-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathpipeline_steps.py
321 lines (280 loc) · 9.12 KB
/
pipeline_steps.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
from pyspark.ml.feature import Normalizer, SQLTransformer
from pyspark.ml.feature import BucketedRandomProjectionLSH
import sparknlp.base as sb
import sparknlp.annotator as sa
SENTENCE_SIM_THRESH = .44
APPROX_JOIN_CUTOFF = .5
def get_word_matching_sql(side):
"""Generate the SQL necessary to transform each side. Side \in {'x', 'y'}"""
word_pair_min_distance_sql = """
SELECT entry_id,
version_x,
version_y,
sent_idx_x,
sent_idx_y,
word_idx_%(side)s,
MIN(num_words) as num_words_total_list,
MIN(distance) as min_word_distance
FROM __THIS__
GROUP BY entry_id,
version_x,
version_y,
sent_idx_x,
sent_idx_y,
word_idx_%(side)s
""" % ({'side': side})
sentence_pair_min_distance_sql = """
SELECT entry_id,
version_x,
version_y,
sent_idx_x,
sent_idx_y,
(sum_min_word_distance + %(approx_join_cutoff)f * ( num_words_total - num_matched_words )) / num_words_total AS avg_sentence_distance
FROM (
SELECT entry_id,
version_x,
version_y,
sent_idx_x,
sent_idx_y,
SUM(min_word_distance) AS sum_min_word_distance,
COUNT(1) AS num_matched_words,
MIN(num_words_total_list) AS num_words_total
FROM __THIS__
GROUP BY entry_id,
version_x,
version_y,
sent_idx_x,
sent_idx_y
)
""" % ({'approx_join_cutoff': APPROX_JOIN_CUTOFF})
sentence_min_sql = """
SELECT entry_id,
version_x,
version_y,
sent_idx_x,
sent_idx_y,
avg_sentence_distance
FROM (
SELECT *, ROW_NUMBER() OVER (
PARTITION BY entry_id,
version_x,
version_y,
sent_idx_%(side)s
ORDER BY avg_sentence_distance ASC
) AS rn FROM __THIS__
)
where rn = 1
""" % ({'side': side})
threshold_sql = """
SELECT entry_id,
version_x,
version_y,
sent_idx_%(join_side)s,
CASE
WHEN (avg_sentence_distance < %(sentence_sim)f ) THEN sent_idx_%(other_side)s
ELSE NULL
END AS sent_idx_%(other_side)s,
CASE
WHEN (avg_sentence_distance < %(sentence_sim)f ) THEN avg_sentence_distance
ELSE NULL
END AS avg_sentence_distance
FROM __THIS__
""" % ({
'join_side': side,
'other_side': list({'x', 'y'} - set(side))[0],
'sentence_sim': SENTENCE_SIM_THRESH
})
return word_pair_min_distance_sql, sentence_pair_min_distance_sql, sentence_min_sql, threshold_sql
#####
#
# Pipelines
#
def get_split_sentence_pipeline():
documenter = (
sb.DocumentAssembler()
.setInputCol("summary")
.setOutputCol("document")
)
sentencer = (
sa.SentenceDetector()
.setInputCols(["document"])
.setOutputCol("sentences")
)
sent_finisher = (
sb.Finisher()
.setInputCols(["sentences"])
)
explode_sent = (
SQLTransformer()
.setStatement("""
SELECT entry_id, version, POSEXPLODE(finished_sentences) AS (sent_idx, sentence)
FROM __THIS__
""")
)
sentence_splitter_pipeline = sb.Pipeline(stages=[
documenter,
sentencer,
sent_finisher,
explode_sent
])
return sentence_splitter_pipeline
def get_sparknlp_pipeline(env='bb'):
####
#
# Spark NLP
#
documenter = (
sb.DocumentAssembler()
.setInputCol("summary")
.setOutputCol("document")
)
sentencer = (
sa.SentenceDetector()
.setInputCols(["document"])
.setOutputCol("sentences")
)
tokenizer = (
sa.Tokenizer()
.setInputCols(["sentences"])
.setOutputCol("token")
)
if env=='bb':
word_embeddings = (
sa.BertEmbeddings
.load('s3://aspangher/spark-nlp/small_bert_L4_128_en_2.6.0_2.4')
.setInputCols(["sentences", "token"])
.setOutputCol("embeddings")
.setMaxSentenceLength(512)
.setBatchSize(100)
)
# word_embeddings = (
# sa.RoBertaEmbeddings
# .load('s3://aspangher/spark-nlp/distilroberta_base_en_3.1.0_2.4')
# .setInputCols(["sentences", "token"])
# .setOutputCol("embeddings")
# .setMaxSentenceLength(512)
# .setBatchSize(100)
# )
else:
import os
local_model_file = 'small_bert_L4_128_en_2.6.0_2.4'
if not os.path.exists(local_model_file):
raise FileNotFoundError('Upload model file to this directory!')
