-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcswin_transformer.py
666 lines (594 loc) · 23.7 KB
/
cswin_transformer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
# copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Code was based on https://github.com/BR-IDL/PaddleViT/blob/develop/image_classification/CSwin/cswin.py
# reference: https://arxiv.org/abs/2107.00652
import copy
import numpy as np
import paddle
import paddle.nn as nn
from vision_transformer import trunc_normal_, zeros_, ones_, to_2tuple, DropPath, Identity
#from ....utils.save_load import load_dygraph_pretrain, load_dygraph_pretrain_from_url
MODEL_URLS = {
"CSWinTransformer_tiny_224":
"https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/CSWinTransformer_tiny_224_pretrained.pdparams",
"CSWinTransformer_small_224":
"https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/CSWinTransformer_small_224_pretrained.pdparams",
"CSWinTransformer_base_224":
"https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/CSWinTransformer_base_224_pretrained.pdparams",
"CSWinTransformer_large_224":
"https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/CSWinTransformer_large_224_pretrained.pdparams",
"CSWinTransformer_base_384":
"https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/CSWinTransformer_base_384_pretrained.pdparams",
"CSWinTransformer_large_384":
"https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/CSWinTransformer_large_384_pretrained.pdparams",
}
__all__ = list(MODEL_URLS.keys())
class PatchEmbedding(nn.Layer):
"""CSwin Patch Embedding
This patch embedding has a 7x7 conv + layernorm, the output tensor
is reshaped to [Batch, H*W, embed_dim]. Note that the patch is applied
by a conv with overlap (using patch_stride).
Args:
patch_stride: int, patch stride size, default: 4
in_channels: int, number of channels of input image, default: 3
embed_dim: int, output feature dimension, default: 96
"""
def __init__(self, patch_stride=4, in_channels=3, embed_dim=96):
super().__init__()
self.patch_embed = nn.Conv2D(
in_channels=in_channels,
out_channels=embed_dim,
kernel_size=7,
stride=patch_stride,
padding=2)
self.norm = nn.LayerNorm(embed_dim)
def forward(self, x):
x = self.patch_embed(
x) # [batch, embed_dim, h, w], h = w = image_size / 4
x = x.flatten(start_axis=2, stop_axis=-1) # [batch, embed_dim, h*w]
x = x.transpose([0, 2, 1]) # [batch, h*w, embed_dim]
x = self.norm(x)
return x
class Mlp(nn.Layer):
""" MLP module
Impl using nn.Linear and activation is GELU, dropout is applied.
Ops: fc -> act -> dropout -> fc -> dropout
Attributes:
fc1: nn.Linear
fc2: nn.Linear
act: GELU
dropout1: dropout after fc1
dropout2: dropout after fc2
"""
def __init__(self, in_features, hidden_features, dropout):
super().__init__()
self.fc1 = nn.Linear(in_features, hidden_features)
self.fc2 = nn.Linear(hidden_features, in_features)
self.act = nn.GELU()
self.dropout = nn.Dropout(dropout)
def forward(self, x):
x = self.fc1(x)
x = self.act(x)
x = self.dropout(x)
x = self.fc2(x)
x = self.dropout(x)
return x
def img2windows(img, h_split, w_split):
"""Convert input tensor into split stripes
Args:
img: tensor, image tensor with shape [B, C, H, W]
h_split: int, splits width in height direction
w_split: int, splits width in width direction
Returns:
out: tensor, splitted image
"""
B, C, H, W = img.shape
out = img.reshape([B, C, H // h_split, h_split, W // w_split, w_split])
out = out.transpose(
[0, 2, 4, 3, 5, 1]) # [B, H//h_split, W//w_split, h_split, w_split, C]
out = out.reshape([-1, h_split * w_split,
C]) # [B, H//h_split, W//w_split, h_split*w_split, C]
return out
def windows2img(img_splits, h_split, w_split, img_h, img_w):
