dist.barrier()
with torch.no_grad():
ref_out = model.trunk(fake_test_input)[0]
shard_out = shard_model.trunk(fake_test_input)[0]
conso_out = conso_model.trunk(fake_test_input)[0]
slice_out = slice_model.trunk(fake_test_input)[0]
assert torch.allclose(
ref_out, shard_out
), f"{ref_out.sum()} vs {shard_out.sum()}"
assert torch.allclose(
ref_out, conso_out
), f"{ref_out.sum()} vs {conso_out.sum()}"
assert torch.allclose(
ref_out, slice_out
), f"{ref_out.sum()} vs {slice_out.sum()}"
@gpu_test(gpu_count=1)
def test_checkpoint_consolidation(self):
with in_temporary_directory():
with with_temp_files(count=1) as sync_file:
world_size = 2
mp.spawn(self._worker, (sync_file, world_size), nprocs=world_size)