word_embeddings = (
sa.BertEmbeddings
.load(local_model_file)
.setInputCols(["sentences", "token"])
.setOutputCol("embeddings")
.setMaxSentenceLength(512)
.setBatchSize(100)
)
tok_finisher = (
sb.Finisher()
.setInputCols(["token"])
.setIncludeMetadata(True)
)
embeddings_finisher = (
sb.EmbeddingsFinisher()
.setInputCols("embeddings")
.setOutputCols("embeddings_vectors")
.setOutputAsVector(True)
)
sparknlp_processing_pipeline = sb.Pipeline(stages=[
documenter,
sentencer,
tokenizer,
word_embeddings,
embeddings_finisher,
tok_finisher
]
)
return sparknlp_processing_pipeline
def get_explode_pipeline():
###
#
# SQL Processing Steps
#
zip_tok = (
SQLTransformer()
.setStatement("""
SELECT CAST(entry_id AS int) as entry_id,
CAST(version AS int) as version,
ARRAYS_ZIP(finished_token, finished_token_metadata, embeddings_vectors) AS zipped_tokens
FROM __THIS__
""")
)
explode_tok = (
SQLTransformer()
.setStatement("""
SELECT entry_id, version, POSEXPLODE(zipped_tokens) AS (word_idx, zipped_token)
FROM __THIS__
""")
)
rename_tok = (
SQLTransformer()
.setStatement("""
SELECT entry_id,
version,
CAST(zipped_token.finished_token_metadata._2 AS int) AS sent_idx,
COUNT(1) OVER(PARTITION BY entry_id, version, zipped_token.finished_token_metadata._2) as num_words,
CAST(word_idx AS int) word_idx,
zipped_token.finished_token AS token,
zipped_token.embeddings_vectors as word_embedding
FROM __THIS__
""")
)
explode_pipeline = sb.PipelineModel(stages=[
zip_tok,
explode_tok,
rename_tok,
])
return explode_pipeline
def get_similarity_pipeline():
vector_normalizer = (
Normalizer(
inputCol="word_embedding",
outputCol="norm_word_embedding",
p=2.0
)
)
similarity_checker = (
BucketedRandomProjectionLSH(
inputCol="norm_word_embedding",
outputCol="hashes",
bucketLength=3,
numHashTables=3
)
)
similarity_pipeline = sb.Pipeline(stages=[
vector_normalizer,
similarity_checker
])
return similarity_pipeline
def get_sentence_pipelines():
## get top sentences, X, pipeline
s1x, s2x, s3x, s4x = get_word_matching_sql(side='x')
#
get_word_pair_min_distance_x = SQLTransformer().setStatement(s1x)
get_sentence_min_distance_x = SQLTransformer().setStatement(s2x)
get_min_sentence_x = SQLTransformer().setStatement(s3x)
threshold_x = SQLTransformer().setStatement(s4x)
## get top sentences, Y, pipeline
s1y, s2y, s3y, s4y = get_word_matching_sql(side='y')
#
get_word_pair_min_distance_y = SQLTransformer().setStatement(s1y)
get_sentence_min_distance_y = SQLTransformer().setStatement(s2y)
get_min_sentence_y = SQLTransformer().setStatement(s3y)
threshold_y = SQLTransformer().setStatement(s4y)
top_sentence_pipeline_x = sb.PipelineModel(stages=[
get_word_pair_min_distance_x,
get_sentence_min_distance_x,
get_min_sentence_x,
threshold_x
])
top_sentence_pipeline_y = sb.PipelineModel(stages=[
get_word_pair_min_distance_y,
get_sentence_min_distance_y,
get_min_sentence_y,
threshold_y
])
return top_sentence_pipeline_x, top_sentence_pipeline_y