"""Convert splitted stripes back
Args:
img_splits: tensor, image tensor with shape [B, C, H, W]
h_split: int, splits width in height direction
w_split: int, splits width in width direction
img_h: int, original tensor height
img_w: int, original tensor width
Returns:
img: tensor, original tensor
"""
B = paddle.to_tensor(img_splits.shape[0] //
(img_h // h_split * img_w // w_split), "int32")
img = img_splits.reshape([
B, img_h // h_split, img_w // w_split, h_split, w_split,
img_splits.shape[-1]
])
img = img.transpose(
[0, 1, 3, 2, 4,
5]) #[B,img_h//h_split, h_split, img_w//w_split, w_split,C]
img = img.reshape(
[B, img_h, img_w, img_splits.shape[-1]]) # [B, img_h, img_w, C]
return img
class LePEAttention(nn.Layer):
"""Cross Shaped Window self-attention with Locally enhanced positional encoding"""
def __init__(self,
dim,
resolution,
h_split=7,
w_split=7,
num_heads=8,
attention_dropout=0.,
dropout=0.,
qk_scale=None):
super().__init__()
self.dim = dim
self.resolution = resolution
self.num_heads = num_heads
self.dim_head = dim // num_heads
self.scale = qk_scale or self.dim_head**-0.5
self.h_split = h_split
self.w_split = w_split
self.get_v = nn.Conv2D(
in_channels=dim,
out_channels=dim,
kernel_size=3,
stride=1,
padding=1,
groups=dim)
self.softmax = nn.Softmax(axis=-1)
self.attn_dropout = nn.Dropout(attention_dropout)
def im2cswin(self, x):
B, HW, C = x.shape
H = W = int(np.sqrt(HW))
x = x.transpose([0, 2, 1]) # [B, C, H*W]
x = x.reshape([B, C, H, W]) # [B, C, H, W]
x = img2windows(x, self.h_split, self.w_split)
x = x.reshape(
[-1, self.h_split * self.w_split, self.num_heads, self.dim_head])
x = x.transpose([0, 2, 1, 3])
return x
def get_lepe(self, x, func):
"""Locally Enhanced Positional Encoding (LePE)
This module applies a depthwise conv on V and returns the lepe
Args:
x: tensor, the input tensor V
func: nn.Layer, a depth wise conv of kernel 3 stride 1 and padding 1
"""
B, HW, C = x.shape
H = W = int(np.sqrt(HW))
h_split = self.h_split
w_split = self.w_split
x = x.transpose([0, 2, 1]) # [B, C, H*W]
x = x.reshape([B, C, H, W]) # [B, C, H, W]
x = x.reshape([B, C, H // h_split, h_split, W // w_split, w_split])
x = x.transpose(
[0, 2, 4, 1, 3,
5]) # [B, H//h_split, W//w_split, C, h_split, w_split]
x = x.reshape(
[-1, C, h_split,
w_split]) # [B*(H//h_split)*(W//w_split), h_split, w_split]
lepe = func(x) # depth wise conv does not change shape
#lepe = lepe.reshape([-1, self.num_heads, C // self.num_heads, h_split * w_split])
lepe = lepe.reshape(
[-1, self.num_heads, self.dim_head, h_split * w_split])
lepe = lepe.transpose(
[0, 1, 3, 2]) # [B, num_heads, h_spllit*w_split, dim_head]
x = x.reshape([-1, self.num_heads, self.dim_head, h_split * w_split])
x = x.transpose(
[0, 1, 3, 2]) # [B, num_heads, h_split*wsplit, dim_head]
return x, lepe
def forward(self, q, k, v):
B, HW, C = q.shape
H = W = self.resolution
q = self.im2cswin(q)
k = self.im2cswin(k)
v, lepe = self.get_lepe(v, self.get_v)
q = q * self.scale
attn = paddle.matmul(q, k, transpose_y=True)
attn = self.softmax(attn)
attn = self.attn_dropout(attn)
z = paddle.matmul(attn, v)
z = z + lepe
z = z.transpose([0, 2, 1, 3])
z = z.reshape([-1, self.h_split * self.w_split, C])
z = windows2img(z, self.h_split, self.w_split, H, W)
z = z.reshape([B, z.shape[1] * z.shape[2], C])
return z
class CSwinBlock(nn.Layer):
"""CSwin Block
CSwin block contains a LePE attention modual, a linear projection,
a mlp layer, and related norms layers. In the first 3 stages, the
LePE attention moduals used 2 branches, where horizontal and
vertical split stripes are used for self attention and a concat
op is applied to combine the outputs. The last stage does not
have branche in LePE attention.
Args:
dim: int, input feature dimension
input_resolution: int, input feature spatial size.
num_heads: int, num of attention heads in current stage
split_size: int, the split size in current stage
mlp_ratio: float, mlp ratio, mlp_hidden_dim = mlp_ratio * mlp_in_dim, default: 4.
qkv_bias: bool, if set True, qkv projection will have bias, default: True
qk_scale: float, if set, replace the orig qk_scale (dim_head ** -0.5), default: None
dropout: float, dropout rate for linear projection, default: 0
attention_dropout: float, dropout rate for attention, default: 0
droppath: float, drop path rate, default: 0
split_heads: bool, if True, split heads is applied (True for 1,2,3 stages), default: True
"""
def __init__(self,
dim,
input_resolution,
num_heads,
split_size=7,
mlp_ratio=4.,
qkv_bias=False,
qk_scale=None,
attention_dropout=0.,
dropout=0.,
droppath=0.,
split_heads=True):
super().__init__()
self.dim = dim
# NOTE: here assume image_h == imgae_w
self.input_resolution = (input_resolution, input_resolution)
self.num_heads = num_heads
self.dim_head = dim // num_heads
self.mlp_ratio = mlp_ratio
self.split_size = split_size
self.norm1 = nn.LayerNorm(dim)
self.qkv = nn.Linear(
dim, dim * 3, bias_attr=None if qkv_bias else False)
self.attns = nn.LayerList()
self.split_heads = split_heads
num_branches = 2 if split_heads else 1
if split_heads: # first 3 stages
splits = [self.input_resolution[0],
self.split_size] # horizantal splits
else: # last stage
splits = [self.input_resolution[0], self.input_resolution[0]]
for _ in range(num_branches):
attn = LePEAttention(
dim=dim // num_branches,
resolution=input_resolution,
h_split=splits[0],
w_split=splits[1],
num_heads=num_heads // num_branches,
qk_scale=qk_scale,
attention_dropout=attention_dropout,
dropout=dropout)
self.attns.append(copy.deepcopy(attn))
# switch splits from horizantal to vertical
# NOTE: may need to change for different H and W
splits[0], splits[1] = splits[1], splits[0]
self.proj = nn.Linear(dim, dim)
self.drop_path = DropPath(droppath) if droppath > 0. else Identity()
self.norm2 = nn.LayerNorm(dim)
self.mlp = Mlp(in_features=dim,
hidden_features=int(dim * mlp_ratio),
dropout=dropout)
def chunk_qkv(self, x, chunks=1, axis=-1):
x = x.chunk(chunks, axis=axis)
return x
def forward(self, x):
H, W = self.input_resolution
B, HW, C = x.shape
# cswin attention
h = x
x = self.norm1(x)
qkv = self.qkv(x).chunk(3, axis=-1) # qkv is a tuple of [q, k, v]
if self.split_heads:
q, k, v = map(self.chunk_qkv, qkv,
(2, 2, 2)) # map requries list/tuple inputs
else:
q, k, v = map(lambda x: [x], qkv)
if self.split_heads: # first 3 stages
h_attn = self.attns[0](q[0], k[0], v[0])
w_attn = self.attns[1](q[1], k[1], v[1])
attn = paddle.concat([h_attn, w_attn], axis=2)
else: # last stage
attn = self.attns[0](q[0], k[0], v[0])
attn = self.proj(attn)
attn = self.drop_path(attn)
x = h + attn
# mlp + residual
h = x
x = self.norm2(x)
x = self.mlp(x)
x = self.drop_path(x)
x = h + x
return x
class MergeBlock(nn.Layer):
def __init__(self, dim_in, dim_out):
super().__init__()
self.conv = nn.Conv2D(
in_channels=dim_in,
out_channels=dim_out,
kernel_size=3,
stride=2,
padding=1)
self.norm = nn.LayerNorm(dim_out)
def forward(self, x):
B, HW, C = x.shape
H = W = int(np.sqrt(HW))
x = x.transpose([0, 2, 1]) # [B, C, HW]
x = x.reshape([B, C, H, W]) # [B, C, H, W]
x = self.conv(x)
new_shape = [x.shape[0], x.shape[1],
x.shape[2] * x.shape[3]] # [B, C', H*W]
x = x.reshape(new_shape) # [B, C', H*W]
x = x.transpose([0, 2, 1]) # [B, H*W, C']
x = self.norm(x)
return x
class CSwinStage(nn.Layer):
""" CSwin Stage, each stage contains multi blocks
CSwin has 4 stages, the first 3 stages are using head split. The last
stage does not have head split. There is a merge block between each
2 stages.
Args:
dim: int, input feature dimension
depth: int, number of blocks in current stage
num_heads: int, num of attention heads in current stage
split_size: int, the split size in current stage
mlp_ratio: float, mlp ratio, mlp_hidden_dim = mlp_ratio * mlp_in_dim, default: 4.
qkv_bias: bool, if set True, qkv projection will have bias, default: True
qk_scale: float, if set, replace the orig qk_scale (dim_head ** -0.5), default: None
dropout: float, dropout rate for linear projection, default: 0
attention_dropout: float, dropout rate for attention, default: 0
droppath: float, drop path rate, default: 0
last_stage: bool, if current stage is the last stage, default: False
"""
def __init__(self,
dim,
input_resolution,
depth,
num_heads,
split_size,
mlp_ratio=4.,
qkv_bias=True,
qk_scale=None,
dropout=0.,
attention_dropout=0.,
droppath=0.,
last_stage=False):
super().__init__()
self.blocks = nn.LayerList()
for i in range(depth):
block = CSwinBlock(
dim=dim,
input_resolution=input_resolution,
num_heads=num_heads,
split_size=split_size,
mlp_ratio=mlp_ratio,
qkv_bias=qkv_bias,
qk_scale=qk_scale,
attention_dropout=attention_dropout,
dropout=dropout,
droppath=droppath[i]
if isinstance(droppath, list) else droppath,
split_heads=not last_stage)
self.blocks.append(copy.deepcopy(block))
# last stage does not need merge layer
self.merge = MergeBlock(
dim_in=dim, dim_out=dim * 2) if not last_stage else Identity()
def forward(self, x):
for block in self.blocks:
x = block(x)
x = self.merge(x)
return x
class CSwinTransformer(nn.Layer):
"""CSwin Transformer class
Args:
image_size: int, input image size, default: 224
patch_stride: int, stride for patch embedding, default: 4
in_channels: int, num of channels of input image, default: 3
num_classes: int, num of classes, default: 1000
embed_dim: int, embedding dim (patch embed out dim), default: 96
depths: list/tuple(int), number of blocks in each stage, default: [2, 4, 32, 2]
splits: list/tuple(int), the split number in each stage, default: [1, 2, 7, 7]
num_heads: list/tuple(int), num of attention heads in each stage, default: [4, 8, 16, 32]
mlp_ratio: float, mlp ratio, mlp_hidden_dim = mlp_ratio * mlp_in_dim, default: 4.
qkv_bias: bool, if set True, qkv projection will have bias, default: True
qk_scale: float, if set, replace the orig qk_scale (dim_head ** -0.5), default: None
dropout: float, dropout rate for linear projection, default: 0
attention_dropout: float, dropout rate for attention, default: 0
droppath: float, drop path rate, default: 0
"""
def __init__(self,
image_size=224,
patch_stride=4,
in_channels=3,
class_num=1000,
embed_dim=96,
depths=[2, 4, 32, 2],
splits=[1, 2, 7, 7],
num_heads=[4, 8, 16, 32],
mlp_ratio=4.,
qkv_bias=True,
qk_scale=None,
dropout=0.,
attention_dropout=0.,
droppath=0.):
super().__init__()
# token embedding
self.patch_embedding = PatchEmbedding(
patch_stride=patch_stride,
in_channels=in_channels,
embed_dim=embed_dim)
# drop path decay by stage
depth_decay = [
x.item() for x in paddle.linspace(0, droppath, sum(depths))
]
dim = embed_dim
resolution = image_size // 4
self.stages = nn.LayerList()
num_stages = len(depths)
# construct CSwin stages: each stage has multiple blocks
for stage_idx in range(num_stages):
stage = CSwinStage(
dim=dim,
input_resolution=resolution,
depth=depths[stage_idx],
num_heads=num_heads[stage_idx],
split_size=splits[stage_idx],
mlp_ratio=mlp_ratio,
qkv_bias=qkv_bias,
qk_scale=qk_scale,
dropout=dropout,
attention_dropout=attention_dropout,
droppath=depth_decay[sum(depths[:stage_idx]):sum(
depths[:stage_idx + 1])],
last_stage=stage_idx == num_stages - 1)
self.stages.append(stage)
if stage_idx != num_stages - 1:
dim = dim * 2
resolution = resolution // 2
# last norm and classification head layers
self.norm = nn.LayerNorm(dim)
if class_num>0:
self.head = nn.Linear(dim, class_num)
self.apply(self._init_weights)
def _init_weights(self, m):
if isinstance(m, nn.Linear):
trunc_normal_(m.weight)
if isinstance(m, nn.Linear) and m.bias is not None:
zeros_(m.bias)
elif isinstance(m, nn.LayerNorm):
zeros_(m.bias)
ones_(m.weight)
def forward_features(self, x):
x = self.patch_embedding(x)
for stage in self.stages:
x = stage(x)
x = self.norm(x)
return paddle.mean(x, axis=1)
def forward(self, x):
x = self.forward_features(x)
x = self.head(x)
return x
def _load_pretrained(pretrained, model, model_url, use_ssld=False):
if pretrained is False:
pass
elif pretrained is True:
load_dygraph_pretrain_from_url(model, model_url, use_ssld=use_ssld)
elif isinstance(pretrained, str):
load_dygraph_pretrain(model, pretrained)
else:
raise RuntimeError(
"pretrained type is not available. Please use `string` or `boolean` type."
)
def CSWinTransformer_tiny_224(pretrained=False, use_ssld=False, **kwargs):
model = CSwinTransformer(
image_size=224,
embed_dim=64,
depths=[1, 2, 21, 1],
splits=[1, 2, 7, 7],
num_heads=[2, 4, 8, 16],
droppath=0.2,
**kwargs)
_load_pretrained(
pretrained,
model,
MODEL_URLS["CSWinTransformer_tiny_224"],
use_ssld=use_ssld)
return model
def CSWinTransformer_small_224(pretrained=False, use_ssld=False, **kwargs):
model = CSwinTransformer(
image_size=224,
embed_dim=64,
depths=[2, 4, 32, 2],
splits=[1, 2, 7, 7],
num_heads=[2, 4, 8, 16],
droppath=0.4,
**kwargs)
_load_pretrained(
pretrained,
model,
MODEL_URLS["CSWinTransformer_small_224"],
use_ssld=use_ssld)
return model
def CSWinTransformer_base_224(pretrained=False, use_ssld=False, **kwargs):
model = CSwinTransformer(
image_size=224,
embed_dim=96,
depths=[2, 4, 32, 2],
splits=[1, 2, 7, 7],
num_heads=[4, 8, 16, 32],
droppath=0.5,
**kwargs)
_load_pretrained(
pretrained,
model,
MODEL_URLS["CSWinTransformer_base_224"],
use_ssld=use_ssld)
return model
def CSWinTransformer_base_384(pretrained=False, use_ssld=False, **kwargs):
model = CSwinTransformer(
image_size=384,
embed_dim=96,
depths=[2, 4, 32, 2],
splits=[1, 2, 12, 12],
num_heads=[4, 8, 16, 32],
droppath=0.5,
**kwargs)
_load_pretrained(
pretrained,
model,
MODEL_URLS["CSWinTransformer_base_384"],
use_ssld=use_ssld)
return model
def CSWinTransformer_large_224(pretrained=False, use_ssld=False, **kwargs):
model = CSwinTransformer(
image_size=224,
embed_dim=144,
depths=[2, 4, 32, 2],
splits=[1, 2, 7, 7],
num_heads=[6, 12, 24, 24],
droppath=0.5,
**kwargs)
_load_pretrained(
pretrained,
model,
MODEL_URLS["CSWinTransformer_large_224"],
use_ssld=use_ssld)
return model
def CSWinTransformer_large_384(pretrained=False, use_ssld=False, **kwargs):
model = CSwinTransformer(
image_size=384,
embed_dim=144,
depths=[2, 4, 32, 2],
splits=[1, 2, 12, 12],
num_heads=[6, 12, 24, 24],
droppath=0.5,
**kwargs)
_load_pretrained(
pretrained,
model,
MODEL_URLS["CSWinTransformer_large_384"],
use_ssld=use_ssld)
return model
class CSwinTransformerEncoder(CSwinTransformer):
def __init__(self,**kwargs):
super().__init__(class_num=0,**kwargs)
def forward_features(self, x):
x = self.patch_embedding(x)
for stage in self.stages:
x = stage(x)
x = self.norm(x)
return x
def forward(self,x):
x = self.forward_features(x)
return x